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Abstract

This note establishes a new identification result for additive random utility discrete

choice models (ARUM). A decision-maker associates a random utility Uj + mj to each

alternative in a finite set j ∈ {1, ..., J}, where U = {U1, ..., UJ} is unobserved by the

researcher and random with an unknown joint distribution, while the perturbation m =
(m1, ...,mJ) is observed. The decision-maker chooses the alternative that yields the maxi-

mum random utility, which leads to a choice probability systemm→ (Pr (1|m) , ...,Pr (J |m)).
Previous research has shown that the choice probability system is identified from the ob-

servation of the relationship m → Pr (1|m). We show that the complete choice probabil-

ity system is identified from observation of a relationship m →
∑s
j=1 Pr (j|m), for any

s < J . That is, it is sufficient to observe the aggregate probability of a group of alternatives

as it depends onm. This is relevant for applications where choices are observed aggregated

into groups while prices and attributes vary at the level of individual alternatives.

1 Introduction

This note establishes a new identification result for additive random utility discrete choice mod-

els, showing that the complete system of choice probabilities is identified from observation of

the joint probability for a subset of the alternatives as a function of a vector of location shifts.

A random utility model (RUM) associates a vectorU = (U1, ..., UJ) of random utilities with

a choice set consisting of J alternatives. A decision-maker receives a realization of the random

utility vector and chooses the alternative with the maximum utility. If the joint distribution

of utility is absolutely continuous, then this induces a unique multinomial choice probability
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vector, which can be computed by the analyst given knowledge of the joint distribution of

utility. An additive random utility model (ARUM) is a random utility model where the random

utility vector is perturbed by a deterministic vector m such that the decision-maker maximizes

m +U and the choice probability vector becomes a function of m, i.e. the choice probability

system

m→ (Pr (1|m) , ...,Pr (J |m)) . (1.1)

In applications, the perturbed random utility vector is parametrized to depend on observable

variables.

Matzkin (2007) showed that an ARUM is identified from the probability of a single alterna-

tive. That means that it is possible to determine the whole choice probability system (1.1) from

the observation of a functionm→Pr (j|m) that relates the probability of a single alternative j
to the perturbation vectorm.

In this paper, we extend this result to the case where one observes the probability that the

choice is in a set of alternatives that is any proper subset of the choice set. An example may

be where the researcher observes prices and characteristics for all the different car models on a

market, but where he/she only observes demand , e.g., at the level of brands. In such situations it

is important to know what is identified from the data and what identification relies on parametric

model specification.

The result in this paper is a nonparametric identification result. Such results are useful to

establish, on the one hand, the limits of what can be learnt from data and, on the other hand, to

develop nonparametric estimators.

Random utility models, and most often additive random utility models, have been exten-

sively used in economics and other social science fields since the pioneering work of McFadden

(1974). Amemiya (1981) and Maddala (1983) discuss an extensive list of applications of this

model. These include the choice of mode of transportation, choice of occupation, and choice of

residence.

Section 2 first presents some preliminaries. Section 3 establishes identification from ob-

servation of the probability of a single alternative. This is expanded in Section 4 to the case

where the probability of a set of alternatives is observed. Section 5 establishes precisely that

the choice probability vector only identifies the distribution of random utility up to a univariate

random variable added to all components of the random utility vector. Section 6 shows a way to

construct ARUM with a nested structure corresponding to a partitioning of choice alternatives

into groups. This construction relies on the function that relates expected maximum utility to

the perturbation m. Section 7 concludes. For the exposition of the theory of ARUM we have

drawn on an unpublished lecture note written by Dan McFadden (McFadden, 2014).
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2 Preliminaries

A decision maker faces a finite choice set of alternatives denoted by C = {1, · · · , J}. Let S be

any non-empty proper subset of the choice set C, ∅ 6= S ( C. Without loss of generality, we

let S comprise the first s elements of C, where 1 ≤ s < J .

Vectors are written in bold. The vectorm = (m1, · · · ,mJ) ∈ R
J has a component for each

alternative in C. Let m−s = (ms+1, · · · ,mJ) denote the vector m excluding the components

of S. Then m−s − k = (ms+1 − k, · · · ,mJ − k) denotes a vector with the scalar k subtracted

from every component of m−s. The notation (ms,m−s) will be used for the vector m when it

is convenient.

Let σ = (σ1, · · · , σJ) denote a permutation of (1, · · · , J), and let σ:k = (σ1, · · · , σk)
denote the first k elements of σ. Let

∇σ:kF (u) ≡
∂kF (u1, · · · , uJ)

∂uσ1 · · · ∂uσk

denote the mixed partial derivative of a real-valued function F on RJ with respect to the vari-

ables in σ:k. Similarly, denote

∇12···JF (u) ≡
∂JF (u1, · · · , uJ)

∂u1 · · · ∂uJ
.

