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Abstract

The present work is a part of a larger study on panel data. Panel data or longitudinal data (the
older terminology) refers to a data set containing observations on multiple phenomena over
multiple time periods. Thus it has two dimensions: spatial (cross-sectional) and temporal (time
series). The main advantage of panel data comes from its solution to the difficulties involved in
interpreting the partial regression coefficients in the framework of a cross-section only or time
series only multiple regression. Depending upon the assumptions about the error components of
the panel data model, whether they are fixed or random, we have two types of models, fixed
effects and random effects. In this paper we explain these models with regression results using a
part of a data set from a famous study on investment theory by Yehuda Grunfeld (1958), who
tried to analyse the effect of the (previous period) real value of the firm and the (previous period)
real capital stock on real gross investment. We consider mainly three types of panel data analytic
models: (1) constant coefficients (pooled regression) models, (2) fixed effects models, and (3)
random effects models. The fixed effects model is discussed under two assumptions: (1)
heterogeneous intercepts and homogeneous slope, and (2) heterogeneous intercepts and slopes.
We discuss all the relevant statistical tests in the context of all these models.
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Panel Data Analysis: A Brief History

According to Marc Nerlove (2002), the fixed effects model of panel data techniques originated
from the least squares methods in the astronomical work of Gauss (1809) and Legendre (1805)
and the random effects or variance-components models, with an English astronomer George
Biddell Airy, who published a monograph in 1861, in which he made explicit use of a variance
components model for the analysis of astronomical panel data. The next stage is connected to R.
A. Fisher, who coined the terms and developed the methods of variance and analysis of variance
(Anova) in 1918; he elaborated both fixed effects and random effects models in Chapter 7:
‘Interclass Correlations and the Analysis of Variance’ and in Chapter 8: ‘Further applications of
the Analysis of Variance’ of his 1925 work Statistical Methods for Research Workers. However,
he was not much clear on the distinction between these two models. That had to wait till 1947,
when Churchill Eisenhart came out with his ‘Survey’ that made clear the distinction between
fixed effects and random effects models for the analysis of non-experimental versus
experimental data. The random effects, mixed, and variance-components models in fact posed
considerable computational problems for the statisticians. In 1953, CR Henderson developed
the method-of-moments techniques for analysing random effects and mixed models; and in 1967,
HO Hartley and JNK Rao devised the maximum likelihood (ML) methods for variance
components models. The dynamic panel models started with the famous Balestra-Nerlove (1966)
models. Panel data analysis grew into its maturity with the first conference on panel data
econometrics in August 1977 in Paris, organized by Pascal Mazodier. Since then, the field has
witnessed ever-expanding activities in both methodological and applied research.

Panel data or longitudinal data (the older terminology) refer to a data set containing observations
on multiple phenomena over multiple time periods. Thus it has two dimensions: spatial (cross-
sectional) and temporal (time series). In general, we can have two panels: micro and macro
panels — surveying (usually a large) sample of individuals or households or firms or industries
over (usually a short) period of time yields micro panels, whereas macro panels consist of
(usually a large) number of countries or regions over (usually a large) number of years.



Nomenclature

A cross sectional variable is denoted by x;, where i is a given case (household or industry or
nation; i = 1, 2, ..., N), and a time series variable by x;, where ¢ is a given time point (=1, 2, ...,
T). Hence a panel variable can be written as x;, for a given case at a particular time. A typical
panel data set is given in Table 1 below, which describes the personal disposable income (PDY)
and personal expenditure in three countries, Utopia, Lilliput and Troy over a period of time from
1990 - 2015.

Table1: A Typical Pand Data Set

Country Year PDY PE

Utopia 2015 15000 | 11000
Lilliput 1990 1500 1300
Lilliput 1991 1700 1600

Lilliput 2015 5450 5000

Troy 1990 2200 1800
Troy 1991 2400 2000
Troy 2015 8500 7500

Depending upon the configuration of space and time relative to each other, panels can take two
forms: in the first case, time is nested or stacked within the cross-section and in the second,
cross-section is nested/stacked within time, as Table 2 below shows:



Table 2: Two Forms of Panel Configuration

Time nested within | cross-section
the cross-section nested within time

Country Year Year Country

Utopia 1990 1990 Utopia
Utopia 1991 1990 Lilliput
............ 1990 Troy

............ 1991 Utopia
Utopia 2015 1991 Lilliput
Lilliput 1990 1991 Troy
Lilliput 1991 1992 Utopia

Lilliput 2015 ... .

Troy 1990 |[...... [|......
Troy 1991 [...... |......
............ 2015 Utopia
............ 2015 Lilliput
Troy 2015 2015 Troy

Again, depending upon whether the panels include missing values or not, we can have two
varieties: balanced and unbalanced panel. Balanced panel does not have any no missing values,
whereas the unbalanced one has, as Table 3 illustrates;



Table 3: Balanced and Unbalanced Panel

Balanced panel Unbalanced Panel

Person | Year Income | Age Sex Person | Year Income | Age Sex
S1 No S1 No

1 2004 800 45 1 1 2005 1750 32 1

1 2005 900 46 1 1 2006 2500 33 1

1 2006 1000 47 1 2 2004 2000 40 2

2 2004 1500 29 2 2 2005 2500 41 2

2 2005 2000 30 2 2 2006 2800 42 2

2 2006 2500 31 2 3 2006 2500 28 2

We have two more models, depending upon the relative size of space and time, short and long
panels. In a short panel, the number of time periods (T) is less than the number of cross section
units (N), and in a long panel, T > N. Note that Table 1 above gives a long panel.

Advantages of Panel Data

Hsiao (2014) Baltagi (2008) and AndreB ef al. (2013) list a number of advantages of using panel
data, instead of pure cross-section or pure time series data.

The obvious benefit is in terms of obtaining a large sample, giving more degrees of freedom,
more variability, more information and less multicollinearity among the variables. A panel has
the advantage of having N cross-section and T time series observations, thus contributing a total
of NT observations. Another advantage comes with a possibility of controlling for individual or
time heterogeneity, which the pure cross-section or pure time series data cannot afford. Panel
data also opens up a scope for dynamic analysis.

The main advantage of panel data comes from its solution to the difficulties involved in
interpreting the regression coefficients in the framework of a cross-section only or time series
only regeression, as we explain below.

Regression Analysis: Some Basics

Let us consider the following cross-sectional multiple regression with two explanatory variables,
X1 and X»:

Y,~=0'+,31X1,-+,82X2,-+u,-;i=1,2,...,N. ... (D



Note that X; is said to be the covariate with respect to X, and vice versa. Covariates act as
controlling factors for the variable under consideration. In the presence of the control variables,
the regression coefficients s are partial regression coefficients. Thus, B, represents the marginal
effect of X; on Y, keeping all other variables, here X;, constant. The latter part, that is, keeping X»
constant, means the marginal effect of X; on Y is obtained after removing the linear effect of X,
from both X, and Y. A similar explanation goes for 53 also. Thus multiple regression facilitates to
obtain the pure marginal effects by including all the relevant covariates and thus controlling for
their heterogeneity.

This we’ll discuss in a little detail below. We begin with the concept of partial correlation
coefficient. Suppose we have three variables, X;, X, and X3. The simple correlation coefficient 7},
gives the degree of correlation between X and X». It is possible that X3 may have an influence on
both X; and X,. Hence a question comes up: Is an observed correlation between X; and X, merely
due to the influence of X3 on both? That is, is the correlation merely due to the common
influence of X3? Or, is there a net correlation between X; and X5, over and above the correlation
due to the common influence of X3? It is this ner correlation between X; and X, that the partial
correlation coefficient captures after removing the influence of X3 from each, and then estimating
the correlation between the unexplained residuals that remain. To prove this, we define the
following:

Coefficients of correlation between X; and X5, X; and X3, and X, and X3 are given by 7y, 73, and
ry3 respectively, defined as

Y X1X2 _Zx1x2 _ Y X1X3 _Zx1x3

Tz = = » M3 =
sz%zx% 5152 /Zx%2x§ 5153

ZX2X3 — Zx2x3 (29)

Txgzxg 5253 “ ee

and 13 =

Note that the lower case letters, x, x», and x3, denote the respective variables in mean deviation
form; thus (x; = Xq; — )?1), etc., and 51, s, and s3 denote the standard deviations of the three
variables.

The common influence of X3 on both X; and X, may be modeled in terms of regressions of X; on
X3, and X, on X3, with b3 as the slope of the regression of X; on X3, given (in deviation form) by

bi; = LxaXs 713 z_1 , and b3 as that of the regression of X, on X3 given by b,3 = sz—;? =Ty 2z
3 3

== .
X x3 S3



Given these regressions, we can find the respective unexplained residuals. The residual from the
regression of X; on X3 (in deviation form) is e; 3 = x; — by3 x3, and that from the regression of X,
on X318 €3 = X2 — b3 X3.

Now the partial correlation between X; and X,, net of the effect of X3, denoted by ry, 3, is defined

Y. €13€23

as the correlation between these unexplained residuals and is given by 14,3 = \/—— Note
X 912.31/2 e

that since the least-squares residuals have zero means, we need not write them in mean deviation
form. We can directly estimate the two sets of residuals and then find out the correlation
coefficient between them. However, the usual practice is to express them in terms of simple
correlation coefficients. Using the definitions given above of the residuals and the regression

. . . S S
coefficients, we have for the residuals: e; 3 = x; — 733 S—lxg, and e, 3 = x; — T3 S—2x3 , and
3 3

hence, upon simplification, we get

Yei13€23 _ T12—T13723

23 = = -
\/Z 912.3\12 €33 \/1 "'123\/1_ 33

“This is the statistical equivalent of the economic theorist’s technique of impounding certain
variables in a ceteris paribus clause.” (Johnston, 1972: 58). Thus the partial correlation
coefficient between X; and X> is said to be obtained by keeping X3 constant. This idea is clear in
the above formula for the partial correlation coefficient as a net correlation between X; and X,
after removing the influence of X3 from each.

When this idea is extended to multiple regression coefficients, we have the partial regression
coefficients. Consider the regression equation in three variables, X, X, and X;:

X1 = a’+IBZX2,-+,33X3,-+u,~;i:1,2,...,N. ....3

Since the estimated regression coefficients are partial ones, the equation can be written as:
Xii=a+ b123Xoi + b132X5, e (4)

where the lower case letters (a and b) are the OLS estimates of @ and Srespectively.



The estimate b, 3is given by:

b _ I XX N x3-N X1 %3 ¥ XpX3
1237 Y aiyai-(Txoxs)?

Now using the definitions of simple and partial correlation coefficients in (2) and (2°), we can
rewrite the above as:

127713723 S1

b = .
12.3 12, s,

Why bj,3 is called a partial regression coefficient is now clear from the above definition: it is
obtained after removing the common influence of X3 from both X; and X5.

Similarly, we have the estimate b3, given by:

_ ZxaX3 X X5-FX1Xa N XpX3 _ T13—T12T32 S1

b =
123 Y x5 Y x3—(2 x2X3)? 1-135 53’

obtained after removing the common influence of X; from both X; and Xs.

Thus the fundamental idea in partial (correlation/regression) coefficient is estimating the net
correlation between X; and X, after removing the influence of X3 from each, by computing the
correlation between the unexplained residuals that remain (after eliminating the influence of X3
from both X; and X;). The classical text books describe this procedure as controlling for or
accounting for the effect of X3, or keeping that variable constant; whereas Tukey (in his classic
Exploratory Data Analysis, 1970, chap. 23) characterizes this as “adjusting for simultaneous
linear change in the other predictor”, that is, X3. Above all these seeming semantic differences,
let us keep the underlying idea alive, while interpreting the regression coefficients.

Thus multiple regression facilitates controlling for the heterogeneity of the covariates.

