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Panel Data Analysis with Stata  

Part 1 

Fixed Effects and Random Effects Models 

 

 

 

Abstract 

 

The present work is a part of a larger study on panel data. Panel data or longitudinal data (the 

older terminology) refers to a data set containing observations on multiple phenomena over 

multiple time periods. Thus it has two dimensions: spatial (cross-sectional) and temporal (time 

series). The main advantage of panel data comes from its solution to the difficulties involved in 

interpreting the partial regression coefficients in the framework of a cross-section only or time 

series only multiple regression. Depending upon the assumptions about the error components of 

the panel data model, whether they are fixed or random, we have two types of models, fixed 

effects and random effects. In this paper we explain these models with regression results using a 

part of a data set from a famous study on investment theory by Yehuda Grunfeld (1958), who 

tried to analyse the effect of the (previous period) real value of the firm and the (previous period) 

real capital stock on real gross investment. We consider mainly three types of panel data analytic 

models: (1) constant coefficients (pooled regression) models, (2) fixed effects models, and (3) 

random effects models. The fixed effects model is discussed under two assumptions: (1) 

heterogeneous intercepts and homogeneous slope, and (2) heterogeneous intercepts and slopes.  

We discuss all the relevant statistical tests in the context of all these models.  
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Panel Data Analysis with Stata  

Part 1 

Fixed Effects and Random Effects Models 

 

Panel Data Analysis: A Brief History 

According to Marc Nerlove (2002), the fixed effects model of panel data techniques originated 

from the least squares methods in the astronomical work of Gauss (1809) and Legendre (1805) 

and the random effects or variance-components models, with an English astronomer George 

Biddell Airy, who published a monograph in 1861, in which he made explicit use of a variance 

components model for the analysis of astronomical panel data. The next stage is connected to R. 

A. Fisher, who coined the terms and developed the methods of variance and analysis of variance 

(Anova) in 1918; he elaborated both fixed effects and random effects models in Chapter 7: 

‘Interclass Correlations and the Analysis of Variance’ and in Chapter 8: ‘Further applications of 

the Analysis of Variance’ of his 1925 work Statistical Methods for Research Workers. However, 

he was not much clear on the distinction between these two models. That had to wait till 1947, 

when Churchill Eisenhart came out with his ‘Survey’ that made clear the distinction between 

fixed effects and random effects models for the analysis of non-experimental versus 

experimental data. The random effects, mixed, and variance-components models in fact posed 

considerable computational problems for the statisticians.  In 1953, CR Henderson  developed 

the method-of-moments techniques for analysing random effects and mixed models; and in 1967, 

HO Hartley and JNK Rao  devised the maximum likelihood (ML) methods for variance 

components models. The dynamic panel models started with the famous Balestra-Nerlove (1966) 

models. Panel data analysis grew into its maturity with the first conference on panel data 

econometrics in August 1977 in Paris, organized by Pascal Mazodier. Since then, the field has 

witnessed ever-expanding activities in both methodological and applied research.  

Panel data or longitudinal data (the older terminology) refer to a data set containing observations 

on multiple phenomena over multiple time periods. Thus it has two dimensions: spatial (cross-

sectional) and temporal (time series). In general, we can have two panels: micro and macro 

panels – surveying (usually a large) sample of individuals or households or firms or industries 

over (usually a short) period of time yields micro panels, whereas macro panels consist of 

(usually a large) number of countries or regions over (usually a large) number of years.    

 

 



4 
 

Nomenclature 

A cross sectional variable is denoted by xi, where i is a given case (household or industry or 

nation; i = 1, 2, …, N), and a time series variable by xt, where t is a given time point (t = 1, 2, …, 

T). Hence a panel variable can be written as xit, for a given case at a particular time. A typical 

panel data set is given in Table 1 below, which describes the personal disposable income (PDY) 

and personal expenditure in three countries, Utopia, Lilliput and Troy over a period of time from 

1990 – 2015.  

Table 1: A Typical Panel Data Set 

CCoouunnttrryy  YYeeaarr  PPDDYY  PPEE  

UUttooppiiaa  11999900  66550000  55000000  

UUttooppiiaa  11999911  77000000  66000000  

…………  …………  …………  …………  

…………  …………  …………  …………  

UUttooppiiaa  22001155  1155000000  1111000000  

LLiilllliippuutt  11999900  11550000  11330000  

LLiilllliippuutt  11999911  11770000  11660000  

…………  …………  …………  …………  

…………  …………  …………  …………  

LLiilllliippuutt  22001155  55445500  55000000  

TTrrooyy  11999900  22220000  11880000  

TTrrooyy  11999911  22440000  22000000  

…………  …………  …………  …………  

…………  …………  …………  …………  

TTrrooyy  22001155  88550000  77550000  

 

Depending upon the configuration of space and time relative to each other, panels can take two 

forms: in the first case, time is nested or stacked within the cross-section and in the second, 

cross-section is nested/stacked within time, as Table 2 below shows: 
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Table 2: Two Forms of Panel Configuration  

TTiimmee  nneesstteedd  wwiitthhiinn  

tthhee  ccrroossss--sseeccttiioonn    

ccrroossss--sseeccttiioonn  

nneesstteedd  wwiitthhiinn  ttiimmee    

CCoouunnttrryy  YYeeaarr  YYeeaarr  CCoouunnttrryy  

UUttooppiiaa  11999900  11999900  UUttooppiiaa  

UUttooppiiaa  11999911  11999900  LLiilllliippuutt  

…………  …………  11999900  TTrrooyy  

…………  …………  11999911  UUttooppiiaa  

UUttooppiiaa  22001155  11999911  LLiilllliippuutt  

LLiilllliippuutt  11999900  11999911  TTrrooyy  

LLiilllliippuutt  11999911  11999922  UUttooppiiaa  

…………  …………  …………  …………  

…………  …………  …………  …………  

LLiilllliippuutt  22001155  …………  …………  

TTrrooyy  11999900  …………  …………  

TTrrooyy  11999911  …………  …………  

…………  …………  22001155  UUttooppiiaa  

…………  …………  22001155  LLiilllliippuutt  

TTrrooyy  22001155  22001155  TTrrooyy  

 

Again, depending upon whether the panels include missing values or not, we can have two 

varieties: balanced and unbalanced panel. Balanced panel does not have any no missing values, 

whereas the unbalanced one has, as Table 3 illustrates; 
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Table 3: Balanced and Unbalanced Panel 

BBaallaanncceedd  ppaanneell  UUnnbbaallaanncceedd  PPaanneell  

PPeerrssoonn        

SSll  NNoo  

YYeeaarr  IInnccoommee  AAggee  SSeexx  PPeerrssoonn          

SSll  NNoo    

YYeeaarr  IInnccoommee  AAggee  SSeexx    

11  22000044  880000  4455  11  11  22000055  11775500  3322  11  

11  22000055  990000  4466  11  11  22000066  22550000  3333  11  

11  22000066  11000000  4477  11  22  22000044  22000000  4400  22  

22  22000044  11550000  2299  22  22  22000055  22550000  4411  22  

22  22000055  22000000  3300  22  22  22000066  22880000  4422  22  

22  22000066  22550000  3311  22  33  22000066  22550000  2288  22  

 

We have two more models, depending upon the relative size of space and time, short and long 

panels. In a short panel, the number of time periods (T) is less than the number of cross section 

units (N), and in a long panel, T > N. Note that Table 1 above gives a long panel.  

 

Advantages of Panel Data 

Hsiao (2014) Baltagi (2008) and Andreß et al. (2013) list a number of advantages of using panel 

data, instead of pure cross-section or pure time series data.  

The obvious benefit is in terms of obtaining a large sample, giving more degrees of freedom, 

more variability, more information and less multicollinearity among the variables. A panel has 

the advantage of having N cross-section and T time series observations, thus contributing a total 

of NT observations. Another advantage comes with a possibility of controlling for individual or 

time heterogeneity, which the pure cross-section or pure time series data cannot afford. Panel 

data also opens up a scope for dynamic analysis. 

The main advantage of panel data comes from its solution to the difficulties involved in 

interpreting the regression coefficients in the framework of a cross-section only or time series 

only regeression, as we explain below. 

 

Regression Analysis: Some Basics 

Let us consider the following cross-sectional multiple regression with two explanatory variables, 

X1 and X2: 

Yi = α + β1X1i  + β2X2i  + ui ; i = 1, 2, …, N.      …. (1) 
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Note that X1 is said to be the covariate with respect to X2 and vice versa. Covariates act as 

controlling factors for the variable under consideration. In the presence of the control variables, 

the regression coefficients βs are partial regression coefficients. Thus, β1 represents the marginal 

effect of X1 on Y, keeping all other variables, here X2, constant. The latter part, that is, keeping X2 

constant, means the marginal effect of X1 on Y is obtained after removing the linear effect of X2 

from both X1 and Y. A similar explanation goes for β2 also. Thus multiple regression facilitates to 

obtain the pure marginal effects by including all the relevant covariates and thus controlling for 

their heterogeneity.  

