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1 Introduction

The definition of dynamic pricing (DP) in airline markets, both in the economic and opera-

tional research academic literature, as well as in the press, has been so far intrinsically related

to the description of how fares on sale evolve over time (McAfee and te Velde, 2007). The

world-wide success of Low Cost Carriers (LCCs) has reinforced the view that the temporal

fluctuations of observed fares constitute the central part of a carrier’s Revenue Management

(RM) system (McGill and Van Ryzin, 1999; Talluri and van Ryzin, 2004).

Current literature provides overwhelming evidence in favor of a fare fluctuation, as well

as of a temporally increasing fare path (Bergantino and Capozza, 2015; Bilotkach et al.,

2010; Gaggero and Piga, 2010; Stavins, 2001). Such a finding is, however, extremely at odds

with standard theoretical models predicting a declining time-path of fares, to the point that

McAfee and te Velde (2007), when commenting the findings from their own data analysis,

state that those models are empirically non-validated.

In this paper we address such a divergence head-on by developing a theoretical model

whose equilibrium properties are consistent with the empirical findings based on an original

dataset of airline fares with unique characteristics. Our new theoretical model emphasizes

the role of two forces, which are at work simultaneously to determine the fares of every

seat available on a flight. First, airlines sell a highly perishable service. As pointed out by

McAfee and te Velde (2007) and Sweeting (2012), fares should decrease as the departure

date approaches, because so does the option value of waiting to sell to only higher demand

customers (“temporal dimension”). Second, airlines sell a limited number of seats. Thus,

fares should increase as the number of seats tend to reduce, as scarcity increases (“capacity

dimension”) (Puller et al., 2009; Talluri and van Ryzin, 2004). These two forces operate in

different directions, so their relevance should be based on the extent by which their expected

impact conforms to the actual temporal patterns of fare data.

A major limitation of the studies in the airline pricing, which is also at the core of the

divergence identified but not solved in McAfee and te Velde (2007), rests on the fact that they

only rely on transaction fares, which are the joint outcome of both the temporal and capacity

dimensions. We argue that to study the problem in a more suitable setting, it is necessary

to abandon the analysis based on a single fare (notably, that of the seat on sale) so far used

in the literature and adopt, as a building block, the notion of a fare distribution as in Dana

(1999) and Gallego and van Ryzin (1994). Loosely speaking, the focus on a fare distribution

implies that, during the booking period, the airline does not limit itself to define only the

fare of the seat on sale, but also of all the remaining seats on the flight. We document that

this corresponds indeed to the practice of many airlines, which, on their computer reservation
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systems, post fares for all the seats available on a flight. The experimental design of our data

collection exploits such a feature and generates a dataset that we use to model the pricing

of as many seats in the distribution as we could obtain from the website of a large European

Low Cost Carrier.

The equilibrium solution of the theoretical model is characterized by two main proper-

ties. First, to reflect the capacity dimension, the optimal fare distribution is increasing across

seats. Second, the temporal dimension operates so that each seat in the distribution presents

a declining value over the booking period. Thus, the model extends the theoretical results in

Dana (1999), by allowing for the carrier’s possibility to modify its fare distribution in differ-

ent, but discrete, time intervals. To emphasize the empirical implications of the theoretical

setting, this study is the first in the literature to show how fare distributions are shaped

in practice. Our simulated results conform to our data showing that fare distributions are

stepwise increasing: the airline arranges seats into groups, denoted as “buckets”, where each

bucket is defined by an increasing price tag and a variable size. Such distributions are found

to be used, with no exception, in all the 37,489 flights in our sample.

Through the characterization of such distributions at a flight’s level, we can extend and

better define DP in airline markets. Our assessment of what constitutes DP is different from

the one used so far in the literature. Indeed, due to the way the capacity dimension works in

practice, we do not classify fare increases over time as DP when such increases arise from a

movement along the distribution. This is because most fare increases can occur without any

change in the distribution: when a bucket is sold out, the seats allocated to the next higher

bucket are put on sale. Instead, we consider as an instance of DP only a situation involving

an identifiable change in the fare distribution. That is, we rule out the fare variations that so

far have taken a central role in the literature on DP. Based on this definition, distributions

remain, on average, unchanged for about 2-3 consecutive days.

