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1. Introduction

Labor is not a homogeneous commodity. The Dictionary of Occupational Titles (DOT) published by the U.S.

Department of Labor distinguishes among over 12000 occupations. A majority of these occupations require

highly specialized training. According to the DOT, the majority of the workforce in the United States is

employed in occupations that require more than a year of vocational preparation specific to that occupation.

The U.S. labor market is therefore not a single market where one homogeneous type of labor is traded. Instead,

it is more appropriate to think of it as being composed of many skill-specific sub-markets or “islands.”

Two distinct but potentially complementary mechanisms of how this heterogeneity can give rise to unem-

ployment have been discussed in the literature. On the one hand, search models – in particular models based

on Lucas Jr. and Prescott (1974) – assume that moving across sub-markets is time-intensive. In a heterogeneous

labor market that is subject to reallocation shocks, unemployment can therefore arise as a consequence of

workers looking for new job opportunities.

An alternative view is that a worker who has been displaced is still attached to his pre-displacement job and

tries to find reemployment in a similar position (e.g., Shimer, 2007; Alvarez and Shimer, 2011). A potential

consequence is what I refer to as wait unemployment: instead of searching on different islands, workers prefer to

wait and sit through long unemployment spells hoping that their old job reappears. Whereas search is a theory

of former steel workers looking for positions as nurses, the latter is a theory of former steel workers waiting for

their former plant to reopen (Shimer, 2007).

The objective of this paper is to test and quantify the concept of wait unemployment and to assess its impor-

tance for aggregate unemployment in the United States. Because human capital is only partially transferable

across jobs, a displaced worker prefers to find a new position that is as similar as possible to the job he worked

in before. If such a position is not readily available the worker faces a trade-off. On the one hand, he can work

in a different job. Because human capital is usually compensated by a higher wage, this will go along with a

wage-loss that I refer to as a mobility cost. The alternative is to evade this mobility cost and to instead sit through

a long spell of unemployment and wait until a similar job becomes available.

I quantify this trade-off using micro-data on displaced workers in the United States. To achieve identification

I make use of a difference-in-differences strategy in the spirit of Rajan and Zingales (1998) that relies on two

sources of variation. Firstly, I exploit that the extent of specific human capital a worker invested in varies by

occupation. For example, an industrial engineer spent many more years preparing for his job than a waiter.

I operationalize this by using data on the specific vocational preparation (SVP) required to work in a given

occupation provided by the Dictionary of Occupational Titles. A displaced worker who leaves an occupation

with high SVP gives up a substantial stock of human capital and suffers a wage-loss. The higher the SVP of the
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Figure 1: The relationship between the wage-loss after displacement and specific vocational preparation (SVP)
is shown. I differentiate between workers who report to have switched occupations after displacement
(black circles) and workers who stayed in the same occupation (gray triangles). The lines visualize
weighted linear fits. It is apparent that the cost of switching occupations – what I refer to as mobility cost
– is strongly increasing in SVP. The fact that a similar relation is not observable for occupation stayers
is reassuring evidence that the driving force is indeed the loss of occupation-specific human capital of
switchers. Data on SVP comes from the the revised fourth edition of the Dictionary of Occupational
Titles (1991). Data on wage-losses comes from the Current Population Survey Displaced Workers
Supplement (CPS-DWS).

occupation a worker is trained in, the higher is therefore the mobility cost this worker is facing when switching

occupations. One contribution of this paper is to document that this relation is strongly confirmed in the data,

see Figure 1.

Secondly, I exploit geographic variation by using local labor market information from the U.S. Census. Local

labor markets differ regarding their thickness. In a thick labor market it will be relatively easier to find a job

that matches a worker’s skill-set, even when highly specialized; mobility cost are therefore less likely to be

binding. I use two alternative measures to operationalize market thickness. My first measure is the size of

the local labor force. If workers and firms are heterogeneous in their skill endowments and requirements, an

increase in trading partners increases the probability that a worker can find a vacancy that matches his skills.

My second measure is the industrial diversity of the local labor market. In a diverse market, employment (and

vacancies) are evenly distributed across many industries. Since employment of most occupations spans many
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different industries, in a diverse market it is more likely that at any given time there is a vacancy matching a

given worker skill.

Based on these two sources of variation, I construct the following test. I use data from the Current Population

Survey Displaced Worker Supplement (CPS-DWS) that contains information on completed unemployment

spells of workers displaced between 1983 and 2012 in the U.S. labor market. I examine the sample of displaced

workers who managed to find a job in the same occupation they worked in before. I then compare the

unemployment spells of more and less specialized workers in thin and thick local labor markets. If wait

unemployment matters, workers with more specific training should have relatively longer spells in thin markets

where mobility costs are likely to be binding. In thick markets, on the other hand, the difference should be

smaller or even non-existent.

My empirical results are in line with this hypothesis. For example, based on my regression results, I find

that in the thick New York metropolitan area labor market a industrial engineer who finds reemployment as

a industrial engineer goes through an unemployment spell that is about 3 weeks longer than a waiter who

finds reemployment as a waiter. On the other hand, in the relatively thin Bakersfield, CA metropolitan area a

industrial engineer sits through an unemployment spell that is almost 9 weeks longer than that of a waiter to

find a job in his old occupation. The differential unemployment spell is therefore about 6 weeks.

My interpretation of this finding is that in Bakersfield, CA it is relatively more difficult to find reemployment

in the same occupation and therefore to transfer human capital to the next job. Since waiters only made

small investments in occupation-specific training they prefer switching occupations to going through a long

unemployment spell. Industrial engineers, on the other hand, have substantial occupation-specific training and

would suffer high wage-losses when switching occupations. They are therefore willing to go trough relatively

longer unemployment spells in order to find reemployment as industrial engineers.

I find that the occupation switching behavior of workers is consistent with this interpretation. While 60% of

industrial engineers find reemployment as industrial engineers, only 30% of waiters stay in their occupation in

the New York metropolitan area and only 19% in the thin Bakersfield, CA labor market. Moreover, based on a

difference-in-difference-in-differences approach, I document that long unemployment spells can only be found

for occupation stayers but not for occupation switchers. Since my estimation strategy allows me to control

for occupation- (and local-labor market) fixed effects, I can exclude that my results are driven by any inherent

differences between occupations.

Finally, I push the exercise further and use a worker’s specific vocational preparation as an instrument in a

(two-sample) two-stage least squares (TS2SLS) regression to obtain direct estimates of how mobility cost affect

unemployment duration. I find that in thin labor markets even small mobility costs can lead to very substantial
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increases in unemployment duration.

My results have important macroeconomic implications. Using a back-of-the-envelope calculation I find

that there would be between 9% and 18% less unemployment in the United States if human capital would be

transferable and switching occupations would not entail any mobility cost. Moreover, I argue that my findings

might offer important insights for the design of an optimal unemployment insurance system.

1.1. Related Literature

The idea that specificity of human capital can lead to long spells of wait unemployment is not new. To the

best of my knowledge, Murphy and Topel (1987) are the first to mention this channel explicitly. In particular,

they note that it is compatible with the observation that increased unemployed tends to go along with reduced

inter-sectoral mobility. This finding is strong evidence against sectoral-shift theories of unemployment as, for

example, proposed by Lilien (1982).

One strand of literature formalizes this idea in models where workers can undergo spells of “rest unemploy-

ment.” Jovanovic (1987), Hamilton (1988), King (1990), Gouge and King (1997), and more recently Alvarez and

Shimer (2008) extend the basic island model by Lucas Jr. and Prescott (1974). When a worker is subject to an

adverse shocks that lowers his wage he might rationally prefer not to work and to wait for better times instead

of undertaking a costly search for a better industry or occupation on another “island.” A sharp difference to

my framework is that in models of rest unemployment wages always fully adjust and clear markets. Rest

unemployment exists because workers have a utility from resting that might dominate working at the current

market wage. In my framework, on the other hand, the extent of wage adjustments is a critical factor in driving

unemployment. Workers are never voluntarily unemployed but they are queuing in order to put their human

capital to optimal use.

There is an older literature on transitional or wait unemployment that most resembles the concept of un-

employment I have in mind. The basic idea is that due to rigidities there are good and bad jobs that pay

workers of equal ability different wages. A fraction of workers rationally decide to queue and go through long

unemployment spells in order to get one of the highly paid jobs. This creates unemployment. Recently Alvarez

and Shimer (2008), based on ideas by Summers et al. (1986), claim that wage dispersion caused by unions leads

to substantial unemployment. In a classical paper Harris and Todaro (1970) identify wage differentials between

rural and urban jobs as a source of wait unemployment. Wait unemployment in my framework is different

inasmuch that workers are not queuing in order to seize rents but because they want to preserve valuable

specific human capital.

I also contribute to a big literature that empirically studies the specificity of human capital, particularly
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by analyzing earnings losses of displaced workers. Early papers in this literature tried to estimate the cost

of losing firm-specific capital (Abraham and Farber, 1987; Altonji and Shakotko, 1987; Kletzer, 1998; Topel,

1991). Neal (1995) and Parent (2000) analyzed the costs of changing industry after displacement. More recently,

there is growing evidence that human capital is mostly occupation- and not industry-specific (Kambourov and

Manovskii, 2009). I contribute to this literature by showing that the cost of switching differs substantially across

occupations; leaving an occupation is more costly for workers who underwent lengthy and highly specific

occupational training (e.g., physicians) than for workers in occupations that makes use of mostly general skills

(e.g., waiters).

This paper also builds on a literature that explores the link between local labor market thickness, the quality

of job matches, and worker mobility. Helsley and Strange (1990) were the first to formalize the idea that, if

workers and firms (vacancies) are heterogeneous in their skill endowments and requirements, an increase in

trading partners increases the probability that a worker can find a vacancy that matches his skills. Thicker labor

markets therefore imply better job match quality and higher labor productivity. A consequence of this result is

that local labor market thickness also affects worker mobility. For example, both Wheeler (2008) and Bleakley

and Lin (2012) find evidence that workers early in their careers residing in thick labor markets are more likely

to change industries and occupations, presumably because they experiment with different types of work to

find out what job matches their skills best. More experienced workers, on the other hand, try to evade the

loss of specific human capital. Since the likelihood that a similar job is available in a thick market is relatively

high, these workers are therefore less likely to switch occupation and industry in thick local labor markets. My

findings are consistent with this evidence. The present paper adds to this literature by using the insight that the

likelihood to find re-employment in a similar job is increasing in local labor market thickness in the estimation

strategy

Finally, this paper contributes to the literature on labor market mismatch and structural unemployment.

This research has attracted increasing interest in recent times due to high and persistent unemployment rates

during and after the Great Recession of 2008 and because of claims that “structural factors” are behind this

development (Kocherlakota, 2010). Sahin et al. (2014) combine unemployment records with data on posted

vacancies to calculate mismatch unemployment in the U.S. labor market. They find that mismatch across

industries and occupations explains at most one-third of the increase of unemployment in the Great Recession

while geographic mismatch does not play a role. Barnichon and Figura (2011) use CPS data to explore the

effect of mismatch on matching efficiency. They find that lower matching efficiency due to mismatch can have

significant detrimental effect for unemployment in recessions. Herz and van Rens (2015) push the analysis a step

further by identifying several potential driving forces of mismatch unemployment and estimate their relative
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importance. This paper is complementary to this literature since I quantify evidence of how on very specific

channel – workers “waiting” for reemployment since they made specific investments ex-ante – contributes to

mismatch unemployment.