This we’ll discuss in a little detail below. We begin with the concept of partial correlation 

coefficient. Suppose we have three variables, X1, X2 and X3. The simple correlation coefficient r12 

gives the degree of correlation between X1 and X2. It is possible that X3 may have an influence on 

both X1 and X2. Hence a question comes up: Is an observed correlation between X1 and X2 merely 

due to the influence of X3 on both? That is, is the correlation merely due to the common 

influence of X3? Or, is there a net correlation between X1 and X2, over and above the correlation 

due to the common influence of X3? It is this net correlation between X1 and X2 that the partial 

correlation coefficient captures after removing the influence of X3 from each, and then estimating 

the correlation between the unexplained residuals that remain. To prove this, we define the 

following: 

 

Coefficients of correlation between X1 and X2, X1 and X3, and X2 and X3 are given by r12, r13, and 

r23 respectively, defined as 

 

 ��� =  ∑ ���	

∑ ��	 ∑ �		

= ∑ ���	
���	

 ,  ��� =  ∑ ���


∑ ��	 ∑ �
	

= ∑ ���

���


  and  ��� =  ∑ �	�


∑ �		 ∑ �
	

= ∑ �	�

�	�


. …(2’) 

 

Note that the lower case letters, x1, x2, and x3, denote the respective variables in mean deviation 

form; thus (�� = ��� − ���), etc., and s1, s2, and s3 denote the standard deviations of the three 

variables. 

 

The common influence of X3 on both X1 and X2 may be modeled in terms of regressions of X1 on 

X3, and X2 on X3, with b13 as the slope of the regression of X1 on X3, given (in deviation form)  by 

��� = ∑ ���

∑ �
	

= ��� ��
�
 , and b23 as that of the regression of X2 on X3 given by ��� = ∑ �	�


∑ �
	
= ��� �	

�
. 
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Given these regressions, we can find the respective unexplained residuals. The residual from the 

regression of X1 on X3 (in deviation form) is e1.3 = x1 – b13 x3, and that from the regression of X2 

on X3 is e2.3 = x2 – b23 x3.  

 

 

Now the partial correlation between X1 and X2, net of the effect of X3, denoted by r12.3, is defined 

as the correlation between these unexplained residuals and is given by ���.� = ∑ ��.
�	.


∑ ��.
	 
∑ �	.
	 . Note 

that since the least-squares residuals have zero means, we need not write them in mean deviation 

form. We can directly estimate the two sets of residuals and then find out the correlation 

coefficient between them. However, the usual practice is to express them in terms of simple 

correlation coefficients. Using the definitions given above of the residuals and the regression 

coefficients, we have for the residuals: ��.� = �� − ��� ��
�


��, and ��.� = �� − ��� �	
�


�� , and 

hence, upon simplification, we get 

 

 ���.� = ∑ ��.
�	.


∑ ��.
	 
∑ �	.
	 = ��	� ��
�	



����
	 
�� �	
	 . 

 

 

“This is the statistical equivalent of the economic theorist’s technique of impounding certain 

variables in a ceteris paribus clause.” (Johnston, 1972: 58). Thus the partial correlation 

coefficient between X1 and X2 is said to be obtained by keeping X3 constant. This idea is clear in 

the above formula for the partial correlation coefficient as a net correlation between X1 and X2 

after removing the influence of X3 from each. 

 

When this idea is extended to multiple regression coefficients, we have the partial regression 

coefficients. Consider the regression equation in three variables, X1, X2 and X3: 

X1i = α + β2X2i  + β3X3i  + ui ; i = 1, 2, …, N.      …. (3) 

 

Since the estimated regression coefficients are partial ones, the equation can be written as: 

X1i = a + b12.3X2i  + b13.2X3i ,                                         …. (4) 

where the lower case letters (a and b) are the OLS estimates of α and β respectively. 
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The estimate b12.3 is given by: 

  ���.� = ∑ ���	 ∑ �
	�∑ ���
 ∑ �	�

∑ �		 ∑ �
	�(∑ �	�
)	 . 

 

Now using the definitions of simple and partial correlation coefficients in (2) and (2’), we can 

rewrite the above as: 

 ���.� = ��	���
�	

���	
	

��
�	. 

 

Why b12.3 is called a partial regression coefficient is now clear from the above definition: it is 

obtained after removing the common influence of X3 from both X1 and X2.  

 

Similarly, we have the estimate b13.2 given by: 

 ���.� = ∑ ���
 ∑ �		�∑ ���	 ∑ �	�

∑ �		 ∑ �
	�(∑ �	�
)	 = ��
���	�
	

���	
	
��
�


, 

obtained after removing the common influence of X2 from both X1 and X3. 

 

Thus the fundamental idea in partial (correlation/regression) coefficient is estimating the net 

correlation between X1 and X2 after removing the influence of X3 from each, by computing the 

correlation between the unexplained residuals that remain (after eliminating the influence of X3 

from both X1 and X2). The classical text books describe this procedure as controlling for or 

accounting for the effect of X3, or keeping that variable constant; whereas Tukey (in his classic 

Exploratory Data Analysis, 1970, chap. 23) characterizes this as “adjusting for simultaneous 

linear change in the other predictor”, that is, X3. Above all these seeming semantic differences, 

let us keep the underlying idea alive, while interpreting the regression coefficients.  

 

Thus multiple regression facilitates controlling for the heterogeneity of the covariates. 

One major problem with cross section regression is that it fails to control for cross sectional, 

individual, panel-specific, heterogeneity. Consider a random sample of 50 households; every 

household is different from one another. This unobserved household heterogeneity can, however, 

be captured by means of 50 dummy variables in the regression without a constant. But this is just 



10 
 

impossible for this sample, as estimation breaks down because the number of observations is less 

than the number of parameters to be estimated.   

The same problem haunts time series regression also. Consider the following time series multiple 

regression with two explanatory variables, X1 and X2: 

Yt = α + β1X1t  + β2X2t  + ut ; t = 1, 2, …, T.      …. (2) 

We have the same explanation for the marginal effects here also, and we know every time point 

in this system is different from one another. But we cannot account/control for this time 

heterogeneity by including time dummies, lest the estimation break down. 

It is here panel data regression comes in with a solution. This we explain below. 

 

The Panel Data Regression  

 

Now combining (1) and (2), we get a pooled data set, which forms a panel data with the 

following panel regression:  

Yit = α + β1X1it  + β2X2it  + uit ; i = 1, 2, …, N; t = 1, 2, …, T.      …. (3) 

How do we account for the cross section and time heterogeneity in this model? This is done by 

using a two-way error component assumption for the disturbances,  uit, with  

 uit = μi + λt + vit ,    … (4) 

where μi represents the unobservable individual (cross section) heterogeneity, λt denotes the 

unobservable time heterogeneity and vit is the remaining random error term. The first two 

components (μi and λt) are also called within component and the last (vit), panel or between 

component. 

Now depending upon the assumptions about these error components, whether they are fixed or 

random, we have two types of models, fixed effects and random effects. If we assume that the μi 

and λt are fixed parameters to be estimated and the random error term,  vit, is identically and 

independently distributed with zero mean and constant variance σv
2 (homoscedasticity), that is, vit 

∼  IID(0, σv
2), then equation (3) gives a two-way fixed effects error component model or simply a 

fixed effects model. On the other hand, if we assume that the μi and λt are random just like the 

random error term, that is, μi, λt  and vit are all identically and independently distributed with 

zero mean and constant variance, or, μi ∼  IID(0, σμ
2), λt ∼  IID(0, σλ

2), and vit ∼  IID(0, σv
2), with 

further assumptions that they are all independent of each other and of explanatory variables, then 
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equation (3) gives a two-way random effects error component model or simply a random effects 

model.  

Instead of both the error components, μi and λ t, if we consider any one component only at a time, 

then we have a one-way error component model, fixed or random effects. Here the error term uit 

in (3) will become: 

 uit = μi + vit , or,   … (4’) 

 uit = λt + vit .    … (4’’) 

We can have one-way error component fixed or random effects model with the appropriate 

assumptions about the error components, that is, whether μi or λt is assumed to be fixed or 

random.  