Furthermore, the data reveal that DP takes many forms and shapes, involving not only

fare variations but, most importantly, changes in the distribution that result in variations of

the buckets’ size, as well as, occasionally, the creation/deletion of new buckets. In particular,

we show how the temporal dimension operates by giving rise to a form of DP that may not

involve any change in the fare for the next seat on sale. This happens when the carrier shifts

some seats from higher to lower-priced buckets, thus generating a decreasing profile for all

the fares in the distribution, in line with theoretical predictions.

Our descriptive identification of new forms of DP provides a useful backdrop for the

econometric analysis, which uses insights from the theoretical model to tease out the separate

impact of the capacity and the temporal dimensions on online posted fares. With regards

to the latter dimension, to our knowledge, this is the first study to provide a combined
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theoretical and empirical evaluation of the temporal dimension as revealed by a declining

option value (McAfee and te Velde, 2007). Thanks to the focus on a fare distribution, we

can track the evolution of the fare of all its seats over time, by defining a unique and time-

invariant position of each seat in the distribution. The analysis provides strong empirical

support in favor of the theoretical models predicting a declining option value. While a similar

finding has been shown in Sweeting (2012) for the price of single baseball ticket sold on the

second-hand market, a crucial difference here is to show that, at the same time, i) the carrier

adopts a stepwise increasing fare distribution designed to induce the upward movement of

fares consistent with the capacity dimension and, ii) it engages in DP to accommodate the

declining value of all the seats in the distribution. This practice is carried out, as previously

mentioned, by shifting seats initially allocated to the higher-priced buckets to lower-priced

ones, and, hence, represents a mechanism that may lead to the disappearance of the higher-

priced buckets from the distribution. Because the upper buckets are normally not observed

by customers, the airline can thus engage in “hidden” DP in ways that effectively reduce, if

necessary, the average selling fare of all remaining seats, without revealing to have done so.

Interestingly, contrary to the common belief that airlines rely on DP to charge higher fares,

we highlight how DP can achieve the opposite effect.

To assess the impact of the capacity dimension, we test whether the fare distribution is

increasing across seats’ positions, as predicted by the theoretical model. We find that the

capacity dimension plays a significant role in driving fares upwards: on average, the sale of

an extra seat (i.e., a move to the right in the fare distribution) is accompanied by a fare

increase of about 1.6-2.0 percent, depending on specifications (see also Alderighi et al. (2015)

for a similar result).

Finally, similar in spirit to Gerardi and Shapiro (2009), we reconcile our approach to that

traditionally followed in the literature of airline pricing, and in McAfee and te Velde (2007)

in particular, by modelling only the fare of the first seat on sale, i.e., the one customers can

easily observe when they issue the query for a ticket. In specifications where we omit the

seat position, that is, the number of seats still available on the flight, we also find that fares

of the seat on sale have an increasing temporal path. This is due to the effect of the capacity

dimension: as time passes, the plane fills up and the fare moves up accordingly. Importantly,

when we include the seat position, and thus control for a flight’s load factor at the time the

fare was posted, the estimates continue to provide support to the theoretical prediction of a

declining option value.

The rest of the paper is structured as follows. The next section revises the main contri-

butions of both theoretical and empirical literature. Then the theoretical model is presented.

The collection of fare data is described in Section 4 followed by real-world examples of fare
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distributions and then by a descriptive analysis on dynamic pricing. Section 6 carries the

econometric investigation out, testing the properties of the theoretical model’s equilibrium

solution described in Section 3. Finally, Section 7 summarizes and concludes.

2 Literature review

In the economics literature, DP is associated to a price change that is directly linked to at

least one intervening factor or event that induces a revision of the pricing approach followed

by the firm. For instance, the decreasing prices of Major League Baseball tickets in secondary

markets in Sweeting (2012) constitute a clear indication of an active DP intervention by sellers

in the form of the decision to relist the ticket at a lower price.