Definition 1 A (complete) choice probability system (CPS) is a family of non-negative functions

m→ Pr(j|m) for j = 1, · · · , J that sum to one.

Definition 2 An additive random utility model (ARUM) is a utility field defined by U + m,

where U = (U1, · · · , UJ) is an absolutely continuously distributed random vector with finite

mean, and m is an additive shift vector. The choice probability system associated with this

ARUM takesm into probabilities

Pr(j|m) = Pr(Uj +mj > Uk +mk for all k ∈ C \ {j}) for every j ∈ C.

Let F (u) denote the CDF of U. Then the CDF of the ARUM U +m is F (u −m). The

Radon-Nikodym theorem guarantees the existence of a non-negative density f(u) such that

F (u) =

uJ∫

vJ=−∞

· · ·

u1∫

v1=−∞

f(v1, · · · , vJ)dv1 · · · dvJ .

It also guarantees the existence of the non-negative mixed partial derivatives ∇σ:kF (u) of F .

Let Fj denote the derivative of F with respect to uj . Then the finite mean condition ofU implies
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∞∫

vj=−∞

|vj|Fj(∞, · · · ,∞, vj,∞, · · · ,∞)dvj <∞. (2.1)

For the set S, we define US = max
j∈S

(Uj + mj) − m̄S, where m̄S =
∑

j∈S

mj/s. The finite

mean condition forU implies the finite mean condition for US . The marginal distribution of US
givenmS is

F(S)(uS|mS) = P (Uj +mj − m̄S ≤ uS, j ∈ S)

= F (uS + m̄S −mS,∞−S).

For a fixed mS , the distribution of (US,U−S|mS) is given by

R(uS,u−S|mS) ≡ F (uS + m̄S −mS,u−S)

and R(.|mS) is absolutely continuous.

3 The probability of a single alternative

We begin the analysis by deriving the probability of a single alternative expressed in terms of

the probability of another alternative.

The ARUMU+m has a choice probability for alternative j ∈ C that is

Pr(j|m) = Pr(Uj +mj ≥ Uk +mk; ∀k ∈ C)

=

∞∫

−∞

Fj(uj +mj −m1, · · · , uj +mj −mJ)duj.
(3.1)

Consider the linear transformation Tj : U →W defined by Wj = Uj and Wk = Uk − Uj
for all k ∈ C \ {j} with inverse Uj = Wj and Uk = Wk + Wj for all k ∈ C \ {j}. The

determinant of the Jacobian of this transformation is 1. Therefore, the marginal CDF of W−j

under the transformation Tj is given by

H−j(w−j) =

∞∫

wj=−∞

Fj(w1 + wj, · · · , wj−1 + wj, wj, wj+1 + wj, · · · , wJ + wj)dwj.
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The choice probability for alternative j is given in terms of H−j by

Pr(j|m) = Pr(Wk < mj −mk; ∀k ∈ C \ {j})

= H−j(mj −m−j).
(3.2)

The above characterization (3.2) of the choice probability in terms of a CDF of utility differ-

ences appeared in the early development of ARUM models (McFadden, 1981, 1989), and was

used to construct and compute choice probabilities in applications.

For any i ∈ C \ {j}, we get

Pr(i|m) = Pr(Wk < Wi +mi −mk; ∀k ∈ C \ {i, j}, and Wi > mj −mi)

=

∞∫

wi=mj−mi

H−j,i(wi +mi −m−j)dwi,
(3.3)

where H−j,i(w−j) =
∂H−j(w−j)

∂wi
.

Thus observation of the function m → Pr(j|m) identifies the function H−j through (3.2).

Then by (3.3), the probability Pr(i|m) is identified. We have thus proved

Proposition 1 In an ARUM, for any i 6= j ∈ C, the function m → Pr(i|m) is identified from

observation of the functionm→ Pr(j|m).

In the next section, we extend this result up to the knowledge of the probability of any subset

of the choice set.

The choice probabilities in (3.2) and (3.3) are entirely and uniquely determined byH−j(w−j)
and its derivatives, independent of the density of Wj = Uj . Therefore an ARUM U + m
with U ∼ F (u) has an observationally equivalent ARUM defined for transformation Tj by

W ∼ H−j(w−j)ψ(wj) with Uj = Wj and U−j = W−j + Wj , where ψj is any finite mean

univariate CDF. This setup, with ψj having unit mass at zero and the mapping (3.3), was used

by Matzkin (1993) to show that knowledge of a single probability allows one to recover the full

CPS.