In the following we explain these models with regression results using a part of a data set from a 

famous study on investment theory by Yehuda Grunfeld (1958), who tried to analyse the effect 

of the (previous period) real value of the firm (F) and the (previous period) real capital stock (K) 

on real gross investment (I). For each variable, a positive effect is expected a priori. His original 

study included 10 US corporations for 20 years during 1935–1954. We consider only four 

companies – General Electric (GE), General Motor (GM), U.S. Steel (US), and Westinghouse 

(West) – for the whole period that gives 80 observations.  

 

The investment model of Grunfeld (1958) is given as 

Real gross investment (millions of dollars deflated by implicit price deflator of 

producers’ durable equipment), Iit  = f(Fit-1, Kit-1), 

where 

Fit = Real value of the firm (share price times number of shares plus total book value of 

debt; millions of dollars deflated by implicit price deflator of GNP), and 

Kit = Real capital stock (accumulated sum of net additions to plant and equipment, 

deflated by depreciation expense deflator – 10 year moving average of WPI of metals and 

metal products) 

The data that we use for the four cross sectional units and 20 time periods are briefly given 

below: 
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 Table 4: The Panel Data That We Use 

Industry Time I F (=Fit-1) K (=Kit-1) Industry Time I F (=Fit-1) K (=Kit-1) 

GE 1935 33.1 1170.6 97.8 US 1935 209.9 1362.4 53.8 

GE 1936 45 2015.8 104.4 US 1936 355.3 1807.1 50.5 

GE 1937 77.2 2803.3 118 US 1937 469.9 2673.3 118.1 

GE 1938 44.6 2039.7 156.2 US 1938 262.3 1801.9 260.2 

GE 1939 48.1 2256.2 172.6 US 1939 230.4 1957.3 312.7 

GE 1940 74.4 2132.2 186.6 US 1940 361.6 2202.9 254.2 

GE 1941 113 1834.1 220.9 US 1941 472.8 2380.5 261.4 

GE 1942 91.9 1588 287.8 US 1942 445.6 2168.6 298.7 

GE 1943 61.3 1749.4 319.9 US 1943 361.6 1985.1 301.8 

GE 1944 56.8 1687.2 321.3 US 1944 288.2 1813.9 279.1 

GE 1945 93.6 2007.7 319.6 US 1945 258.7 1850.2 213.8 

GE 1946 159.9 2208.3 346 US 1946 420.3 2067.7 232.6 

GE 1947 147.2 1656.7 456.4 US 1947 420.5 1796.7 264.8 

GE 1948 146.3 1604.4 543.4 US 1948 494.5 1625.8 306.9 

GE 1949 98.3 1431.8 618.3 US 1949 405.1 1667 351.1 

GE 1950 93.5 1610.5 647.4 US 1950 418.8 1677.4 357.8 

GE 1951 135.2 1819.4 671.3 US 1951 588.2 2289.5 341.1 

GE 1952 157.3 2079.7 726.1 US 1952 645.2 2159.4 444.2 

GE 1953 179.5 2371.6 800.3 US 1953 641 2031.3 623.6 

GE 1954 189.6 2759.9 888.9 US 1954 459.3 2115.5 669.7 

GM 1935 317.6 3078.5 2.8 WEST 1935 12.93 191.5 1.8 

GM 1936 391.8 4661.7 52.6 WEST 1936 25.9 516 0.8 

GM 1937 410.6 5387.1 156.9 WEST 1937 35.05 729 7.4 

GM 1938 257.7 2792.2 209.2 WEST 1938 22.89 560.4 18.1 

GM 1939 330.8 4313.2 203.4 WEST 1939 18.84 519.9 23.5 

GM 1940 461.2 4643.9 207.2 WEST 1940 28.57 628.5 26.5 

GM 1941 512 4551.2 255.2 WEST 1941 48.51 537.1 36.2 

GM 1942 448 3244.1 303.7 WEST 1942 43.34 561.2 60.8 

GM 1943 499.6 4053.7 264.1 WEST 1943 37.02 617.2 84.4 

GM 1944 547.5 4379.3 201.6 WEST 1944 37.81 626.7 91.2 

GM 1945 561.2 4840.9 265 WEST 1945 39.27 737.2 92.4 

GM 1946 688.1 4900 402.2 WEST 1946 53.46 760.5 86 

GM 1947 568.9 3256.5 761.5 WEST 1947 55.56 581.4 111.1 

GM 1948 529.2 3245.7 922.4 WEST 1948 49.56 662.3 130.6 

GM 1949 555.1 3700.2 1020.1 WEST 1949 32.04 583.8 141.8 

GM 1950 642.9 3755.6 1099 WEST 1950 32.24 635.2 136.7 

GM 1951 755.9 4833 1207.7 WEST 1951 54.38 732.8 129.7 

GM 1952 891.2 4924.9 1430.5 WEST 1952 71.78 864.1 145.5 

GM 1953 1304.4 6241.7 1777.3 WEST 1953 90.08 1193.5 174.8 

GM 1954 1486.7 5593.6 2226.3 WEST 1954 68.6 1188.9 213.5 

Source: the online complements to Baltagi (2001):  

http://www.wiley.com/legacy/wileychi/baltagi/.  
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Note that we have a balanced long panel (T = 20 > N = 4), where time is nested/stacked within 

cross section. 

The model is generally written in matrix notation as: 

  yit = xit’β + αi + uit ;     

                uit ∼  IID(0, σu
2);  Cov(xit, uit) = 0;  

where yit is the dependent variable,  xit is the vector of regressors,  

β is the vector of coefficients,  

uit is the error term, independently and identically distributed with zero mean and σu
2 variance; 

and  

αi = individual effects: captures effects of the i-th individual-specific variables that are constant 

over time.  

 

Panel Data with Stata 

 

Unlike Gretl and EViews, Stata cannot receive data through dragging and dropping of excel file. 

We can open only a Stata file through the File → Open command. To enter data saved in Excel 

format, go to File → Import and select Excel spreadsheet. Next browse your Excel file and 

import the relevant sheet; mark “Import first row as variable names”. Or, in the command space, 

we can type: 

. import excel "C:\Users\CDS 2\Desktop\Panel data Grunfeld.xlsx", sheet("Sheet2") firstrow 

   

Note that we have a string variable “Industry” that Stata cannot identify; we have to generate a 

corresponding numerical variable by typing: 

. encode Industry, gen(ind) 

Alternatively, we can also type: 

. egen ind = group(Industry) 

We can see this new variable “ind” by typing: 

. list Industry ind in 1/80, nolabel sepby(Industry) 



14 
 

Next we have to declare the data set to be a panel data. This we do by going to 

Statistics → Longitudinal/panel data → Setup and utilities → Declare dataset to be panel data 

 

Now set the panel id variable (“ind”) , time variable (“Time”) and the time unit (yearly). 

 

Or, w can type: 

. xtset ind Time, yearly 

 When we input this command, Stata will respond  with the following: 

    panel variable:  ind (strongly balanced) 

        time variable:  Time, 1935 to 1954 

                delta:  1 year 

Now that we have “xtset” the panel data, we can go for estimation. 

 

Types of Panel Analytic Models: 

We consider mainly  three types of panel data analytic models: (1) constant coefficients (pooled 

regression) models, (2) fixed effects models, and (3) random effects models. 

 

1. The Constant Coefficients (Pooled Regression) Model 

 

If there is neither significant cross sectional nor significant temporal effect, we could pool all of 

the data and run an ordinary least squares (OLS) regression model with an intercept α and slope 

coefficients βs constant across companies and time: 

 Iit = α + β1Fit-1 + β2Kit-1 + uit ;    uit ∼  IIN(0, σu
2);     i = 1, 2, 3, 4;    t = 1, 2, …, 20. 

Note that for OLS regression in Stata, we need not “xtset” panel data; rather we can directly go 

to OLS regression through  

Statistics → Linear models and related → Linear regression 
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    Or, type 

. regress I F K    

or  

. reg I F K 

The regression output appears: 

 

The Stata result includes some summary statistics and the estimates of regression coefficients. 

The upper left part reports an analysis-of-variance (ANOVA) table with sum of squares (SS), 

degrees of freedom (df), and mean sum of squares (MS). Thus we find the total sum of squares is 

6410147.05, of which 4847828.25 is accounted for by the model and 1562318.8 is left 

unexplained (residual). Note that as the regression includes a constant, the total sum of squares, 

as well as the sum of squares due to the model, represents the sum of squares after removing the 

respective means. Also reported are the degrees of freedom, with total degrees of freedom of 79 

(that is, 80 observations minus 1 for the mean removal), out of which the model accounts for 2 

and the residual for 77. The mean sum of squares is obtained by dividing the sum of squares by 

the respective degrees of freedom. 

 

The upper right part shows other summary statistics including the F-statistic and the R-squared. 