In airline markets, the way fares are set plays a central role in any empirical analysis aimed

at defining and identifying DP; Borenstein and Rose (1994) distinguish between systematic

and stochastic peak-load pricing as sources of fare dispersion in the U.S. market. In the

former, the fare variation is based on foreseeable and anticipated changes in shadow costs

known before a flight is opened for booking, while the latter reflects a change during the

selling season in the probability that demand for a flight exceeds capacity. In this sense, DP

and stochastic peak-load pricing may be considered as synonymous. More importantly, the

distinction in Borenstein and Rose (1994) can be related to carriers’ RM activity, intended

broadly as a process of i) setting ticket classes, i.e., fare levels and associated restrictions

(refundability, advance purchase, business vs. economy, etc.) and ii) defining the number

of seats available at each fare.1 RM thus encompasses both a systematic and a dynamic

pricing dimension, where the former can be seen as the outcome of the process just before

a flight enters its booking period, and the latter represents subsequent changes over time to

the initial composition of ticket classes both in terms of fare levels and number of seats in

each class.

As far as the systematic approach is concerned, Dana (1999) illustrates how, in a theo-

retical model with demand uncertainty and costly capacity, it is optimal for firms to commit

to an increasing fare distribution, where each fare reflects the fact that the shadow cost of

capacity is inversely related with a seat’s probability to be sold. Puller et al. (2009) refer to

this as “scarcity-based” pricing. The main ensuing testable prediction from Dana’s model

is that the fare charged should reflect the ranked position of the seat on sale in the fare

distribution. To implement such a test, it is therefore necessary to know a flight’s load factor

at the time a fare is either posted online or a ticket is sold. This issue has been empirically

1RM involves a number of ancillary activities and techniques useful in the process (McGill and Van Ryzin,
1999; Talluri and van Ryzin, 2004).
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tackled either by the use of web crawling methods (Alderighi et al., 2015), or of seat maps

posted by online travel agents (Clark and Vincent, 2012; Escobari, 2012). All these works

provide evidence in support to the hypothesis of fares increasing as a flight fills up. Interest-

ingly, Alderighi et al. (2015) derive their results by using two fares, the seat on sale and the

last seat in the distribution; their approach is further extended in the present work, where

we model the fare for all the seats in the fare distribution.

Because in Dana (1999) firms cannot change the initial distribution they set, the model

cannot provide any theoretical prediction on how firms would modify the fare distribution

over time. That is, would all fares start low and then increase or start high and then

decrease? The question of the optimal temporal profile of fares is generally addressed in the

operational research literature surveyed in Talluri and van Ryzin (2004) and in McAfee and

te Velde (2007). A drawback in this literature is that, unlike Dana (1999), either fares or

seat inventory levels are treated as exogenous. In fare-setting models the focus is on the

opportunity cost of selling one unit of capacity, i.e., the value not-to-sell the unit today and

reserve it for a future sale. As shown in Sweeting (2012), under standard conditions common

to most models, the value of the option not-to-sell is expected to fall over time, leading to

a similar prediction for fares. However, because such a prediction arises from models that

treat seat inventory as exogenous, it is not possible to extend it directly to the case where the

airlines adopt, as the empirical literature suggests, a pricing system based on the definition

of a fare distribution over capacity units. In the theoretical model of the next Section, we

show that if airlines can revise the fare distribution more than once, then under standard

assumptions of demand, customers’ evaluations and arrival rates being constant over time,

the fares of all the seats are expected to decline over time (temporal dimension).

Various reasons explain why fares could increase over time. First, offering advance-

purchase discounts can be an optimal strategy when both individual and/or aggregate de-

mand is uncertain (i.e., individuals learn their need to travel at different points in time

and airlines cannot predict which flight will enjoy peak demand), and consumers have het-

erogenous valuations (e.g., they either incur different “waiting costs” if they take a flight

that does not leave at their ideal time or they simply value the flight differently).2 Second,

the revenue management models that predict a declining option value assume a constant

distribution of willingness to pay, and therefore do not account for the fact that business

travelers tend to book at a later stage (Alderighi et al., 2016). Third, those models assume

an exogenous demand process and thus abstract from the presence of strategic buyers, i.e.,

those who maximize long-run utility by considering whether to postpone their purchases

2See Gale and Holmes (1993, 1992), Dana (1998) and Möller and Watanabe (2010).
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hoping to obtain a lower fare. In a model characterized by uncertainty, advance production

and inter-temporal substitutability in demand induced by strategic behavior, Deneckere and

Peck (2012) predict that the prices set by competitive firms are martingales, i.e., they do not

follow a predictable pattern. An often observed approach to discourage strategic waiting is

to commit to a nondecreasing price temporal path (Li et al., 2014).