The remainder of this article proceeds as follows. In Section 2, I describe the different data sources that I use for

estimation. I discuss the basic estimation framework in Section 3. In Section 4, I estimate the relation between

SVP and mobility cost. Estimates of wait unemployment are presented in Section 5. I discuss the macroeconomic

implications of wait unemployment in Section 6. Firstly, using a “back-of-the-envelope” calculation I show

the importance of wait unemployment for aggregate unemployment in the United States. Secondly, I discuss

potential implications for the design of an optimal unemployment insurance system. Section 7 concludes. A

stylized model that formally shows the relation between market thickness and wait unemployment is presented

in the appendix.

2. Data and Measurement

2.1. Displaced Workers

My primary data set is the Current Population Displaced Workers Supplement (CPS-DWS) that has been widely

used for research on earnings-losses of displaced workers.1 The CPS-DWS was part of the CPS in January 1988,

February 1994, 1996, 1998, and 2000, and in January 2002, 2004, 2006, 2008, 2010, and 2012. CPS respondents are

asked whether they lost a job in the three years prior to the survey date (five years in 1988). Those individuals

who report having lost a job are part of the CPS-DWS and asked follow-up questions. This ex-post design is the

comparative advantage of the CPS-DWS because it allows the researcher to observe completed unemployment

spells and provides information about a worker’s old and new job. In particular, job-losers are asked about both

their pre- and post-displacement weekly earnings, their pre- and post-displacement occupation,2 reasons for

displacement, and about the length of their initial unemployment spell.3 I refer the reader to the data appendix

A.2 for more information about the CPS-DWS and the exact sample that I use in this study.

1Some of the classic papers are Topel (1990), Gibbons and Katz (1991), Carrington (1993), Neal (1995), Farber et al. (1993), and Farber
et al. (1997).

2Occupation codes used in the CPS underwent several changes between 1988 and 2012. I therefore construct 384 time-consistent
occupation codes by using the conversion tables provided by Meyer and Osborne (2005).

3The exact wording of the question is “After that job ended, how many weeks went by before you started working again at another
job?” That is, this is not exactly an unemployment spell but includes workers who are inactive. So the best fit between my empirical
framework and the data that is available is obtained when one thinks of unemployed workers in the framework as comprising both
inactive and unemployed workers.
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Table 1: Specific Vocational Preparation

SVP Time required Example

1 0.1% Short demonstration only refuse and recycable materials collectors
2 8.0% Anything beyond short demonstration ≤1 month janitors, bartenders
3 22.1% Over 1 month up to and including 3 months laundry workers, waiter/waitress
4 33.0% Over 3 months up to and including 6 months general office clerks, receptionist
5 43.1% Over 6 months up to and including 1 year welders and cutters, bank tellers
6 52.9% Over 1 year up to and including 2 years chemical technicians, insurance sales
7 83.7% Over 2 years up to and including 4 years registered nurses, lectricians
8 99.9% Over 4 years up to and including 10 years chemical engineers, lawyers, physicians
9 100.0% Over 10 years judges

Notes: Definitions of the various levels of specific vocational preparation from the 1991 revised fourth edition of the Dictionary of

Occupational Titles are reported. The first column shows the original (ordinal) variable. The second column shows the transformed

(cardinal) variable. The latter was generated by constructing an empirical cumulative distribution function of SVP based on the

1995 basic monthly CPS data. For example, 52.9% of the workforce in 1995 were employed in occupations requiring at most 2 years

of specific vocational preparation. Note that there is only one occupation in the highest category (judges) and one in the lowest

category (refuse and recycable materials collectors).

2.2. Specific Vocational Preparation

My identification strategy requires a measure of the occupation-specific human capital a worker invested in.

I operationalize this by drawing on the “specific vocational preparation” (SVP) required to work in a given

occupation provided by the revised fourth edition of the Dictionary of Occupational Titles (DOT) published by

the U.S. Department of Labor in 1991. SVP is defined as “the amount of lapsed time required by a typical worker

to learn the techniques, acquire the information, and develop the facility needed for average performance in

a specific job-worker situation.”4 The variable that I use in this paper can be interpreted as the share of the

employed workforce that works in occupations with equal or smaller required specific vocational preparation.

See Table 1 for a description of the variable. I refer the reader to the data appendix for more information on the

construction of the variable.

2.3. Market Thickness

My identification strategy exploits that mobility cost should only matter when workers are forced to switch

occupations and mobility is necessary. To capture this source of variation empirically, I exploit that in a thick

labor market it is more likely for a worker to find a vacancy that matches his skill endowment (see, e.g., Helsley

and Strange (1990) and Section 4.2.1 of Moretti (2011) for a survey). Switching occupations is therefore less

likely to be necessary.

I follow a popular approach in labor economics by assuming that local labor markets are well captured by

4See the data appendix A.2 for a detailed definition.
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the concept of Metropolitan Statistical Areas (MSA) as defined by the Office of Management and Budget (OMB)

(e.g. Card, 2001; Mazzolari and Ragusa, 2011).5

I operationalize the concept of market thickness in two alternative ways. In both cases, the data comes from

the Integrated Public Use Microdata Series (IPUMS-USA) 5% sample of the U.S. Census for the years 1990 and

2000 (Ruggles et al., 2010).6

2.3.1. Market Size

The main measure of market thickness that I use in this paper is the size of an MSA’s labor force, SIZEm.

The motivation is that if workers and firms (vacancies) are heterogeneous in their skill endowments and

requirements, an increase in trading partners increases the probability that a worker can find a vacancy that

matches his skills. I refer the reader to the model in appendix A.1 for a more formal explanation of this

mechanism.

2.3.2. Industrial Diversity

As an alternative measure, I use the (inverse) industry fractionalization of a local market m that is equivalent to

the Herfindahl concentration index.7 The measure is formally defined as

1 −DIVERSITYm =
∑

k

τ2
mk (1)

where τmk is the employment share of industry k in local labor market m. It captures the probability that two

individuals who are randomly sampled from local labor market m are employed in the same industry.

The motivation for using this measure is based on two observations. Firstly, as I report in detail in appendix

A.3, most occupations can be found in many different industries. Secondly, as I document in Section 4, as long

as workers stay in the same occupation, workers can switch industries without suffering a wage-loss.8 That is,

SVP captures purely occupation-specific training that is transferable across industries.

5Competing concepts are to use U.S. states (Topel, 1986; Herz and van Rens, 2015), counties (Gould et al., 2002), or so-called commuting
zones (Tolbert and Killian, 1987; Tolbert and Sizer, 1996; Autor et al., 2013). See the appendix A.2.1 of Dorn (2009) for a detailed
discussion of local labor market concepts.

6There are some challenges to matching the CPS-DWS data to U.S. Census data. Between 1988 to 2012, the CPS-DWS uses three
different MSA classifications. In 1988 and 1992 it uses the U.S. Office of Management and Budget (OMB) 84 definitions, from 1994 to
2004 the OMB 93 definitions, and from 2006 on the OMB 2003 definitions. Throughout this paper I use the OMB 2003 classification
by using a “geographic relationship file” provided by the Census that can be found at https://www.census.gov/population/
metro/data/other.html.

7Measures of fractionalization have been widely used in economic research, in particular to analyze the impact of ethnic diversity on
corruption, conflict, and various economic or political outcome variables (e.g., Mauro, 1995; Easterly and Levine, 1997; Alesina et
al., 1999; Miguel and Gugerty, 2005).

8For example when an electrician is switches occupations and works as a waiter, he will lose his specific training. However, when a
workers switches from being an electrician in the autmotive industry to the mining industry he does not lose his specific vocational
preparation.
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In a market with high DIVERSITYm, employment – and therefore vacancies – is evenly spread across many

industries. Assuming that industries’ vacancy posting is subject to random fluctuations that are not perfectly

correlated, this implies that the likelihood that at a given time there is no opening for a specific occupation in

the local market is decreasing in DIVERSITYm.9 The probability that a worker can find a vacancy that matches

his skills is therefore increasing in DIVERSITYm. I again refer the reader to appendix A.1 for a more formal

explanation of the mechanism.

To facilitate the interpretation of the estimates, I transform both variables by generating empirical cumulative

distribution functions. The new variables can then be interpreted as, firstly, the percentage of the total U.S.

metropolitan labor force that resides in a MSA of equal or smaller size, and secondly, the percentage of the U.S.

metropolitan workforce that lives in a MSA with equal or lower industrial diversity. For convenience, in the

following I refer to both SIZEm and DIVERSITYm as measures of labor market thickness.

3. Basic Estimation Framework

The relation between wait unemployment, mobility cost, and specific vocational preparation can be described

by the following two regression equations. The first regression is estimated on the sub-sample of “switchers,”

that is, workers whose pre- and post-displacement occupation is not the same:

MCi jt = α1 + α2 SVP j + θ
′Xi + ǫi jt (2)

The second regression is estimated on the sub-sample of “stayers,” that is, workers whose pre- and post-

displacement occupation is the same:

UNEMi jt = β1 + β2 MCi jt + θ
′Xi + ηi jt (3)

MCi jt is the mobility cost of a displaced worker i measured as the (expected) wage-loss (the log-earnings

difference) he would suffer when leaving his pre-displacement occupation j.

The first regression captures the effect of specific human capital on mobility cost, visualized in Figure

1: conditional on switching to another occupation after displacement, there is a strong positive correlation

between the extent of occupation-specific training a worker invested in and the wage-loss he experiences. This

implies α2 > 0. As described in Section 2.2, I proxy the occupation-specific training by the length of the required

specific training of the worker’s last occupation, SVP j.

9Note that this line of reasoning is related to the “risk diversficiation hypothesis” (e.g., Simon (1988) and Neumann and Topel (1991)).
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The second regression formalizes the idea of wait unemployment. The higher the (expected) mobility cost

MCi jt a worker is facing, the longer the unemployment spell UNEMi jt he is willing to go through in order to evade

switching occupations. UNEMi jt is measured as the natural logarithm of 1 plus the weeks of unemployment:

log(1 + weeksi jt).
10 If wait unemployment matters, it should hold β2 > 0.

All regressions also include a vector of worker-specific demographic control variables Xi to reconcile the

model with the data and account for the fact that in reality workers differ among many more dimensions than

the ones captured by the simple model. Regressions include year-of-displacement dummies, four education

dummies (dropout, high-school, some college, college or more), a female dummy, a non-black dummy, and

potential experience (quadratic). Importantly, all regressions also include the tenure on the pre-displacement

job (cubic). The wage-loss captured by coefficient α2 in regression (2), for example, is therefore purely due to

specific vocational training, not due to job tenure. As explained in the data appendix A.2, it is also important to

take into account whether a worker was displaced due to plant closing. In order to capture this, all regressions

include a plant closing dummy that is also interacted with worker-specific demographic variables.

I report estimates of equation (2) in the next section. I then turn to equation (3) in Section 5 .

4. Specific Human Capital and Mobility Cost

Regression equation (2) relates to a big literature in labor economics that studies the specificity of human capital

by analyzing earnings losses of displaced workers. Early papers in this literature try to shed light on the degree

of firm-specificity of human capital (Abraham and Farber, 1987; Altonji and Shakotko, 1987; Kletzer, 1998;

Topel, 1991) while Neal (1995) and Parent (2000) analyze the costs of switching industry. More recently, there is

growing evidence that human capital is actually mostly occupation-specific (e.g., Kambourov and Manovskii,

2009).

Here I contribute to this literature by showing that the extent of human capital lost upon leaving an occupation

also differs substantially across occupations. In particular, I show that the SVP j of an occupation is a good

predictor of the extent of human capital lost upon switching. For example, a physician who underwent lengthy

and highly specific occupational training will lose a substantial amount of human capital upon leaving his

occupation. This is reflected in a high wage-loss. On the other hand, for workers in occupations that make

use of mostly general skills (e.g., bartender, cashier) switching occupations entails only a limited loss of human

capital resulting in only marginal wage-losses.