One major problem with cross section regression is that it fails to control for cross sectional,
individual, panel-specific, heterogeneity. Consider a random sample of 50 households; every
household is different from one another. This unobserved household heterogeneity can, however,
be captured by means of 50 dummy variables in the regression without a constant. But this is just



impossible for this sample, as estimation breaks down because the number of observations is less
than the number of parameters to be estimated.

The same problem haunts time series regression also. Consider the following time series multiple
regression with two explanatory variables, X; and X»:

Yt:a+ﬂ1X][+ﬁ2X2[+ut;t:1,2,...,T. ....(2)

We have the same explanation for the marginal effects here also, and we know every time point
in this system is different from one another. But we cannot account/control for this time
heterogeneity by including time dummies, lest the estimation break down.

It is here panel data regression comes in with a solution. This we explain below.

The Panel Data Regression

Now combining (1) and (2), we get a pooled data set, which forms a panel data with the
following panel regression:

Y= 0’+,81X1,'t+,82X2,';+u,';;i= 1,2,....N;t=1,2, ..., T. ....(3

How do we account for the cross section and time heterogeneity in this model? This is done by
using a two-way error component assumption for the disturbances, u;, with

u,-t:,u,-+/1t+v,~,, (4)

where u; represents the unobservable individual (cross section) heterogeneity, A, denotes the
unobservable time heterogeneity and v;, is the remaining random error term. The first two
components (x; and A,) are also called within component and the last (v;), panel or between
component.

Now depending upon the assumptions about these error components, whether they are fixed or
random, we have two types of models, fixed effects and random effects. If we assume that the y;
and A, are fixed parameters to be estimated and the random error term, vy, is identically and
independently distributed with zero mean and constant variance 01,2 (homoscedasticity), that is, v;
OIID(0, ,°), then equation (3) gives a two-way fixed effects error component model or simply a
fixed effects model. On the other hand, if we assume that the x; and A, are random just like the
random error term, that is, u;, A, and v;, are all identically and independently distributed with
zero mean and constant variance, or, y; LJ1ID(0, cr,,z), A, OIID(O, 0,12), and v; OIID(O0, av2), with
further assumptions that they are all independent of each other and of explanatory variables, then
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equation (3) gives a two-way random effects error component model or simply a random effects
model.

Instead of both the error components, x; and A, if we consider any one component only at a time,
then we have a one-way error component model, fixed or random effects. Here the error term u;
in (3) will become:

Up= M+ vy, Or, v (4’)
u,'t:/1t+vit. ...(4”)

We can have one-way error component fixed or random effects model with the appropriate
assumptions about the error components, that is, whether x; or A, is assumed to be fixed or
random.

In the following we explain these models with regression results using a part of a data set from a
famous study on investment theory by Yehuda Grunfeld (1958), who tried to analyse the effect
of the (previous period) real value of the firm (F) and the (previous period) real capital stock (K)
on real gross investment (/). For each variable, a positive effect is expected a priori. His original
study included 10 US corporations for 20 years during 1935-1954. We consider only four
companies — General Electric (GE), General Motor (GM), U.S. Steel (US), and Westinghouse
(West) — for the whole period that gives 80 observations.

The investment model of Grunfeld (1958) is given as

Real gross investment (millions of dollars deflated by implicit price deflator of
producers’ durable equipment), I;; = f(Fi-1, Kir-1),

where

Fi; = Real value of the firm (share price times number of shares plus total book value of
debt; millions of dollars deflated by implicit price deflator of GNP), and

Ki; = Real capital stock (accumulated sum of net additions to plant and equipment,
deflated by depreciation expense deflator — 10 year moving average of WPI of metals and
metal products)

The data that we use for the four cross sectional units and 20 time periods are briefly given
below:

11



Table4: The Panel Data That We Use

Industry | Time |1 F (=F;.) K (=K;.1) Industry | Time |/ F (=F;.) K (=K;.1)
GE 1935 33.1 1170.6 97.8 US 1935 209.9 | 1362.4 53.8
GE 1936 | 45 2015.8 104.4 US 1936 355.3 | 1807.1 50.5
GE 1937 | 77.2 2803.3 118 US 1937 | 469.9 | 2673.3 118.1
GE 1938 | 44.6 2039.7 156.2 US 1938 262.3 | 1801.9 260.2
GE 1939 | 48.1 2256.2 172.6 US 1939 | 2304 | 1957.3 312.7
GE 1940 | 744 21322 186.6 US 1940 | 361.6 | 2202.9 254.2
GE 1941 113 1834.1 220.9 US 1941 472.8 | 2380.5 261.4
GE 1942 | 91.9 1588 287.8 US 1942 | 445.6 | 2168.6 298.7
GE 1943 61.3 17494 319.9 US 1943 361.6 | 1985.1 301.8
GE 1944 | 56.8 1687.2 321.3 US 1944 | 288.2 | 1813.9 279.1
GE 1945 93.6 2007.7 319.6 US 1945 258.7 | 1850.2 213.8
GE 1946 159.9 2208.3 346 US 1946 | 420.3 | 2067.7 232.6
GE 1947 147.2 1656.7 456.4 US 1947 | 420.5 1796.7 264.8
GE 1948 146.3 1604 .4 5434 US 1948 | 4945 | 1625.8 306.9
GE 1949 | 98.3 1431.8 618.3 US 1949 | 405.1 1667 351.1
GE 1950 | 93.5 1610.5 647.4 US 1950 | 418.8 | 1677.4 357.8
GE 1951 135.2 18194 671.3 US 1951 588.2 | 2289.5 341.1
GE 1952 157.3 2079.7 726.1 US 1952 | 645.2 | 21594 444.2
GE 1953 179.5 2371.6 800.3 US 1953 641 2031.3 623.6
GE 1954 189.6 2759.9 888.9 US 1954 | 459.3 | 2115.5 669.7
GM 1935 317.6 3078.5 2.8 WEST 1935 12.93 191.5 1.8
GM 1936 391.8 4661.7 52.6 WEST 1936 | 25.9 516 0.8
GM 1937 | 410.6 5387.1 156.9 WEST 1937 35.05 | 729 7.4
GM 1938 | 257.7 2792.2 209.2 WEST 1938 | 22.89 | 560.4 18.1
GM 1939 330.8 4313.2 203.4 WEST 1939 18.84 | 519.9 23.5
GM 1940 | 461.2 4643.9 207.2 WEST 1940 | 28.57 | 628.5 26.5
GM 1941 512 4551.2 255.2 WEST 1941 48.51 | 537.1 36.2
GM 1942 | 448 3244.1 303.7 WEST 1942 | 4334 | 561.2 60.8
GM 1943 | 499.6 4053.7 264.1 WEST 1943 37.02 | 617.2 84.4
GM 1944 | 547.5 4379.3 201.6 WEST 1944 | 37.81 | 626.7 91.2
GM 1945 561.2 4840.9 265 WEST 1945 39.27 | 737.2 92.4
GM 1946 | 688.1 4900 402.2 WEST 1946 | 53.46 | 760.5 86
GM 1947 | 568.9 3256.5 761.5 WEST 1947 | 55.56 | 581.4 111.1
GM 1948 | 529.2 3245.7 9224 WEST 1948 | 49.56 | 662.3 130.6
GM 1949 | 555.1 3700.2 1020.1 WEST 1949 32.04 | 583.8 141.8
GM 1950 | 642.9 3755.6 1099 WEST 1950 | 32.24 | 635.2 136.7
GM 1951 755.9 4833 1207.7 WEST 1951 5438 | 732.8 129.7
GM 1952 | 891.2 49249 1430.5 WEST 1952 | 71.78 | 864.1 145.5
GM 1953 1304.4 | 6241.7 1777.3 WEST 1953 90.08 1193.5 174.8
GM 1954 1486.7 | 5593.6 2226.3 WEST 1954 | 68.6 1188.9 213.5

Source: the online complements to Baltagi (2001):
http://www.wiley.com/legacy/wileychi/baltagi/.
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Note that we have a balanced long panel (T = 20 > N = 4), where time is nested/stacked within
Ccross section.

The model is generally written in matrix notation as:
Vi =Xi' B+ O+ uip ;
uy O1ID(0, 0,%); Cov(xi, i) = 0;
where y; is the dependent variable, x; is the vector of regressors,
p is the vector of coefficients,

u;; 1s the error term, independently and identically distributed with zero mean and 0,,2 variance;
and

a; = individual effects: captures effects of the i-th individual-specific variables that are constant
over time.

Pand Data with Stata

Unlike Gretl and EViews, Stata cannot receive data through dragging and dropping of excel file.
We can open only a Stata file through the File -~ Open command. To enter data saved in Excel
format, go to File — Import and select Excel spreadsheet. Next browse your Excel file and
import the relevant sheet; mark “Import first row as variable names”. Or, in the command space,
we can type:

. import excel "C:\Users\CDS 2\Desktop\Panel data Grunfeld.xIsx", sheet("Sheet2") firstrow

Note that we have a string variable “Industry” that Stata cannot identify; we have to generate a
corresponding numerical variable by typing:

. encode Industry, gen(ind)

Alternatively, we can also type:

. egen ind = group(Industry)

We can see this new variable “ind” by typing:

. list Industry ind in 1/80, nolabel sepby(Industry)

13



Next we have to declare the data set to be a panel data. This we do by going to

Statistics — Longitudinal/panel data — Setup and utilities — Declare dataset to be panel data

Now set the panel id variable (“ind”) , time variable (“Time”) and the time unit (yearly).

Or, w can type:
. xtset ind Time, yearly
When we input this command, Stata will respond with the following:
panel variable: ind (strongly balanced)
time variable: Time, 1935 to 1954
delta: 1 year

Now that we have “xtset” the panel data, we can go for estimation.

Types of Panel Analytic Models:

We consider mainly three types of panel data analytic models: (1) constant coefficients (pooled
regression) models, (2) fixed effects models, and (3) random effects models.

1. The Constant Coefficients (Pooled Regression) M odéel

If there is neither significant cross sectional nor significant temporal effect, we could pool all of
the data and run an ordinary least squares (OLS) regression model with an intercept @ and slope

coefficients s constant across companies and time:
Li= 0+ BiFi + BKiy +uy; uw; OINQ, 6,°); i=1,2,3,4; t=1,2,...,20.

Note that for OLS regression in Stata, we need not “xtset” panel data; rather we can directly go
to OLS regression through

Statistics — Linear models and related — Linear regression

14



Or, type
.regress [F K
or
.reglFK

The regression output appears:

. regress I F K

Source 53 df M3 Humber of obs = t=n]
F{ 2z, 77y = 1135.46

Model 4547828 25 2 2423314 .13 Trok > F = 0.0000
Residual 15625318.8 77 2028%.5545 BE-sguared = 0.75683
24y B-sgusred = 0.7433

Total 6410147._05 7% 81141 1013 Root MSE = 142 44

I Coef . Std. Err. t Bx|t| [85% Conf. Interwval]

F .1101177 .0137482 2.01 0.000 .0827415 .13745938

K .3043034 .0432661 6.18 0.000 .206202 .4024048

_cons -E3.30815 29.63878 -2.14 0.03s8 -122.32658 -4.289737

The Stata result includes some summary statistics and the estimates of regression coefficients.
The upper left part reports an analysis-of-variance (ANOVA) table with sum of squares (SS),
degrees of freedom (df), and mean sum of squares (MS). Thus we find the total sum of squares is
6410147.05, of which 4847828.25 is accounted for by the model and 1562318.8 is left
unexplained (residual). Note that as the regression includes a constant, the total sum of squares,
as well as the sum of squares due to the model, represents the sum of squares after removing the
respective means. Also reported are the degrees of freedom, with total degrees of freedom of 79
(that is, 80 observations minus 1 for the mean removal), out of which the model accounts for 2
and the residual for 77. The mean sum of squares is obtained by dividing the sum of squares by
the respective degrees of freedom.