The present work makes the novel point that the capacity dimension is the driving force

pushing the fare of the seat on sale upward, although with occasional markdowns consistent

with the prediction in Deneckere and Peck (2012). It does also investigate the extent by

which DP is applied by the carriers to take advantage of the larger proportion of business

buyers during the last week before a flight’s departure.

3 Theoretical background

In this Section we offer a stylized model of RM which translates some key elements of RM

practices into economic terms. First, carriers sell multiple indivisible units (seats). Second,

carriers charge a very limited number of fares (holding class fixed). Our data (see below)

suggest that there are about 12 to 18 different economy fares in each flight over the entire

selling period. Third, carriers price in distribution, that is, in each period they assign a fare

to all the seats in a flight; this is because, in each period, a carrier can sell more than one seat

and possibly all the seats of the flight. Fourth, fare distributions remain fixed over discrete

time intervals. Escobari et al. (2016) report evidence suggesting airlines revise their prices

overnight; in our data, distributions last unchanged for two-three days on average.

A carrier operates a single flight with N > 1 seats on a monopolistic route. The flight

is sold over T ≥ 1 selling periods: t = T, T − 1, . . . , 2, 1 describes the number of periods

remaining before departure (t = 1 is the last selling period and t = T is the first one), and

t = 0 is the departure date. For each t, the carrier commits to a sequence of fares for all the

M ≤ N remaining seats of the flight. Thus, until seat m = M, . . . , 2, 1 has not been sold,

each traveler presenting in selling period t faces fare p (m, t). Within the selling period t,

once seat m has been sold, then the next fare on offer becomes p (t,m− 1). At the end of

the selling period t, the unsold seats are offered in the next period, t− 1, until t = 1. Seats

available at the end of the last selling period remain unsold.3

In each period t, a set of consumers h = 0, 1, 2, ..,∞ arrives sequentially. The probability

that the first consumer arrives in t is ϕ1,t ∈ (0, 1), and that consumer h+1 arrives conditional

3The use of reverse indexes for both periods and seats simplifies the notation and the proofs. It also
establishes a direct link to the empirical part of the paper, where the position of seats is counted by starting
from the last one.
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on the fact that consumer h has already appeared is ϕh+1,t ∈ (0, 1). Consumer (h, t) is myopic

and her willingness to pay is a random variable θh,t, with (right-continuous) cumulative

distribution Fh,t on the compact support Θ, with
¯
θ = inf Θ > 0 and θ̄ = supΘ < ∞.4

We make the following simplifying assumptions: for any h = 0, 1, 2, ..,∞ and t = 1, .., T ,

ϕh,t = ϕh+1,t = ϕ ∈ (0, 1); Fh,t = Fh+1,t = F . Thus, we assume that the arrival process is

memoryless and consumers have the same ex-ante evaluation. The probability of selling the

first available seat at the fare p is:

q (p) = ϕ (1− F (p))
∞
∑

h=0

(ϕF (p))h =
ϕ (1− F (p))

1− ϕF (p)
∈ [0, 1] , (1)

where ϕ (1− F (p)) is the probability that consumer h arrives and buys at fare p provided

that consumers 1, .., h− 1 have previously refused to buy at the same fare; and (ϕF (p))h is

the probability that consumers from 1 to h arrived and did not buy.

The carrier’s maximization problem is denoted by the following Bellman equation:

V (t,M) = max
p∈Θ

{q (p) [p+ V (t,M − 1)] + (1− q (p))V (t− 1,M)} , (2)

with boundary conditions V (t, 0) = 0 and V (0,M) = 0, for any t ∈ {0, .., T} and

M ∈ (0, .., N). Unlike the existing literature, the novel approach in equation (2) assumes

the possibility that more than one seat can be sold within each t: this implies the need to

set always a (possibly different) fare for all the seats on an aircraft. Moreover, equation (2)

entails a trade-off between selling now at least one seat (gaining p and the revenue flow coming

from the remaining seats, V (t,M − 1)), and keeping the capacity intact and postpone the

sale to the next period, gaining V (t− 1,M).

