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Abstract

When it comes to point forecasting there is a considerable amount of literature

that deals with ways of using disaggregate information to improve aggregate accur-

acy. This includes examining whether producing aggregate forecasts as the sum of

the component’s forecasts is better than alternative direct methods. On the con-

trary, the scope for producing density forecasts based on disaggregate components

remains relatively unexplored. This research extends the bottom-up approach to

density forecasting by using the methodology of large Bayesian VARs to estimate the

multivariate process and produce the aggregate forecasts. Different specifications

including both fixed and time-varying parameter VARs and allowing for stochastic

volatility are considered. The empirical application with GDP and CPI data for Ger-

many, France and UK shows that VARs can produce well calibrated aggregate fore-

casts that are similar or more accurate than the aggregate univariate benchmarks.
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Non-technical Summary

Assessing the state of the economy and providing an outlook for where it is heading involves

interpreting large amounts of data in a way that is coherent. Macroeconomic aggregates are

fundamental to this process. Due to the fact that they are built from disaggregate information

there is an ongoing debate on whether and how to incorporate disaggregate information in

order to improve aggregate forecasts. In some situations, however, the dynamics underlying an

aggregate forecast are required for analysis. In these cases, to produce the forecast scenarios,

practitioners usually rely on the bottom-up approach, that is building the aggregate forecast as

the sum of its component’s forecasts.

The bottom-up approach, in the context of point-forecasts, can present some challenges, but

overall is reasonably straightforward. For density forecasts, on the other hand, it is not. This

is troubling given that probability forecasting is being used increasingly in both finance and

economics. Some efforts have been made to benefit from the disaggregate components in the

process of forecasting the aggregate, but these have relied on methods that do not preserve

the direct link between the aggregate and its components. As with the case of point-forecasts,

however, in some situations a consistent underlying scenario for the aggregate forecast may be

required.

In this paper we present a framework that extends the bottom-up approach to density forecasting

with the objective of providing a consistent forecast scenario that is comparable to or better

than those of direct methods. We do so by using the methodology of large Bayesian VARs to

estimate the whole multivariate process and use the appropriate index weights to produce the

aggregate forecast. We allow for both fixed and time-varying parameter VARs and for stochastic

volatility. Our empirical application uses CPI and GDP data from France, Germany and the

United Kingdom. We find that the multivariate methods are capable of producing bottom-up

forecasts that are calibrated and perform equally or better than comparable aggregate methods.
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1 Introduction

Assessing the state of the economy and providing an outlook for where it is heading

involves interpreting large amounts of data in a way that is coherent. Macroeconomic

aggregates are fundamental to this process given that they synthesise the information

from countless indicators into relatively few figures. Due to the fact that they are built

from disaggregate information there is an ongoing debate on whether and how to incor-

porate disaggregate information in order to improve aggregate forecasts.

For point forecasts there is sufficient evidence that supports the benefits in terms of

aggregate accuracy of including disaggregate information in the forecasting process

(Brüggemann and Lütkepohl, 2013). Some argue in favour of including disaggregate in-

formation in a model that forecasts the aggregate directly (Hendry and Hubrich, 2011).

Over the years, however, a lot of attention has been given to whether forecasting the

aggregate as the sum of its component’s forecasts achieves better results than forecast-

ing the aggregate directly. This may be due to the fact that this bottom-up approach

provides a consistent underlying scenario for an aggregate forecast and is, therefore,

favoured among institutions producing short-term forecasts (Esteves, 2013; Ravazzolo

and Vahey, 2014). In terms of how it performs compared to other methods Lütkepohl

(1987) show that it depends on the disaggregate processes and the aggregation matrix

of the particular problem. The differing results from the many practical comparisons

confirm that whether it is the best method is an empirical matter.1

The amount of research for point forecasts contrasts with that for density forecasting. It

would seem that making use of disaggregate components has remained a relatively un-

explored area. This is odd given that probability forecasting is being used increasingly

in both finance and economics to assess the uncertainty surrounding forecasts (Mitchell

and Hall, 2005).

Exceptions to this relative scarceness are Bache et al. (2010) and Ravazzolo and Va-

hey (2014). They use ensemble forecasting, a method adapted from the meteorology

literature, where univariate autoregressive models are used for the components and ag-

gregation weights are estimated so as to produce a well calibrated aggregate forecast.

They work on the basis that the component models are almost surely misspecified but

argue that an approximation to the aggregate can be found by using an appropriate

mixture.