The upper right part shows other summary statistics including the F-statistic and the R-squared.
The F-statistic is derived from the ANOVA table as the ratio of the MS(Model) to the

. . _ Model Ss/dfModel _ _
MS(Residual), that is, F = Residual S8/ dfgesiqua” Thus F = 2423914.13 / 20289.8545 = 119.46,

with 2 numerator degrees of freedom and 77 denominator degrees of freedom. The F-statistic

tests the joint null hypothesis that all the coefficients in the model excluding the constant are
zero. The p-value associated with this F-statistic is the chance of observing an F-statistic that
much large or larger, and is given as 0. Hence we strongly reject the null hypothesis and
conclude that the model as a whole is highly significant.

The same test we also obtain by going to

15



Statistics — Postestimation — Tests — Test parameters
Or by typing
. testparm F K

The result is

. teatparm F K

F=0
Z) K=10
Fi z, 771 = 119.46
Prob > F = 0.0000

This is exactly the same as the above.

The R-squared (R?) for the regression model represents the measure of goodness of fit or the
coefficient of determination, obtained as the proportion of the model SS in total SS, that is,
4847828.25/ 6410147.05 = 0.7563, indicating that our model with two explanatory variables, F
and K, accounts for (or explain) about 76% of the variation in investment, leaving 24%
unexplained. The adjusted R’ (or R-bar-squared, R?) is the R-squared adjusted for degrees of
freedom, obtained as

ﬁz —1— MSResidual —1- Residual SS/dfResiqual =1- (1 _ Rz) ( dfrotal )
MStotal Total SS/dfrotal dfResidual

Thus R> =1 — (1 —0.7563) (%) = 0.7499. The root mean squared error, reported below the

adjusted R-squared as Root MSE. is the square root of the MS(Residual) in the ANOVA table,
and equals V20289.8545 = 142.44. Note that this is the standard error (SE) of the residual.

Below the summary statistics, we have the table of the estimated coefficients. The first term (I)
on the first line of the table gives the dependent variable. The estimates of the marginal effects of
F and K and the intercept are given as coefficients (coef) along with the standard error (Std. Err.)
and the corresponding t-values (t) and the two-sided significance level (p-value, P > [t|). Note
that the t-value is estimated as the ratio of the coefficient value to the corresponding standard
error; thus for the coefficient of F, the t-value is 0.1101177/ 0.0137482 = 8.01, which is much
greater than 2, as a rule of thumb, and hence the coefficient is highly significant. The zero p-
value corresponds to this. To the right of the p-value is reported the 95% confidence interval for
the coefficients.
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The marginal effects of F and K are positive as expected, and highly significant, with K
registering an effect nearly three times higher than that of F. The constant intercept also is
significant.

Statistics — Postestimation — Reports and statistics

Unfortunately, we cannot have DW statistic for multiple panels:

. eatat dwatson
sample may not include maltiple panels
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2. The Fixed Effects M odel

We have two models here: (i) Least Squares Dummy Variable model and (ii) Within-groups

regression model.

2.1 The Fixed Effects (L east Squares Dummy Variable) M odd:

If there is significant cross sectional or significant temporal effect, we cannot assume a constant
intercept @ for all the companies and years; rather we have to consider the one-way or two-way
error components models; if the errors are assumed to be fixed, we have fixed effects model.

Iit: ,BlFit-l + ,BzKit-l + Uit i= 1, 2, 35 4§ r= 1, 2, ceey 20. (5)
Mit:,lli+/1t+ Vit , OF Ujr = Wi + Vit , OT, Up=Ar+ vi .
vy OIID(O, &;);

Note that we have not explicitly included the fixed intercept a; it is subsumed under the error
components, as will be clear later on.

The model (5) is also called an analysis of covariance (ANCOVA) model (Hsiao 2014:35). The
usual regression model assumes that the expected value of investment, /, is a function of the
exogenous variables, F and K, whereas the traditional Anova gives a general linear model that
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describes every single dependent variable as an equation; for example, I; = u; + vi; , when we
consider only the company heterogeneity. This enables us to test, in the Anova framework, for
the mean differences among the companies. One major problem with this (Anova) model is that
it is not controlled for the relevant factors, for example, for the differences in F and K, such that
the within-group (company) sum of squares will be an overestimate of the stochastic component
in /, and the differences between company means will reflect not only the company effects but
also the effects of differences in the values of the uncontrolled variables in different companies.
When we include the covariates (F and K) to the Anova model to account for their effects, we
get the Ancova model. Note that this interpretation is obtained when we consider Ancova as a
regression within an Anova framework; on the other hand, when we consider Ancova as an
Anova in a regression framework, the interpretation is in terms of assessing the marginal effects
of the covariates after controlling for the effects of company differences. And this is precisely
what we do in model (5). Note that the regression model gives us the marginal effects of
quantitative variables, while the Anova model, those of qualitative factors; the Ancova model
includes both quantitative and qualitative factors in a framework of controlling their effects.

Now the fixed effects model (5) can be discussed under two assumptions: (1) heterogeneous
intercepts (u; # wj, A # A;) and homogeneous slope (5 = B; B = (), and (2) heterogeneous
intercepts and slopes (u; Z uj, A& 2 Ay); (B % B B # By). (Judge et al., 1985: Chapter 11, and
Hsiao, 1986: Chapter 1). In the former case, cross section and/or time heterogeneity applies only
to intercepts, not to slopes; that is, we will have separate intercept for each company and/or for
each year, but for all the companies and/or years, the slope will be common; for example, see the
following figures, where we consider only the cross-section (company) heterogeneity:

X — X

The broken line ellipses in the above graphs represent the scatter plot of data points of each
company over time, and the broken straight line in each scatter plot represent individual
regression for each company. Note that the company intercepts vary, but the slopes are the same
for all the companies (¢; # u;; B = ). Now if we pool the entire NT data points, the resultant
pooled regression is represented by the solid line, with altogether different intercept and slope
that highlights the obvious consequence of pooling with biased estimates.

The second case of heterogeneous intercepts and slopes is illustrated below for the four
companies, where each company has its own intercept and slope (u; # u;; 5% B3).
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In general, we can consider the fixed effects panel data models with the following possible

O
4

assumptions:
1. Slope coefficients constant but intercept varies over companies.
2. Slope coefficients constant but intercept varies over time.
3. Slope coefficients constant but intercept varies over companies and time.
4. All coefficients (intercept and slope) vary over companies.
5. All coefficients (intercept and slope) vary over time.
6. All coefficients (intercept and slope) vary over companies and time.

Last one = Random coefficients model. A random-coefficients model is a panel-data model in
which group specific heterogeneity is introduced by assuming that each group has its own
parameter vector, which is drawn from a population common to all panels.

Now consider our model:

IitzlglFit—l+,32Kit—l+uit; l=1, 2, 3, 4; = 1, 2, ey 20 . (5)

Wir = i + Ar + Vig , OF Uiy = i + Vi , OF, Uiy = A+ vyt .
v OIID(O, 6,7);

(1) Slope coefficients constant but intercept varies over companies.

Our first assumption is: no significant temporal effects, but significant differences among

companies. That is, a linear regression model in which the intercept terms vary over individual
companies; so our model can be written as a one-way error component model:
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L= BiFi1 + BoKirr + i

Wi =i+ vie, v OID(O, G%); i=1,2,3,4; t=1,2,...,20.

Or,

Li= i+ BiFi1 + BKit +vie; v OIID(O, 6,7);i=1,2,3,4; t=1,2,...,20 ... (6)
We also assume that the explanatory variables are independent of the error term.

In regression equation (6), we have for all the four companies separate intercepts, u; which can
be estimated by including a dummy variable for each unit i in the model. A dummy variable or
an indicator variable is a variable that takes on the values 1 and 0, where 1 means something is
true (such as Industry is GE, sex is male, etc.). Thus our model may be written as

Li=SuDi+ BiFi1 + BKii +vi; v OIDO, 6,5);i=1,2,3,4; t=1,2,...,20 ... (6)
Or,
iy =Dy +10D2 +13D3 +p4Dy + BiFiy + BoKir1 + Vi,
where D;=1 for GE; and zero otherwise.
D> =1 for GM; and zero otherwise.
D5 =1 for US; and zero otherwise.
D,=1 for WEST; and zero otherwise.

Note that the model we have started with does not have a constant intercept, and that is why we
have included four dummies for the four companies. If the model does have a constant intercept,
we need to include only three dummies, lest the model should fall in the ‘dummy variable trap’
of perfect multicollinearilty. In this case, our model will be

Ly =t +16Ds +p3D3 +puDy + BiF it + BoKir1 + Vit
When D> = D3 = D4 = 0, the model becomes
lii=u+ BiFi1 + BoKir1 + vir.

This is the model for the remaining company, GE. Hence, GE is said to be the ‘base company’,
and u , the constant intercept, serves as the intercept for GE.

If all the us are statistically significant, we have differential intercepts, and our model thus
accounts for cross section heterogeneity. For example, if 1 and u, are significant, the intercept for
GM=pu+pu,.
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An advantage of this model is that all the parameters can be estimated by OLS. Hence this fixed
effects model is also called least squares dummy variable (LSDV) Model. It is also known as
covariance model, since the explanatory variables are covariates.

Now let us estimate this model in Stata by OLS. Note that we need not xtset our data for OLS
estimation. But the LSDV estimation requires dummy variables for the four companies. In Stata
this estimation we can do in two ways: one way is to create dummy variables in Stata using the
tabulate command and the generate( ) option, and use them directly in the regression command.
Remember, we have already created a variable “ind” from the string variable “Industry”. Now

typing

. tabulate ind, generate(D)

will generate four dummy variables, D1, D2, D3, and D4, corresponding to the four groups in
“ind”, GE, GM, US and WEST. We can see these dummy variables by typing the command list
or going to Data — Data Editor — Data Editor (Edit).

Now we can have our OLS result with a constant and the last three dummy variables by typing:
.regress | F K D2 D3 D4

And the result is:

. regresa I F K D2 D3 D4

Source 55 df M5 Humber of obs = B0
Fi 5, T74) = 210.70

Model 5989428 .28 5 11378EE.66 Procbk > F = 0.0000
REesidual 420718767 T4 EEB85.38874 E-sgquared = 0.5344
Ldy B-sgquared = 0.9323%3

Total 6410147 .05 75 81141 .101% Root MSE = T5.402
I Coef . S5td. Err. t B>|t| [95% Conf. Interwvall

F 1080364 .017z848 6.14 0.000 .0T716557 .140537

E .347562 0266303 13.058 0.000 .2944388 .4006252

Dz 167 .0862 45 . 86362 3.64 0.000 75.7003 258.4714

D3 339.829%8 24 .02047 14.15 0.000 291 . 36877 387.63914

D4 184 6554 31.33371 5.88 0.000 122.0%01 247 .2207
_cons -242 758 35.52478 -6.83 0.000 -313.5426 -171.8733

The same result we can have without using the dummy variables directly; this second method is
to use what Stata calls “factor variables”, a kind of “virtual variables”. With reference to the
variable ind, the notation i.ind tells Stata that ind is a categorical variable rather than continuous
and Stata, in effect, creates dummy variables coded 0/1 from this categorical variable. Note that
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our ind variables is coded as GE = 1, GM = 2, US = 3 and WEST = 4. Then i.ind would cause
Stata to create three 0/1 dummies. By default, the first category (in this case GE) is the reference
(base) category, but we can change that, e.g. ib2.ind would make GM the reference category, or
ib(last).ind would make the last category, WEST, as the base.

Now typing the following
.reg [FKi.ind
We get the same result as above.