Note that because the solution of the maximization problem can be reached backwards

and recursively, the optimal fare of seat m ≤ M in period t when there are M seats avail-

able, p∗(t,m,M), is independent of the total number of available seats M in period t, i.e.

p∗(t,m,M) = p∗(t,m,M + 1), for any M = 1, . . . , N − 1 and t = 1, . . . , T . This property is

a consequence of the assumption that the arrival process is memoryless. Indeed, by having

ϕ depending on the number of travellers already arrived during the period implies that the

optimal fare is also affected by the total number of available seats at the beginning of the

period and, in general, p(t,m,M) is not necessary equal to p(t,m,M + 1). In what follows,

we refer to the optimal fare of seat m at time t as p∗(t,m) without indexing for the number

of available seats since it plays no role with current assumptions.

4This guarantees the existence of a solution of the problem. Moreover, note that the random variable θh,t
can be one of continuous, discrete or mixed type.
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Definition 1 V (t,M) has decreasing differences in t and M , respectively, if and only if, for

any t = 1, .., T and M = 1, .., N :

V (t,M)− V (t− 1,M) ≤ V (t,M − 1)− V (t− 1,M − 1)

V (t,M)− V (t,M − 1) ≤ V (t− 1,M)− V (t− 1,M − 1) .

Definition 2 V (t,M) has increasing differences in (t,M) if and only if for any tH > tL and

MH > ML, we have:

V (tH ,MH)− V (tL,MH) ≥ V (tH ,ML)− V (tL,ML) .

The following proposition characterizes the value function described in (2).

Proposition 1 The value function V (t,M) : {0, 1, .., T} × {0, 1, .., N} → R is non negative

and exhibits positive but decreasing differences in t and M , and increasing differences in

(t,M).

Proposition 1 has important implications for our analysis. First, V (t,M) is increasing

in (t,M), which is a standard results in the pricing literature (Gallego and van Ryzin, 1994;

McAfee and te Velde, 2007). Second, periods and seats can be seen as two factors affecting

firm’s profits, which generate positive but decreasing value: the additional impact of one

period (or one seat) is lower when the number of periods (seats) increases. Third, increasing

differences in (t,M) is a form of complementarity. The larger the selling periods and the

higher the return from an additional seat, and vice versa. From these properties we derive

Corollary 1, which is essential for the characterization of the optimal fare p∗(t,m).

Corollary 1 Let X (t,M) = V (t− 1,M)− V (t,M − 1), then:

X (t,M) ≤ X (t− 1,M) , for any t = 2, .., T and M = 1, .., N (3)

X (t,M) ≥ X (t,M − 1) , for any t = 1, .., T and M = 2, .., N (4)

Assuming that the optimal fare p∗(t,m) which solves (2) is unique, then:

Proposition 2 The optimal fare p (t,m) has the following properties:

A. (capacity dimension) p(t,m) ≤ p(t,m− 1), for any t = 0, .., T and M = 1, .., N ,

B. (temporal dimension) p(t,m) ≤ p(t− 1,m), for any t = 1, .., T and M = 0, .., N .

Proof. From the maximization problem in (2), the optimal fare p∗(t,m) can be written as

a function of X:

p∗(X) = argmax
p∈Θ

{q (p) [p+X]} (5)

8



Let ρ = θ̄ − p and H(ρ,X) = q (p̄− ρ) [p̄− ρ+X]. From Definition 2, after some compu-

tations, we obtain that H has increasing differences in (ρ,X), if and only if, for ρ′ ≥ ρ (i.e.

p′ ≤ p) and X ′ ≥ X, we have:

[q(p̄− ρ′)− q(p̄− ρ)] (X ′ −X) ≥ 0, (6)

which is always satisfied seeing that q is decreasing in p. From the Topkis (1998)’s Theorem

2.8.2, when H has increasing differences in (ρ,X) then

X ′ ≤ X =⇒ ρ∗(X ′) ≥ ρ∗(X) ⇐⇒ p∗(X ′) ≤ p∗(X). (7)

From (7) and Corollary 1, we obtain the proof.