1Examples of these comparisons are Espasa et al. (2002), Benalal et al. (2004), Hubrich (2005) and

Giannone et al. (2014) for inflation in the Euro area; Marcellino et al. (2003), Hahn and Skudelny (2008),

Burriel (2012) and Esteves (2013) for European GDP growth; and Zellner and Tobias (2000), Perevalov and

Maier (2010) and Drechsel and Scheufele (2013) for GDP growth in specific industrialized countries.
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Their approach is partly motivated by the fact that practitioners commonly rely on uni-

variate models to generate forecasts for components because of the difficulties involved

in modelling their dependencies. This may be the case, but discarding the original

weights means that, for the purpose of analysis, there is no way to link the aggregate

forecast to the expected paths of the components. Espasa and Mayo-Burgos (2013) and

Esteves (2013), among others, have raised their concerns regarding evaluating a disag-

gregate method solely based on aggregate accuracy and, in particular, argue that for

the formulation of useful economic policies the dynamics of the underlying component’s

forecasts may be more important than the aggregate itself.

With those considerations in mind, it seems desirable to retain the original weights

and a way of doing this is to model the whole multivariate process. Fortunately, in re-

cent years Bayesian methods for dealing with large multivariate processes have been

developed and have generated a lot of interest because of their good performance (Car-

riero et al., 2009; Banbura et al., 2010; Koop, 2013). In this paper we, therefore, use

the methodology of large Bayesian VARs to extend the bottom-up approach to density

forecasting with the objective of providing forecasts that are comparable to or better

than those of direct methods. To do this, we implement different specifications that

relax the constraints of the univariate framework. This includes considering both fixed

and time-varying parameter VARs and allowing for stochastic volatility.

The rest of the paper is organized as follows. Section 2 presents the methodology.

Section 3 presents an empirical implementation using GDP and CPI data for France,

Germany and the United Kingdom. Section 4 summarizes the conclusions.

2 Disaggregate Forecasting Methodology

Over the last decade there has been a growing interest in Bayesian methods for policy

analysis and forecasting. As pointed out in Carriero et al. (2015), much attention has

concentrated on using Bayesian vector autoregressions (BVARs) with large datasets for

point and density forecasting. The idea behind the BVAR is that prior information is

imposed on the VAR coefficients to avoid overparametrization.

For practitioners that are affected by the limited feasible size of traditional VARs, such

an alternative is probably specially welcome. In spite of the remarkable increase in

computational power, however, some approaches remain technically and computation-

ally demanding. This could be a stumbling block for their adoption in contexts where

the production of forecasts is subject to very tight time constraints, but fortunately al-

ternatives that avoid the more intensive simulation are available.
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The implementation suggested by Banbura et al. (2010) has received considerable atten-

tion since it was first presented. They suggest a relatively simple way of using Bayesian

shrinkage to overcome the dimensionality problem in traditional VARs. In their empir-

ical application, they find that their BVARs perform at least as well as the popular factor

methods. They do, however, only contemplate using constant coefficients and homoske-

dastic errors. Koop and Korobilis (2013) take it a step further and develop a method-

ology that also allows implementing time-varying parameters and stochastic volatility

without increasing computational demands. Because of this extra flexibility and other

convenient features of their implementation, we use their model in our framework to

produce bottom-up density forecasts.

2.1 Large Time-varying parameters VARs

Koop and Korobilis (2013) formulate the problem in state-space form:

yt = Xtβt + εt εt ∼ i.i.d.N(0,Σt)

βt+1 = βt + ut ut ∼ i.i.d.N(0, Qt)

(1)

where εt and us are independent from one another for all s and t. yt for t = 1, . . . ,T is

an M × 1 vector containing observations on M time series and Xt is an M × k matrix

defined so that each TVP-VAR equation contains an intercept and p lags of each of the

M variables.

They argue that even for relatively small problems the computational burden could be

quite significant. Therefore, instead of proceeding in a standard Bayesian way by us-

ing MCMC methods they suggest replacing Qt and Σt with estimates. To achieve this,

while still retaining time-varying parameters and stochastic volatility, they use forget-

ting factors to produce their approximation at each point in time. This means estimating

empirically the desired parameters, but in a way that downplays to a chosen degree the

contribution of less recent data.

In regards to the time-varying parameters, they start by noting that Qt only appears

in one place in the Kalman filtering process, particularly in the prediction step. Then,

following the forgetting factors approach, they replace Qt for (λ−1 − 1)Vt−1|t−1, where

Vt−1|t−1 is the variance of βt−1|yt−1, resulting in Vt|t−1 = 1

λ
Vt−1|t−1. The forgetting factor

λ is restricted to be strictly positive and less than one being the constant coefficient

specification achievable by setting λ = 1.