. reg I F K i.ind

Source 55 df M5 Humber of obs = &0
F{ 5, T4) = 210.70
Model 5989428 .28 5 1197885.66 Prob > F = 0.0000
Besidual 420718 . 767 T4 5685.3BET74 B-sguared = 0.3344
2dy R-sguared = 0.3%233
Total 6410147 .05 79 81141 .101% Boot MSE = T75.402
I Coef_ 5td. Err. t Bx|t| [95% Conf. Interwall
F 1060964 .0172848 6.14 0.000 .0718557 .140537
E .347562 .026630%9 13.058 0.ooo .2544988 4006252

ind
= 167.0862 45 86362 3.64 0.000 75.700% 258.4714
us 339.8296 24 02047 14 .15 0.000 291 39877 387.6914
WEST 184 6554 31.33371 5.88 0.0o0o 122 0901 247 2207
_cons —-242 TE8 35.52478 -6.83 0.000 -313.5426 -171.59733

The results on the marginal effects of F and K are similar to those from the pooled regression
above; both the coefficients are positive and highly significant, with a very marginal fall in
respect of F and a marginal increase in respect of K; now K has an effect a little more than three
times higher than that of F.

The cross section (company) heterogeneity also is highly significant. Thus every company has its
own significant intercept. The intercept for the base company, GE, is given by the constant
intercept of the model, that is, — 242.758. And the intercepts of other companies are:

For GM = —75.672 (=-242.758 + 167.0862)
For US = 97.072 (= —242.758 + 339.8296), and

For WEST = - 58.103 (= —242.758 + 184.6554)
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Poolability Test (between Pooled Regression and FE Model)

Compared with our old pooled regression model, the new LSDV fixed effects model has a higher
R? value. Hence the question comes up: Which model is better? The pooled regression with
constant slope and constant intercept or the LSDV fixed effects model with constant slope and
variable intercept for companies? The question can be reframed also as: Can we assume that
there is neither significant cross sectional nor significant temporal effect, and pool the data and
run an OLS regression model with an intercept @ and slope coefficients /5 constant across
companies and time? This is the poolability test.

Note that compared with the second (FE) model, the first one (pooled regression) is a restricted
model; it imposes a common intercept on all companies: u = 13 = u 4= u. Hence we have to do
the restricted F test given by

_ _(RGR=RR)/J
(1-RfR)/(n—k)

where Rygr® = R? of the unrestricted regression (second model) =0.9344;
RR2 = R? of the restricted regression (first model) = 0.7563;
J = number of linear restrictions on the first model = 3;
k = number of parameters in the unrestricted regression = 6; and

n = NT = number of observations = 80.

_(0.9344-0.7563)/3 _ . . L _
Hence F = 109344)74 66.968, with a p-value equal to zero. Comparing this with F;74 =

4.05787 at 1% right tail significance level, we find that the difference in the explanatory powers
of the two models is highly significant and so conclude that the restricted regression (pooled
regression) is invalid.

This poolability test we can do in Stata after the regression with the factor variable i.ind, by
typing

. testparm i.ind

And the result is:
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testparm i.ind

1) 2.imd =0
{2) 3.imd
3) 4.ind =10

Fi 3, 4] = 66.33
Prob > F = 0._0000

With this p-vale, we strongly reject the three null hypotheses of zero company effect.

Random Coefficient models (Another Poolability test)

In random-coefficients models, we wish to treat the parameter vector as a realization (in each
panel) of a stochastic process. The Stata command xtrc fits the Swamy (1970) random-
coefficients model, which is suitable for linear regression of panel data.

To take a first look at the assumption of parameter constancy, we go to
Statistics > Longitudinal/panel data > Random-coefficients regression by GLS
Or typing

.xtrcIFK

xtrc I F K

Random-coefficients regression Number of obs = 80
Group wariable: Time Humber of groups = 20
Cbs per group: min = 4

awvg = 4.0

mEx = 4

Wald chiZ {2) = 2.52

Prob » chiZ = 0.2837

I Coef_ S5td. Err. = Ex|=z| [95% Conf. Interwall

F 1551084 156705 0.33 0.322 -.1520278 4622446

E -.147248 .4338527 -0.34 0.734 -.98977757 .T032838

_cons 10.63852 99.10235 0.11 0.215 -183.5385 204 .8758

Test of parameter constancy: chiz (7)) = 16554 Prok > chiZz = 0.0000
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The test included with the random-coefficients model also indicates that the assumption of
parameter constancy is not valid for these data.

(i)  Slope coefficients constant but intercept varies over time.

Our second assumption is: no significant cross section differences, but significant temporal
effects. That is, a linear regression model in which the intercept terms vary over time; so our
model can be written as a one-way error component model:

iy = BiFir1 + BoKir1 + ui

up=A+vie, vy OIDO, 6;7); i=1,2,3,4; t=1,2,...,20.

Or,

Li= A+ BiFiy + BoKiy +vie; v OIIDO, 6,7);i=1,2,3,4; t=1,2,...,20...(7)
We also assume that the explanatory variables are independent of the error term.

In regression equation (7), we have for all the 20 years separate intercepts, A, which can be
estimated by including a dummy variable for each year ¢ in the model. Thus our model may be
written as

I, = ZA; d;+ ,BlF,'t_l + ,BzKi;_l + Vi, Vit DHD(O, @2); = 1, 2, 3, 4; t= 1, 2, ey 20 ... (6)
Or,
Ly =Aidy +Aado + ... + Aodig +Ada + BiFie1 + BoKie1 + Vir;

where d; = 1 for year 1935; and zero otherwise, etc. up to dyy = 1 for year 1954; and zero
otherwise.

If the model is assumed to have a constant intercept, we need to include 19 time dummies, and
our model will be

li=A+Adr+ ... + Aodi9+Arodoo + BiFir1 + BoKir1 + Vis;
Here the ‘base year’ is 1935, and A, the constant intercept, serves as the intercept for that year.

If all the As are statistically significant, we have differential intercepts, and our model thus
accounts for temporal heterogeneity. For example, if A and A, are significant, the intercept for
1936 =4+ A5.
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An advantage of this model is that all the parameters can be estimated by OLS. Hence this fixed
effects model is also called least squares dummy variable (LSDV) Model. It is also known as
covariance model, since the explanatory variables are covariates.

Now we turn to estimating this model in Stata by OLS. First we create time dummy variables in
Stata using the tabulate command and the generate( ) option, as before:

. tabulate Time, generate(d)

This will generate 20 dummy variables, d1, d2, ..., d19, and d20, corresponding to the 20 years
from 1935 to 1954. We can see these dummy variables by typing the command list or going to
Data — Data Editor —» Data Editor (Edit).

Now we can have our OLS result with a constant and the last 19 dummy variables by typing:

.regress [ F K d2 d3 d4 d5d6d7d8d9d10d11d12d13 d14d15d16d17 d18 d19 d20

And the result is:
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regress I F K d2 43 d4 d5 de 47 48 4% 410 di11 412 d13 dl4 d15 dilé d17 d18 415 420

Source 55 df M5 Number of oba = B0
F{ Z1, 58) = 5.27

Model 49389859 32 21 235183 .368 Prock > F = 0.0000
Residual 1471157.73 58 25364.78ES E-squared = 0.7705
2dj B-sguared = 0.6874

Total 6410147 .05 75 81141 .101% Root MSE = 1583 .28
I Coef . 5td. Err. t BEx|t| [95% Conf. Interwvall

F .11&80208 .0181322 6.38 0.000 .0T726752 1525065

E .2707146 .0B32103 3.25 0.ooz2 .104151 . 4372782

dz -35.211558 113.46 -0.31 0.757 -262.3264 131.3033

d3 -T73.75487 114.36 -0.6%9 0.431 -309.8722 150.3625

d4d -63.87372 112 .85486 -0.62 0.538 -295._.7827 156.0233

d5 -118.114%3 113.1231 -1.04 0.301 -344 5553 108.32586

de -57.43471 113.3091 -0.51 0.6814 -284_.Z2474 163.378

a7 -.1731213 113.2113 -0.00 0.333 -226.7302 226.444

da 8.39E8473 113.25964 o.08 0.337 -217.7388 235.7758

ds -34.1Z216 113.2734 -0.30 0.764 -260.863 132 .6138
dio -39.16445 113.1673 -0.35 0.731 -265. 6934 187 .3645
dil -60.34621 113.306 -0.53 0.536 -287.1523 166.4605
diz 5.463383 113.5785 0.05 0.362 -221.888 232.816
dis 14.1681%3 115.50581 0.1z 0.303 -217.0404 245.3768
dil4 4. 51502 117.1307 0.04 0.363 -230.0876 239.0377
dis -50.26366 118.3731 -0.42 0.873 -287.2131 186.68738
dilg& -42 . 05006 118.8364 -0.35 0.725 -279.9263 135.8268
di7 -20.78358 118.1475 -0.18 0.861 -257.2876 215.7084
dis .063Z2122 1z0.485%9 0.00 1.000 -241 10585 241 .247%9
dis 17.23588 123.3711 0.14 0.830 -230.8533 265.4511
dzo -22.29242 122.7075 -0.17 0.864 -281.%302 237.34583
_cons -35.60765 B3 .Z24187 -0.43 0.&70 -202.2344 131.0131

Now the same result we get using the factor variable i.Time, by typing the following:

.reg [ F K1i.Time



reg I F K i.Time

Source 55 df M5 Humber of obs = 80

Fi 21, 58) = 5.27

Model 49389389 .32 21 23518%9.368 FProb > F 0O.0000

Residual 1471157 .73 58 25364 .7885 E-squared = 0.7705

249 B-sgquared = 0.6874

Total 6410147.05 7% 81141 .101% Root MSE = 159.26
I Coef. 5td. Err. t Ex|t| [95% Conf. Interwvall
F 1160208 .0181322 6.38 0.000 .O0736752 1525065
E .2T707146 .0B3Z2103 3.25 o.00z2 .104151 . 4372782

Time

19386 -35.211585 113. 46 -0.31 0.757 -262.3264 131 .3033
1337 -79.75487 114.36 -0.63 0.431 -30%.8722 150.3625
1338 -69.87372 112 .8548 -0.62 0.538 -235.7827 156.0233
1935 -118.114% 113.1231 -1.04 0.301 -344 5553 108 .32586
1940 -57.43471 113.3091 -0.51 0.614 -284.2474 169.378
1341 -.1731213 113.2113 -0.00 0.393 -226.7302 226.444
1342 5.988473 113.2364 o.08 0.337 -217.7388 235.7758
1343 -34.121%¢ 113.2734 -0.30 0.764 -260.863 132 .6158
1544 -39 .16445 113.1673 -0.35 0.731 -Z65.6934 187 .3645
1545 -60.34621 113.306 -0.53 0.596 -287.1523 166.4605
1348 5.463383 113.5785 0.05 0.362 -221.888 232 .816
1347 14.1681%9 115.50581 0.1z 0.303 -217.0404 245 .3768
1948 4_5150D2 117.1307 0.04 0.363 -230.0676 239.03977
1943 -EB0.Z269686 118.3731 -0.42 0.673 -287.2131 186.67598
1350 -4Z .05008 118.8364 -0.35 0.725 -279.92639 135.8268
1351 -20.78358 115.1475 -0.18 0.861 -257.2876 215.7084
1352 .0B3Z1Z22 1Z0.485%9 0.00 1.000 -241.10%5 241 .247%9
1353 17.z23588 123.3711 0.14 0.830 -230.8533 265.4511
13954 —-22.259242 125.7075 -0.17 0.564 -281.5302 237.3453
_cons -35.60765 83 .Z24187 -0.43 0.&670 -Z0Z.2344 131.015

The marginal effects are positive and significant, with marginal differences compared with the
other models. We also have an interesting result here; all the time dummies are insignificant,
indicating that the investment function has not changed much over time, and the R* is only
0.7705, irrespective of a large number of variables. Now comparing this LSDV time effect
model with the pooled regression with R?= 0.7563, which one is better? With the increment in
R? equal to only 0.0142, the F test does not reject; we had better pool the data and run an OLS
model with constant intercept.
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Now Stata gives the poolability test result after the regression with the factor variable i.Time:

. testparm i.Time

{ 1) 1936.Time = 0
[ 2) 1937.Time = O
[ 3) 1938.Time = 0
{ 4) 1939.Time = 0
{ 5} 1940.Time = 0
{ &) 1941 Time = 0
{ 7 1942 .Time = 0
{ B) 1943 .Time = 0
[ 9) 1944 .Time = 0
(100 1945.Time = 0
{11} 1946.Time = 0
(12) 1947 .Time = 0
(13) 1948 .Time = 0
{14) 1949 .Time = 0
{15 1350.Time = 0
(16) 1951 .Time = 0
(17) 1952 .Time = 0
{18 1353.Time = 0
{13) 1954 .Time = 0
F{ 13, 531 = 0.19
Prob > F = 0.9999

With this p-value, we cannot reject the F-test null of zero time effect.