Proposition 2.A states that, within a given period, seats are sold by setting a sequence

of fares (i.e. a fare distribution) which is (non-strictly) increasing, implying that the fare of

the seat on sale may increase every time a seat is sold. This property of the fare distribution

reflects the fact that the higher the fare, the lower the likelihood to sell a given seat, and,

consequently, the following seats. Thus, a high fare for the seat on sale produces an expected

loss of revenue that is increasing in the remaining seats. Since each fare is set on the basis

of a balancing between filling up the flight and increasing margins on each seat, a carrier

charges lower fares for the first seats on sale and higher fares for the next ones. This result

extends the cost-based justification of an increasing equilibrium fare distribution considered

in Dana (1999).

Proposition 2.B predicts that the fares of all the seats in the distribution tend to decrease

over time. This result reflects the perishable nature of the airline service, and the fact that

the option value decreases over time. When the number of periods is high, a carrier has

multiple chances to sell seats, but approaching the departure date, the likelihood of selling

each seat of the (remaining) fare distribution decreases and therefore, the carrier reduces the

fares of all seats. This is standard for highly perishable services, as illustrated in Sweeting

(2012), where however the analysis is limited to the case of a single ticket and not to a full

fare distribution as in the present case.

To further investigate the nature of the properties in Proposition 2, we solve equation

(2) numerically using calibrated parameters derived on the basis of data employed in the

econometric analysis below. In particular, we restrict the example to 39 seats which can

be sold at the fare levels (or bucket prices) reported in Column 1 of Table 1. That is, we

assume that travellers’ willingness to pay (WTP) is drawn from a discrete distribution whose

probability density function (pdf) is reported in Column 2 of the Table. Therefore, the fare
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distribution in every period is stepwise increasing and can be summarised by simply reporting

the number of seats in each bucket. Consumers’ arrival frequency is set so that the average

number of available seats at the end of the flight is around eight.5

Each column in Table 1 conforms to property A. of Proposition 2. We denote as a

“bucket” the set of seats carrying the same fare tag.6 For instance, in the first period (period

11) the seats are allocated across buckets of different sizes: five at the fare 65, six at the fare

80 and so on and so forth up until fare 200 with three seats. Note that although there is

a relatively high proportion of customers with a WTP of 50, no seats are allocated to this

bucket. In the last period 1, each of the three remaining seats is allocated to a different

bucket. Property B. is clearly revealed by the fact that the size of the upper buckets tends to

shrink over time, leading to their disappearance. However, it is stress-worthy that Property

B. also affects seats in lower buckets alike. If it did not, at period 7, when seventeen seats

have previously been sold, the selling fare would be that of the seventeenth seat in period 11,

that is, 95, while it is still 80 and remains so in subsequent period when extra seats are sold.

As a combined result of both properties, the fare of the first seat on sale tends to increase,

moving from 65 to 80 and eventually 95.

Figure 1 provides a graphical representation of the content of Table 1.

4 Data

Our collected sample comprises a total of 37,489 daily flights scheduled to depart during

the period May 2014 - June 2015, covering 74 European bi-directional routes. The fares for

those flights whose outward journey originates in the UK are expressed in British Pounds

and represent about 99% of the entire sample. The residual 1%, which refers to European

routes outside the UK, is collected in euro.7

5We set the average total number of prospective travellers L = 5/4 N = 48.75, which implies ϕ =
L/(L+ T ) = 0.81.

6The term is drawn from the revenue management literature (McGill and Van Ryzin, 1999; Talluri and
van Ryzin, 2004)

7When necessary fares in euro are converted in pounds using the daily Eurostat exchange rate of the day
when the fare is collected. See http://ec.europa.eu/eurostat/web/exchange-rates/data/database. Saturdays
and Sundays adopt the exchange rate of the previous Friday.