Similarly, to avoid using a posterior simulation algorithm to model volatility, they use an

Exponentially Weighted Moving Average estimator for the measurement error covari-
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ance matrix. This is done by making Σ̂t = κΣ̂t−1 + (1− κ)ε̂tε̂
′
t with ε̂t = yt− βt|tXt. Here

the forgetting factor κ is also restricted to be between zero and one.

In regards to the estimation of the coefficients of the BVAR, that is the β’s, they use a

Normal prior. Given their choice of variable transformation, for β0 they set the prior

mean to zero and the covariance matrix to be diagonal. Specifically, for var(β0) = V ,

with V i being its diagonal elements, they define V i = γ/r2 for coefficients on the r-th

lag and for the intercepts use a noniformative prior. This results in having a single

hyperparameter γ control the shrinkage of the coefficients. In this case 0 ≤ γ < ∞.

2.2 Empirical parameter selection

The model proposed by Koop and Korobilis (2013) is relatively simple and capable of

incorporating many features, despite being governed by three parameters. These para-

meters, however, have to be provided by the researcher.

In regards to the values governing the time-varying parameters and stochastic volatility,

Koop and Korobilis provide values that would be consistent with previous literature in

those areas. They do acknowledge, however, that a method that determines them from

the data would be very appealing and, therefore, go on to develop one based on dynamic

model selection methods (DMS).

They set the problem up as one of selecting one model definition from a set of models

that are the same in terms of explanatory variables, but differ in terms of parameter

values.2 Their criterion is to choose the specification with the highest probability of

being the appropriate one for forecasting at any given time. They estimate this prob-

ability by implementing a recursive algorithm developed by Raftery et al. (2010) that,

conveniently, can be run within the normal Kalman filtering process used to produce the

forecasts.3

In this context, the prediction step is extended slightly with the additional equation:

πt|t−1,j =
πα
t−1|t−1,j

J
∑

l=1

πα
t−1|t−1,l

(2)

were πt|t−1,j is the probability that model j should be used to forecast at time t given

the information up to t− 1, α is a forgetting factor and J is the number of specifications

2Koop and Korobilis go on to extend the approach to also allow for differing explanatory variables.
3The algorithm by Raftery et al. (2010) is explained in detail in Section 2.3 of Koop and Korobilis (2013).
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being considered, and the updating step by:

πt|t,j =
πt|t−1,jpj

(

yt | y
t−1

)

J
∑

l=1

πt−1|t−1,lpl (yt | yt−1)

(3)

were pj
(

yt | y
t−1

)

is the predictive likelihood.

The idea behind the algorithm is that good performance in the recent past increases

the probability of the model being the appropriate one to forecast for the following

period. The predictive likelihood serves as the measure of forecast performance and

the forgetting factor α to define what is understood as “recent past”. In this case, an

α close to zero leads approximately to the equal weighting for all time periods while

setting α = 1 corresponds to using the marginal likelihood.

The method is sufficiently general so that Koop and Korobilis also use it to estimate the

prior hyperparameter which controls shrinkage in large Bayesian VARs, not only the

forgetting factors for the time-varying parameters and stochastic volatility.

2.3 Aggregate Density Forecasts from Component Forecasts

As pointed out by Ravazzolo and Vahey (2014) practitioners often rely on univariate

models because of the difficulties involved in modelling the dependencies among com-

ponents. Ignoring these dependencies however means that using a traditional bottom-

up approach could yield poor aggregate density forecasts. Ravazzolo and Vahey (2014)

acknowledge that by assuming that the disaggregate forecasting equations are misspe-

cified and propose approximating the unknown true specification by estimating appro-

priate aggregation weights.

On the other hand, if the multivariate process is modelled well, using the index weights

would be appropriate and should produce well calibrated aggregate forecasts. Determ-

ining the distribution of a sum of random variables, however, is generally quite com-

plicated, but in this case, the task is simplified greatly by the fact that the densities for

the components are produced using a sampling algorithm. As any given draw describes

the whole multivariate process, the aggregate forecast for that draw, can be produced

simply by summing the component forecasts using the appropriate index weights. Doing

this for all draws provides the aggregate bottom-up density forecast.
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3 Empirical Application

The success of the proposed method depends on two factors. The first is whether it per-

forms well in circumstances where the univariate bottom-up approach fails to produce

a well calibrated aggregate forecast. The second, and maybe more relevant in practical

settings, is how it performs relative to other methods that do produce well calibrated

aggregate forecasts. The extent to which this can be measured depends fundamentally

on the properties of the data that is used. For this reason, we consider using more than

one dataset to have a broader assessment. In particular, we perform a out-of-sample

forecasting exercise using GDP and CPI data from Germany, France and United King-

dom. We use different specifications for the BVARs and evaluate the calibration of the

aggregate forecast densities using a series of tests and their relative performance using

log predictive density scores.