Column (1) of Table 2 reports estimates of equation (2). The coefficient on SVP j is positive and significant

10The results in this paper are robust to instead using log(weeksi jt) and dropping observations with an “unemployment spell” of zero
weeks. Additionally, I report Tobit estimates in Table 12 in the appendix.
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Table 2: Mobility Cost and SVP

(1) (2) (3) (4) (5) (6) (7)

SVP j 0.144*** 0.00613
(0.0266) (0.0240)

SWITCHERi jt 0.0778*** -0.0241 0.00321 -0.0478 -0.0421
(0.0117) (0.0263) (0.0231) (0.0301) (0.0272)

SVP j × SWITCHERi jt 0.160*** 0.131*** 0.200*** 0.188***
(0.0330) (0.0295) (0.0416) (0.0363)

IND SWITCHERi jt 0.00900
(0.0583)

SVP j × IND SWITCHERi jt 0.0223
(0.0731)

Observations 7,918 12,355 12,355 12,355 4,832 8,604 4,046
R-squared 0.071 0.127 0.129 0.067 0.146 0.152 0.193

Occupation fixed effects no yes yes no yes yes yes

Sample
Occupation switchers only yes no no no no no no
Occupation stayers only no no no no no no yes
Plant closing only no no no no yes no no
No advance notice only no no no no no yes no

Notes: Column (1) reports estimates of regression (2) whereas columns (2)-(7) report estimates of variations of regression equation (4). The method

of estimation is least squares. The dependent variable is the wage-loss defined as the log-difference between deflated weekly earnings on the pre-

displacement jobs and the current job. All regressions include year-of-displacement dummies, four education dummies (dropout, high-school, some

college, college or more), a female dummy, a non-black dummy, potential experience (quadratic), tenure on the pre-displacement job (cubic), and con-

trols that capture whether displacement was due to plant closing. Only the sub-sample of displaced workers who report that the current job was the

first job after displacement is used for estimation. As noted at the bottom of the table, the sample is further restricted in columns (1) and columns (5)-(7).

Standard errors clustered at the occupation level are reported in parenthesis. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

at the 1% level. As described in Section 2.2, SVP j is the share of the workforce that works in occupations

requiring less or equal specific vocational preparation than occupation j. The estimates therefore imply that

every 10 percentage point increase in the SVP distribution leads to a 1.4 percentage point increase in the expected

wage-loss when switching occupations after displacement. This magnitude is economically important.

A problem with this simple specification is that I cannot for occupation fixed effects. It is therefore possible that

the estimated positive coefficient on SVP j results from unobserved occupation characteristics that systematically

vary with SVP j. My baseline is therefore the modified regression

MCi jt = α1 SWITCHERi jt + α2 SWITCHERi jt × SVP j + χ j + θ
′Xi + ǫi jt. (4)

This regression includes occupation fixed effects χ j and is estimated on the whole sample of displaced workers,

including both occupation stayers and switchers. SWITCHERi jt is a dummy variable that indicates whether

individual i with pre-displacement occupation j found a job in the same occupation.

The estimation follows a difference-in-differences approach. I compare the wage-loss of occupation switchers
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relative to stayers across occupations characterised by low and high specific vocational preparation. The

estimate of interest is therefore the coefficient on the interaction SWITCHERi jt×SVP j. Note that the mean effect

of SVP j is captured by the occupation fixed effects χ j.

Regression estimates are shown in columns (2) to (7) of Table 2. In column (2) I report estimates from a

simplified model that does not include SWITCHERi jt × SVP j as a regressor. Switching occupations goes along

with a wage-loss as the coefficient on SWITCHERi jt is highly significant. This finding is not new (Kambourov

and Manovskii, 2009, e.g.).

I contribute to this literature by showing that this simple model masks substantial heterogeneities. In the

full model in column (3) the coefficient on the interaction SWITCHERi jt × SVP j is estimated to be positive and

highly significant while the coefficient on the main effect SWITCHERi jt is not significantly different from zero

anymore. This implies that switching occupations per se does not lead to a wage-loss. However, switching

is costly for workers who made substantial investments in specific vocational preparation. The magnitude is

economically important: the expected differential wage-loss is increasing by about 1.6 percentage points for a

10 percentage points increase of SVP j. This implies, for example, that the differential expected wage-loss upon

leaving an occupation is about 10 percentage points higher for an electrician (83% percentile) compared to a

waiter (22% percentile).

Column (4) reports estimates when occupation fixed effects are not included and the mean effect of SVP j

is therefore identified. Interestingly, the estimated coefficient on SVP j is not significantly different from zero,

meaning that conditional on staying in the same occupation, the wage-loss workers suffer does not differ by

the required specific vocational preparation of an occupation. This is reassuring evidence that SVP j is indeed

mostly capturing occupation-specific training and not firm- or match-specific human capital.

Columns (5) and (6) show results when the sample is restricted further. Column (5) reports estimates when

only workers who report having been displaced due to plant closing are included. As discussed in the data

appendix A.2, this sample is arguably preferable to my overall sample because in this case weak performance

on the job cannot have been the reason for displacement and therefore estimates will be less subject to criticism

regarding selection bias. The coefficient on the interaction gets larger, implying that estimates based on my

baseline sample might be subject to some selection effects.

In column (6) the sample is restricted to workers who did not receive an advance notice of displacement, see

appendix A.2. Again, results are larger than in the baseline. This suggests that the benefits of on-the-job-search

are the higher the more specific a worker’s training is. In order to account for this effect, I will use the sub-sample

of workers who were not noticed in advance of their displacement as my baseline sample when estimating

regression (3) in Section 5.1.



14

In column (7) I restrict the sample to workers who did not switch occupations. At the same time I add a

dummy that captures whether a worker stayed in the same industry after displacement or not. The coefficient

on the interaction and the mean effect are both not significantly different from zero. This corroborates evidence

from column (4): SVP j indeed captures human capital that is occupation- but not industry-specific.

5. Estimates of Wait Unemployment

5.1. Reduced Form Estimates

Equation (3) captures the concept of wait unemployment: there is a trade-off between unemployment duration

and mobility cost. Switching occupations and leaving behind occupation-specific human capital can entail high

wage-losses. Facing such mobility costs workers might be willing to accept long unemployment spells in order

to evade switching and secure reemployment in their old occupation instead. My objective is to empirically

quantify this trade-off.

A problem hindering estimation is that the (expected) wage-loss a worker faces upon leaving his pre-

displacement occupation MCi jt is by definition not observed for the sub-sample of occupation stayers equation (3)

is estimated on. Furthermore, any reasonable measure of mobility cost MCi jt and the worker’s unemployment

duration UNEMi jt are likely to be simultaneously determined. That is, not only might mobility cost incentivize

workers to sit through long spells of wait unemployment, but long unemployment spells might also weaken

the bargaining position of workers and therefore lead to lower wages and lower mobility cost. This would

lead to a downward bias in the estimation results. I therefore combine equations (2) and (3) into the following

reduced form equation:

UNEMi jt = γ1 + γ2 SVP j + θ
′Xi + νi jt (5)

Unlike the mobility cost MCi jt, SVP j is directly observable from the Dictionary of Occupational Titles as explained

in detail in Section 2. Moreover, SVP j is arguably a pre-determined variable and endogeneity should therefore

be much less of a problem.

However, a second challenge for estimation remains. As before the (likely) presence of occupation fixed

effects might result in biased estimates. Occupations associated with high mobility cost might differ in other

– potentially unobserved – characteristics from occupations subject to low mobility cost. For example, service

occupations might require only few specific vocational preparation and workers therefore are likely to face

small mobility cost upon switching occupations. Nevertheless, these workers might have above-average

unemployment spells, for example, because of permanent low demand for their skills. When using cross-
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occupation variation for identification it is difficult to distinguish the effect of variation in mobility cost (I

am interested in) from variation in other unobserved occupation characteristics that systematically vary with

mobility cost.

To avoid potential omitted variable bias I therefore rely on within-occupation differences for identification.

To do so I exploit geographic variation: as formalized in the appendix, the higher the thickness a local labor

market, the less likely is it that displaced workers need to switch occupations; potential mobility cost are less

likely to be binding. I estimate the following regression equation on the sub-sample of occupation stayers:

UNEMi jmt = γ1 THIN MARKETm + γ2 THIN MARKETm × SVP j + χ j + θ
′Xi + νi jmt (6)

The mean effect of SVP j is captured by the occupation fixed effects χ j. The estimation strategy follows the same

logic as a standard difference-in-differences approach. However, note that both THIN MARKETm and SVP j are

continuous measures. The hypothesis is that highly specialized workers sit through long unemployment spells

in order to evade switching occupations. Since in a thin market m it is less likely to be able to find a job in the

same occupation, this effect should be increasing in THIN MARKETm. The estimate of interest is therefore the

coefficient on the interaction THIN MARKETm × SVP j. Under the hypothesis that wait unemployment is an

important driving force of unemployment it should hold γ2 > 0.

5.1.1. Main Results

Table 3 shows results when market thickness is operationalized as the size of the local labor force. Again, all

specifications contain typical demographic controls and tenure on the previous job. Furthermore, occupation

fixed effects, year-of-displacement fixed effects, state fixed effects, and controls capturing whether displacement

was due to plant closing are part of all specifications. Mean effects and the constant are estimated but not shown.

Results in column (1) indicate a coefficient estimate for the interaction term that is positive and statistically

significant at the 1-percent level. Adding a linear state time trend in column (2) does not change the results.

Adding MSA fixed effects in (3) slightly decreases the size of the coefficient.11 The estimates imply that there is a

significant differential effect of the required specific vocational preparation of an occupation on unemployment

duration. The thinner a local market is, the stronger is the effect of SVP j on the length of the unemployment

spell.

The difference-in-differences setting makes it difficult to interpret the magnitude of the estimated effect. I

therefore follow Rajan and Zingales (1998) and report a differential unemployment spell for each specification in

11State fixed effects do not completely drop out in this specification because some metropolitan areas span more than one state. Results
are not affected when a state time trend is included.
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Table 3: Reduced Form Estimates: Market Size

(1) (2) (3) (4) (5) (6)

(1 − SIZEm) × SVP j 0.991*** 1.134*** 0.880* 1.506*** 1.555** 1.953**
(0.381) (0.405) (0.507) (0.541) (0.654) (0.838)

Observations 1,604 1,604 1,604 533 533 533
R-squared 0.369 0.388 0.485 0.451 0.519 0.692

Diff unem spell 0.281 0.328 0.246 0.457 0.475 0.630
Diff unem spell (weeks) 1.810 2.027 2.112 2.304 1.864 4.091

Occupation fixed effect yes yes yes yes yes yes
State fixed effect yes yes yes yes yes yes
State time trend no yes yes no yes yes
MSA fixed effect no no yes no no yes

Sample
Plant closing only no no no yes yes yes

Notes: The regressions are least squares estimates of equation (6). The dependent variable is the length of the unemployment spell UNEMi jmt, measured

as the natural logarithm of 1 plus the weeks of unemployment: log(1 +weeksi jt). I operationalize market thickness using the size of the local labor force.