10



4.1 Sample Collection

The data collection employed a web crawler, as widely used in the literature.8 Every day, the

crawler automatically connected to the website of easyJet, the second largest European LCC,

and issued queries specifying the route, the date of departure and the number of seats to be

booked. Because European LCCs charge each leg independently and there is no pricing-in-

network considerations to account for, to double the data size, the query was for a return

flight, with a return date 4 days after the first leg (Bachis and Piga, 2011).9

The query dates were set such that a flight entered our database about four months before

departure; it was then surveyed at 10-days intervals until 30 days before departure, and

subsequently at more frequent intervals (21, 14, 10, 7, 4 and 1) to get a better understanding

of the price evolution as the date of departure nears. The website’s response to the query

included, for each leg, flight information for three different dates: the set date, the day before

and after. Overall, each query allowed the saving of three consecutive days’ information for

each leg. For each flight, the crawler saved the dates of departure and of the query (to

calculate the number of days separating the query date from take-off), the time of the day

the flight was due to depart and arrive, the departure and arrival airports (the route), the

price for the number of seats specified in the query. The crawler also saved an important

information published by the carrier: the number of seats available at a given posted fare.

This is central for the validation of the data treatment implemented to derive the price

distributions from the posted fares, as illustrated in the Appendix.10

To the best of our knowledge, the empirical literature on airline pricing focuses on the fare

of one seat, namely, the seat being on sale at the time of the query. A central contribution of

this paper is to show that this is not sufficient to test the implications of theoretical models

of DP in airline markets. Based on the model presented in Section 3, our data collection

incorporates an experimental design explicitly aimed at recovering a flight’s fare distribution,

as it is actually stored on the carriers’ web reservation system. In practice, this entailed the

implementation of the following procedure. For each flight and departure date, the crawler

8For the airline market, see Li et al. (2014), Gaggero and Piga (2011), Clark and Vincent (2012), Ober-
meyer et al. (2013), Escobari (2012), Bilotkach et al. (2015), Alderighi et al. (2015) and Alderighi et al. (2016),
amongst others. Cavallo (2017) and Gorodnichenko and Talavera (2017) make international comparisons of
online prices in retail markets.

9As in the case of Ryanair in Alderighi et al. (2015), easyJet offers seats where the buyer’s name and dates
can be changed only by paying a fixed fee which is often as high as the fare itself. The carrier also offers
a “Flexi” fare, corresponding to the basic fare we retrieve plus a set of add-ons (extra luggage, cancelation
refunds etc), which however can also be bought independently.

10The possibility that posted fares could be affected by the number of queries executed was managed as
follows. First, the cookie folder was cleaned every day; second, we checked a sample of fares retrieved by the
computers in our university office with queries made on the same day from computers outside that university.
No noticeable differences between the queries made from different computers could be found.

11



started by requesting the price of one seat, and then continued by sequentially increasing the

number of seats by one unit. The sequence would stop either because the maximum number

of seats in a query, equal to 40, was reached or at a smaller number of seats. As in Alderighi

et al. (2015), the latter case directly indicates the exact number of seats available on the

flight on a particular query date, which we store in a variable called Available Seats to track

how a flight occupancy changes as the departure date nears. The former case corresponds

to a situation where we know that at least 40 seats still remain to be sold on a given query

date; i.e., Available Seats is censored at 40.

After applying the treatment described in the Appendix to the retrieved fares, we obtained

the flights’ distribution of posted fares over the available seats on a query date. An example

of such distributions is shown in Figure 2, which is based on the data of a randomly selected

flight, which will be consistently referred to as an example throughout the paper.

**** Insert Figure 2 around here *****

4.2 An example of a fare distribution: easyJet

Figure 2 is central for the whole analysis. Each graph, where a dot denotes a seat, represents

the fare distribution retrieved, respectively, 100, 35, 15 and 5 days to departure; the fare

of the first seat in the lowest bucket corresponds to the fare of the seat on sale, i.e., the

fare shown on the carrier’s website after a query for one seat.11 It is evident that these four

bi-dimensional distributions are qualitatively identical to the three-dimensional ones shown

in Figure 1. Considering that similar stepwise distributions characterize all the flights in

our sample, we can conclude that our data collection design yields compelling descriptive

evidence in support of property A. of Proposition 2.