Regarding the forecast horizon, we restrict the scope of this exercise to the one-step-

ahead. The reason being that in the context of this exercise, as the series considered

are produced using either a fixed-base or annual overlap chain-linking method, the

definitive weights for the one-step-ahead forecast are always available at the time of

forecasting. For longer horizons, however, they are not. This means that for longer

horizons the weights would also need to be forecasted. One option would be to use the

previous period’s weights as practitioners often do (Ravazzolo and Vahey, 2014), but

Lütkepohl (2011) and Hendry and Hubrich (2011), among others, discuss the problems

that arise from imposing weights to be unchanging and emphasise that, if the actual

weights change through time, forecast performance can deteriorate quickly with longer

horizons being affected the most.

3.1 Data

For the exercise we use GDP from the production approach and CPI for France, Germany

and the United Kingdom. The data is quarterly and seasonally adjusted, spanning from

1991 to 2015 and available from the OECD statistics database.4

The breakdown of the aggregates is the following:

4For the United Kingdom the production data on the OECD database starts in 1995. The first four years

of the sample are obtained by splicing backwards the historical reference tables available from the Office

for National Statistics. No inconsistencies arise from the seasonal adjustment given that the aggregates

are adjusted indirectly, that is as the sum of the seasonally adjusted components.
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Table 1: Components Breakdown

GDP
1. Agriculture, forestry and fishing 7. Financial and insurance activities

2. Manufacturing 8. Real estate activities

3. Industry and energy, excluding manufacturing 9. Professional, administrative and support service activities

4. Construction 10. Public adm., defence, social security, education and health

5. Trade, transport, accommodation and food services 11. Other service activities

6. Information and communication 12. Taxes less subsidies

CPI
1. Food and non-Alcoholic beverages 7. Transport

2. Alcoholic beverages, tobacco and narcotics 8. Communication

3. Clothing and footwear 9. Recreation and culture

4. Housing, water, electricity, gas and other fuels 10. Education

5. Furnishings, household equipment and maintenance 11. Restaurants and hotels

6. Health 12. Miscellaneous goods and services

3.2 BVAR specifications

The evaluation exercise is performed over the 2001-2015 period leaving the first years

of data to estimate the models. It is set up in a quarterly rolling scheme using a ten

year window where in each period the models are re-estimated and a density forecast

is generated. For this we use different specifications for the BVARs.5 Firstly we use a

homoskedastic VAR that is obtained by setting both λ and κ equal to one and in which

case Σ̂t is estimated by 1

1−t

∑t−1

i=1
ε̂iε̂

′
i. Secondly a homoskedastic TVP-VAR with λ = 0.99

that is a value that Koop and Korobilis (2013) argue is equivalent to what has previously

been used in the relevant literature and for which, for quarterly data, observations five

years back receive approximately 80% as much weight as last period’s observation.6

They argue that such a value leads to a gradual change in coefficients and stable models.

Based on this, the third model is a heteroskedasic VAR with κ = 0.99. Finally, to allow

for both features, the fourth model is a heteroskedasic TVP-VAR with both λ and κ equal

to 0.99.7 In regards to setting the value for the overall shrinkage of the coefficients we

use the parameter selection algorithm described in section 2.2 over a wide grid for all

specifications.8

Koop and Korobilis argue that the TVP-VARs are well-suited for modelling gradual evolu-

tion of coefficients. To accommodate more sudden changes they advocate using dynamic

model selection over a whole array of model specifications. Given that the sample in-

cludes the years of the financial crisis, allowing for abrupt changes in parameters could

5For all we use four lags.
6Setting λ = 1 is equivalent to using the marginal likelihood. The closer to zero the less consideration is

given to older information.
7Koop and Korobilis also choose λ and κ empirically over a grid. We follow their implementation but find

the results are not significantly different from those obtained from setting both parameters to 0.99.
8Specifically, we set γ = ei and select i from {-7, -6, ... , -1}.
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be particularly relevant. Therefore, as a final approach, we produce a series of fore-

casts using, at each point in time, the model out of the previous four with the highest

probability of being appropriate, πt|t−1,j , according to the aforementioned algorithm.