The differential unemployment spell reports the relative increase in the unemployment duration of a displaced worker with high SVP relative to a worker

with low SVP (75th vs. 25th percentile) when located in a thick vs. thin local labor market (75th vs. 25th percentile). All regressions include year-of-

displacement dummies, four education dummies (dropout, high-school, some college, college or more), a female dummy, a non-black dummy, potential

experience (quadratic), tenure on the pre-displacement job (cubic), and controls that capture whether displacement was due to plant closing. Only the

sub-sample of displaced workers who report not to have changed occupations after displacement, whose current job was the first job after displacement,

who were not noticed in advance of their displacement, and who did not move after displacement is used for estimation. In columns (4) to (6) the

sample is further restricted to workers who report to have been displaced due to plant closing. Standard errors clustered at the occupation level are

reported in parenthesis. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

Table 3. Consider two unemployed workers who have been displaced from occupations at the 25th and 75th

SVP percentile, respectively. Think of the first as a waiter and of the latter as an electrician. According to the

U.S. Census, only 25% of the labor force reside in metropolitan areas bigger than the Washington metropolitan

area, the 6th biggest MSA in the United States. On the other hand, 75% reside in MSAs bigger than Bakersfield,

CA. For example, the estimates reported in columns (1) of Table 4 imply that the unemployment spell of the

electrician would increase by 28.1 percentage points more than that of the waiter if both were re-located from

the thick labor market in the Washington metropolitan area to Bakersfield, CA.12 In levels, this corresponds to

about two weeks.13

In columns (4) to (6) I restrict the sample to workers who report having been displaced due to plant closing

only. As discussed in the data appendix A.2, this sample is arguably preferable to my baseline sample that

also includes workers who lost their job due an abolished shift and “insufficient work.” If displaced workers

have systematically lower ability and workers with lower ability in turn have lower specific vocational training,

12This number can be calculated from the estimated coefficients given in column (1) of Table 3 as exp((0.75 − 0.25)2 × 0.991) − 1 ≈ 28.1%.
13I follow Duan (1983) to retransform the dependent variable in logs back to levels. See also Section 3.6.3 in Cameron and Trivedi

(2010).
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Table 4: Reduced Form Estimates: Industrial Diversity

(1) (2) (3) (4) (5) (6)

(1 −DIVERSITYm) × SVP j 1.051*** 1.210*** 1.155** 1.584*** 1.811*** 1.475**
(0.385) (0.432) (0.519) (0.467) (0.536) (0.685)

Observations 1,604 1,604 1,604 1,024 1,024 1,024
R-squared 0.369 0.388 0.487 0.356 0.392 0.508

Diff unem spell 0.301 0.353 0.335 0.486 0.572 0.446
Diff unem spell (weeks) 2.077 2.301 2.879 3.202 3.346 4.354

Occupation fixed effect yes yes yes yes yes yes
State fixed effect yes yes yes yes yes yes
State time trend no yes yes no yes yes
MSA fixed effect no no yes no no yes

Sample
Occs. in many inds. only no no no yes yes yes

Notes: The regressions are least squares estimates of equation (6). The dependent variable is the length of the unemployment spell UNEMi jmt, measured

as the natural logarithm of 1 plus the weeks of unemployment: log(1 + weeksi jt). I operationalize market thickness using the my measure of industrial

diversity. In columns (6) to (10), I exclude occupations that are concentrated in few industries. The differential unemployment spell reports the relative

increase in the unemployment duration of a displaced worker with high SVP relative to a worker with low SVP (75th vs. 25th percentile) when located

in thick vs. thin local labor market (75th vs. 25th percentile). All regressions include year-of-displacement dummies, four education dummies (dropout,

high-school, some college, college or more), a female dummy, a non-black dummy, potential experience (quadratic), tenure on the pre-displacement job

(cubic), and controls that capture whether displacement was due to plant closing. Only the sub-sample of displaced workers who report not to have

changed occupations after displacement, whose current job was the first job after displacement, who were not noticed in advance of their displacement,

and who did not move after displacement is used for estimation. In columns (4) to (6) occupations present in only few industries are excluded. Standard

errors clustered at the occupation level are reported in parenthesis. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

then this might result in an underestimation of the effect of SVP j on wait unemployment. Moreover, using this

sample I can exclude that estimates are biased because workers expect to be recalled to their old job. Indeed,

the estimated coefficients are larger than in the baseline sample and, in spite of the smaller sample, remain

significantly different from zero. This suggests that estimates using the baseline sample represent a lower

bound on wait unemployment.

Industrial Diversity

Table 4 reports results when market thickness is operationalized as the industrial diversity of the local labor

market instead of the size of its labor force, see Section 2.3. Columns (1) to (3) document that the coefficient of

interest remains significantly different from zero and of similar size to the estimates reported in Table 3.

A potential concern regarding the use of the industrial diversity measure is that the employment of some

occupations is heavily concentrated in only few industries. For example, according to the 1990 U.S. Census,

83% of bakers are employed in the three industries Grocery stores, Bakery products, and Retail bakeries. For some

occupations, the heavy concentration in one industry is almost by definition: for example, Hotel clerks are
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Table 5: Reduced Form Estimates: Occupation Switching

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SVP j -0.125* -0.127* -0.0176 -0.0209 0.0980 0.100
(0.0700) (0.0699) (0.0826) (0.0835) (0.0684) (0.0678)

(1-SIZEm) × SVP j -0.203** -0.199** -0.195** -0.159*
(0.0904) (0.0880) (0.0794) (0.0889)

(1-DIVERSITYm) × SVP j -0.442*** -0.450*** -0.447*** -0.412***
(0.104) (0.104) (0.105) (0.105)

Observations 4,372 4,372 4,372 4,372 4,372 4,372 4,372 4,372 4,372 4,372
R-squared 0.060 0.069 0.062 0.071 0.267 0.319 0.066 0.075 0.271 0.322

Occupation fixed effect no no no no yes yes no no yes yes
State fixed effect yes yes yes yes yes yes yes yes yes yes
State time trend no yes no yes yes yes no yes yes yes
MSA fixed effect no no no no no yes no no no yes

Notes: The regressions are least squares estimates of equation (7). The dependent variable is 0 if the pre- and post-displacement occupation of a dis-

placed worker is the same and 1 if it is different. I operationalize market thickness using the size of the local labor force in columns (3) to (6) and

as industrial diversity in columns (7) to (10). All regressions include year-of-displacement dummies, four education dummies (dropout, high-school,

some college, college or more), a female dummy, a non-black dummy, potential experience (quadratic), tenure on the pre-displacement job (cubic), and

controls that capture whether displacement was due to plant closing. The regression also controls for the length of the completed unemployment spell.

The sample contains both workers who have and who have not changed occupations after displacement. The sample is restricted to workers whose

current job was the first job after displacement, who were not noticed in advance of their displacement, and who did not move after displacement.

Standard errors clustered at the occupation level are reported in parenthesis. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

employed in Hotels and motels and school teachers work in Elementary and secondary schools. Occupations like

these should therefore not benefit from industrially diverse local labor markets.

To address this issue, I firstly document in appendix A.3 that such occupations are an exception and that em-

ployment in most occupations indeed spans many industries: the median worker is employed in an occupation

that can be found in 48 different industries. Secondly, the fact that occupations differ in the degree to which they

span different industries allows me to test an additional hypothesis: industrial diversity of a local labor market

should be especially important for occupations that span a higher number of industries and should therefore

have a relatively stronger effect on wait unemployment.

I explore this in columns (4)-(6) of Table 4 by excluding occupations that can be found in less than 24 different

industries (that is, I exclude occupations ranked within the lower two quintiles according to their industry-span).

In line with the hypothesis, the coefficient of interest increases substantially in size.

5.1.2. Occupation Switching

My interpretation of the results reported in Tables 3 and 4 is that workers endowed with specific human

capital face high mobility costs when switching occupations and are therefore willing to go through long

unemployment spells in order to find a job in the same occupation. If this is true, we would expect workers

with low SVP to be more likely to switch occupations, especially when located in thin labor markets where it
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difficult to find a job in the same occupation. I estimate the following regression equation:

SWITCHERi jmt = δ1 SVP j + δ2 THIN MARKETm + δ3 THIN MARKETm × SVP j + θ
′Xi + ωi jmt (7)

(Pre-displacement) occupation fixed effects, year-of-displacement fixed effects, state fixed effects, and controls

capturing whether displacement was due to plant closing are part of all specifications. Columns (1) and (2) of

Table 5 report estimates of a simplified model that assumes δ2 = 0 and δ3 = 0. I find that workers endowed with

more specific human capital are indeed more likey to stay in their pre-displacement occupation. In columns

(3) and (4) I show results of the full model that allows the effect of SVP to differ depending on the thickness of

the local labor market. The estimates are consistent with wait unemployment. SVP does not have an effect on

switching behavior in very thick labor markets ((1−SIZEm) = 0) since being able to stay in the same occupation

is less difficult. The thinner the market, however, the more likely are workers with non-specific human capital

to switch. The effects are quantitatively important. To use the example from above, estimates in column (3)

imply that in the thick Washington metropolian area market a worker at the 25 percentile of SVP (a waiter) is

3.4% percentage points more likely to switch than one at the 75 percentile (an electrician). In the relatively thin

Bakersfield, CA market, however, this differene increases to 8.5 percentage points.14

In column (5) I include occupation fixed effects and SVP j is therefore no longer identified. The coefficient on

THIN MARKETm×SVP j remains almost unchanged and only becomes slightly smaller when MSA fixed effects

are added in column (6). The results become quantitatively stronger when the industrial diversity measure is

used in columns (7) to (10).

5.1.3. Triple Differences

One might argue that the estimates reported in Section 5.1.1 are compatible with other mechanisms than wait

unemployment. The interaction THIN MARKETm×SVP j might be just a proxy for another, unobserved channel.

In particular, workers with highly specific training might benefit disproportionally from thick labor markets

due to reasons not related to wait unemployment.

Here I therefore use the sample of both occupation stayers and switchers to construct another test. Wait

unemployment means that displaced workers sit through long unemployment spells in order to stay in the

occupation they have been trained for. If the long unemployment spells I observe in the data are indeed due

to wait unemployment, I should therefore observe these long spells only for occupation stayers, but not for

switchers. In this section I show that this is indeed the case with my data.

I estimate a difference-in-difference-in-differences regression on the sample including both occupation stayers

14These figures can be calculated as −0.0176× (−0.5)+0.25× (−0.5)× (−0.203) = .034 and −0.0176× (−0.5)+0.75× (−0.5)× (−0.203) = .085.
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Table 6: Reduced Form Estimates: Triple Differences

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1-SIZEm) × SVP j 0.737** 0.750** 0.540 1.336** 1.424***
(0.356) (0.356) (0.357) (0.528) (0.546)

SWITCHERi jmt × (1-SIZEm) × SVP j -0.333 -0.408 -0.0922 -1.285 -1.115
(0.556) (0.551) (0.497) (1.006) (0.909)

(1-DIVERSITYm) × SVP j 0.716* 0.759** 0.636 1.294*** 1.163***
(0.365) (0.375) (0.386) (0.442) (0.445)

SWITCHERi jmt × (1-DIVERSITYm) × SVP j -0.982** -1.051** -0.939* -1.609** -1.634***
(0.487) (0.507) (0.517) (0.619) (0.560)

Observations 4,372 4,372 4,372 1,365 1,365 4,372 4,372 4,372 3,048 3,048
R-squared 0.229 0.242 0.289 0.345 0.449 0.229 0.242 0.289 0.228 0.291

Total effect switchers 0.403 0.342 0.448 0.0509 0.309 -0.266 -0.292 -0.303 -0.315 -0.470
P-value 0.200 0.273 0.138 0.944 0.646 0.334 0.307 0.309 0.360 0.130

Occupation fixed effect yes yes yes yes yes yes yes yes yes yes
State fixed effect yes yes yes yes yes yes yes yes yes yes
State time trend no yes yes yes yes no yes yes yes yes
MSA fixed effect no no yes no yes no no yes no yes

Sample
Plant closing only no no no yes yes no no no no no
Occs. in many inds. only no no no no no no no no yes yes

Notes: The regressions are least squares estimates of equation (8). The dependent variable is the length of the unemployment spell UNEMi jmt, measured as the

natural logarithm of 1 plus the weeks of unemployment: log(1 + weeksi jt). I operationalize market thickness using the size of the local labor force in columns (1)

to (5) and industrial diversity in columns (6) to (10). The row labeled “total interaction switchers” shows the sum of coefficients THIN MARKETm × SVP j and

SWITCHERi jmt × THIN MARKETm × SVP j. All regressions include year-of-displacement dummies, four education dummies (dropout, high-school, some college,

college or more), a female dummy, a non-black dummy, potential experience (quadratic), tenure on the pre-displacement job (cubic), and controls that capture

whether displacement was due to plant closing. The sample contains both workers who have and who have not changed occupations after displacement. The

sample is restricted to workers whose current job was the first job after displacement, who were not noticed in advance of their displacement, and who did not

move after displacement. In columns (4) and (5) the sample is further restricted to workers who report to have been displaced due to plant closing. In columns

(9) and (10) occupations present in only few industries are excluded. Standard errors clustered at the occupation level are reported in parenthesis. ***, **, and *

indicate significance at the 1%, 5%, and 10% levels.

and switchers by adding a third interaction to regression (6):

UNEMi jmt = γ1 SWITCHERi jmt + γ2 THIN MARKETm × SVP j + γ3 THIN MARKETm × SWITCHERi jmt

+ γ4 SWITCHERi jmt × SVP j + γ5 THIN MARKETm × SVP j × SWITCHERi jmt + χ j + θ
′Xi + νi jmt (8)

SWITCHERi jmt is a dummy variable that indicates whether individual i with pre-displacement occupation j

found a job in the same occupation. The coefficient on the interaction THIN MARKETm×SVP j captures the effect

of mobility cost on unemployment duration whereas the coefficient on THIN MARKETm×SVP j×SWITCHERi jmt

is the differential effect on workers who report to have switched occupations.

