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Abstract 

This note is in response to David C. Hoaglin’s provocative statement in The Stata Journal (2016) 

that “Regressions are commonly misinterpreted”. “Citing the preliminary edition of Tukey’s 

classic Exploratory Data Analysis (1970, chap. 23), Hoaglin argues that the correct interpretation 

of a regression coefficient is that it “tells us how Y responds to change in X2 after adjusting for 

simultaneous linear change in the other predictors in the data at hand”. He contrasts this with 

what he views as the common misinterpretation of the coefficient as “the average change in Y for 

a 1-unit increase in X2 when the other Xs are held constant”. He asserts that this interpretation is 

incorrect because “[i]t does not accurately reflect how multiple regression works”. We find that 

Hoaglin’s characterization of common practice is often inaccurate and that his narrow view of 

proper interpretation is too limiting to fully exploit the potential of regression models. His article 

rehashes debates that were settled long ago, confuses the estimator of an effect with what is 

estimated, ignores modern approaches, and rejects a basic goal of applied research.” (Long and 

Drukker, 2016:25). This note broadly agrees with the comments that followed his article in the 

same issue of The Stata Journal (2016) and seeks to present an argument in favour of the 

commonly held interpretation that Hoaglin unfortunately marks as misinterpretation.  

 

 

 

 



How Do You Interpret Your Regression Coefficients? 

Vijayamohanan Pillai N. 

 

This note is in response to David C. Hoaglin’s provocative statement in The Stata Journal (2016) 

that “Regressions are commonly misinterpreted”. This note broadly agrees with the comments 

that followed his article in the same issue of The Stata Journal (2016) and seeks to present an 

argument in favour of the commonly held interpretation that Hoaglin unfortunately marks as 

misinterpretation. His argument was succinctly presented by J. Scott Long and David M. 

Drukker along with their comments as follows: 

 

“Citing the preliminary edition of Tukey’s classic Exploratory Data Analysis (1970, chap. 23), 

Hoaglin argues that the correct interpretation of a regression coefficient is that it “tells us how Y 

responds to change in X2 after adjusting for simultaneous linear change in the other predictors in 

the data at hand”. He contrasts this with what he views as the common misinterpretation of the 

coefficient as “the average change in Y for a 1-unit increase in X2 when the other Xs are held 

constant”. He asserts that this interpretation is incorrect because “[i]t does not accurately reflect 

how multiple regression works”. We find that Hoaglin’s characterization of common practice is 

often inaccurate and that his narrow view of proper interpretation is too limiting to fully exploit 

the potential of regression models. His article rehashes debates that were settled long ago, 

confuses the estimator of an effect with what is estimated, ignores modern approaches, and 

rejects a basic goal of applied research.” (Long and Drukker, 2016:25). 

 

The present note is sympathetic to the above arguments, and attempts to substantiate the classical 

(text book) interpretation using the concept of the partial correlation coefficient. 

 

 

 



We start with the text book interpretation by considering the following multiple regression with 

two explanatory variables, X1 and X2: 

Yi = α + β1X1i  + β2X2i  + ui ; i = 1, 2, …, N.      …. (1) 

 

According to the text book interpretation, X1 is said to be the covariate with respect to X2 and 

vice versa. Covariates act as controlling factors for the variable under consideration. In the 

presence of the control variables, the regression coefficients βs are partial regression coefficients. 

Thus, β1 represents the marginal effect of X1 on Y, keeping all other variables, here X2, constant. 

The latter part, that is, keeping X2 constant, means the marginal effect of X1 on Y is obtained after 

removing the linear effect of X2 from both X1 and Y. A similar explanation goes for β2 also. Thus 

multiple regression facilitates to obtain the pure or net marginal effects by including all the 

relevant covariates and thus controlling for their heterogeneity.  