As benchmarks for the forecasting exercise we use aggregate univariate AR models and

a bottom-up forecast using univariate AR models for the components. For these we

contemplate from one to four lags.

3.3 Forecast Evaluation

A popular way of assessing the calibration of the density forecasts is testing the se-

quence of probability integral transform (PIT) values. These are defined as pt = Ft(xt),

where Ft is the predictive cumulative distribution functions and xt the observed realiza-

tion. If Ft coincides with the true data generating process, the PITs are uniform U(0, 1)

for any forecast horizon and i.i.d. for one-step-ahead forecasts (Diebold et al., 1998).

Geweke and Amisano (2010) describe this approach as comparing the distribution of

the observed data with the distribution that would have resulted if the model under

consideration had being used to generate the data.

Mitchell and Hall (2005) point out that testing in this context is not straightforward

given that the impact of dependence on uniformity tests and vice versa is unknown.

The empirical literature has relied therefore on using a number of tests simultaneously.

Following Mitchell and Wallis (2011) and Ravazzolo and Vahey (2014) we use Pear-

son’s chi-squared test to assess the goodness-of-fit of the PIT histogram to a univariate

distribution and the Anderson-Darling test to evaluate the uniformity of the empirical

cumulative distribution function of the PITs. We directly test their independence using a

Ljung-Box test using autocorrelation of up to four lags. Finally we use the test proposed

by Berkowitz (2001) that tests for goodness-of-fit and independence.9

A problem with only testing the calibration is that it is quite possible that two or more

forecasts can be found to be equally well-calibrated (Gneiting et al., 2007). This is a

drawback, specially for practitioners that are looking to choose a single model. An

alternative approach is to use scoring rules. These assign a numerical score based on

the predictive likelihood and the realization of the variable. Based on the difference in

their scores, models can effectively be compared. Following Carriero et al. (2015), we

use the log predictive density scores to assess overall calibration of each forecast. In

particular, we use the average log score over the sample where the log score for the

density forecast fit, is defined as log fit(xt).

9The test is in fact applied on the inverse normal transform of the PITs to test for normality. We use

the three degrees of freedom version that tests against a first-order autoregressive alternative and wrong

mean and variance.

10



Table 2: Tests on PITs for one-step-ahead GDP forecasts

Germany France United Kingdom

Model Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB

Bottom-Up AR 0.02 0.00 0.21 0.01 0.00 0.28 0.37 0.16 0.00 0.00 0.14 0.16

Direct AR 0.41 0.00 0.01 0.14 0.06 0.05 0.40 0.08 0.06 0.15 0.26 0.02

Homsk. VAR 0.46 0.02 0.13 0.91 0.12 0.57 0.72 0.59 0.03 0.11 0.33 0.35

Homsk. TVP 0.51 0.01 0.14 0.89 0.12 0.38 0.67 0.59 0.03 0.06 0.92 0.45

Hetsk. VAR 0.00 0.00 0.00 0.77 0.40 0.02 0.31 0.86 0.00 0.00 0.34 0.21

Hetsk. TVP 0.00 0.00 0.00 0.52 0.30 0.03 0.03 0.68 0.00 0.00 0.33 0.21

DMS 0.72 0.08 0.30 0.72 0.17 0.54 0.89 0.70 0.01 0.02 0.11 0.29

Note: P-values for the calibration tests on the probability integral transform (PIT) of the one-step-ahead forecasts for each model for the three countries. The

tests are the LR test proposed by Berkowitz (2001) (Bkw.LR), the uniformity tests by Anderson-Darling (AD) and a Pearson’s chi-squared (χ2), the Ljung-Box
test (LB) for independence. The models are the bottom-up univariate model (Bottom-up AR), the direct univariate AR model (Direct AR), the homskedastic VAR,
the homskedastic TVP-VAR, the heterokedastic VAR, the heterokedastic TVP-VAR and the result of dynamic model selection over the four VARs (DMS). P-values
in bold signify that the null of the respective test are not rejected at 5%. Calculated over the 2001-2015 period.

3.4 Results

3.4.1 GDP forecasts

Table 2 presents the tests on the PITs for the one-step-ahead forecasting exercise for

GDP for all three countries. As Ravazzolo and Vahey (2014) put it, well-calibrated fore-

casts should give high probability values for all four tests. The overall impression from

the results, however, is that few specifications pass all four diagnostic tests.10 For Ger-

many, for example, only the DMSmodel does so while none does for the United Kingdom.