Columns (1) to (5) of Table 6 report results when market thickness is operationalized as the size of the local

labor force. The coefficients for occupation stayers are slightly smaller in magnitude than in the baseline in

Table 3. As before, the results become stronger once the sample is restricted to workers who report having

been displaced due to plant closing only in columns (4) and (5). Importantly, the effect for switchers is never

significantly different from zero, see the row labeled “total effect switchers” in the table.15 As reported in

15Note that occupation switchers are most likely also somewhat affected by wait unemployment. Workers might first try to find work
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columns (6) to (10) of Table 6, the results also hold when market thickness is operationalized as industrial

diversity. As before, the results become stronger when occupations concentrated in few industries are excluded

from the sample in columns (9) and (10).

5.1.4. Geographic Mobility

Another potential concern is geographic mobility. Some workers might manage to stay in the same occupation

without going through a spell of wait unemployment by moving to another labor market. In Table 10 in the

appendix I report estimates of the regression equation

SWITCHERi jmt = δ1 MOVEDi jmt + δ2 MOVEDi jmt × SVP j + χ j + θ
′Xi + ωi jmt. (9)

MOVEDi jmt equals 1 if a displaced worker reports to have moved cities after displacement and 0 otherwise.

I find that displaced workers who report to have moved cities are indeed more likely to stay in their pre-

displacement occupation, especially when endowed with high SVP. Geographic mobility reduces the number

of unemployed in slack local labor markets and therefore leads to a reduction of wait unemployment for the

remaining workers. Since, as explained in the data appendix, the estimates presented above are based on the

sample of displaced workers who report not to have moved cities after displacement they implicitly take the

effect of geographic mobility into account.16

5.2. Instrumental Variable Estimates

In the last section I showed evidence that workers endowed with more specific training are willing to go

through disproportionately long spell of unemployment in order to evade switching occupations. I now push

the analysis further and directly estimate the effect of mobility cost on wait unemployment captured by equation

(3). In order to do so, I make the additional identifying assumption that SVP j affects unemployment duration

only through the mobility cost a worker is facing. I can then estimate equation (3) by using SVP j as an instrument

for the mobility cost MCi jt.
17 To control for occupation fixed effects, I use the same difference-in-differences

in their original occupation and only after learning that few vacancies are around decide to switch. One can also interpret this as a
measurement problem. In the data workers only report in what occupation they eventually found a job and how many weeks it took
them to find this job. It is not clear how the time spend searching was distributed among finding a job in their pre-displacement
occupation vs. finding a job in another occupation.

16As suggested by an anonymous referee, there are some other tests one might construct in order to further explore whether observed
geographic mobility is in line with wait unemployment. For example, one would expect a higher probability of moving cities
for high SVP workers displaced in thin labor markets. Unfortunately, the CPS Displaced Workers Supplement only contains the
worker’s MSA of residence at the time of the interview, not at the time of displacement. The local labor market where a worker was
displaced can therefore not be inferred for workers who report to have moved after displacement.

17Note that SVP j only needs to be a source of exogenous variation in mobility costs. It does not need to be the only source or even the
main source of exogenous variation.
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approach as in regression (6). Based on equation (3), the second-stage can then be written as

UNEMi jmt = β1 THIN MARKETm + β2 THIN MARKETm ×MCi jmt + χ j + θ
′Xi + ηi jmt. (10)

A challenge to use two-stage least squares in my setting is that mobility cost MCi jmt are only observed for the

sample of occupation switchers while the dependent variable in equation (10) is the unemployment duration of

stayers. That is, the endogenous regressor and the dependent variable are not part of the same sub-sample.

As first shown in an influential article by Angrist and Krueger (1992), under certain conditions estimation

is still feasible by using the two-sample two-stage least squares (TS2SLS) procedure.18 The principal idea of

TS2SLS is that the first- and second-stage can be estimated on two separate samples as long as all control

variables and the instrument are present in both samples, and – as it is the case here – both samples have

been drawn from the same population. Since the distribution of observable characteristics might vary between

the samples of switchers and stayers, it is important to note that this is implicitly corrected for by the TS2SLS

estimator and estimates remain consistent (see footnote 1 in Inoue and Solon (2010)).

The estimate of interest in regression (10) is the coefficient on the interaction THIN MARKETm×MCi jmt where

the mobility cost MCi jmt is likely to be endogenous. I therefore use THIN MARKETm × SVP j as an instrument

for this interaction.19 The first-stage regression on the sample of switchers is then given by

THIN MARKETm ×MCi jmt = α1 THIN MARKETm + α2 THIN MARKETm × SVP j + χ j + θ
′Xi + κi jmt. (11)

The idea of this estimation approach is to use the wage-loss actually suffered by occupation switchers as a

predictor of the (unobserved) expected wage-loss stayers would have suffered in the case of switching. A

potential point of criticism is that switchers and stayers differ in unobservable characteristics and that the

realized wage-loss of a switcher might therefore be systematically different from the (unobserved) expected

wage-loss of an observationally equivalent stayer. However, note that – apart from the usual demographic

controls – both the first- and second-stage include occupation fixed effects. The assumption I make is therefore

weaker: I assume that the differential wage-loss of switchers is a good predictor of the differential (expected)

wage-loss of stayers.

In order for THIN MARKETm × SVP j to be a valid instrument it needs to be relevant, exogenous, and fulfill

the exclusion restriction. An instrument is relevant if it has sufficient explanatory power for the explanatory

variable, that is, if corr(THIN MARKETm × SVP j,THIN MARKETm ×MCi jmt) is not only marginally different

18See also Angrist and Krueger (1995), Inoue and Solon (2010), and Chapter 4.3 in Angrist and Pischke (2008).
19See Ozer-Balli and Sorensen (2010) for a discussion on how to use instrumental variables in linear regressions that include interaction

effects. For example, Broner et al. (2013) is another article that uses IV and interaction effects.
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from zero. If this is not the case IV estimates are unlikely to be informative. This condition is testable and

– as shown below – indeed holds in my data. The instrument is also arguably exogenous because SVP j is a

pre-determined variable.

The exclusion restriction holds if, conditional on the control variables, THIN MARKETm × SVP j is uncorre-

lated with any other determinants of unemployment duration. The instrument THIN MARKETm × SVP j must

affect the unemployment duration of a workers only through the interaction THIN MARKETm ×MCi jmt. In

particular, one might argue that in a thick labor market there might be more opportunities for workers trained in

highly specific tasks, leading to relatively shorter unemployment spells. However, I argue that this is unlikely

given the evidence reported in Section 5.1.3: the fact that I find evidence of long spells for occupation stayers

but not for occupation switchers strongly suggests that the long spells indeed result from skilled workers trying

to evade switching occupations and not from simple differences in the matching technology.

5.2.1. Results

Table 7 presents two-sample two stage least squares estimates of the effect of mobility cost on unemployment

duration. The associated first-stage estimates on the sample of occupation switchers are shown in Table 11 in

the appendix. Columns (1) to (4) show results when market thickness is measured as the size of the local labor

force. As before, all specifications include the usual demographic controls, occupation fixed effects, state fixed

effects, and controls for plant closing. In column (2) I also allow for state-specific time trends. In the first two

specifications the coefficient on the interaction is positive and significant at the 5% level.20 As reported in Table

11 in the appendix, for both specifications the first-stage is relatively strong with an F-statistic on the instrument

of about 13, well above the threshold of 10 suggested by Staiger and Stock (1997). This indicates that weak

instruments should not be an important concern.

As for the reduced form estimates, I compute a differential unemployment spell to make it easier to put mag-

nitudes into perspective. According to results in column (1), if a displaced worker facing a 10% mobility cost

would be located in the thin Bakersfield, CA labor market instead of the thick labor market of the Washington

metropolitan area, his unemployment spell would increase by 30%.21 In levels, this corresponds to about 2.5

weeks.

In column (3) I include MSA fixed effects. While the coefficient of interest is less precisely estimated and

not significantly different from zero, its magnitude is only slightly smaller compared to columns (1) and (2).

In column (4) I restrict the sample to workers displaced due to plant closing only. The coefficient of interest

20Standard errors are corrected for the fact that in the second-stage regression (10) the interaction THIN MARKETm ×MCi jmt is estimated
rather than known. I use the adjustment proposed by Inoue and Solon (2010) for a two-sample two-stage least squares (TS2SLS)
setting.

21exp(0.1 × 0.5 × 5.235) − 1 = 29.9%
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Table 7: Instrumental Variable Estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1 − SIZEm) ×MCi jmt 5.235** 5.785** 4.354 6.726*
(2.419) (2.575) (2.860) (3.642)

(1 −DIVERSITYm) ×MCi jmt 4.286** 4.876** 4.459* 7.833** 5.754*
(1.769) (2.025) (2.282) (3.133) (3.183)

Observations 1,604 1,604 1,604 533 1,604 1,604 1,604 1,024 1,024
R-squared 0.369 0.388 0.485 0.519 0.369 0.388 0.487 0.392 0.508

Diff unem spell 0.299 0.335 0.243 0.400 0.239 0.276 0.250 0.479 0.333
Diff unem spell (weeks) 2.358 2.590 1.793 2.121 1.886 2.126 1.817 3.998 2.627

Occupation fixed effect yes yes yes yes yes yes yes yes yes
State fixed effect yes yes yes yes yes yes yes yes yes
State time trend no yes yes yes no yes yes yes yes
MSA fixed effect no no yes no no no yes no yes

Sample
Plant closing only no no no yes no no no no no
Occs. in many inds. only no no no no no no no yes yes

Notes: The regressions are two-sample two-stage least squares (TS2SLS) estimates of equation (10). The dependent variable is the length of the

unemployment spell UNEMi jmt, measured as the natural logarithm of 1 plus the weeks of unemployment: log(1+weeksi jt). In columns (1) to (4), I

operationalize market thickness using the size of the local labor force. In use size in logs in columns (1) to (4) and the empirical cumulative distri-

bution function in columns (5) to (8). The differential unemployment spell reports the differential impact of a 10% mobility cost on the unemployment

duration of a worker when located in thick vs. thin local labor market (75th vs. 25th percentile). The associated first-stage estimates are shown in

Table 11. All regressions include year-of-displacement dummies, four education dummies (dropout, high-school, some college, college or more),

a female dummy, a non-black dummy, potential experience (quadratic), tenure on the pre-displacement job (cubic), and controls that capture

whether displacement was due to plant closing. Only the sub-sample of displaced workers who report not to have changed occupations after

displacement, whose current job was the first job after displacement, who were not noticed in advance of their displacement, and who did not

move after displacement is used for estimation. In column (4) the sample is further restricted to workers who report to have been displaced due to

plant closing. In columns (9) and (10) occupations present in only few industries are excluded. Standard errors clustered at the occupation level

and corrected as proposed by Inoue and Solon (2010) are reported in parenthesis. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

becomes stronger but some power is lost in the first-stage due to the small sample. In spite of the reduced

precision the coefficient is significant at the 10% level.22

Columns (5) to (9) report results using the measure of industrial diversity. Estimates in columns (5) to (7) are

slightly smaller compared to columns (1) to (3) where the size of the local labor market was used. However,

similar to the reduced form results, the size of the estimates increases substantially once occupations spanning

only few industries are excluded from the sample.