The F-statistic is derived from the ANOVA table as the ratio of the MS(Model) to the 

MS(Residual), that is, F = ����  !!/�#$%&'(
)�*+�,-  !!/�#.'/0&12(

.  Thus F = 2423914.13 / 20289.8545 = 119.46, 

with 2 numerator degrees of freedom and 77 denominator degrees of freedom. The F-statistic 

tests the joint null hypothesis that all the coefficients in the model excluding the constant are 

zero. The p-value associated with this F-statistic is the chance of observing an F-statistic that 

much large or larger, and is given as 0. Hence we strongly reject the null hypothesis and 

conclude that the model as a whole is highly significant.    

 

The same test we also obtain by going to 
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Statistics → Postestimation → Tests → Test parameters  

 

Or by typing 

 

. testparm F K 

 

The result is 

 

 
This is exactly the same as the above. 

 

The R-squared (R2) for the regression model represents the measure of goodness of fit or the 

coefficient of determination, obtained as the proportion of the model SS in total SS, that is,  

4847828.25/ 6410147.05 = 0.7563, indicating that our model with two explanatory variables, F 

and K, accounts for (or explain) about 76% of the variation in investment, leaving 24% 

unexplained. The adjusted R2 (or R-bar-squared, R4�) is the R-squared adjusted for degrees of 

freedom, obtained as 

 

R4� = 1 − �!.'/0&12(
�!6%72(

= 1 − )�*+�,-  !!/�#.'/0&12(
8�9-  !!/�#6%72(

= 1 − (1 − R�) : �#6%72(
�#.'/0&12(

;.     

 

Thus R4� = 1 − (1 − 0.7563) :AB
AA; = 0.7499. The root mean squared error, reported below the 

adjusted R-squared as Root MSE. is the square root of the MS(Residual) in the ANOVA table, 

and equals √20289.8545 = 142.44. Note that this is the standard error (SE) of the residual. 

 

Below the summary statistics, we have the table of the estimated coefficients. The first term (I) 

on the first line of the table gives the dependent variable. The estimates of the marginal effects of 

F and K and the intercept are given as coefficients (coef) along with the standard error (Std. Err.) 

and the corresponding t-values (t) and the two-sided significance level (p-value, P > |t|). Note 

that the t-value is estimated as the ratio of the coefficient value to the corresponding standard 

error; thus for the coefficient of F, the t-value is 0.1101177/ 0.0137482 = 8.01, which is much 

greater than 2, as a rule of thumb, and hence the coefficient is highly significant. The zero p-

value corresponds to this. To the right of the p-value is reported the 95% confidence interval for 

the coefficients. 
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The marginal effects of F and K are positive as expected, and highly significant, with K 

registering an effect nearly three times higher than that of F. The constant intercept also is 

significant. 

 

 

Statistics – Postestimation – Reports and statistics 

 

Unfortunately, we cannot have DW statistic for multiple panels: 

 

 
 

 

 

 

2. The Fixed Effects Model 

We have two models here: (i) Least Squares Dummy Variable model and (ii) Within-groups 

regression model. 

 

2.1 The Fixed Effects (Least Squares Dummy Variable) Model: 

If there is significant cross sectional or significant temporal effect, we cannot assume a constant 

intercept α for all the companies and years; rather we have to consider the one-way or two-way 

error components models; if the errors are assumed to be fixed, we have fixed effects model. 

 Iit = β1Fit-1 + β2Kit-1 + uit ;    i = 1, 2, 3, 4;    t = 1, 2, …, 20.      … (5) 

 uit = μi + λt + vit , or uit = μi + vit , or, uit = λt + vit .     

vit ∼  IID(0, σv
2);      

Note that we have not explicitly included the fixed intercept α; it is subsumed under the error 

components, as will be clear later on. 

The model (5) is also called an analysis of covariance (ANCOVA) model (Hsiao 2014:35). The 

usual regression model assumes that the expected value of investment, I, is a function of the 

exogenous variables, F and K, whereas the traditional Anova gives a general linear model that 
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describes every single dependent variable as an equation; for example, Iit = μi + vit , when we 

consider only the company heterogeneity. This enables us to test, in the Anova framework, for 

the mean differences among the companies. One major problem with this (Anova) model is that 

it is not controlled for the relevant factors, for example, for the differences in F and K, such that 

the within-group (company) sum of squares will be an overestimate of the stochastic component 

in I, and the differences between company means will reflect not only the company effects but 

also the effects of differences in the values of the uncontrolled variables in different companies. 

When we include the covariates (F and K) to the Anova model to account for their effects, we 

get the Ancova model. Note that this interpretation is obtained when we consider Ancova as a 

regression within an Anova framework; on the other hand, when we consider Ancova as an 

Anova in a regression framework, the interpretation is in terms of assessing the marginal effects 

of the covariates after controlling for the effects of company differences. And this is precisely 

what we do in model (5). Note that the regression model gives us the marginal effects of 

quantitative variables, while the Anova model, those of qualitative factors; the Ancova model 

includes both quantitative and qualitative factors in a framework of controlling their effects. 

 

Now the fixed effects model (5) can be discussed under two assumptions: (1) heterogeneous 

intercepts (μi ≠ μj, λt ≠ λs) and homogeneous slope (βi = βj; βt = βs), and (2) heterogeneous 

intercepts and slopes  (μi ≠ μj, λt ≠ λs); (βi ≠ βj; βt ≠ βs). (Judge et al., 1985: Chapter 11, and 

Hsiao, 1986: Chapter 1). In the former case, cross section and/or time heterogeneity applies only 

to intercepts, not to slopes; that is, we will have separate intercept for each company and/or for 

each year, but for all the companies and/or years, the slope will be common; for example, see the 

following figures, where we consider only the cross-section (company) heterogeneity: 

                         

The broken line ellipses in the above graphs represent the scatter plot of data points of each 

company over time, and the broken straight line in each scatter plot represent individual 

regression for each company. Note that the company intercepts vary, but the slopes are the same 

for all the companies (μi ≠ μj; βi = βj). Now if we pool the entire NT data points, the resultant 

pooled regression is represented by the solid line, with altogether different intercept and slope 

that highlights the obvious consequence of pooling with biased estimates. 

The second case of heterogeneous intercepts and slopes is illustrated below for the four 

companies, where each company has its own intercept and slope (μi ≠ μj; βi ≠ βj). 
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In general, we can consider the fixed effects panel data models with the following possible 

assumptions: 

1. Slope coefficients constant but intercept varies over companies. 

2. Slope coefficients constant but intercept varies over time. 

3. Slope coefficients constant but intercept varies over companies and time. 

4. All coefficients (intercept and slope) vary over companies. 

5. All coefficients (intercept and slope) vary over time. 

6. All coefficients (intercept and slope) vary over companies and time. 

Last one = Random coefficients model. A random-coefficients model is a panel-data model in 

which group specific heterogeneity is introduced by assuming that each group has its own 

parameter vector, which is drawn from a population common to all panels. 

 

 

Now consider our model: 

 Iit = β1Fit-1 + β2Kit-1 + uit ;    i = 1, 2, 3, 4;    t = 1, 2, …, 20.      … (5) 

 uit = μi + λt + vit , or uit = μi + vit , or, uit = λt + vit .     

vit ∼  IID(0, σv
2);      

 

(i) Slope coefficients constant but intercept varies over companies. 

Our first assumption is: no significant temporal effects, but significant differences among 

companies. That is, a linear regression model in which the intercept terms vary over individual 

companies; so our model can be written as a one-way error component model: 
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 Iit = β1Fit-1 + β2Kit-1 + uit ;     

 uit = μi + vit ,    vit ∼  IID(0, σv
2);   i = 1, 2, 3, 4;    t = 1, 2, …, 20.         

Or, 

Iit = μi + β1Fit-1 + β2Kit-1 + vit ;   vit ∼  IID(0, σv
2); i = 1, 2, 3, 4;    t = 1, 2, …, 20 … (6) 

We also assume that the explanatory variables are independent of the error term. 

In regression equation (6), we have for all the four companies separate intercepts,  μi, which can 

be estimated by including a dummy variable for each unit i in the model. A dummy variable or 

an indicator variable is a variable that takes on the values 1 and 0, where 1 means something is 

true (such as Industry is GE, sex is male, etc.). Thus our model may be written as 

Iit = ΣμiDi + β1Fit-1 + β2Kit-1 + vit ;   vit ∼  IID(0, σv
2); i = 1, 2, 3, 4;    t = 1, 2, …, 20 … (6) 

 Or, 

Iit =μ1D1 +μ2D2 +μ3D3 +μ4D4 + β1Fit-1 + β2Kit-1 + vit;  

where  D1 = 1 for GE;  and zero otherwise. 