This is not surprising, however, given that the evaluation sample includes the last global

financial crisis. The performance of the Direct AR suggests that there is more to it than

a generalized shortcoming in the bottom-up approach.

As Mitchell and Hall (2005) point out, doing comparisons based on the tests is not

straightforward. The outcome of the PITs tests is binary. Either the forecasts are well-

calibrated according to the set of tests, that is, it is not rejected that the PITs can come

from a uniform distribution, or they are not. In a practical situation like this, such a

judgement seems insufficient. Some assessment on how badly or well-calibrated the

forecasts are would probably prove to be useful. With this objective in mind, given that

the series of tests evaluate different aspects of the PITs distribution, one might expect

that forecasts that fail one test marginally are probably closer to being well-calibrated

than those that fail all of them by a mile.11 Under this premise, the overall reading

of the results is that, unsurprisingly, the univariate bottom-up approach would seem to

10That is that the null hypothesis of no calibration failure cannot be rejected at the 5% significance level.

The tests are conducted on an individual basis which imply a Bonferroni-corrected (joint) p-value of 1.25%.
11This idea is related to visually inspecting the histograms and assessing how close they are to a uniform

distribution. The relevant literature, in fact, also suggests checking the PITs histograms visually. These are

all presented in the Appendix.

11



Table 3: Log scores for one-step-ahead GDP forecasts

Model Germany France United Kingdom

Direct AR 7.4 22.9 7.0

Homsk. VAR 12.0 26.1 10.1

Homsk. TVP 15.7 25.8 10.1

Hetsk. VAR 2.4 23.0 5.2

Hetsk. TVP 4.3 24.1 5.3

DMS 19.3 25.9 8.3
Note: Log predictive density scores of the one-step-ahead forecasts for each model for the three countries expressed
in terms of the percentage improvement over the bottom-up univariate model (Bottom-up AR). The models are the
direct univariate AR model (Direct AR), the homskedastic VAR, the homskedastic TVP-VAR, the heterokedastic VAR, the
heterokedastic TVP-VAR and the result of dynamic model selection over the four VARs (DMS). Log scores in bold denote
improvement over the direct univariate model. Calculated over the 2001-2015 period.

provide density forecasts that are less well calibrated than the direct approach. The

multivariate bottom-up approaches, however, improve on both the univariate variant

and the Direct AR in some cases. Overall the homoskedastic VARs are at least as good

as the direct approach for all countries, while the DMS shows improvements only for

Germany and France.

Even if trying to differentiate between models based on the PITs tests were possible, in

a context where a practitioner is after the best available model, the results form the PITs

tests in this case are of limited value. For example, for France there are four approaches

that qualify as well-calibrated where none of the models achieves the highest value in

all tests. For United Kingdom, on the other hand, none is well-calibrated and then there

are three models that fail only one test. Therefore, to rank the different models, we

turn to look at the logarithmic predictive density scores. Table 3 presents the log scores

expressed in terms of the percentage improvement over the bottom-up univariate model.

The multivariate models perform better than the univariate bottom-up approach, but the

improvements are heterogeneous. Overall, it is the homoskedastic models that show the

best performance improving over the aggregate univariate model by as much as eight

percentage points.

From the performance of the four different BVARs, it would seem that most of the gains

come from allowing the process to be modelled using a multivariate model and that

further gains can be obtained by allowing for the coefficients to vary over time. In

contrast, incorporating stochastic volatility has a negative effect.

This is consistent with the results from the dynamic model selection (DMS). For Ger-

many it performs very well. It shows the highest accuracy with an improvement of

nearly 12% over the aggregate AR. It is also the only model for which uniformity and

independence are not rejected by any of the tests. For France it performs virtually the

same as the homoskedastic multivariate models both in terms of calibration according
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Figure 1: GDP Recursive Log Scores

Note: Recursive log scores calculated over the 2001-2015 period. The models are the aggregate univariate model (Direct AR), the bottom-up forecast using
univariate AR models for the components (Bottom-Up AR), the homskedastic VAR, the homskedastic TVP-VAR, the heterokedastic VAR, the heterokedastic
TVP-VAR , the heterokedastic TVP-VAR with recursively estimated decay and forgetting factors and the result of dynamic model selection over the five VARs
(DMS).

to the PITs tests and log score. For the United Kingdom it performs better than the

direct AR but worse than the homoskedastic multivariate models.