22I do not show results for the sample restricted to plant closing only including MSA fixed effects since here the first-stage is weak, see
column (5) in Table 11 in the appendix.
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6. Macroeconomic Implications

6.1. Unemployment

In this section I explore the effect of wait unemployment on the aggregate unemployment rate in the U.S. labor

market. One should think of the U.S. labor market as an agglomeration of many small submarkets or islands

for specific human capital instead of a single market where one type of homogeneous labor is exchanged. In

the presence of reallocation shocks, it can happen that firms are urgently looking to hire workers on one island

while there is an excess of unemployed and a lack of vacancies on another. When moving across islands is

costless, such a situation would not be sustainable as workers will move out of occupations that are facing slack

demand. This reshuffling would continue until no dispersion across markets is left.

In the last section I showed, however, that workers actually do face substantial mobility cost when moving

from one submarket to another because they invested in specific human capital. Worker mobility is therefore

limited, resulting in a sustained dispersion of labor market conditions across submarkets. This dispersion in

turn increases aggregate unemployment because the job finding probability is concave in the labor market

“tightness,” the ratio of vacancies to unemployed. Worker mobility costs can therefore give raise to aggre-

gate unemployment as they reduce arbitrage possibilities of workers. Schematically, the mechanism can be

summarized as follows:

↑ human capital specificity =⇒ ↑ workers face mobility cost =⇒ ↓ worker mobility

=⇒ ↑ dispersion in tightness =⇒ ↑ aggregate unemployment

In this section I use a back-of-the-envelope calculation to quantify how much lower aggregate unemployment

would be if all human capital would be perfectly transferable across occupations and workers would therefore

not face any mobility cost. Based on my estimates of regression (6), the dispersion of labor market conditions

across submarkets as a consequence of mobility cost can be expressed as

̂UNEM jmt = UNEM jmt −UNEM
SVP j=0

jmt
= γ̂2 THIN MARKETm × SVP j.

UNEMSVP=0
jmt

is the expected (log) unemployment duration of an individual trained in occupation j and residing

in local labor market m under the counterfactual scenario of completely transferable human capital (SVP j = 0).

As shown in Herz and van Rens (2015), the counterfactual (aggregate) job finding probability that would prevail
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Table 8: Counterfactual Aggregate Unemployment

(1) (2) (3) (4) (5) (6) (7)

1985-2011 Ratio

Concavity Unem Unem (cf) Ratio 1985-1990 2005-2011 low conctr high conctr

µ = 0.6 0.060 0.055 0.911 0.911 0.917 0.998 0.814
µ = 0.7 0.060 0.053 0.874 0.872 0.883 0.996 0.749
µ = 0.8 0.060 0.050 0.820 0.814 0.834 0.994 0.670
µ = 0.9 0.060 0.045 0.742 0.730 0.763 0.986 0.574

Notes: Columns (1) to (3) report the average actual U.S. unemployment rate, the counterfactual unemployment rate, and the

ratio between the two for the period 1985-2011. Columns (4) to (7) show the same ratio for different sub-samples: for the peri-

ods 1985-1990 and 2005-2011 in columns (4) and (5), and for labor markets with very low and high industry concentration (1st

and 5th quintile) in columns (6) and (7) (again for the period 1985-2011). All counterfactuals depend on the assumed concavity

of the matching function µ.

in local labor market m at time t23 can then be expressed as24

P
c f
mt

Pmt
= E



(
1 +

̂̂
UNEM jmt

) 1
1−µ




1−µ

where
̂̂

UNEM jmt is demeaned for each local labor market m at time t and µ is the concavity of the matching

function. The counterfactual unemployment rate is then approximately given by u
c f
t ≈ ut

Pt

P
c f
t

where
P

c f
t

Pt
is a

population-weighted average of
P

c f
mt

Pmt
and ut is the observed unemployment rate.25

Results for the United States based on CPS basic monthly data are documented in Table 8. It is apparent that

wait unemployment is an important driving force of aggregate unemployment. However, the estimates are

sensitive to the assumed concavity of the matching function µ. When µ = 0.6 as in Mortensen and Nagypál

(2007), only about 8.9% (1-0.911) of total unemployment between 1985 and 2011 can be attributed to wait

unemployment. A higher (but still realistic) concavity of µ = 0.8 increases this share substantially to about

18%. Columns (4) and (5) show that the importance of wait unemployment increased slightly over time. This

is a pure composition effect that is driven by an increasing share of workers with highly specific training in the

labor fore (see Figure 2).

Columns (6) and (7) document that there is also substantial variation across local labor markets: assuming

again that µ = 0.6, I find that in thick labor markets (1st quintile) wait unemployment contributes less than

23In principle, the regression framework in this paper does not allow “wait unemployment” to vary over time. However, note that
aggregate unemployment due to wait unemployment can nevertheless vary over time for compositional reasons (e.g., an increasing
share of workers with highly specific training).

24I make the standard assumption that the unemployment duration follows a geometric distribution with the success probability given
by the job finding probability P jmt. The expected length of an unemployment spell is therefore given by UNEM jmt =

1
P jmt

. Taking

logs, this implies log(UNEM jmt) = −log(P jmt) and ̂UNEM jmt = −P̂ jmt.
25This follows since in steady state unemployment can be expressed as a function of the job finding and separation probability, ut =

λt

λt+Pt
.
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Figure 2: The evolution of the labor force shares by specific vocational preparation (SVP) based on CPS basic
monthly data are shown. When a worker is employed (or is unemployed but was last employed) in
a given occupation, I assume that he is endowed with the specific skills required by that occupation
according to the Dictionary of Occupational Titles as described in Section 2.2. The solid line shows
the share of the labor force with occupation-specific training of more than 24 months. The lines with
triangles and circles show the shares with 3 months or less and with 3 to 24 months of occupation-
specific training.

1% to unemployment, while in thin labor markets (5th quintile) this figure is about 19%. This finding also

highlights that the effects for overall unemployment shown here should be seen as lower-bound estimates

because non-metropolitan areas are not identified in the CPS-DWS and therefore neglected in the estimates

presented here.

6.2. Optimal Unemployment Insurance

The results documented in this paper are also relevant for the ongoing debate regarding optimal unemployment

insurance that especially since the Great Recession of 2008 attracts a lot of attention. It has been long understood

that unemployment insurance has the potential to affect the quality of post-displacement job matches. For

example, in a classic paper Marimon and Zilibotti (1999) provide a framework where extended unemployment
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benefits “provide a ‘search subsidy’ for giving unemployed time to find, not just a job, but the right job.” More

generous benefits can therefore increase worker productivity growth by preventing a “mismatch of talents” at

the cost of extended spells.

While most empirical studies find that longer benefit duration leads to extended unemployment spells, the

empirical evidence regarding increased post-unemployment job match quality is mixed. For example, in recent

research Card et al. (2007) and Van Ours and Vodopivec (2008) find no positive effect of longer benefit duration

on re-employment wages (a proxy for match quality) while Caliendo et al. (2013) document a small positive

effect.26

In light of the findings presented in this paper, one potential reason for this mixed evidence is that the effects

of longer benefit duration are likely to be heterogeneous. More generous benefits should disproportionally

affect the post-unemployment outcomes of workers endowed with specific vocational preparation residing

thin labor markets whereas the effect on workers residing in thick markets and on workers with only general

training should be small.

My findings also have implications for the design of an optimal unemployment insurance system. One

objective of an optimal system should be to support workers to find a suitable post-unemployment job that

allows them to make optimal use of their human capital endownment. According to my results, this would

entail giving more generous benefits to workers with highly specific training residing thin labor markets.

Although in most countries benefits are linked to pre-displacement earnings – and therefore increasing in SVP

– I am not aware of a case where benefits depend on the characteristics of the local labor market.27 While out

of the scope of the present paper, further investigating the implications of wait unemployment for the design

of an optimal unemployment insurance system is an interesting avenue for future research.

7. Conclusions

In this paper I showed empirical evidence that wait unemployment is an important source of unemployment

in the United States. Labor market skills are not perfectly transferable across jobs. In order not to experience

a wage-loss, a displaced worker therefore has an incentive to wait and find a job that is as similar to his old

job as possible. I empirically assessed this trade-off between waiting and suffering a wage-loss by using a

difference-in-differences approach in the spirit of Rajan and Zingales (1998). I used two different sources of

variation. Firstly, I exploited that the specificity of the human capital a worker invested in varies by occupation.

I showed that the more specific a worker’s human capital, the higher the potential wage-loss he is facing when

26For a survey article, I refer the reader to Tatsiramos and Van Ours (2014).
27For an overview of cross-country difference in unemployment insurance rules see, for example, Table 2 in Tatsiramos and Van Ours

(2014).



29

not finding reemployment in a similar job. Secondly, I exploited variation across local labor markets. In a

thick labor market it will be relatively easy to find a job that matches a worker’s skill-set, even when he is

highly specialized; the mobility cost that goes along with switching to a different job is therefore less likely to

be binding.

I constructed the following test. Using the CPS Displaced Worker Supplement, I looked at the sample of

displaced workers who managed to find a job in the same occupation they worked in before. I then compared

the unemployment spells of more and less specialized workers in thick and thin local labor markets. I found

that in thin labor markets more specialized workers were unemployed for a longer time relative to the less

specialized workers. There was no such difference observable in thick markets. Moreover, using a difference-

in-difference-in-differences approach I showed that this effect only exists for occupation stayers but not for

switchers. I also documented that workers’ occupation switching behavior is in line with wait unemployment.

I then pushed the analysis further and used a worker’s specific vocational preparation as an instrument in

a (two-sample) two-stage least squares (TS2SLS) regression to obtain direct estimates of how the (expected)

wage-loss upon switching occupations affects unemployment duration. According to my estimates, even small

mobility costs can lead to substantially extended unemployment spells.

Finally, I documented that my results have important macroeconomic implications. Using a “back-of-the-

envelope” calculation, I found that between 9% and 18% of total unemployment in the United States is due to

wait unemployment. Moreover, I argued that wait unemployment potentially has important implications for

the design of an optimal unemployment insurance system.
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A. Appendix

A.1. Model

This stylized model demonstrates that for workers with specific human capital the probability to find a job

that matches their skill endowment is higher in thick labor markets. Workers with highly specific human

capital located in thin local labor markets are therefore especially susceptible to wait unemployment. I firstly

operationalize the thickness of a labor market as the size of the market, that is, as the the number of unemployed

and vacancies. I then extend the model and motivate industrial diversity as an alternative measure (see also

Simon (1988) and Neumann and Topel (1991)).