4 The probability of a set of alternatives

The previous section derived the choice probability for alternative i in terms of the choice

probability for a different alternative j. In this section, we repeat this exercise, but with the

choice probability of a proper subset S of the choice set instead of alternative j.
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The choice probability of the set S is

Pr(S|m) = Pr(max
j∈S

(Uj +mj) ≥ Uk +mk; ∀k ∈ C)

=

∞∫

−∞

RS(uS, uS + m̄S −m−S|mS)duS,
(4.1)

where RS(uS,u−S|mS) = ∂R(uS,u−S|mS)/∂uS .

Consider again a linear transformation TS : {US,U−S} → W defined by WS = US and

Wk = Uk − US for all k > s with inverse US = WS and Uk = Wk +WS for all k > s. The

determinant of the Jacobian of this transformation is 1. Therefore the marginal CDF of w−S
under the transformation TS is given by

H−S(w−S|mS) ≡

∞∫

wS=−∞

RS(wS,w−S + wS|mS)dwS.

The choice probability for the set S is given under the transformation TS by

Pr(S|m) = Pr(Wk < m̄S −mk; ∀k > s)

= H−S(m̄S −m−S|mS).
(4.2)

For any i > s, we get

Pr(i|m) = Pr(Wk < Wi +mi −mk; ∀k ∈ C \ {S ∪ i}, and Wi > m̄S −mi)

=

∞∫

wi=m̄S−mi

H−S,i(wi +mi −m−S|mS)dwi,
(4.3)

where H−S,i(w−S|mS) =
∂H−S(w−S |mS)

∂wi
.

The probability of choice in S, Pr (S|m), and of the alternatives in the complement of S,

Pr (i|m), have then been expressed in terms of the probability of choice in S. Applying Propo-

sition 1 to a probability in the complement of S shows that the choice probabilities for choice

alternatives in S may also be expressed in terms of the probability of choice in S, Pr (S|m).
This establishes the following

Proposition 2 In an ARUM, for any i ∈ C and ∅ 6= S ( C, the function m → Pr(i|m) is

identified from observation of the functionm→ Pr(S|m).
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5 Limits to identification

It is clear that adding a univariate random variable to all random utilities in an ARUM does

not affect choice probabilities. This means that the random utility vector U is not identified

from observation of discrete choices. The following proposition makes this insight a little more

precise by establishing a converse, namely that if two ARUM yield identical choice probabilities

then their random utility vectors must be identical up to an additive random variable. This is

then the limit for identification in an ARUM: it is possible to identify the distribution of U up

to an additive univariate random variable and not more.

Proposition 3 Two ARUMm+U andm+U′ yield the same choice probabilities for allm if

and only if there exists independent univariate random variables δ, δ′ ∈ R, such thatU+ δ has

the same distribution asU′ + δ′.

Proof of Proposition 3. An ARUMU+m yields the same choice probabilities as an ARUM

U +m + δ, where δ ∈ R is a univariate random variable that is added to the indirect utility of

all alternatives.

Conversely, if two ARUM U +m and U′ +m yield the same choice probabilities, then

the same is true of (0, U2 − U1, ..., UJ − U1) + m and (0, U ′2 − U ′1, ..., U
′
J − U ′1) + m. The

probability that alternative 1 is chosen in the first model is

Pr (1|m) = Pr (U2 − U1 ≤ m1 −m2, ..., UJ − U1 ≤ m1 −mJ) ,

a similar expression applies in the second model, and this shows that the CDF of (U2−U1, · · · , UJ−
U1) and (U ′2 − U ′1, ..., U

′
J − U ′1) are the same. Defining δ = −U1 and δ′ = −U ′1 completes the

proof.

Letψ : R→ R be an increasing function. Then a RUM with utilities (ψ (U1 +m1) , ...ψ (UJ +mJ))
yields the same choice probabilities as the ARUMU+m and is hence observationally equiva-

lent to the ARUM. This topic is explored in Mattsson et al. (2014).

6 The expected maximum utility

In this section, we establish a proposition that indicates a way in which an ARUM can be

constructed with a nested structure that corresponds to a partitioning of choice alternatives into

groups. To do this, we rely on the properties of the expected maximum utility of an ARUM.

The random maximum utility is denoted Y ≡ max
j∈C

(Uj +mj) and it has a CDF that is F (y −
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m1, · · · , y −mJ). The expected maximum utility is denoted

h(m) ≡ E(Y ) = E(max
j∈C

(Uj +mj)) =

∞∫

−∞

y[
d

dy
F (y −m1, · · · , y −mJ)]dy. (6.1)

The expected maximum utility is of interest in its own right as a measure of the welfare of the

decision-maker. It is also useful as it encodes the choice probabilities of the ARUM in a single

function. This is stated in the following well-known result (see e.g. Fosgerau et al., 2013).