The improvements over the bottom-up univariate model seem quite substancial, up to

26% in the case of France, so an obvious question to ask is whether the differences

in predictive accuracy are significant or not. To assess whether they are, we consider

a Kullback-Leibler information criterion equal predictive performance test (KLIC) as

presented in Mitchell and Hall (2005). The test compares two loss differential series in

a way that is analogous to the point forecast accuracy test popularized by Diebold and

Mariano (1995).

We find that although the improvements seem quite large in magnitude, the differences

are not significant according to the test. This could seem odd at first, but the recursive

log scores that are presented in Figure 1 provide an answer to why this is the case.12

It is immediately obvious that the crisis produces a sharp decline in the scores. Common

to all the three countries is that the bottom-up univariate model is significantly and by

far the most affected out of all models. The second most affected model, however, is

the aggregate AR. Although up until the crisis the univariate models are among the

12The homoskedastic models are presented in the top panel and the heteroskedastic models and DMS in

the bottom. The aggregate AR is included in both to serve as a point of reference.
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Table 4: Tests on PITs for one-step-ahead CPI forecasts

Germany France United Kingdom

Model Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB Bkw.LR AD χ2 LB

Bottom-Up AR 0.00 0.08 0.04 0.10 0.00 0.06 0.07 0.52 0.00 0.93 0.79 0.03

Direct AR 0.22 0.41 0.50 0.71 0.09 0.39 0.59 0.23 0.85 0.66 0.12 0.35

Homsk. VAR 0.81 0.01 0.07 0.62 0.44 0.10 0.09 0.69 0.68 0.66 0.40 0.69

Homsk. TVP 0.91 0.36 0.69 0.55 0.68 0.06 0.02 0.84 0.49 0.66 0.55 0.42

Hetsk. VAR 0.42 0.11 0.04 0.47 0.00 0.18 0.41 0.08 0.09 0.71 0.43 0.12

Hetsk. TVP 0.84 0.06 0.26 0.56 0.00 0.16 0.44 0.58 0.03 0.85 0.07 0.15

DMS 0.67 0.59 0.86 0.65 0.66 0.05 0.04 0.64 0.43 0.93 0.98 0.13

Note: P-values for the calibration tests on the probability integral transform (PIT) of the one-step-ahead forecasts for each model for the three countries. The

tests are the LR test proposed by Berkowitz (2001) (Bkw.LR), the uniformity tests by Anderson-Darling (AD) and a Pearson’s chi-squared (χ2), the Ljung-Box
test (LB) for independence. The models are the bottom-up univariate model (Bottom-up AR), the direct univariate AR model (Direct AR), the homskedastic VAR,
the homskedastic TVP-VAR, the heterokedastic VAR, the heterokedastic TVP-VAR and the result of dynamic model selection over the four VARs (DMS). P-values
in bold signify that the null of the respective test are not rejected at 5%. Calculated over the 2001-2015 period.

best performers, the multivariate models show falls that are proportionally smaller and

therefore, at least in some cases, end up being better over the whole sample.13

The performance of both homoskedastic VARs is slightly worse than that of the uni-

variate methods up until the crisis, but the comparatively better reaction to the crisis

suggests that the increased uncertainty due to the estimation of additional paramet-

ers could be worth while. The opposite seems to be the case with the methods that

incorporate stochastic volatility.

3.4.2 CPI forecasts

The results for CPI are less pronounced but have some things in common with those of

GDP. Table 4 presents the tests on the PITs for the one-step-ahead forecasts for all three

countries. Overall the forecasts from most models are well-calibrated according to the

tests. The univariate bottom-up model, however, fails at least one test in each case.

In regards to the multivariate models, in this case the models that include stochastic

volatility are similarly well-calibrated to those that do not.

In terms of ranking the models by accuracy, as it can be seen from Table 5, the improve-

ments of the multivariate models are smaller than in the case of GDP and heterogeneous

between countries. For example, for Germany, the methods improve over the univari-

ate bottom-up approach but are only marginally better than the direct AR if stochastic

volatility is included. For the other two countries, there is little difference in accuracy

between the univariate methods, but in the case of France the multivariate methods

improve by as much as 5% while for the United Kingdom these are below 2%.

13The recursive log scores calculated excluding the crisis years, not reported, show that the univariate

models perform very well over the restricted sample.
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Table 5: Log scores for one-step-ahead CPI forecasts

Model Germany France United Kingdom

Direct AR 4.7 0.2 -0.4

Homsk. VAR 2.8 2.9 1.8

Homsk. TVP 3.0 4.5 1.5

Hetsk. VAR 4.8 4.0 0.0

Hetsk. TVP 5.2 1.3 -0.1

DMS 4.6 4.8 0.6
Note: Log predictive density scores of the one-step-ahead forecasts for each model for the three countries expressed
in terms of the percentage improvement over the bottom-up univariate model (Bottom-up AR). The models are the
direct univariate AR model (Direct AR), the homskedastic VAR, the homskedastic TVP-VAR, the heterokedastic VAR, the
heterokedastic TVP-VAR and the result of dynamic model selection over the four VARs (DMS). Log scores in bold denote
improvement over the direct univariate model. Calculated over the 2001-2015 period.