D2 = 1 for GM;  and zero otherwise. 

 D3 = 1 for US;  and zero otherwise. 

D4 = 1 for WEST;  and zero otherwise.                

Note that the model we have started with does not have a constant intercept, and that is why we 

have included four dummies for the four companies. If the model does have a constant intercept, 

we need to include only three dummies, lest the model should fall in the ‘dummy variable trap’ 

of perfect multicollinearilty. In this case, our model will be 

Iit =μ +μ2D2 +μ3D3 +μ4D4 + β1Fit-1 + β2Kit-1 + vit;  

When D2 = D3 = D4 = 0, the model becomes 

Iit =μ + β1Fit-1 + β2Kit-1 + vit.   

This is the model for the remaining company, GE. Hence, GE is said to be the ‘base company’, 

and μ , the constant intercept, serves as the intercept for GE. 

If all the μs are statistically significant, we have differential intercepts, and our model thus 

accounts for cross section heterogeneity. For example, if μ and μ2 are significant, the intercept for 

GM = μ + μ 2 . 
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An advantage of this model is that all the parameters can be estimated by OLS. Hence this fixed 

effects model is also called least squares dummy variable (LSDV) Model. It is also known as 

covariance model, since the explanatory variables are covariates. 

Now let us estimate this model in Stata by OLS. Note that we need not xtset our data for OLS 

estimation. But the LSDV estimation requires dummy variables for the four companies. In Stata 

this estimation we can do in two ways: one way is to create dummy variables in Stata using the 

tabulate command and the generate( ) option, and use them directly in the regression command. 

Remember, we have already created a variable “ind” from the string variable “Industry”. Now 

typing 

. tabulate ind, generate(D) 

 

will generate four dummy variables, D1, D2, D3, and D4, corresponding to the four groups in 

“ind”, GE, GM, US and WEST. We can see these dummy variables by typing the command list 
or going to Data → Data Editor → Data Editor (Edit). 

Now we can have our OLS result with a constant and the last three dummy variables by typing: 

. regress I F K D2 D3 D4 

And the result is: 

 

The same result we can have without using the dummy variables directly; this second method is 

to use what Stata calls “factor variables”, a kind of “virtual variables”. With reference to the 

variable ind, the notation i.ind tells Stata that ind is a categorical variable rather than continuous 

and Stata, in effect, creates dummy variables coded 0/1 from this categorical variable. Note that 
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our ind variables is coded as GE = 1, GM = 2, US = 3 and WEST = 4. Then i.ind would cause 

Stata to create three 0/1 dummies. By default, the first category (in this case GE) is the reference 

(base) category, but we can change that, e.g. ib2.ind would make GM the reference category, or 

ib(last).ind would make the last category, WEST, as the base.  

Now typing the following 

. reg I F K i.ind 

We get the same result as above. 

 

The results on the marginal effects of F and K are similar to those from the pooled regression 

above; both the coefficients are positive and highly significant, with a very marginal fall in 

respect of F and a marginal increase in respect of K; now K has an effect a little more than three 

times higher than that of F. 

 

The cross section (company) heterogeneity also is highly significant. Thus every company has its 

own significant intercept. The intercept for the base company, GE, is given by the constant 

intercept of the model, that is, – 242.758. And the intercepts of other companies are: 

For GM =  – 75.672 (= – 242.758 + 167.0862) 

For US =  97.072 (= – 242.758 + 339.8296), and  

For WEST = – 58.103 (= – 242.758 + 184.6554) 
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Poolability Test (between Pooled Regression and FE Model) 

Compared with our old pooled regression model, the new LSDV fixed effects model has a higher 

R2 value. Hence the question comes up: Which model is better? The pooled regression with 

constant slope and constant intercept or the LSDV fixed effects model with constant slope and 

variable intercept for companies? The question can be reframed also as: Can we assume that 

there is neither significant cross sectional nor significant temporal effect, and pool the data and 

run an OLS regression model with an intercept α and slope coefficients βs constant across 

companies and time? This is the poolability test. 

Note that compared with the second (FE) model, the first one (pooled regression) is a restricted 

model; it imposes a common intercept on all companies: μ 2 = μ 3 = μ 4 = μ. Hence we have to do 

the restricted F test given by  

 H = (IJK	 �IK	 )/L
(��IJK	 )/(M�N) 

where RUR
2 = R2 of the unrestricted regression (second model) = 0.9344;    

   RR
2 = R2 of the restricted regression (first model) = 0.7563; 

     J = number of linear restrictions on the first model = 3; 

      k = number of parameters in the unrestricted regression = 6; and 

      n = NT = number of observations = 80. 

Hence H = (O.B�PP�O.AQR�)/�
(��O.B�PP)/AP = 66.968, with a p-value equal to zero. Comparing this with F3,74 = 

4.05787 at 1% right tail significance level, we find that the difference in the explanatory powers 

of the two models is highly significant and so conclude that the restricted regression (pooled 

regression) is invalid.  

 

This poolability test we can do in Stata after the regression with the factor variable i.ind, by 

typing 

. testparm i.ind 

And the result is: 
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With this p-vale, we strongly reject the three null hypotheses of zero company effect. 

 

Random Coefficient models (Another Poolability test) 

In random-coefficients models, we wish to treat the parameter vector as a realization (in each 

panel) of a stochastic process. The Stata command xtrc fits the Swamy (1970) random-

coefficients model, which is suitable for linear regression of panel data.  

 

To take a first look at the assumption of parameter constancy, we go to 

Statistics > Longitudinal/panel data > Random-coefficients regression by GLS 

Or typing 

. xtrc I F K 
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The test included with the random-coefficients model also indicates that the assumption of 

parameter constancy is not valid for these data. 

 

(ii) Slope coefficients constant but intercept varies over time. 

Our second assumption is: no significant cross section differences, but significant temporal 

effects. That is, a linear regression model in which the intercept terms vary over time; so our 

model can be written as a one-way error component model: 

 Iit = β1Fit-1 + β2Kit-1 + uit ;     

 uit = λt + vit ,    vit ∼  IID(0, σv
2);   i = 1, 2, 3, 4;    t = 1, 2, …, 20.         

Or, 

Iit = λt + β1Fit-1 + β2Kit-1 + vit ;   vit ∼  IID(0, σv
2); i = 1, 2, 3, 4;    t = 1, 2, …, 20 … (7) 

We also assume that the explanatory variables are independent of the error term. 

In regression equation (7), we have for all the 20 years separate intercepts,  λt, which can be 

estimated by including a dummy variable for each year t in the model. Thus our model may be 

written as 

Iit = Σλt dt + β1Fit-1 + β2Kit-1 + vit ;   vit ∼  IID(0, σv
2); i = 1, 2, 3, 4;    t = 1, 2, …, 20 … (6) 

 Or, 

Iit =λ1d1 +λ2d2 + …. + λ19d19 +λ20d20 + β1Fit-1 + β2Kit-1 + vit;  

where d1 = 1 for year 1935; and zero otherwise, etc. up to d20 = 1 for year 1954; and zero 

otherwise. 

If the model is assumed to have a constant intercept, we need to include 19 time dummies, and 

our model will be 

Iit =λ  +λ2d2 + …. + λ19d19 +λ20d20 + β1Fit-1 + β2Kit-1 + vit;  

Here the ‘base year’ is 1935, and λ , the constant intercept, serves as the intercept for that year. 

If all the λs are statistically significant, we have differential intercepts, and our model thus 

accounts for temporal heterogeneity. For example, if λ and λ2 are significant, the intercept for 

1936 = λ + λ 2 . 
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An advantage of this model is that all the parameters can be estimated by OLS. Hence this fixed 

effects model is also called least squares dummy variable (LSDV) Model. It is also known as 

covariance model, since the explanatory variables are covariates. 

Now we turn to estimating this model in Stata by OLS. First we create time dummy variables in 

Stata using the tabulate command and the generate( ) option, as before: 

. tabulate Time, generate(d) 

 

This will generate 20 dummy variables, d1, d2, …, d19, and d20, corresponding to the 20 years 

from 1935 to 1954. We can see these dummy variables by typing the command list or going to 

Data → Data Editor → Data Editor (Edit). 

Now we can have our OLS result with a constant and the last 19 dummy variables by typing: 

 

. regress I F K d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 

 

And the result is: 
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Now the same result we get using the factor variable i.Time, by typing the following: 

. reg I F K i.Time 
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The marginal effects are positive and significant, with marginal differences compared with the 

other models. We also have an interesting result here; all the time dummies are insignificant, 

indicating that the investment function has not changed much over time, and the R2 is only  

0.7705, irrespective of a large number of variables. Now comparing this LSDV time effect 

model with the pooled regression with  R2 = 0.7563, which one is better? With the increment in 

R2 equal to only 0.0142, the F test does not reject; we had better pool the data and run an OLS 

model with constant intercept. 
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Now Stata gives the poolability test result after the regression with the factor variable i.Time: 

 

With this p-value, we cannot reject the F-test null of zero time effect. 