Thus we have found that the company effects are statistically significant, but the time effects not.
Does that mean our model is somehow misspecified? Let us now consider both company and
time effects together.

(i)  Slope coefficients constant but intercept varies over companies and time.
This gives our two-way error components model:
Li=BiFi1 + BKic1 +ui; i=1,2,3,4; t=1,2,...,20. ... (5)
Wi =i+ A+ vie,
vy OIID(0, G).
We also assume that the explanatory variables are independent of the error term.
With a constant intercept, our LSDV model is

I; =0’+,L62D2 +,L63D3 +IU4D4 + /]26[2 +....+ /]206[2() + ,BlF,',_l + ,BzK,',_l + Vi, .. (7)
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with the same definitions for the dummy variables as above.

The constant intercept @, if significant, denotes the base company, GE, for the base year, 1935; if

a and A, are significant, then a + A, gives the intercept for GE for the year 1936, and so on. The

Stata output for this model is:

regrega I F K D2 D3 D4 d2 43 d4

di dé 47 48 4% 410 d11 d12 d13 dl4

dls d16 d17 d18 d1% dz0

Source 55 df M5 Number of obs = 20

F{ 24, 55) = 42 53

Model 6082815.02 24 253450.6Z26 Prob > F = 0.0000

Residual 327332.02%9 55 G5551.45144 E-squared = 0.548%

2d3 B-sguared = 0.3267

Total 6410147 .05 73 81141.101% Root MSE = T7.148
I Coef . S5td. Err. t B>|t| [95% Conf. Interwvall
F 1267775 L.0268777 4.72 0.000 .0729134 .1806416
E .3651081 .0D4153Z25 E.E3 0.000 .ZBEBTE2 .452341
Dz 112 .5462 66.24191 1.70 0.0%5 -20.Z2055%9 245 . 2373
D3 341.3641 24 .80427 13.76 0.000 291 .65853 331.073
D4 217 .65964 40.74364 5.34 0.000 136.0443 299 .34858
dz -45.0360% 58.57158%8 -0.77 0.445 -16Z2.4161 T2.34354
d3 -101.23 66.6013 -1.52 0.134 -234.702 32.24137
d4 -85.58827 55 .31738 -1.55 0.1z8 -136. 4467 25.2701%3
d5 -140.4574 58.37524 -2.41 0.0Z0 -Z57.444 -23.47082
de -80.34846 59.78844 -1.34 0.185 -200.1872 35.47025
a7 -24.71323 58.97732 -0.42 0.877 -14Z2 3064 93.4733%6
da -15.26153 55 .83531 -0.27 0.786 -127.2782 96.T7EE18
ds -61.09746 57.12428 -1.07 0.283 -1765.5771 53.38Z216
dio -64.51754 57.2712 -1.13 0.265 -17%.232 50.25611
di1l -88.12233 59 .3021%8 -1.4%3 0.143 -Z206.9668 30.72173
diz -27.97868 &0.63872 -0.46 0.646 -14%_5014 93.54404
dis -25.1706% 56.63821 -0.44 0.&858 -138.6762 88.33481
dl4 -4z . 02802 57.32754 -0.73 0.487 -156.5915 T2.8E5853
dis -103.0746 58.1038¢8 -1.77 0.082 -21%_.5254 13.38014
dilg& -98.34156 58.62343 -1.68 0.0%3 -215.837%8 15.15445
di7 -85.09251 61 .73637 -1.38 0.174 -208.815 38.62953
dis -74.93115 63 .57047 -1.18 0.244 -20Z2.3282 52.46693
dis -78.02382 T0.10255 -1.11 0.271 -218_.5185 62.45882
dzo -13Z2. 44867 T1.844585 -1.84 0.071 -276.4264 11.53253
-222.8553 51.38758 -4 .34 0.000 -325.8382 -11%.87258

cons

The same output we get by typing

.reg [FK1i.ind i.Time
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reg I F K i.ind i.Time

Source 55 df M5 Number of obs = 80
Fl 24, 55) = 42 53
Model &082815.02 24 253450.626 Probk > F = 0.0000
Residual 327332.02% 55 5551.45%144 BE-sgquared = 0.3948%
243 B-sguared = 0.3267
Total 6410147.05 79 81141 .101% BEoot MSE = T7.14%
I Coef. 5td. Err. t Ex|t| [95% Conf. Interwall
F 1267775 .0268777 4. .72 0O.000 .0725134 1806418
E .363%1081 0415325 §.83 0.000 .2858752 .452341

ind
=M 112 5462 66.241391 1.70 0.03%5 —-20.2055% 245 2979
us 341 3641 24 80427 13.76 0.000 291 6553 391.073
WEST 217 . 6964 40.74364 5.34 0.o0oo 136.0443 2959 3485

Time
1538 -45 03609 58.57156 -0.77 0.445 -162 4181 T72.34334
1937 -101.23 66.6013 -1.52 0.134 -234 702 32.241597
1538 -85 _58827 55.31736 -1.55 0.128 -196. 4467 25.2701%
1939 -140.4574 58.37524 -2.41 0.020 —-257.444 -23.47082
1540 -80.34846 59.78844 -1.34 0.185 -200.1872 39.47025
1541 -24 T1323 58.37732 -0.42 0.6877 -142 32064 93.47336
1542 -15.26153 55.89531 -0.27 0.786 -127.2782 96. 75518
1543 -61.09746 57.12428 -1.07 0.28%9 -175.5771 53.3821%
1544 -64_.51734 57.2712 -1.13 0.265 -175_.292 50.25611
1545 -88.12239 59.3021% -1.43 0.143 -206.9666 30.7217%
1548 -27.97868 &0.63872 -0.46 0.646 -145 5014 93.54404
1947 -25.170&%9 56.63821 -0.44 0.658 -138.6762 88.33481
1548 -42 02802 57.32754 -0.73 0.487 -156.915 72.858393
19445 -103.0746 58.10986 -1.77 0.082 -215 52394 13.38014
1850 -98.34158 58.62943 -1.68 0.0%% -215_8376 1%.15445
1851 -85.0%9251 61.73637 -1.38 0.174 -208.815 38.62333
1852 -74_.93115 63.57047 -1.18 0.244 -202_.3292 52.466393
1953 -78.02982 70.10255 -1.11 0.271 -218_5185 62 .45882
1554 -132 . 44487 T1.84455 -1.84 0.071 -276.4264 11.5325%9
_cons -222 8553 51.3875 -4 34 0O.000 -325.8382 -115_.8725
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Time
1336
1337
1338
1335
1340
1341
1342
1343
1544
1345
1345
1347
1343
1345
1350
1351
1952
1953
1354

_cons

-45 036059

-101.23
-85.58827
-140.4574
-80.34848
-24.71323
-15.26153
-61.09748
-84 51734
-88.12233
-27.37868
-25.17063
-42 . 02802
-103.0746
-98.34158
-85.09251
-74.93115
-T7&8.02382
-132. 4487

-222.8553

58 _5T7156
66.6013
55.31736
58.37524
59.78844
58.97732
55.83531
57.12428
57.2712
59.3021%6
60.63872
56.63821
57.32754
58.103E86
58.62343
61.73637
63.57047
T0.10255
71.84455

51.3875

.77
.52
.55
.41
.34
.42
W27
.07
.13
.49
.46
.44
.73
17
.68
.38
.18
.11
.84

.34

o R o Y s I o O Y o Y o O o Y Y o Y Y o O s Y o Y o Y s R = = |

.445
.134
.1z8
.0z20
.185
.677
.T86
.2B3
L2685
.143
. 646
. 658
- 467
.08z
.053
174
244
271
.071

.00o

-162 4161
-234.702
-136.4467
-257.444
-200.18672
-14Z2 39064
=127.2782
=175.5771
-173. 232
-206.9666
-14%5.5014
-138.6762
-156.915
=219 5234
-215.837%8
-208.815
-2D2.3292
-218.5185
-276. 4264

-325.8382

72.343504
32.241397
25.2701%
—-23.47082
359.47025
93.473996
96.75518
53.3821%
50.25611
30.721739
93.54404
88.33481
TZ.B5833
13.38014
19.15445
38.62333
52 .466593
62 .45882
11 .53293

-11%.8725

We have a little mixed results here; the dummy variable D, associated with GM is significant
only at 10% level, and a few time dummies are significant at 5% or 10% level. The covariates
and other two company dummies are highly significant. And the R* value is higher at 0.9489.
Compared with the pooled regression (with R* = 0.7563), the F-test rejects in favour of our new
LSDV model, but against out first LSDV model (with differential intercepts for companies,
having R? = 0.9344), this model fails the test with an increment of only 0.0145, indicating that
the time effect is insignificant in general. We conclude that the investment function has not

changed much over time, but changed over companies.

In this case in Stata, we can do the poolability test in three ways. First we test the null of zero
cross section and temporal effects:
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teatparm i.ind

1)
{2
[
[ 4l

5)
i 8l

71

2)
)
{10}
{11}
{12}
{13}
(14}
15)
{1g)
{17}
{18}
{13}
(20}
{21)

[1Z22)

We reject the null:

2.ind = 0
3.ind = 0
4. ind =0

1936.
1337.
1338.
1339.
1540.
1941 .
1942 .
1943,
1944
1945.
1946.
1347,
1948.
15949,
1350.
1351.
1952.
1353.
1954.

Fi

Time
Time
Time
Time
Time
Time
Time

Time

Time
Time
Time
Time
Time
Time
Time
Time

Time

2z,

Frob >

Time =

Time =

i.Time

|
s O e Y o Y o Y o Y o O o Y o N o Y o Y e Y o [ o I o [ o e B o R

3.43
F = 0.0D000

Iiil
il

the intercepts are different across the companies and time in general.

Next we do the F-test only for the temporal effects:
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. btestparm i.Time

i1 1336 . Time = 0
[ 1337 . Time = 0
{3 1338 . Time = 0
4 1333 . Time = 0
{ 5] 1940.Time = O
[ ) 15341 Time = 0
[T 1942 Time = 0
{ B) 1943 .Time = 0O
[ B 1944 Time = 0
{10} 19345 Time = 0
{11} 1946 . Time = 0
{12} 1947 Time = 0
{13) 1948 Time = O
(14) 13453 Time = 0
{15} 1350 . Time = 0
{1la) 1351 Time = 0
{17} 1352 Time = 0
{18) 1953 .Time = O
{159) 1954 Time = 0
F( 183, 55 = 0.83
Prob > F = 0.6683

Here we cannot the reject the null of zero time effects!
Then we do the F-test only for the company effects:
. teatparm i.ind
[ 2.ind =0

{ 2) 3.ind
(=] 4 ind =0

I
o

Fi =, 55) = &4.06
Prob > F 0.0000

We do reject the null: the company effects are significant.

(iv)  All coefficients (inter cept and slope) vary over companies.