Consider a stylized model with heterogeneous workers and vacancies similar to Helsley and Strange (1990)

and Gan and Zhang (2006). There are U unemployed workers who are looking for a vacancy in a given local

labor market. Workers have heterogeneous skill endowments represented by addresses y that are independently

and uniformly distributed over the unit circle [0, 1).

Similarly, there are V vacancies in the local labor market. Vacancies differ in their skill requirements rep-

resented by an address on the unit circle x. Like in the model by Gan and Zhang (2006), all V vacancies are

evenly spaced around the unit circle. The location of the 1st vacancy is at the address b ∈ [0, 1). The j + 1th job

is located at point b + j/V. If b + j/V > 1, the location of j + 1th vacancy becomes b + j/V − 1. I assume b to be a

random variable uniformly distributed over [0, 1).

Each vacancy can be matched to only one worker. The production of a filled vacancy depends on how well

the skill requirement of the vacancy x matches the skill endowment of the worker y. If |x− y| ≤ δwith 0 < δ < 1
2V

then the match is productive and delivers high output; the worker is remunerated by wage w. On the other

hand, if |x− y| > δ then the worker’s skill endowment and the skill requirements of the job are too far apart and

the match has low productivity. In this case, the worker receives a wage w < w.

Workers are aware of their own skill endowment and therefore know their location y on the unit circle. They

are also informed about total number of vacancies V in the local labor market. However, ex-ante workers do

not have information about the skill requirements of the vacancies, i.e., about the positions of vacancies on the

unit circle determined by the realization of the random variable b. I follow Gan and Zhang (2006) and assume

from now on that U = V ≡ N. In the following I refer to N as market size.

A worker either chooses to stay and to search for a vacancy that matches his skill endowment y or he decides

to switch and to take on a generic job that pays w. The worker’s decision is based on the comparison between

the expected payoff of earning a high wage w at the risk of not finding a vacancy at all versus guaranteed

employment at a low wage w. The likelihood that a worker’s skill endowment is similar enough to the skill

requirement of a vacancy on the unit circle to produce a match that generates high output is given by 2δ
1/N .
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The expected number of other unemployed workers matching the same vacancy is given by 2δκ(N − 1) where

κ ∈ (0, 1] is there share of workers who choose stay. Since a vacancy can only be matched to one worker, the

ex-ante probability to fill a vacancy that matches the skill endowment of a given worker is therefore given by

p(N) = 2δ
1/N

1
1+2δ(κ(N−1)) =

N
κ(N−1)+ 1

2δ

. p(N) is increasing in market size N.

For a worker, the expected payoff of searching is p(N)w while the payoff of taking a generic job is w. If

p(N)w ≥ w, then all workers are going to stay and search for a vacancy that matches their skill endowment.

On the other hand, if p(N)w < w, some workers will switch and take on generic jobs. The lower the share of

workers κwho stay, the lower is the probability that more than one worker compete for one high quality match

and the higher therefore p(N); in equilibrium, workers decide to switch such that p∗(N)w = w.

This model delivers two simple insights. Firstly, workers located in thick markets are less likely to engage in

wait unemployment since the likelihood to find a productive match p(N) is high. Secondly, the workers most

susceptible to wait unemployment are workers who, firstly, are located in thin labor markets, and secondly,

face high potential wage losses w
w

, that is, workers endowed with highly specific human capital.

The trade-off that workers (in thin markets) face between waiting and wage-loss derived from this model is

simplistic: workers are willing to trade-off a 1% increase in the probability of being unemployment for a 1%

increase in wage. However, the stylized (static) model is not rich enough capture other factors that matter for

this trade-off in the real world. To give a few examples: The discount factor matters since the higher future

payoffs are discounted, the less willing are workers to stay wait unemployed. The level of unemployment

benefits is decisive: the higher would lead to a higher willingness to go trough spells of wait unemployment

since they make the state of being unemployed less “painful.” As highlighted by Mortensen and Nagypál

(2007), the utility of leisure and the value of non-market activity have similar effects. Also, the benefits of

having a job with a higher wage are the greater the lower the probability to lose that job again. The lower

the separation probability, the higher is therefore the willingness to wait for better employment.28 Finally,

there might be a stigma attached to going through long spells of unemployment which would decrease the

willingness to go trough extended spells of wait unemployment.

A.1.1. Industrial Diversity

I now sketch and extension of the model to motivate the use of industrial diversity instead of market size as an

alternative way to operationalize market thickness. There are I industries. Industries differ in the occupations

they employ. This can be incorporated in the model by assuming that a given industry i posts all its vacancies

28Summers et al. (1986) mentions this mechanism: “Investing in waiting for a high-wage job makes much more sense for mature
married men, who as a group have a very low employment turnover rate, than for other demographic groups that have much
higher turnover rates.”
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within a segment [ci, ci+λ] of the unit circle where ci ∈ [0, 1) and 0 < λ < 1. (If ci+λ ≥ 1, the segment is given by

[ci, ci+λ− 1].) I assume for simplicity that λ is the same for all industries. It is important to note that industries

can overlap in their skill requirements and vacancies that are potentially posted within a segment of the unit

circle can therefore come from various industries.

In a market with high industrial diversity, employment – and therefore vacancy posting – is evenly spread

across industries. I model this by assuming that, while the total number of vacancies is still V, only a share

0 < γ ≤ 1 of the I industries posts vacancies in a given market; the bigger γ, the more diverse is the market. The

worker is aware of the parameter γ, however, ex-ante he does not know whether a given industry i is going to

post vacancies or not. In a very non-diverse market with one active industry at a time, for example, vacancies

will be posted only to a share λ of the unit circle. In general, the probability that a skill segment ǫ ∈ (0, 1 − λ) is

not covered by any of the (active) industries and therefore no vacancy will be posted for these skill requirements

is given by (1 − λ − ǫ)Iγ and therefore decreasing in industrial diversity γ.

In order to make this idea tractable in the model, I deviate from the assumption that V vacancies are evenly

spaced around the unit circle. Instead, depending on the industrial diversity of the local market, vacancies are

spread only around a share D ∈ (0, 1] of the unit circle that is increasing in industrial diversity. D = 1 refers to a

market with maximal diversity. As before, the location of the 1st vacancy is at the address b ∈ [0, 1) where b is a

random variable. However, the j + 1th job is now located at point b +D( j/V). If b +D( j/V) > 1, the location of

j + 1th job becomes b +D( j/V) − 1.

As before, a worker is aware of his own skill endowment and therefore of his position on the unit circle and

of the industrial diversity D of the local market. Moreover, as before he is not aware of the positions of the

vacancies, that is, of the realization of the random variable b.

Conditional on being located in the share D of the unit circle, 2δ
D/N is the likelihood that the worker’s skill

endowment is similar enough to the skill requirement of a vacancy if 2δ
D/N < 1 . This conditional likelihood

is decreasing in diversity D: since all V vacancies are posted in that segment, the lower D, the higher the

concentration of vacancies in that segment. However, for 2δ
D/N ≥ 1 the probability is 1 since a worker cannot

apply to more than one vacancy and a vacancy can only match to one worker. At this point, the effect that only

workers who are located in the share D of the unit circle can find high quality matches dominates.

If 2δ
D/N < 1, the expected number of other workers matching the same vacancy is given by 2δκ(N − 1) where,

as above, κ denotes the share of stayers. If 2δ
D/N > 1, this number is given by D

Nκ(N − 1). The ex-ante probability

to fill a vacancy that matches the skill endowment of a given worker is therefore given by
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p(D) =



D 1
1+D

Nκ(N−1)
if 2δ

D/N ≥ 1

D 2δ
D/N

1
1+2δκ(N−1) if 2δ

D/N < 1.

p(D) is (weakly) increasing in industrial diversity D. The qualitative implications of the model therefore remain

the same, no matter whether market thickness is operationalized as market size or industrial diversity.
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A.2. Data Appendix

A.2.1. Displaced Workers Supplement

The sample consists of workers between 20 and 67 years of age who lost a job in the private sector between

1983 and 2012 due to plant closing, insufficient work, or because their shift was abolished. Note that this does

not only exclude quits but also – according to the CPS Interviewer Memorandum – it explicitly excludes events

where workers are fired for “poor work performance, disciplinary problems, or any other reason that is specific

to that individual alone” (Farber et al., 1993). That is, as a first approximation the displacement can be seen

as being an exogenous shock. I further restrict the sample to those who lost a full-time job and are currently

full-time re-employed. This is necessary because I only observe hours worked for the current job, but not for

the pre-displacement job. Weekly earnings is therefore the only wage measure available for both the pre- and

post-displacement job. All earnings are deflated by the GDP deflator with base year 2005 that I obtained from

the Bureau of Economic Analysis. Following earlier papers in the literature, I drop workers who report pre- or

post-displacement earnings below 100$ per week

The CPS-DWS only asks follow-up questions about at most one lost job. If an individual lost more than one

job within the three year period, he is only asked about the job he held the longest. To guarantee that the “initial

unemployment spell” is from the spell immediately preceding the current job, I exclude multiple job losers

included in the sample.29 Moreover, note that due to an error conducted by the surveyors the unemployment

spell is not reported in the 1994 CPS-DWS. Descriptive statistics are shown in Table 9.

Moved after displacement

The CPS-DWS also provides information on whether displaced workers moved after displacement. In specifi-

cation where I make use of local labor market information I also the restrict the sample to workers who report

not to have moved.

Advance notice

In most specifications I further restrict the sample to workers who report not having received an advance

notice of displacement. Not making this restriction might lead to misleading results, in particular when the

dependent variable is the unemployment duration reported by a worker. The reason is that an advance notice

of displacement gives workers the possibility to undertake on-the-job-search which is not captured by the

reported unemployment duration. Moreover, it seems that the efficiency of this potential on-the-job-search

systematically varies with other co-variates such as education and specific vocational preparation. It would

29For example, compare Rodriguez-Planas (2013).
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therefore not be sufficient to account for this effect by simply including an advance notice indicator variable as

a control.

Plant closing

As mentioned above, according to the CPS-DWS definitions the displacement of a worker should be an exoge-

nous event. However, it might still be that de-facto workers with (unobserved) low ability are more likely to be

displaced. This would result in a selection problem. If, for example, low ability workers are also systematically

endowed with less specific vocational training they might also be less willing to engage in wait unemployment.

The consequence would be an omitted variable problem that potentially leads to downward-biased estimates.

To address this issue I take into account whether a worker reports having been displaced because of plant

closing. When a plant is closed down, all workers are displaced by definition; the firm does not have any

discretion with respect to whom to lay off. This greatly reduces concerns about a potential selection problem

(Gibbons and Katz, 1991). All regressions therefore include dummy variables that indicate whether a worker

was displaced to plant closing. In some regressions I go further and restrict the sample to workers who report

having been displaced because of plant closing. While restricted sample is therefore arguably preferable to the

baseline sample it comes at the cost of a substantially reduced sample size.

Recall expectations

Another potential issue is that, although the CPS-DWS is restricted to workers who permanently lost a job,

some workers might expect to be recalled to their old job. Since the 1994 survey workers are asked “Do you

expect to be recalled to that job [that you lost]?” I find that in the pooled sample only 3.1% of displaced workers

answered “yes” to this question. Temporary layoffs are therefore very unlikely to affect my results.

Moreover, a displaced worker cannot be recalled to a job that disappeared due to the closing down of a plant.

Any remaining effect should therefore be captured by the dummy variables that control for plant closing in all

regressions.

A.2.2. Specific Vocational Preparation

The revised fourth edition of the Dictionary of Occupational Titles (DOT) published by the U.S. Department of

Labor in 1991 evaluates 12741 occupations along several dimensions, such as physical and cognitive demands.

In particular, the DOT reports the “specific vocational preparation” (SVP) required to work in a given occupation.