Thus we have found that the company effects are statistically significant, but the time effects not. 

Does that mean our model is somehow misspecified? Let us now consider both company and 

time effects together. 

 

(iii) Slope coefficients constant but intercept varies over companies and time. 

This gives our two-way error components model: 

 Iit = β1Fit-1 + β2Kit-1 + uit ;    i = 1, 2, 3, 4;    t = 1, 2, …, 20.      … (5) 

 uit = μi + λt + vit ,     

vit ∼  IID(0, σv
2).      

We also assume that the explanatory variables are independent of the error term. 

With a constant intercept, our LSDV model is 

Iit =α +μ2D2 +μ3D3 +μ4D4 + λ2d2 +…. + λ20d20 + β1Fit-1 + β2Kit-1 + vit,    …(7) 
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with the same definitions for the dummy variables as above. 

The constant intercept α, if significant, denotes the base company, GE, for the base year, 1935; if 

α and λ2 are significant, then α + λ2  gives the intercept for GE for the year 1936, and so on. The 

Stata output for this model is: 

 

 

 

The same output we get by typing 

. reg I F K i.ind i.Time 
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We have a little mixed results here; the dummy variable D2 associated with GM is significant 

only at 10% level, and a few time dummies are significant at 5% or 10% level. The covariates 

and other two company dummies are highly significant. And the R2 value is higher at 0.9489. 

Compared with the pooled regression (with R2 = 0.7563), the F-test rejects in favour of our new 

LSDV model, but against out first LSDV model (with differential intercepts for companies, 

having R2 = 0.9344), this model fails the test with an increment of only 0.0145, indicating that 

the time effect is insignificant in general. We conclude that the investment function has not 

changed much over time, but changed over companies. 

In this case in Stata, we can do the poolability test in three ways. First we test the null of zero 

cross section and temporal effects: 
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We reject the null: the intercepts are different across the companies and time in general. 

Next we do the F-test only for the temporal effects: 
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Here we cannot the reject the null of zero time effects! 

Then we do the F-test only for the company effects: 

 

We do reject the null: the company effects are significant. 

   

(iv) All coefficients (intercept and slope) vary over companies. 

Our next model assumes that all the slope coefficients as well as the intercept are variable over 

companies; this means that all the four companies, GE, GM, US and WEST, have altogether 

different investment functions. This assumption can be incorporated in our LSDV model by 

assigning one more role to the company dummies. In the earlier LSDV models, these three 

company dummies were included along with the constant intercept in an additive way to account 

for intercept differences. Now to account for slope differences, these three company dummies 
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have to be included in the LSDV model in an interactive/multiplicative way, by multiplying each 

of the company dummies by each of the explanatory variables. Thus our extended LSDV model 

is: 

Iit = μ  + μ 2D2 + μ 3D3 + μ 4D4 + β1Fit-1 + β2Kit-1 + γ1 (D2 Fit-1)+ γ2 (D2 Kit-1) 

       + γ3 (D3 Fit-1)+ γ4 (D3 Kit-1 ) + γ5 (D4 Fit-1)+  γ6 (D4 Kit-1)+ vit,         …(8) 

where the μs represent differential intercepts, and the  βs and γs together give differential slope 

coefficients. The base company, as before, is GE, with a differential intercept of μ; β1 is the slope 

coefficient of Fit-1 of the base company GE. If  β1 and γ1 are statistically significant, then the 

slope coefficient of Fit-1 of GM is given by (β1 + γ1), which is different from that of GE. 

It is very difficult to specify the regression equation command using so many dummy variables 

in additive and multiplicative ways. Stata has certain easy ways to deal with this problem, using 

the factor variables and the cross operator #; the latter is used for interactions and product terms. 

However, note that when we use the cross operator along with the i. prefix with variables, Stata 

by default assumes that the variables on both the sides of the # operator are categorical and 

computes interaction terms accordingly. Hence we must use the i. prefix only with categorical 

variables. When we have a categorical variable (ind) along with a continuous variable (F or K), 

we must use the i. prefix with the categorical variable (i.ind) and c. prefix with the continuous 

variable (c.F or c.K). Thus the simple command i.ind#c.F or  i.ind#c.K will give us an indication 

of the slope differential over the companies. Also note that c.F#c.F tells Stata to include the 

squared term of F (F2) in the model; we need not compute the variable separately. 

 

Now the above model we estimate in Stata by typing 

. reg I F K i.ind i.ind#c.F i.ind#c.K 

And the result is: 
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We have the following results of F-tests: 

    



37 
 

We have some mixed results here. Investment is significantly related only to K (by the individual 

t-test), even though the F-test rejects the null of zero coefficients for both F and K in general. 

Thus the slope coefficient of the base company (GE) is significant only in respect of K. The 

slope differentials (γs) in respect of both F and K are significant only for GM and US, not for 

WEST, even though the F-test rejects the joint null (for all the three companies) strongly in 

respect of K and at a little more than 10% for F. Also note that all the company intercepts, 

including the constant, are insignificant.  

 

(v) All coefficients (intercept and slope) vary over time. 

This model assumes that all the slope coefficients as well as the intercept are variable over time; 

this means that all 20 years, from 1935 to 1954, have altogether different investment functions. 

This assumption is incorporated in our LSDV model by including the time dummies in both 

additive and interactive/multiplicative way. Thus our extended LSDV model is: 

Iit = λ   + λ2d2 + λ3d3 + … + λ20d20 + β1Fit-1 + β2Kit-1 + γ1 (d2 Fit-1)+ γ2 (d2 Kit-1) 

       + γ3 (d3 Fit-1)+ γ4 (d3 Kit-1 ) + … + γ37 (d20 Fit-1)+  γ38 (d20 Kit-1)+ vit,         …(9) 

where the μs represent differential intercepts, and the  βs and γs together give differential slope 

coefficients. The base year, as before, is 1935, with a differential intercept of λ; β1 is the slope 

coefficient of Fit-1 of the base year, 1935. If  β1 and γ1 are statistically significant, then the slope 

coefficient of Fit-1 of 1936 is given by (β1 + γ1), which is different from that of the base year. 

The Stata results using the indicator variables and cross operator are obtained by typing 

. reg I F K i.Time i.Time#c.F i.Time#c.K 

And the result is given below and is left for your own interpretation: 
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(vi) All coefficients (intercept and slope) vary over companies and time. 

Our final model assumes that all the (intercept and slope) coefficients vary over both companies 

and time. The model with the following specification really looks very formidable: 
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Iit = α   + μ 2D2 + μ 3D3 + μ 4D4 + β1Fit-1 + β2Kit-1 + γ1 (D2 Fit-1) + γ2 (D2 Kit-1) + 

         γ3 (D3 Fit-1) + γ4 (D3 Kit-1 ) + γ5 (D4 Fit-1) +  γ6 (D4 Kit-1) +  

λ2d2 + λ3d3 + … + λ20d20 + β1Fit-1 + β2Kit-1 + δ1 (d2 Fit-1) + δ2 (d2 Kit-1) + 

         δ3 (d3 Fit-1) + δ4 (d3 Kit-1 ) + … + δ37 (d20 Fit-1) +  δ38 (d20 Kit-1) + vit,         …(10) 

This model is estimated by typing 

. reg I F K i.ind i.Time i.ind#c.F i.ind#c.K i.Time#c.F i.Time#c.K 

And the results are: 
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2.2 The Fixed Effects (Within-groups Regression) Model 

The main problem with the above fixed effects (LSDV) model, as is clear from the above, is that 

it hosts too many regressors; this makes the model numerically unattractive and infects it with 

the problems of multicollinearity. Moreover, as the number of regressors increases, the degrees 

of freedom fall, and the error variance rises, leading to Type 2 error in inference (not rejecting a 

false null hypothesis). Another problem is that this model is unable to identify the impact of 

time-invariant variables (such as sex, colour, ethnicity, education, which are invariant over time). 

Again, the assumption that the error term follows classical rules [that uit ~ N(0, σ2)] can go 

wrong. For example, for a given period, it is possible that the error term for GM is correlated 

with the error term for, say, US or both US and WEST. If it so happens, we have to deal with it 

in terms of the seemingly unrelated regression (SURE) modelling aka Arnold Zellner (see Jan 

Kmenta 1986 Elements of Econometrics). 