Proposition 4 Let h(m) be the expected maximum utility of an ARUM U +m as defined in

(6.1). Then

h(m) =

∞∫

0

[1− F (y −m)]dy −

0∫

−∞

F (y −m)dy. (6.2)

and differentiating with respect to mj , we get

hj(m) ≡ ∂h(m)/∂mj = Pr(j|m). (6.3)

We are then able to state the result of this section.

Proposition 5 Let h : RJ → R and hk : RJk → R, k = 1, ..., J be expected maximum utilities

of ARUM. Then h
(
h1, ..., hJ

)
is also the expected maximum utility of an ARUM.

Proof of Proposition 5. Let h : RJ → R and h′ : RJ
′

→ R be expected maximum utilities of

ARUM. We will first show that

h (h′ (m′) ,m−1) : R
J ′+J−1 → R

is also a CPGF. Let h correspond to the ARUM m +U and h′ to the ARUM m
′ +U′, where

U and U′ are independent. Consider an ARUM with J + J ′ − 1 alternatives indexed by jj′

where j ∈ {1, ..., J} and j′ ∈ {1, .., J ′} when j = 1 and j′ = 1 otherwise. Define U ′′jj′ =
Uj + U ′j′1{j=1} and consider the ARUM m′′

jj′ + U ′′jj′ with associated CPGF denoted h′′ (m′′).
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Then
h′′ (m′′) = Emax

jj′

{
m′′
jj′ + U

′′
jj′

}

= Emax
jj′

{
m′′
jj′ + Uj + U ′j′1{j=1}

}

= E

(
E

(
max
jj′

{
m′′
jj′ + Uj + U

′
j′1{j=1}

}
|U

))

= E

(
max

{
U1 + Emax

j′

{
m′′
1j′ + U

′
j′

}
,max
j>1

{
m′′
j1 + Uj

}})

= E

(
max

{
U1 + h

′ (m′′
11, ...,m

′′
1J ′) ,max

j>1

{
m′′
j1 + Uj

}})

= h (h′ (m′′
11, ...,m

′′
1J ′) ,m

′′
21, ...,m

′′
J1) .

Proposition 5 follows from repeated application of this result.

From the proof of Proposition 5 we observe that if an ARUM has an expected maximum

utility of the form h
(
h1, ..., hJ

)
, then it has a random utility representative of the form m +

U where Ujj′ = δj + ηj′ , where the δj are random utilities corresponding to h, and ηj′ are

random utilities corresponding to each nest defined by hi. The random utility components ηj′
are independent between nests and independent of δ.

Example 1 We will use Proposition 5 to construct a two-level nested logit model. Let µ > 0
and define

h (m) = µ ln

(
J∑

k=1

emk/µ

)

,m ∈ RJ

as the expected maximum utility of a multinomial logit model. Define similarly

hk
(
m
k
)
= µk ln

(
Jk∑

j=1

em
k
j /µk

)

,mk ∈ RJk

for µk > 0. Then by Proposition 5, the composition

h
(
h1
(
m
1
)
, ..., hJ

(
m
J
))
= µ ln




J∑

k=1

(
Jk∑

j=1

em
k
j /µk

)µk
µ





is the maximum expected utility of an ARUM. According to Proposition 4, choice probabilities

can be found by differentiation,

∂
(
h
(
h1 (m1) , ..., hJ

(
m
J
)))

∂mk
i

=
em

k
i /µk

∑J
j=1 e

mk
j /µk

exp
(
µk
µ
ln
(∑Jk

j=1 e
mk
j /µk

))

∑J
k′=1 exp

(
µk′
µ
ln
(∑Jk′

j=1 e
mk′

j /µk′
)) ,
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and these may be recognized as belonging to a nested logit model (McFadden, 1978).

7 Conclusion

This note has shown that all the observational content of an ARUM is encoded in the probability

of a group of alternatives. As observed by McFadden (2014) (for the case when the probability

of a single alternative is observed), the good news is that this reduces the requirements on data in

empirical applications of ARUM. The bad news is that it is not possible to specify an ARUM in a

partial way, where only the probability of a single or a group of alternatives is specified, without

implicitly specifying the whole model. Furthermore, we have shown that further identification

cannot be obtained and we have presented a general way to construct ARUM with a built-in

partitioning of alternatives into groups.

The present results rely crucially on the defining property of ARUM that a vector of random

utilities is perturbed by additive, non-random location shifts. There is a small but important

literature on identification in more general discrete choice models. A recent point of entry to

that literature is provided by Berry and Haile (2016).
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