SVP is defined as
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Specific Vocational Preparation is defined as the amount of lapsed time required by a typical worker

to learn the techniques, acquire the information, and develop the facility needed for average perfor-

mance in a specific job-worker situation.

This training may be acquired in a school, work, military, institutional, or vocational environment.

It does not include the orientation time required of a fully qualified worker to become accustomed

to the special conditions of any new job. Specific vocational training includes: vocational education,

apprenticeship training, in-plant training, on-the-job training, and essential experience in other jobs.

Specific vocational training includes training given in any of the following circumstances:

a. Vocational education (high school; commercial or shop training; technical school; art school;

and that part of college training which is organized around a specific vocational objective);

b. Apprenticeship training (for apprenticeable jobs only);

c. In-plant training (organized classroom study provided by an employer);

d. On-the-job training (serving as learner or trainee on the job under the instruction of a qualified

worker);

e. Essential experience in other jobs (serving in less responsible jobs which lead to the higher

grade job or serving in other jobs which qualify).

The variable is categorical and ranges from 1 to 9 where 9 refers to very high specificity. In order to make

occupation codes comparable with the CPS data, I first use a crosswalk provided by the National Crosswalk

Service Center30 to match each of the 12741 DOT occupations to one of 469 U.S. Census 1990 occupations. I

then apply the conversion table from Meyer and Osborne (2005) to match each U.S. Census occupation into one

of 368 consistent occupation codes. The SVP of an occupation is then defined as the median SVP of all matched

DOT occupations.31

I generate a cardinal variable by calculating the empirical cumulative distribution function of SVP using

occupational employment data from the 1995 CPS.32 The transformed variable can then be interpreted as the

share of the employed workforce in 1995 that works in occupations with equal or smaller required specific

vocational preparation. The original variable and its transformation are described in Table 1.

30http://www.xwalkcenter.org
31Optimally, one would use the employment-weighted mean of the matched DOT occupations. However, DOT occupation categories

are very narrowly defined such that reliable employment figures are not available. Since there is few variation of the SVP measure
within the DOT occupations that are matched to the same consistent occupation code the results of applying weights would be
negligible in any case.

32Results in the paper are robust to the choice of the base year.
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Figure 3: The figure shows the cumulative distribution function of employment when occupations are ranked
according to the number of industries they are found in. For example, according to the 1990 Census,
the median employee works in an occupation that can be found in 48 industries. Data for the 1980,
1990, and 2000 U.S. Census is shown.

A.3. Occupational Employment Across Industries

In this section I document that, while occupations exist that are concentrated in few industries, most occupations

can be found in many industries. Based on data from the U.S. Census, I calculate the industrial employment

shares for each occupation. In order to obtain a robust estimate of the number of industries an occupation is

active in, I calculate the (minimum) number of industries that account for 90% of an occupation’s employment.

As before, I use time-consistent occupation and industry codes based on the 1990 classification. When occupa-

tions are ranked according to this industry count, the median worker in the 1990s U.S. Census is employed in

an occupation that spans 48 industries, see Figure 3. The total number of industries is 236. As can be seen in

Figure 3 the industry-span is lower according to the 2000 U.S. Census. The reason is most likely that substantial

changes in the occupation and industry classification system were implemented in the 2000 Census.33

33https://www.census.gov/people/io/files/techpaper2000.pdf
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Table 9: CPS Displaced Worker Supplement, Descriptive Statistics

Whole sample Switcher Stayer Baseline
mean sd mean sd mean sd mean sd

Previous weekly earnings ($) 730.4 540.9 687.0 521.7 812.3 566.4 813.0 567.9
Current weekly earnings ($) 696.1 522.3 633.6 487.5 813.7 563.7 817.7 559.3
Wage Loss 0.0905 0.452 0.119 0.476 0.0373 0.396 0.0198 0.388
Previous tenure (years) 58.25 77.15 58.29 79.20 58.18 73.15 51.33 66.04
Unemployment spell (weeks) 12.76 18.54 13.91 19.58 10.60 16.17 10.28 16.01
Spec. vocational preparation 0.604 0.311 0.583 0.314 0.645 0.300 0.643 0.297
Female 0.347 0.476 0.369 0.483 0.307 0.461 0.291 0.455
Age 38.67 10.71 38.13 10.86 39.67 10.36 39.97 10.60
Potential experience 19.48 10.69 19.02 10.81 20.36 10.40 20.86 10.58
Not black 0.902 0.297 0.892 0.311 0.922 0.269 0.916 0.278

Education
High-school dropout 0.0931 0.291 0.0885 0.284 0.102 0.302 0.118 0.323
High-school graduate 0.334 0.472 0.349 0.477 0.307 0.461 0.332 0.471
Some college 0.306 0.461 0.318 0.466 0.284 0.451 0.283 0.451
≥ College 0.266 0.442 0.245 0.430 0.307 0.461 0.267 0.442

Reason for displacement
Plant closing 0.402 0.490 0.392 0.488 0.421 0.494 0.326 0.469
Insufficient work 0.348 0.476 0.342 0.474 0.358 0.479 0.467 0.499
Shift abolished 0.250 0.433 0.266 0.442 0.221 0.415 0.207 0.405

Occupation switcher 0.653 0.476 1 0 0 0 0 0
Moved after displacement 0.165 0.371 0.167 0.373 0.162 0.369 0 0
Current job first since displacement 0.694 0.461 0.679 0.467 0.723 0.448 1 0
Noticed of displacement in advance 0.328 0.470 0.327 0.469 0.331 0.471 0 0

Observations 16244 10692 5552 1604

Notes: Descriptive statistics of the CPS Displaced Worker Supplement are shown. Reported numbers have to be interpreted as shares

unless mentioned otherwise. Wage-loss is defined as the difference in log real weekly earnings (2005 $). Whole sample refers to the

CPS-DWS when both occupation stayers and switchers are included in the sample. As described in detail in Section 2, the sample is

restricted to workers between 20 and 67 years of age who lost a job in the private sector due to plant closing, insufficient work, or

because their shift was abolished between 1983 and 2012. Moreover, they lost a full-time job and are currently full-time re-employed.

In the columns Switcher (Stayer) the sample is further restricted to workers who report that their current job is in a different (same)

occupation than their pre-displacement occupation. Baseline refers to the sample that I use for estimation in Tables 3, 4, 7, and 12. In

this case the sample is again restricted to occupation stayers. Further, it is restricted to (1) workers who were not noticed in advance

of their displacement, (2) who report that the current job is the first job after displacement, (3) who report not to have moved after

displacement, and (4) who live in a metropolitan statistical area (MSA) that is identified in the CPS-DWS.
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Table 10: Geographic Mobility

(1) (2) (3) (4) (5) (6)

MOVEDi jmt -0.0725** -0.0761*** -0.0680** 0.0477 0.0394 0.0547
(0.0285) (0.0286) (0.0277) (0.0602) (0.0627) (0.0686)

MOVEDi jmti × SVP j -0.179** -0.172** -0.181**
(0.0843) (0.0841) (0.0889)

Observations 5,032 5,032 5,032 5,032 5,032 5,032
R-squared 0.234 0.252 0.297 0.235 0.253 0.299

Occupation fixed effect yes yes yes yes yes yes
State fixed effect no yes yes yes yes yes
State time trend no yes yes no yes no
MSA fixed effects no no yes no no yes

Notes: The regressions are least squares estimates of regression equation (9). The dependent variable is 0 if the pre- and post-displacement occupation

of a displaced worker is the same and 1 if it is different. All regressions include year-of-displacement dummies, four education dummies (dropout,

high-school, some college, college or more), a female dummy, a non-black dummy, potential experience (quadratic), tenure on the pre-displacement job

(cubic), and controls that capture whether displacement was due to plant closing. For displaced workers who report to have moved, state- and MSA

fixed effects refer to the location at the time of the interview. The regression also controls for the length of the completed unemployment spell. The

sample contains both workers who have and who have not changed occupations after displacement. The sample is restricted to workers whose current

job was the first job after displacement and who were not noticed in advance of their displacement. Standard errors clustered at the occupation level are

reported in parenthesis. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

Table 11: First-Stage Estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1 − SIZEm) × SVP j 0.189*** 0.196*** 0.202*** 0.231*** 0.186**
(0.0514) (0.0516) (0.0547) (0.0775) (0.0831)

(1 −DIVERSITYm) × SVP j 0.245*** 0.248*** 0.259*** 0.231*** 0.256***
(0.0616) (0.0626) (0.0661) (0.0750) (0.0794)

Observations 3,192 3,192 3,192 987 987 3,192 3,192 3,192 2,345 2,345
R-squared 0.230 0.239 0.316 0.402 0.532 0.263 0.272 0.336 0.257 0.331

F-statistic excl. instr. 13.57 14.44 13.62 8.892 5.024 15.87 15.70 15.34 9.492 10.42

Occupation fixed effect yes yes yes yes yes yes yes yes yes yes
State fixed effect yes yes yes yes yes yes yes yes yes yes
State time trend no yes yes yes yes no yes yes yes yes
MSA fixed effect no no yes no yes no no yes no yes

Sample
Plant closing only no no no yes yes no no no no no
Occs. in many inds. only no no no no no no no no yes yes

Notes: The regressions are least squares estimates of equation (11) when market thickness is operationalized as size of the local labor force. The associated second-stage

regression is equation (10). The dependent variable is the interaction −log(SIZEm) ×MCi jmt in columns (1)-(4) and (1 − SIZEm) ×MCi jmt in columns (5)-(8). All regres-

sions include year-of-displacement dummies, four education dummies (dropout, high-school, some college, college or more), a female dummy, a non-black dummy,

potential experience (quadratic), tenure on the pre-displacement job (cubic), and controls that capture whether displacement was due to plant closing. Only the sub-

sample of displaced workers who report to have changed occupations after displacement, whose current job was the first job after displacement, who were not noticed

in advance of their displacement, and who did not move after displacement is used for estimation. In columns (4) and (5) the sample is further restricted to workers

who report to have been displaced due to plant closing. In columns (9) and (10) occupations present in only few industries are excluded. Standard errors clustered at

the occupation level are reported in parenthesis. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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Table 12: Reduced Form Estimates: Tobit

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1-SIZEm) × SVP j 1.132*** 1.302*** 0.997** 1.728** 1.696*
(0.424) (0.423) (0.449) (0.806) (0.885)

(1-DIVERSITYm) × SVP j 1.164*** 1.348*** 1.263*** 2.003*** 1.648***
(0.401) (0.400) (0.412) (0.493) (0.508)

Observations 1,604 1,604 1,604 533 533 1,604 1,604 1,604 1,019 1,019
Left-censored 299 299 299 133 133 299 299 299 175 175

Occupation fixed effect yes yes yes yes yes yes yes yes yes yes
State fixed effect yes yes yes yes yes yes yes yes yes yes
State time trend no yes yes yes yes no yes yes yes yes
MSA fixed effect no no yes no yes no no yes no yes

Sample
Plant closing only no no no yes yes no no no no no
Occs. in many inds. only no no no no no no no no yes yes

Notes: The regressions are Tobit estimates of equation (6). I operationalize market thickness as size of the local labor force in columns (1) to (3) and as industrial

diversity in columns (4) to (6). All regressions include year-of-displacement dummies, four education dummies (dropout, high-school, some college, college or

more), a female dummy, a non-black dummy, potential experience (quadratic), tenure on the pre-displacement job (cubic), and controls that capture whether dis-

placement was due to plant closing. Only the sub-sample of displaced workers who report not to have changed occupations after displacement, whose current job

was the first job after displacement, who were not noticed in advance of their displacement, and who did not move after displacement is used for estimation. In

columns (4) and (5) the sample is further restricted to workers who report to have been displaced due to plant closing. In columns (9) and (10) occupations present

in only few industries are excluded. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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