However, there is a simple way to estimate the fixed effects model without using dummy 

variables. Below we describe this. 

Let us consider a simple one-way error components panel data model (with differential intercepts 

across individuals, which necessitate including dummy variables in estimation equation): 

Yit = αi + βXit + vit ;    i = 1, 2, …, N;   t = 1, 2, …, T.    …(2.2.1) 

  vit ∼  IID(0, σ2);  Cov(Xit, vis) = 0; ∀  t and s. 

Averaging the regression equation over time gives 

 S��. = T� + V���. + W̅�.,       …(2.2.2)  

where  S��. = ∑ S�Y/ZY , ���. = ∑ ��Y/ZY , and W̅�. = ∑ W�Y/ZY .  

Now subtracting the first (2.2.1) equation from the second (2.2.2), we get 

 (S�Y − S��.) = β(��Y − ���.) + (W�Y − W̅�.).   …(2.2.3) 

This deviations from means transformation is called Q transformation (Baltagi, 2008:15), which 

wipes out the differential intercepts. The OLS estimator for β from this transformed model is 

called within-groups FE estimator, or simply within estimator, as this estimator is based only on 

the variation within each company; this is exactly identical to the LSDV estimator. Since our 

panel model (2.2.1) is an Ancova model, the within estimator is also called covariance (CV) 

estimator. The individual-specific intercepts are estimated unbiasedly as:                         

    

 α[� = S��. − β\���.,    i = 1, …, N.     …(2.2.4) 
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We can also have an OLS estimator for β from the mean equation (2.2.2); this estimate is known 

as the between-group FE estimator, or simply between estimator. 

All the statistical packages report the within estimator for the FE model. Stata has an additional 

option to give the between estimator also. 

Note that we have estimated all the LSDV fixed effects models by OLS, without setting our data 

to panel data mode, that is, without invoking the xtset command. Now once we have xtset our 

data (as we did earlier), we can have the Stata within-groups fixed effects estimation by going to  

Statistics → Longitudinal/panel data → Linear models → Linear regression (FE, RE, PA, BE) 

When the xtreg window appears, enter the dependent (I) and independent (F, K) variables and 

mark the model type as fixed effects. We can also type the command 

. xtreg I F K, fe 

 

The output is: 

 

Note that the results here on the marginal effects are identical with those of the FE LSDV model, 

as already indicated. The estimate of the constant intercept however is different and it is 

significant at 10% only here.  
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The xtreg command in Stata reports three R-squares, within, between and overall.  Note that 

these reported R-squares do not share many of the properties of the OLS R2. The common 

properties of OLS R2 include the following: 

 

(i) R2 is equal to the squared correlation between the dependent variable (Y) and its 

estimate (S\); and 

(ii) R2 is equal to the proportion of the variation in Y explained by its estimate (S\); 

formally defined as R2 = Var(S\) / Var(Y), and lying in the range of 0 and 1. These 

variances are reported in the text books in terms of the sum of the squared deviations, 

or simply, sum of squares (SS): R2 = Explained (S\) SS / Total (Y) SS. 

 

It is important to note that this identity of the definitions is a special property of the OLS 

estimates (see Johnston, 1972:34-35); in general, the squared correlation between a variable (Y) 

and its estimate (S\) need not be equal to the ratio of the variances, and the ratio of the variances 

need not be less than 1. 

 

As already noted, the command xtreg, fe estimates (2.2.3) and (2.2.4) by OLS; hence its reported 

R2 within has all the properties of the usual R2. Other two R2s are correlations squared, 

corresponding to the between estimator equation and an overall equation with a constant 

intercept. Thus the usual R2 for our FE model is 0.8062, less than those for our earlier LSDV 

models. The overall R2 is similar to that of the pooled regression. The Stata reports a poolability 

test at the bottom of the results; Stata uses u_i for our μi; the F-test rejects the null of zero 

company heterogeneity. Hence, between the pooled regression and FE model, we select the 

latter. 

 

Stata also reports sigma_u, sigma_e, and rho; note that Stata’s u is our μ (intercept heterogeneity) 

and e stands for the random error term v in our one-way error component model. The FE model 

assumes that the  μi (or Stata’s u_i) are formally fixed, having no distribution. Hence, we need 

not bother about this estimate. However, in the random effects model, this estimate does natter.  

 

 
Estimating Panel Effects 
 

We can have the estimates of the individual (cross section or panel) effects in Stata; first estimate 

the FE model using the command  

 

. xtreg I F K, fe 

 

Then type in the command area 
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. predict IE, u 

 

This will generate the individual effects (IE) that can be viewed in the Data Editor (Edit). Note 

that we can give any name , instead of IE, for example, the command 

 

. predict pe, u 

 

will give the same series with name pe (panel effects). 

 

 

The Random Effects Model  

Let us consider a simple one-way error components model; 

Yit = α + βXit  + uit ; i = 1, 2, …, N; t = 1, 2, …, T.      …. (3) 

 uit = μi + vit ,    … (4) 

 

In a FE model, the μis are assumed to be fixed. However, the main problem with the FE model is 

its specification with too many parameters, resulting in heavy loss of degrees of freedom. This 

problem can be averted if the μis are assumed to be random; this gives us a random effects (RE) 

model with  

vit ∼  IIN(0, σv
2);    μi ∼  IID(0, σμ2); 

  Cov(vit, μi) = 0      Cov(vit, Xit) = 0    Cov(Xit, μi) = 0.   ….(5) 

 

Individual error components are not correlated with each other, and not autocorrelated across 

both cross-section and time series units.  

The presence of α and μi in the equation means that the sample of our four companies are drawn 

from the same population and have a common mean value for the intercept (α); the individual 

differences in the intercept values of each company are reflected in the error term μi . 

Now let us consider the statistical properties of the composite error term uit = μi + vit:  

Evidently, E(uit) = 0;   and   

Var(uit) = σμ2 + σv
2 (sum of within and between component variances). 
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Here we have a significant result. Note that if σμ2 = 0, then Var(uit) = σv
2; and there is no 

difference between the pooled regression model and the RE model;  we can pool the data and run 

OLS. Hence the test on the null σμ2 = 0 can be taken as a poolability test in the context of pooled 

regression vs. RE model. Such a test is available in Breusch-Pagan test, discussed below.  

It is also evident that the variance of the composite error term [Var(uit) = σμ2 + σv
2] is constant 

and hence, the composite error term is homoscedastic for all i and t; but serially correlated over 

time only between the errors of the same company (unless σμ2 = 0). That is, under the 

assumptions in (5), 

Cov(uit, ujs) = E[(μi + vit)(μj + vjs)] = σμ2 + σv
2, for i =j, t = s  [=Var(uit)] 

        = E(μi
2) = σμ2, for i =j, t ≠ s (same company, over time) 

           = 0, otherwise. 

And the correlation coefficient of uit and ujs is given by 

  ρ(uit, uis) = 1, for i =j, t = s  [=Var(uit)/ Var(uit)] 

     = σμ2 /(σμ2 + σv
2), for i =j, t ≠ s (same company, over time) 

      = 0, otherwise. 

Thus the errors of each company are correlated over time; hence we call this correlation equi-

correlation. The presence of such serial correlation makes the composite error term nonspherical, 

and the OLS estimation, inefficient.  

In matrix notation, the OLS estimate of β is given by β\]^_ = (�′�)���′S, However, in the panel 

context, it is often the case that the OLS assumptions about the spherical error will not be 

accurate, as shown above. If we knew the shape of the errors (that is, their variance-covariance 

matrix) we could simply use it to modify our data and then apply OLS to the transformed data; 

this would give the generalized least squares (GLS) estimates. If the shape of the errors is Ω (an 

NT x NT variance-covariance matrix of the errors), the estimate of  β is given by β\`^_ =
(�′����)��� ′���S. In reality, often we might not know the shape of the errors and we could 

only use an estimate of Ω; this would give the feasible generalized least squares (FGLS) 

estimates:  β\a`^_ = (�′�b ���)���′�b ��S. 

In the presence of the (serially correlated) non-spherical error in our RE model, we need to 

modify our data using the information on the shape of the non-spherical error, and then apply 

OLS to the transformed data. This GLS estimator of the RE model is obtained by applying OLS 

to the data after the following transformation into quasi deviations: 
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 (c�Y − θS��) = (1 − θ)α + β(��Y − θ���) + {(1 − θ)�� + (W�Y − θW̅�)}, 

where 

 θ = 1 − 
σf�/(σf� + Zσ��). 

This is given without proof in Hausman (1978:1262); also see Johnston (1984:402). 

The term θ gives a measure of the relative sizes of the within and between component variances. 