Our next model assumes that all the slope coefficients as well as the intercept are variable over
companies; this means that all the four companies, GE, GM, US and WEST, have altogether
different investment functions. This assumption can be incorporated in our LSDV model by
assigning one more role to the company dummies. In the earlier LSDV models, these three
company dummies were included along with the constant intercept in an additive way to account
for intercept differences. Now to account for slope differences, these three company dummies
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have to be included in the LSDV model in an interactive/multiplicative way, by multiplying each
of the company dummies by each of the explanatory variables. Thus our extended LSDV model
is:

Li=p + poDy+ w3Ds+ paDs + BiF iy + BoKie1 + Y (D2 Fir1)+ )5(D2 Kir1)
+ B (D3 Fi)+ V(D3 K1) + 5 (Ds Fir1)+ Yo (Da K1)+ vir, ...(8)

where the us represent differential intercepts, and the [s and )5 together give differential slope
coefficients. The base company, as before, is GE, with a differential intercept of u; £ is the slope
coefficient of Fj.; of the base company GE. If [, and ) are statistically significant, then the
slope coefficient of F;.; of GM is given by (£ + }), which is different from that of GE.

It is very difficult to specify the regression equation command using so many dummy variables
in additive and multiplicative ways. Stata has certain easy ways to deal with this problem, using
the factor variables and the cross operator #; the latter is used for interactions and product terms.
However, note that when we use the cross operator along with the i. prefix with variables, Stata
by default assumes that the variables on both the sides of the # operator are categorical and
computes interaction terms accordingly. Hence we must use the i. prefix only with categorical
variables. When we have a categorical variable (ind) along with a continuous variable (F or K),
we must use the i. prefix with the categorical variable (i.ind) and c. prefix with the continuous
variable (c.F or c.K). Thus the simple command i.ind#c.F or i.ind#c.K will give us an indication
of the slope differential over the companies. Also note that c.F#c.F tells Stata to include the
squared term of F (F?) in the model; we need not compute the variable separately.

Now the above model we estimate in Stata by typing
.reg I F Ki.ind i.ind#c.F i.ind#c.K

And the result is:
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reg I F K i.ind i.ind#c.F i.ind#c.K
Source 55 df M5 HNumber of chs = 80
Fi 11, 68) = 119.65
Model 6085228 .45 11 554111 .&77 Probk > F = 0.0000
Residual 3143%18.¢6 68 4631.15588 BE-sguared = 0.350%
2dy R-sguared = 0.94Z23
Total 6410147 .05 7% 81141 .101% Boot MSE = &8.053
I Coef. 5td. Err. t Ex|t] [95% Conf. Interwval]
F 0265512 0373318 o.70 0.487 —-.0452602 1023626
E 151652359 0627352 2.42 0.018 .0265076 .2T768801
ind
=M -126.1637 108.3%931 -1.16 0.24%3 -342 4589 90.1314
us —-40.12174 125 .&6108 -0.31 0.758 -298.7561 218 5127
WEST 9.3755304 93 .3885 0.10 0.320 -176.9773 185.72598
indgc.F
= .0855841 .0423627 2.11 0.038 0050508 1741175
us 1448733 0648388 2.23 0.025 .01543955 L2T4263
WEST 0265042 .111464 0.z24 0.813 -.1359187 24839271
indfc.EK
= L2222108 .0&6E8435 3.25 o.oo0z2 0856508 . 3587707
us 2570148 1208285 2.13 0.037 .0153054 .45981243
WEST —.0&00001 .3T737005 -0.16 0.875 -.8176807 . 6976805
_cons -9 . 356306 T6.5T7426 -0.13 0.8357 -162.7573 142 . 8453
We have the following results of F-tests:
testparm i.ind#c.F
testparm i.ind
1) 2.ind#c.F = 0
1) 2.imd =10 Z) 3.ind#c.F = 0
t2) 3.ind =0 3) 4.ind#c.F = 0
3) 4. ind = 0
Fi 3, 68) = 2.15
Fi 3, &8) 0.76 Prob > F = 0.1016
Frob > F = 0.5217
testparm i.ind#c K
testparm c.F c. K
1) Z.ind#c.K =0
1y F=10 Z) 3.ind#c.K =0
2) K=0 3) 4.ind#c.K =0
FOOZ g8) = 3.42 Fi 3, g2) =  3.81
Frob = F = 0.0386 Drob > F =  0.0133%



We have some mixed results here. Investment is significantly related only to K (by the individual
t-test), even though the F-test rejects the null of zero coefficients for both F and K in general.
Thus the slope coefficient of the base company (GE) is significant only in respect of K. The
slope differentials (}5) in respect of both F and K are significant only for GM and US, not for
WEST, even though the F-test rejects the joint null (for all the three companies) strongly in
respect of K and at a little more than 10% for F. Also note that all the company intercepts,
including the constant, are insignificant.

(v)  All coefficients (intercept and slope) vary over time.

This model assumes that all the slope coefficients as well as the intercept are variable over time;
this means that all 20 years, from 1935 to 1954, have altogether different investment functions.
This assumption is incorporated in our LSDV model by including the time dummies in both
additive and interactive/multiplicative way. Thus our extended LSDV model is:

li= A+ hdr+ Asds + ... + Aoodoo + BiFic1 + BoKir1 + Vi (da Fir1)+ )5 (da Kir1)
+ W (d3 Fi)+ Va(d3 Kir1) + ... + Va7 (doo Fir1)+ Vss (doo Ki1)+ Vi, ...(9)

where the us represent differential intercepts, and the (s and )5 together give differential slope
coefficients. The base year, as before, is 1935, with a differential intercept of A; £, is the slope
coefficient of F;.; of the base year, 1935. If £ and ) are statistically significant, then the slope
coefficient of Fj.; of 1936 is given by (£, + 1), which is different from that of the base year.

The Stata results using the indicator variables and cross operator are obtained by typing
.reg I F Ki.Time i.Time#c.F i.Time#c.K

And the result is given below and is left for your own interpretation:
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reg I F K i.Time i.Time#c.F i.Timef#c K

Source 55 df M5 Number of obs = 80
F{ 55, 200 = 3.36
Model 5821984 .52 59 98677.7036 Probk > F = 0.00Z20
Fesiduzl 588162 .534 20 29408.1267 BE-sgquared = 0.5082
bdy B-sgquared = 0.6376
Total 6410147.05 79 81141 .101% BEoot MSE = 171.4%
I Coef . S5td. Exrr. t Ex|t| [95% Conf. Interwall
F .10528594 .0838614 1.26 0.224 -.0696424 .2802212
E -.59803%¢6 2.184176 -0.27 0.787 -5.15415 3.5958071
Time
1538 48 39522 252 1546 0.1 0.850 -477 .59 574 3805
1937 -8.622768 254 4524 -0.03 0.373 -539.4221 522 1765
1538 -35.1278%9 278.3113 -0.14 0.830 -61%_ 6751 541 4133
1939 -75.21356 262 .15928 -0.2%9 o.777 -622_.1383 471 .7111
1540 -84 21822 266 .5826 -0.35 0.727 -650.2977 451 8653
1541 -64 74314 270.1124 -0.24 0.813 -628_1877 438 7014
1542 -68.31%1 283 .2693 -0.24 0.812 -659_ 2085 522 5703
1543 -43 _gT035 301 .83%4% -0.1& 0.871 -679.4121 580.0714
1544 -26.89948 311 . 656 -0.0% 0.332 -&77.0025 623.2036
1545 9 _898586 303 .6664 0.03 0.374 -623_5385 6433356
1548 24 83088 275%.83911 0.0% 0.330 -558. 9518 &08.7336
1547 -115_ 8048 263.1106 -0.44 0.665 —-664 . 644 433.0343
1548 -123 5759 269.1321 -0.48 0.651 -684 3757 437 .823%9
19445 -22 00557 245 3603 -0.0% 0.330 -535.0698 4591 0587
1550 -106.7305 248 2333 -0.43 0.672 -624 536 411 075
1851 -63.44114 244 111 -0.26 0.798 -572.6478 445 7655
1852 -201.0213 2583286 -0.78 0.448 -73%.8853 337.8427
1553 -135.733% 241 5208 -0.56 0.580 -63%3_5374 368 .06%96
15954 1763 .298 1085.33 1.62 0.120 -500.66 4027 .256
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Timegc.F
1338
1337
1338
1333
1340
1341
1342
1343
1344
1345
1348
1347
1348
1343
1350
1351
1352
1353
1354

Timefc. K
1336
1337
1538
13359
1540
1541
154z
1543
1544
1545
1548
1547
1545
1545
1550
1351
1852
1353
1554

cons

—.0141468
-.0913587
-.1063311
—.0438613
—-.0241785
-.0162411
.0753355
.0382243
.0370733
.0335751
.1D2726
.34713239
6026666
.24359426
.36TETE2
.268405
.5355867
.164237
—-2.792771

-.611121
.637883
.678583
.043602
.291015
L2T71331
. 4355624
. 4308004
.3414453
.0258404
-.2462594
-.4681653
-.8103853
-.08496594
-.3271307
-.2036824
-.8268425
. 4532783
7.207045

B oEE

13.9873

10326556
.1510385
18792353
.111Zz838
.1143537
.12457058
.1761323
1166844
1050203
.10830585
.1419185
.2B824935
.3293273
.2186174
.25459471
1677148
.2624107

.263211
1.472543

.323083
.318102
.647134
.385403
.545085
.B213639
.632311
.434874
.400823
.509344
.607313
.426383
.401271
.294753
.312885
.249207
2.31822
2.336016
3.898233

| T T % T T U T O T L N O R R (T O I T I I

182.1073

(= I = L = T == T = R R |

I
=

1
o o o oo oooo

| I I R IR I (|
O OO oo oooo

.14
.61
.57
.33
.21
.13
.45
.33
.35
.37
.72
.23
.B3
.12
.44
.60
.04
.62
.50

.18
.61
.63
.44
.51
.48
.17
.20
.14
.01
.05
.13
.34
.04
.14
.05
.36
.13
.85

.08

o o0 oo o0 o0 oo o0 oo ooo o oooo

[ I o Y o Y o Y o Y o Y O o Y o I o Y o Y o Y o Y o I o [ o Y e Y o R

.B33
.549
.578
. 638
.835
.898
.EE5
.T47
.128
.715
.478
.233
.143
.278
.165
J125
.055
.540
.072

.856
.548
.B33
. 666
.618
.B33
.870
.842
.B88
.9592
.926
.543
. 739
.971
.B83
.92%9
.725
. 548
.073

.5940

-.2303687
-.4070135
-.4983447
-.2755852
-.2627161
-.2760307
-.28T74661
-.2051746
-.1813833
-.1863545
-.1%33108
-.2421382
-.18425982
-.2120853
-.1641341
—-.081442
.0117925
.3848115
-5 _B865276

=7.542951
-6.369521
-3.843242
-3.932261
-4.017%4
-4 196748
-5.055342
-4 _EBEB2E7
-4 666538
-5.20856
-5.686282
-5.530764
-5.815348
-4.871824
-5.151785
-4 895446
-5.662566
-4.413565
-.9245257

-365.8832

.202075

.223102
.2BE56826
.1382725
.21435391
.2436085
.4473452
.2B1l6244
.2561497
. 2655047
.3987628
.9364041
1.183631
. 69397058
.8934866
.6182521
1.0823686
.T132854
.2797343

&6.320703
11.645239
7.20040%
6.0134686
6.599371
6.735941
5.926466
5.569858
5.343486
5.26024
.133763
.094434
.137378
.T01885
. 437404
. 488081
.008s81
.326122
15.33862

N o = = = = W= M

393.8577

(vi)  All coefficients (intercept and slope) vary over companies and time.