 

This we’ll discuss in a little detail below. We begin with the concept of partial correlation 

coefficient. Suppose we have three variables, X1, X2 and X3. The simple correlation coefficient r12 

gives the degree of correlation between X1 and X2. It is possible that X3 may have an influence on 

both X1 and X2. Hence a question comes up: Is an observed correlation between X1 and X2 merely 

due to the influence of X3 on both? That is, is the correlation merely due to the common 

influence of X3? Or, is there a net correlation between X1 and X2, over and above the correlation 

due to the common influence of X3? It is this net correlation between X1 and X2 that the partial 

correlation coefficient captures after removing the influence of X3 from each, and then estimating 

the correlation between the unexplained residuals that remain. To prove this, we define the 

following: 

 

Coefficients of correlation between X1 and X2, X1 and X3, and X2 and X3 are given by r12, r13, and 

r23 respectively, defined as 
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Note that the lower case letters, x1, x2, and x3, denote the respective variables in mean deviation 

(or demeaned) form; thus (�� = ��� − ���), etc. Thus, for example, Σx1x2 gives the covariance of 

X1 and X2 and Σx1
2
, the variance of X1, the square root of which is its standard deviation (SD), 

such that  s1, s2, and s3 denote the SDs of the three variables. 

 

The common influence of X3 on both X1 and X2 may be modeled in terms of regressions of X1 on 

X3, and X2 on X3, with b13 as the slope of the regression of X1 on X3, given (in deviation form)  by 
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Given these regressions, we can find the respective unexplained residuals. The residual from the 

regression of X1 on X3 (in deviation form) is e1.3 = x1 – b13 x3, and that from the regression of X2 

on X3 is e2.3 = x2 – b23 x3.  

 

 

Now the partial correlation between X1 and X2, net of the effect of X3, denoted by r12.3, is defined 

as the correlation between these unexplained residuals and is given by ���.� = ∑ ��.�	.

∑ ��.	 
∑ �	.	 . Note 

that since the least-squares residuals have zero means, we need not write them in mean deviation 

form. We can directly estimate the two sets of residuals and then find out the correlation 

coefficient between them. However, the usual practice is to express them in terms of simple 

correlation coefficients. Using the definitions given above of the residuals and the regression 

coefficients, we have for the residuals: ��.� = �� − ��� ��
� ��, and ��.� = �� − ��� �	

� �� , and 

hence, upon simplification, we get 
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“This is the statistical equivalent of the economic theorist’s technique of impounding certain 

variables in a ceteris paribus clause.” (Johnston, 1972: 58). Thus the partial correlation 

coefficient between X1 and X2 is said to be obtained by keeping X3 constant. This idea is clear in 

the above formula for the partial correlation coefficient as a net correlation between X1 and X2 

after removing the influence of X3 from each. 

 

When this idea is extended to multiple regression coefficients, we have the partial derivatives as 

the partial regression coefficients. Consider the regression equation in three variables, X1, X2 and 

X3: 

X1i = α + β2X2i  + β3X3i  + ui ; i = 1, 2, …, N.      …. (3) 

 

Since the estimated regression coefficients are partial ones, the equation can be written as: 

X1i = a + b12.3X2i  + b13.2X3i ,                                         …. (4) 

where the lower case letters (a and b) are the OLS estimates of α and β respectively. 

 

The estimate b12.3 is given by: 
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Now using the definitions of simple and partial correlation coefficients in (2) and (2’), we can 

rewrite the above as: 
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Why b12.3 is called a partial regression coefficient is now clear from the above definition: it is 

obtained after removing the common influence of X3 from both X1 and X2.  

 

Similarly, we have the estimate b13.2 given by: 
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obtained after removing the common influence of X2 from both X1 and X3. 

 

Thus the fundamental idea in partial (correlation/regression) coefficient is estimating the net 

correlation between X1 and X2 after removing the influence of X3 from each, by computing the 

correlation between the unexplained residuals that remain (after eliminating the influence of X3 

from both X1 and X2). The classical text books describe this procedure as controlling for or 

accounting for the effect of X3, or keeping that variable constant; whereas Tukey characterizes 

this as “adjusting for simultaneous linear change in the other predictor”, that is, X3. Above all 

these seeming semantic differences, let us keep the underlying idea alive, while interpreting the 

regression coefficients.  
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