We have the following results on the transformed quasi-deviation form model: 

1. If θ = 1, the RE-estimator is identical with the FE-within estimator; this is possible when 

σv
2 = 0, which means that every vit is zero, given E(vit) = 0; in this case the FE regression 

will have an R2 of 1.  

2. If θ = 0, the RE-estimator is identical with the pooled OLS-estimator; this is because, σμ2 
= 0, which means that μi is always zero, given E(μi) = 0.      

 

Normally, θ will lie  between 0 and 1.  

If Cov(Xit, μi) ≠ 0, the RE-estimator will be biased. The degree of the bias will depend on the size 

of θ. If σμ2 is much larger than σv
2, then θ will be close to 1, and the bias of the RE-estimator 

will be low. 

One major difficulty with RE estimator is that its small sample properties are unknown; it has 

only asymptotic properties. 

 

Now let us turn to estimating the RE model for our data. Once we have xtset our data (as we did 

earlier), we can have the Stata random effects estimation by going to  

Statistics → Longitudinal/panel data → Linear models → Linear regression (FE, RE, PA, BE) 

When the xtreg window appears, enter the dependent (I) and independent (F, K) variables and 

mark the model type as GLS random-effects. We can also type the command 

. xtreg I F K, re 

The output is: 
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Note that the marginal effects and intercept are almost equal to those of the FE-within model 

reported above; however, the intercept here is not at all significant. Also note that all the R2s are 

equal to those of the FE-within model. Since the RE estimator has only asymptotic properties, 

the F statistic for overall model significance is not reported here; rather, we have the results from 

a Wald chi-square test that indicates that the model as a whole is (all the coefficients taken 

jointly are) significant. 

 

Stata obtains the result by assuming that the correlation of μi and the explanatory variables is 

zero, or Cov(Xit, μi) = 0. This is reported as corr(u_i, X) = 0 (assumed).  

Stata also reports sigma_u (our μ), sigma_e (our v), and rho. We have σμ = 150.78857  and σv = 

75.401517 and rho = 0.79996932. Stata reports rho as “fraction of variance due to u_i”; 

remember our definition of this correlation: ρ = σμ2 /(σμ2 + σv
2), the proportion of the variance of 

μi in the total variance of the error components. Note that we do not have the estimate of theta, 

used in the quasi-deviation in the results above, because we have not explicitly specified for it; 

we can estimate it, using the formula  θ = 1 − 
σf�/(σf� + Zσ��), and the values of σμ = 

150.78857  and σv = 75.401517 and T = 20 as theta = 0.8889, somewhat close to unity. If we 

want the estimate of theta to be reported in the results, then we have to type 

. xtreg I F K, re theta 



50 
 

And the result is 

 

 

We have seen that if σμ2 = 0, then the variance of the composite error term reduces to Var(uit) = 

σv
2; and there is no difference between the pooled regression model and the RE model;  we can 

pool the data and run OLS. Now given that σμ = 150.78857 here, we cannot do this. However, 

we can have a formal test in terms of  Breusch-Pagan poolability test in the context of pooled 

regression vs. RE model by going to 

Statistics → Longitudinal/panel data → Linear models → Lagrange multiplier test for random 

effects 

or, by typing 

. xttest0 

 

The result is: 
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We reject the null of σμ2 = 0; we cannot pool the data, but select the RE model. 

We have earlier seen that in the context of pooled regression vs. FE model, we have favoured the 

FE model, and now in the context of pooled regression vs. RE model, we have selected the RE 

model. Now the question is: Which one is better, FE or RE? 

 

FE- or RE-Modelling?  

 

For most of the research problems, there is room to suspect that Cov(Xit, μi) ≠ 0. That means the 

RE-estimator will be biased. Hence, it would be wiser to use the  FE-estimator to get unbiased 

estimates. The RE-estimator, however, provides estimates for time-invariant covariates. Many 

studies would attempt to analyse the marginal effects of certain variables after accounting for the 

effects of sex, race, etc. This is possible only with the RE modeling. Suppose the cross section 

units are individual workers, and we want to study the workers’ earnings (Yi), including a 

categorical variable for race (Zi) in the model: 

 Yit = β1Xit + β2Zi + uit ;     

 uit = μi + vit ,    vit ∼  IID(0, σv
2);   i = 1, 2, …, N;    t = 1, 2, …, T.         

 

In the FE model, it would be impossible to estimate β2, because it would not be possible to 

distinguish between the worker-specific constant term (μi) and the effect of the time-invariant 

variable, race (Zi); the two would be perfectly multicollinear. Since RE accepts μi as a random 

variable, it easily allows for the estimation of β2, by averting this multicollinearity. 
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Judge, et al. (1988) propose the following simple rules: 

1. If T is large and N small, there is little difference in the parameter estimates of FE and 

RE models. Hence computational convenience prefers FE model.  

2. If N is large and T small, the two methods differ. If cross-sectional units in the sample are 

random drawings from a larger sample, RE model is appropriate; otherwise, FE model. 

3. If the individual error component, μi, and one or more regressors are correlated, RE 

estimators are biased and FE estimators unbiased 

4. If N is large and T small, and if the assumptions of RE modeling hold, RE estimators are 

more efficient. 

In most applications the assumption that  Cov(xit, μi) = 0 may be wrong,  and the RE-estimator 

will be biased. “This is risking to throw away the big advantage of panel data  only to be able to 

write a paper on "The determinants of Y"”.  (Josef Brüderl, 2005: Panel Data Analysis). 

However, we can have a test for RE vs. FE, in terms of the null hypothesis H0: E(uit| Xit) = 0. 

Note that this null implies H0: E(μi | Xi) = 0. Hausman (1978) proposes to compare β\Ig and β\ag , 

both of which are consistent under the null H0: E(uit| Xit) = 0. In fact,  β\ag is consistent whether 

the null is true or not, whereas β\Ig  is best linear unbiased estimator (BLUE), consistent and 

asymptotically efficient under the null, but is inconsistent when the null is false. Note that any 

test statistic for a mean difference comparison consists in the ratio of the difference between the 

statistics to its standard error, or the squared ratio in asymptotic cases. Thus a test statistic in our 

case can be based on the mean difference hi = β\Ig − β\ag; under the null, the probability limit of 

this value is: plim hi = 0, and Cov( β\Ig , hi) = 0. The variance of this mean difference is Var(hi) = 

Var(β\Ig) – Var(β\ag). Thus the test statistic for Hausman’s specification test is ℎ =
hi ′[lm�(hi)]��hi, where hi = β\Ig − β\ag and Var(hi) = Var(β\Ig) – Var(β\ag), to test the null H0: 

E(μi | Xi) = 0 against the alternative Ha: E(μi | Xi) ≠ 0. Under the null hypothesis, this statistic is 

distributed asymptotically as central chi-squared, with k (= number of parameters) degrees of 

freedom. 

Now we turn to conducting the Hausman test to see whether a fixed-effects or random effects 

model is more appropriate for the Grunfeld data that we consider. The procedure in Stata is as 

follows: 

Estimate the FE model by typing 

. xtreg I F K, fe 

And store the result as fe by typing 
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. estimates store fe 

Then estimate the RE model by typing 

. xtreg I F K, re 

And do the Hausman test by typing 

. hausman fe 

The output is 

 

 

The test fails to reject the null, as the p-value (Prob>chi2) is greater than 5%. Note that the 

Hausman test is a test of  

H0:  random effects would be consistent and efficient, versus 

H1:  random effects would be inconsistent.  

Hence we select the RE model. The tests imply that the company effects though present in the 

data set are not correlated with the explanatory variables, and can very well be taken as random; 

the RE estimators will be consistent and efficient. 
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The statistical tests in the context of panel data analysis in a nutshell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“There is no simple rule to help the researcher navigate past the Scylla of fixed 

effects and the Charybdis of measurement error and dynamic selection. Although 

they are an improvement over cross-section data, panel data do not provide a 

cure-all for all of an econometrician’s problems.” (Johnston and DiNardo 1997: 

403). 

 

 

 

 

 

FE vs. OLS 

H0 = μ1= μ2 = … = μ 

F or Wald Test 

RE vs. OLS 

H0 = Var(μi) = 0 

Breusch-Pagan Test 

Your Model 

H0 not rejected 

⇒ No FE 

H0 not rejected 

⇒ No RE 

Pooled OLS 

H0  rejected 

⇒ FE 

H0 not rejected 

⇒ No RE 

FE Model 

H0  not rejected 

⇒ No FE 

H0 rejected 

⇒ RE 

RE Model 

H0  rejected 

⇒ FE 

H0  rejected 

⇒ RE 

Choose one based 

on Hausman test. 
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