Figure 2: CPI Recursive Log Scores

Note: Recursive log scores calculated over the 2001-2015 period. The models are the aggregate univariate model (Direct AR), the bottom-up forecast using
univariate AR models for the components (Bottom-Up AR), the homskedastic VAR, the homskedastic TVP-VAR, the heterokedastic VAR, the heterokedastic
TVP-VAR , the heterokedastic TVP-VAR with recursively estimated decay and forgetting factors and the result of dynamic model selection over the five VARs
(DMS).
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In regards to how the models are affected by the crisis, Figure 2 presents the recursive

log scores for CPI. It is still the case that the multivariate models are proportionally less

affected than the univariate models, but the overall impact of the crisis is smaller. With

this, performance over the whole sample is not that different between models. This

is confirmed by the KLIC test. As opposed to the case of GDP, in this case the added

complexities do not seem to pay off.

3.4.3 Overall assessment

Unsurprisingly, the performance of the different methods varies quite significantly de-

pending on the dataset. However, there are a number of things that can be learned

from the overall performance. The first thing is that, in line with the statements of

Ravazzolo and Vahey (2014), the univariate bottom-up approach produced forecasts

that were not well-calibrated in terms of the PITs tests and inferior to those produced

using the direct approach in terms of relative performance. Some of the multivariate

bottom-up methods, on the other hand, performed similarly or better. These results

suggest that multivariate methods can overcome the problems in calibration that result

form using univariate models in this context. The varying degrees of success of the dif-

ferent specifications, however, also suggest that the added complexities may not always

be justified.

Overall, the homoskedastic fixed-parameter VAR is probably the best performer due to

its consistency. Although, in some cases, gains were achieved by allowing time-varying

parameters, most of the improvements were attainable in the simpler multivariate set-

ting. This comes as good news for practitioners, as it suggests that the more extended

implementation by Banbura et al. (2010) would probably also work well in the same

setting.

The differences between the results for GDP and CPI suggest that the strengths of the

multivariate methods only emerge if the interactions among variables are prominent

enough. The more significant effects of the financial crisis on GDP, both in magnitude

and persistence, result in the multivariate methods beating the univariate counterpart.

The rest of the time, they were no different. The KLIC tests and the evaluation excluding

the crisis years support this view.

4 Conclusions

In this paper we use the information at a component level to produce consistent ag-

gregate and disaggregate density forecasts. To do this we use the methodology of large
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Bayesian VARs to extend to a probabilistic setting the bottom-up approach used com-

monly for point-forecasts. We implement a relatively simple, but flexible, and compu-

tationally cheap method to consider both fixed and time-varying parameter VARs and

stochastic volatility.

Our motivation follows that of Espasa and Mayo-Burgos (2013) in that, for the purpose

of economic analysis, we consider our method to be successful if it produces forecasts

that are at least as good as those of a direct method. In regards to this, the empir-

ical application shows that, although the results vary to some extent between countries

and series, overall, the multivariate methods are capable of producing bottom-up fore-

casts that are calibrated and perform equally or better than the aggregate benchmark.

The results also suggest that there are additional gains from allowing for time-varying

parameters.

In terms of future research, there are many possibilities. One is to produce the estim-

ates for the time-varying and stochastic volatility parameters using alternative methods

which includes using a full Bayesian approach and compare the results with those of the

approximations. A natural extension would be to couple the method with one to fore-

cast the aggregation weights and use the augmented framework to forecast at longer

horizons. A third direction for research could be to incorporate useful economic indic-

ators and other relevant variables into the forecasting process in a way that is similar

to Banbura et al. (2010).
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Appendix

A Figures and Tables

A.1 PITs Histograms for GDP

Histograms for the probability integral transform (PIT) calculated over the 2001-2015

period.

Figure 3: Germany

Figure 4: France
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Figure 5: United Kingdom

A.2 PITs Histograms for CPI

Histograms for the probability integral transform (PIT) calculated over the 2001-2015

period.

Figure 6: Germany
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Figure 7: France

Figure 8: United Kingdom
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