Our final model assumes that all the (intercept and slope) coefficients vary over both companies
and time. The model with the following specification really looks very formidable:
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L= a + oD+ p3Ds+ 4Dy + BiFis + oKy + Vi (D2 Fi1) + )5(D2 K1) +
V5 (D3 Fir1) + a(D3Kir-1) + )5 (Da Firt) + )6 (D Kirr) +
Mdy+ Aads+ ... + Aoodao + BiFis + BoKic1 + O (da Firt) + O (da Kip1) +
O (d3 Fir1) + Oy (d3 Kir1) + ... + Os7(dao Fir1) + O (dao Kir1) + Virs -..(10)
This model is estimated by typing
.reg I F Ki.ind i.Time i.ind#c.F i.ind#c.K i.Time#c.F i.Time#c.K

And the results are:
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reg I F K i.ind i . Time i.ind#c.F i.ind#c.K i .Time#c.F i.TimeHc K

Source b=3=1 df M5 Number of obs = B0
F{ &8, 11) = 55 .85
Model 6331633 .52 68 93334 6106 Probk > F = 0.0000
Residual 18513 .5286 11 1&83.04805 E-squared = 0.3371
2dy B-sguared = 0.3733
Total 6410147 .05 7% 81141 .101% Root MSE = 41.025
I Coef. Std. Err. t Bx|t] [95% Conf. Interwvall
F -.37056867 .1036748 -3.87 0.004 -.5987533 -.14z23801
E -3.8456539 .BT125587 -4 .41 0.001 -5.T76328 -1.328038

ind
=M 114.871 230.2471 0.50 0.628 —-391.8335 621.6418
us -306.8151 113 .5875 -2.87 0.0Z& -570.0254 -43. 6048
WEST -855.8763 172.4571 -4 .98 0.000 -1235.452 -476.3008

Time
1336 -82.43587 105.1064 -0.78 0.443 -313.77358 148.3018
1337 -170.1836 162.1731 -1.05 0.317 -527.1174 186.7302
1938 -182.5426 101.2365 -1.80 0.053 -405. 4548 40.40554
1335 -216.2866 102 .3248 -2.10 0.053 -447 8221 10.z4838
1340 -282.T7636 123.386 -2.2%9 0.043 -554.3343 -11.13284
1341 -29% 3507 111 .0047 -2.70 0.021 -543.6703 -55.030587
1342 -481 . 66598 145.3172 -3.1% 0.00% -TEZ.8314 -140.5082
1343 -639.4738 201 .1655 -3.18 0.00% -108Z2.236 -136.7115
1344 -631.2451 220.83914 -3.13 0.010 -1177.424 -Z05.0664
1345 =T736.4654 223.8735 -3.56 0.004 -128%.208 -303.7232
1348 -T755.3358 209 .3574 -3.60 0.004 -1217.513 -233.2867
1347 -916.7204 281.321 -3.25 0.008 -1537.224 -296.2164
1348 -107&.223 340.9232 -3.16 0.00% -1828.5%6 -327.8624
1345 -1103.2%6 346.7723 -3.18 0.00% -1866.537 -340.055%9
1350 -1163.5 351 .3863 -3.31 0.007 -1336.8%6 -330.1044
1351 -10%35.021 333.477 -3.28 0.007 -1828.353 -361.0438
1352 -1301.748 393.7787 -3.31 0.007 -2168.443 -435.053%9
1353 -1582.253 455 .4728 -3.47 0.005 -2584.742 579 .764
1354 -2425.422 588 .0215 -4.12 0.ooz2 -371%. 643 -1131.155
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indgc F
=M
us

WEST

indgc_ K
=M
us

WEST

Timefc.F
1336
1337
1338
1335
1340
1341
1342
1343
1344
1345
1348
1347
1348
1345
1350
1351
1352
1353
1354

Timegc K
1338
1337
1338
13339
1340
1341
1342
1343
1544
1345
1348
1347
1348
1543
1350
1351
1352
1353
1354

_cons

.1831697
.2123048
. 4368447

-.645235
.T359231
5.434994

.13459252
L1522291
.1513868
L2076363
.23724139
L28T0278
.3231763
.3006346
L29324564
.2905874
.3125331
.4560514
. 6594446
.5030536
.B3T78037
.5024197
.59652398
L3727521
1.0839454

.394761
.862334
.66TZ8B6
. 406562
.697141
.T31305
.032671
.664144
.TT7T3855
.393232
. 363707
062844
. 608075
.0&39421
3.90444
.0354391
.007731
. 985038
.B32048

e L e e e W W W R RYOR R W

L e =

861.3578

.073258
.0584225
.2157061

.3513944
.1810003
2.0B83358
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2.2 The Fixed Effects (Within-groups Regression) M odel

The main problem with the above fixed effects (LSDV) model, as is clear from the above, is that
it hosts too many regressors; this makes the model numerically unattractive and infects it with
the problems of multicollinearity. Moreover, as the number of regressors increases, the degrees
of freedom fall, and the error variance rises, leading to Type 2 error in inference (not rejecting a
false null hypothesis). Another problem is that this model is unable to identify the impact of
time-invariant variables (such as sex, colour, ethnicity, education, which are invariant over time).
Again, the assumption that the error term follows classical rules [that u; ~ N(O, 02)] can go
wrong. For example, for a given period, it is possible that the error term for GM is correlated
with the error term for, say, US or both US and WEST. If it so happens, we have to deal with it
in terms of the seemingly unrelated regression (SURE) modelling aka Arnold Zellner (see Jan
Kmenta 1986 Elements of Econometrics).

However, there is a simple way to estimate the fixed effects model without using dummy
variables. Below we describe this.

Let us consider a simple one-way error components panel data model (with differential intercepts
across individuals, which necessitate including dummy variables in estimation equation):

Yei=a+ BXu+vy; i=1,2,..,N; t=1,2,...,T. ...(2.2.1)
v OIID(0, 6%); Cov(X;, vis) = 0; O 7 and s.
Averaging the regression equation over time gives
Y, =a; + BX; + 7, ...(22.2)
where ¥; = %Y, /T, X; = X X;¢/T, and v, = ¥, v, /T.
Now subtracting the first (2.2.1) equation from the second (2.2.2), we get
(Yie = Vi) = fXie — X)) + (vie — 7). ..(2.2.3)

This deviations from means transformation is called Q transformation (Baltagi, 2008:15), which
wipes out the differential intercepts. The OLS estimator for £ from this transformed model is
called within-groups FE estimator, or simply within estimator, as this estimator is based only on
the variation within each company; this is exactly identical to the LSDV estimator. Since our
panel model (2.2.1) is an Ancova model, the within estimator is also called covariance (CV)
estimator. ~ The  individual-specific  intercepts are  estimated  unbiasedly  as:

o =Y —pX;, i=1,...,N. (224
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We can also have an OLS estimator for £ from the mean equation (2.2.2); this estimate is known
as the between-group FE estimator, or simply between estimator.

All the statistical packages report the within estimator for the FE model. Stata has an additional
option to give the between estimator also.

Note that we have estimated all the LSDV fixed effects models by OLS, without setting our data
to panel data mode, that is, without invoking the xtset command. Now once we have xtset our
data (as we did earlier), we can have the Stata within-groups fixed effects estimation by going to

Statistics — Longitudinal/panel data — Linear models — Linear regression (FE, RE, PA, BE)

When the xtreg window appears, enter the dependent (I) and independent (F, K) variables and
mark the model type as fixed effects. We can also type the command

.xtreg [FK, fe

The output is:

. xtreg I F K, fe

Fixed-effects (within) regression Number of obs = 80
Group wariable: ind Number of groups = 4
B-3g: within = 0.8062 Cbks per group: min = 20
between = 0.7254 avg = 20.0
overall = 0.7548 max = 20
Fi{z2,74) = 153 .96
corriu_i, ¥b) = -0.0822 Prob > F = 0O.0000
I Coef_ Std. Err. t B>|t| [95% Conf. Interwvall
F 1060364 .0172848 6.14 0.000 .0T16557 .140537
E .347562 0266309 13.08 0.000 .2944388 .4006252
_cons -63.86518 37.06412 -1.88 0.063 -143.717 3.986688
sigma u 138.36268
sigma e 75.401517
rho .T7254813 {fraction of wvariance due to u_ i)
F test that all u_i=0: Fiz, 74) = 66.93 Frob > F = 0.0000

Note that the results here on the marginal effects are identical with those of the FE LSDV model,
as already indicated. The estimate of the constant intercept however is different and it is
significant at 10% only here.
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The xtreg command in Stata reports three R-squares, within, between and overall. Note that
these reported R-squares do not share many of the properties of the OLS R’ The common
properties of OLS R? include the following:

1 R? is equal to the squared correlation between the dependent variable (Y) and its
estimate (Y); and

(ii) R? is equal to the proportion of the variation in Y explained by its estimate (¥);
formally defined as R’ = Var(Y) / Var(Y), and lying in the range of 0 and 1. These
variances are reported in the text books in terms of the sum of the squared deviations,
or simply, sum of squares (SS): R%= Explained (¥) SS / Total (Y) SS.

It is important to note that this identity of the definitions is a special property of the OLS
estimates (see Johnston, 1972:34-35); in general, the squared correlation between a variable (Y)
and its estimate (¥) need not be equal to the ratio of the variances, and the ratio of the variances
need not be less than 1.

As already noted, the command xtreg, fe estimates (2.2.3) and (2.2.4) by OLS; hence its reported
R? within has all the properties of the usual R%. Other two R’s are correlations squared,
corresponding to the between estimator equation and an overall equation with a constant
intercept. Thus the usual R? for our FE model is 0.8062, less than those for our earlier LSDV
models. The overall R? is similar to that of the pooled regression. The Stata reports a poolability
test at the bottom of the results; Stata uses u_i for our y;; the F-test rejects the null of zero
company heterogeneity. Hence, between the pooled regression and FE model, we select the
latter.

Stata also reports sigma_u, sigma_e, and rho; note that Stata’s u is our u (intercept heterogeneity)
and e stands for the random error term v in our one-way error component model. The FE model
assumes that the y; (or Stata’s u_i) are formally fixed, having no distribution. Hence, we need
not bother about this estimate. However, in the random effects model, this estimate does natter.

Estimating Panel Effects

We can have the estimates of the individual (cross section or panel) effects in Stata; first estimate
the FE model using the command

.xtreg [ FK, fe
Then type in the command area
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. predict IE, u

This will generate the individual effects (IE) that can be viewed in the Data Editor (Edit). Note
that we can give any name , instead of IE, for example, the command

. predict pe, u

will give the same series with name pe (panel effects).

The Random Effects M odel
Let us consider a simple one-way error components model;
Yit: 0’+IBX,,; + Ujr l: 1, 2, ooy N, t= 1, 2, ey T. e (3)

Ujp = Ui + Vir .4

In a FE model, the y;s are assumed to be fixed. However, the main problem with the FE model is
its specification with too many parameters, resulting in heavy loss of degrees of freedom. This
problem can be averted if the w;s are assumed to be random; this gives us a random effects (RE)
model with

vi OIN(O, 6°);  ; OTID(O, g

COV(V,‘;, ﬂi) =0 COV(V,‘;, X,‘t) =0 COV(X,';, ﬂi) =0. .. (5)

Individual error components are not correlated with each other, and not autocorrelated across
both cross-section and time series units.

The presence of & and y; in the equation means that the sample of our four companies are drawn
from the same population and have a common mean value for the intercept (Q); the individual
differences in the intercept values of each company are reflected in the error term ;.

Now let us consider the statistical properties of the composite error term u;; = u; + vir:
Evidently, E(u;;) = 0; and

Var(u;) = UHZ + Uvz (sum of within and between component variances).
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Here we have a significant result. Note that if J#Z = 0, then Var(u;) = Jvz; and there is no
difference between the pooled regression model and the RE model; we can pool the data and run
OLS. Hence the test on the null J,f = 0 can be taken as a poolability test in the context of pooled
regression vs. RE model. Such a test is available in Breusch-Pagan test, discussed below.

It is also evident that the variance of the composite error term [Var(u;) = Jf + Jv2] 1S constant
and hence, the composite error term is homoscedastic for all i and #; but serially correlated over
time only between the errors of the same company (unless Uﬂz = 0). That is, under the
assumptions in (5),

Cov(un, ) = E[(ui + vi)(j + vi)] = G + &, for i =j, t = s [=Var(uy)]
= E(,u,-z) = Jﬂz, for i =j, t # s (same company, over time)
= 0, otherwise.
And the correlation coefficient of u; and u;, is given by
Aui, ui) =1, fori=j, t =5 [=Var(u;,)/ Var(u;)]
= 0#2 /(J,,2 + Jf), for i =j, t # s (same company, over time)
= (), otherwise.

Thus the errors of each company are correlated over time; hence we call this correlation equi-
correlation. The presence of such serial correlation makes the composite error term nonspherical,
and the OLS estimation, inefficient.

In matrix notation, the OLS estimate of f is given by Bo s =& X)~1X'Y, However, in the panel
context, it is often the case that the OLS assumptions about the spherical error will not be
accurate, as shown above. If we knew the shape of the errors (that is, their variance-covariance
matrix) we could simply use it to modify our data and then apply OLS to the transformed data;
this would give the generalized least squares (GLS) estimates. If the shape of the errors is Q (an

NT x NT variance-covariance matrix of the errors), the estimate of f is given by ﬁGLS =

(X' 7'X)"1X'(27'Y. In reality, often we might not know the shape of the errors and we could
only use an estimate of €; this would give the feasible generalized least squares (FGLS)

estimates: ﬁFGLS = (X’f?_lX)_lX'fQ_lY.

In the presence of the (serially correlated) non-spherical error in our RE model, we need to
modify our data using the information on the shape of the non-spherical error, and then apply
OLS to the transformed data. This GLS estimator of the RE model is obtained by applying OLS
to the data after the following transformation into quasi deviations:
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ie — ) = (1 = Oa+ pX; — 6X;) + {(1 — Ou, + (v — 65},

where

0=1- [&/(c}+TcR).

This is given without proof in Hausman (1978:1262); also see Johnston (1984:402).

The term 6 gives a measure of the relative sizes of the within and between component variances.
We have the following results on the transformed quasi-deviation form model:

1. If 8= 1, the RE-estimator is identical with the FE-within estimator; this is possible when
Jvz = 0, which means that every v; is zero, given E(v;;) = 0; in this case the FE regression
will have an R? of 1.

2. If 8= 0, the RE-estimator is identical with the pooled OLS-estimator; this is because, g,
= 0, which means that y; is always zero, given E(y;) = 0.

2

Normally, 8 will lie between 0 and 1.

If Cov(Xj;, ui) # 0, the RE-estimator will be biased. The degree of the bias will depend on the size
of 8 If Jf is much larger than Jvz, then @ will be close to 1, and the bias of the RE-estimator
will be low.

One major difficulty with RE estimator is that its small sample properties are unknown; it has
only asymptotic properties.

Now let us turn to estimating the RE model for our data. Once we have xtset our data (as we did
earlier), we can have the Stata random effects estimation by going to

Statistics — Longitudinal/panel data — Linear models — Linear regression (FE, RE, PA, BE)

When the xtreg window appears, enter the dependent (I) and independent (F, K) variables and
mark the model type as GLS random-effects. We can also type the command

.xtreg I FK, re

The output is:
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. xtreg I F K, re

Random-effects GLS regression Number of obs = 80
Croup wariskle: ind Number of groups = 4
BE-3g: within = 0.8062 Cbks per group: min = 20
between = 0.7254 avg = 20.0
overall = 0.7548 max = 20

Wald chiz{2) = 316.53

corriu i, X = 0 {assumed) Prob > chiz = 0.0000
I Coef . S5td. Err. = Ex|=z| [95% Conf. Interwvall

F 105936862 .0166155 6.38 0.000 .07340058 .1385313

E .3470571 .0Z2652Z24 13.0% 0.000 .2950742 .39304

_cons -63.39433 B3.17433 -0.83 0.404 -232.4144 93 .62561

sigma_u 150.78857
sigma e 75.401517

rho .73336332 {fraction of wariance due to u_i)

Note that the marginal effects and intercept are almost equal to those of the FE-within model
reported above; however, the intercept here is not at all significant. Also note that all the R’s are
equal to those of the FE-within model. Since the RE estimator has only asymptotic properties,
the F statistic for overall model significance is not reported here; rather, we have the results from
a Wald chi-square test that indicates that the model as a whole is (all the coefficients taken
jointly are) significant.

Stata obtains the result by assuming that the correlation of x; and the explanatory variables is
zero, or Cov(Xj;, ;) = 0. This is reported as corr(u_i, X) = 0 (assumed).

Stata also reports sigma_u (our u), sigma_e (our v), and rho. We have g, = 150.78857 and o, =
75.401517 and rho = 0.79996932. Stata reports rho as “fraction of variance due to u_i";
remember our definition of this correlation: p= J,f /( J,f + G;%), the proportion of the variance of
u; in the total variance of the error components. Note that we do not have the estimate of theta,
used in the quasi-deviation in the results above, because we have not explicitly specified for it;

we can estimate it, using the formula 6=1-— \/ 03/(0% +To?), and the values of g, =

150.78857 and g, = 75.401517 and T = 20 as theta = 0.8889, somewhat close to unity. If we
want the estimate of theta to be reported in the results, then we have to type

. xtreg I F K, re theta
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And the result is

xtreg I F K, re theta

Random-effects GLS regression

Number of oba = 80

Group wariable: ind Number of groups = 4
B-3g: within = 0.8062 Cbks per group: min = 20
between = 0.7234 avg = 20.0
ocverall = 0.7548 max = 20
Wald chiZz (2) = 316.53
corriu_ i, X) = 0 {assumed) Prob > chiZ = 0.0ooo0
theta = .88887837
I Coef . Std. Err. -1 Bx|z| [95% Conf. Interwvall
F 1053662 .01&86155 6.38 0.000 .0T734005 .1385313
E . 3470571 .0Zeb224 13.0% 0.000 L2950742 .39304
_comns -69.394339 83.174533 -0.83 0.404 —-232.4144 93.62561
sigma u 150.78857
gigma e 75.401517
rho .T9936932 {fraction of wvariance due to u_i)

We have seen that if J,,z = 0, then the variance of the composite error term reduces to Var(u;) =

Jvz; and there is no difference between the pooled regression model and the RE model; we can

pool the data and run OLS. Now given that g, = 150.78857 here, we cannot do this. However,
we can have a formal test in terms of Breusch-Pagan poolability test in the context of pooled
regression vs. RE model by going to

Statistics — Longitudinal/panel data — Linear models — Lagrange multiplier test for random

effects

or, by typing

. xttestO

The result is:
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. xttestl

Breusch and Pagan Lagrangian maltiplier test for random effects

I[lind,t] = Eb + ulind] + el[ind, t]

Estimated results:

Var 3d = agrt (Var)
I 81141 .1 284 8528
= 5685.38%9 T75.40152
u 22737 .1% 150. 7886
Test: Variu) =0
chibkarZ (01) = 378.65
Probk ¥ chibarz = 0.0000

We reject the null of U,,z = 0; we cannot pool the data, but select the RE model.

We have earlier seen that in the context of pooled regression vs. FE model, we have favoured the
FE model, and now in the context of pooled regression vs. RE model, we have selected the RE
model. Now the question is: Which one is better, FE or RE?

FE- or RE-M odelling?

For most of the research problems, there is room to suspect that Cov(Xj;, ;) # 0. That means the
RE-estimator will be biased. Hence, it would be wiser to use the FE-estimator to get unbiased
estimates. The RE-estimator, however, provides estimates for time-invariant covariates. Many
studies would attempt to analyse the marginal effects of certain variables after accounting for the
effects of sex, race, etc. This is possible only with the RE modeling. Suppose the cross section
units are individual workers, and we want to study the workers’ earnings (Y;), including a
categorical variable for race (Z;) in the model:

Yi= ,31Xiz + ,BZZi + Uit 5

wp =i+ vie, v OIDO, ¢%); i=1,2,..,N; t=1,2,...,T.

In the FE model, it would be impossible to estimate /3, because it would not be possible to
distinguish between the worker-specific constant term (u;) and the effect of the time-invariant
variable, race (Z;); the two would be perfectly multicollinear. Since RE accepts y; as a random
variable, it easily allows for the estimation of /%, by averting this multicollinearity.
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Judge, et al. (1988) propose the following simple rules:

1. If T is large and N small, there is little difference in the parameter estimates of FE and
RE models. Hence computational convenience prefers FE model.

2. If Nis large and T small, the two methods differ. If cross-sectional units in the sample are
random drawings from a larger sample, RE model is appropriate; otherwise, FE model.

3. If the individual error component, u;, and one or more regressors are correlated, RE
estimators are biased and FE estimators unbiased

4. If N is large and T small, and if the assumptions of RE modeling hold, RE estimators are
more efficient.

In most applications the assumption that Cov(x;, 1) = 0 may be wrong, and the RE-estimator
will be biased. “This is risking to throw away the big advantage of panel data only to be able to
write a paper on "The determinants of Y"”. (Josef Briiderl, 2005: Panel Data Analysis).

However, we can have a test for RE vs. FE, in terms of the null hypothesis Hy: E(uit| Xi) = 0.
Note that this null implies Hy: E(; | X;) = 0. Hausman (1978) proposes to compare ,BRE and ﬁFE ,

both of which are consistent under the null Hy: E(u;| X)) = 0. In fact, BFE is consistent whether
the null is true or not, whereas ﬁRE is best linear unbiased estimator (BLUE), consistent and

asymptotically efficient under the null, but is inconsistent when the null is false. Note that any
test statistic for a mean difference comparison consists in the ratio of the difference between the
statistics to its standard error, or the squared ratio in asymptotic cases. Thus a test statistic in our
case can be based on the mean difference § = ,BRE - ﬁFE; under the null, the probability limit of
this value is: plim § = 0, and Cov( ,BRE, q) = 0. The variance of this mean difference is Var(q) =
Var(,BRE) - Var(BFE). Thus the test statistic for Hausman’s specification test is h =
4'[Var(§)]7g, where § = ﬁRE — BFE and Var(g) = Var(,BRE) - Var(ﬁFE), to test the null Hy:
E(u; | X;) = 0 against the alternative H,: E(; | X;) # 0. Under the null hypothesis, this statistic is

distributed asymptotically as central chi-squared, with k (= number of parameters) degrees of
freedom.

Now we turn to conducting the Hausman test to see whether a fixed-effects or random effects
model is more appropriate for the Grunfeld data that we consider. The procedure in Stata is as
follows:

Estimate the FE model by typing
.xtreg I FK, fe

And store the result as fe by typing
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. estimates store fe

Then estimate the RE model by typing
.xtreg I FK, re

And do the Hausman test by typing

. hausman fe

The output is

. hausman fe

— Coefficients

k) {B) {b-B) agrt (diag(V_b-V_B))
fe - Difference 5 E_
F 10603964 1059662 .0001302 .0047634
E . 347562 .3470571 .0005043 .00Z4016
b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg
Test: Ho: difference in coefficients not systematic
chiz{2) = (b-B)'[{V_b-V_B)~{-1)](b-B)
= 0.07
Erob>»chiZ = 0.3660

The test fails to reject the null, as the p-value (Prob>chi2) is greater than 5%. Note that the
Hausman test is a test of

Hy: random effects would be consistent and efficient, versus
H;: random effects would be inconsistent.

Hence we select the RE model. The tests imply that the company effects though present in the
data set are not correlated with the explanatory variables, and can very well be taken as random;
the RE estimators will be consistent and efficient.
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The statistical testsin the context of panel data analysisin a nutshell

FE vs. OLS RE vs. OLS Your Model
Ho === -p Hp = Var(u;) =0
F or Wald Test Breusch-Pagan Test
Honot rejected Honot rejected Pooled OLS
= No FE = No RE
Hy rejected Ho not rejected FE Model
= FE = NoRE
Hy not rejected Horejected RE Model
= No FE = RE

Hy rejected

= FE

Hy rejected

= RE

Choose one based
on Hausman test.

“There is no simple rule to help the researcher navigate past the Scylla of fixed
effects and the Charybdis of measurement error and dynamic selection. Although
they are an improvement over cross-section data, panel data do not provide a
cure-all for all of an econometrician’s problems.” (Johnston and DiNardo 1997:

403).
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