In the top panels of Figure 2, the number of available seats is censored to 40; i.e, the graphs

do not show the extreme right tail of the price distribution, which is instead represented in

the two bottom panels, where, on the left, 38 seats remain to be sold, reducing to only 11 on

the right. Interestingly, bucket fares are repeatedly found over the booking temporal horizon,

thus suggesting that they tend to be used throughout most of the booking period, until they

are sold out or, more occasionally, emptied.

A visual inspection is sufficient to establish some interesting features of the distributions

and their evolution over time. One-hundred days to departure, the carrier had allocated five

seats for sale at the price of £38 (the per-seat price, net of booking fee, that a customer

buying up to 5 seats would pay), five seats at the price of £48, and so on and so forth. Due

11As discussed in the Appendix, the fares in the Figure are net of the booking fee.
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to the data censoring, we cannot ascertain the precise size of the last “bucket” valued at

£158. Similarly, the size of the £38 bucket is likely not correct, since there may be missing,

previously sold, seats. Sixty-five days later, the first two buckets are not found; only two

seats are available at the price of £58 and the size of the £158’s top bucket has clearly

increased to at least 18 seats, although the censoring still prevents us to precisely measure

its size. Interestingly, twenty days later, even without censoring the distribution is made up

of buckets whose fares are the same as the ones reported in the previous periods. Moreover,

the size of the second bucket (£80) has increased to five seats, and that of the top bucket

can now be precisely measured as equal to 19. Five days prior to departure, the carrier is

offering six seats at the price of £112, but noticeably, the size of the top bucket (£158) has

shrunk to only two seats.

It could be argued that Figure 2 exemplifies just the peculiar approach followed by easy-

Jet but that it is not representative of the industry. Therefore, in the next subsection we

generalize the analysis by providing several examples of similar fare distributions derived

from data collected from the websites of many other European and U.S. carriers, both Low

Cost and Full Service Carriers (FSCs).

4.3 Examples of fare distributions from other airlines

Figure 3, which is constructed using web crawling, shows the striking resemblance between

the fare distributions of easyJet and Ryanair, the largest European LCC. The censoring

point, which is caused by the limit on the maximum number of seats in a query imposed

by the website’s programming code, is in this case set at 25 seats. Interestingly, five days

to departure there are at least two, four and nine seats in, respectively, the £143, £121 and

£99 buckets. Two days later, the £143 bucket has disappeared, only two seats are allocated

to the £121 one, and the size of the £99 bucket has increased to thirteen seats. While the

price of the seats allocated in higher buckets has clearly fallen, in line with property B. of

Proposition 2 , the price of the seat on sale has increased from £84 to £99, as predicted by

Property A. That is, the main implications of this study could easily be extended to at least

another large players in the industry.12

Southwest allows queries with only a maximum number of seats restricted to eight and

it is therefore not possible to depict a fare distribution encompassing a number of buckets

as high as in the case of easyJet and Ryanair. Indeed, when holding the query date fixed,

for the majority of flights the eight seats carry the same fare, as it is shown for instance

12The original plan for this study was indeed to use data from both Ryanair and easyJet. However, the
adoption by the former of Captcha techniques made web crawling impossible. The limited amount of data
collected prior to this event, from which Figure 3 is derived, led us to the decision to focus on easyJet.
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in the first two left vertical panels in the top part of Figure 4.13 However, the data also

includes several examples exhibiting a jump upward from one bucket to the next, as in the

vertical panels for the departure dates 14, 10 and 7 in the top part of the Figure, and in

most of the panels in the bottom part. The Figure suggests that also Southwest organizes

the fares on its reservation system making use of a flight’s fare distribution where fares tend

to follow the sequence defined by the buckets’ rank. Indeed, in the top part of Figure 4, the

number of seats in the $270 bucket reduces from four to three seats between ten and seven

days to departure. In the bottom part of the same Figure, something similar happens to

the seats in the $341 bucket, which disappear three days before departure, when only two

seats at $414 remain. Overall, Figure 4 suggests that also Southwest, the largest U.S. LCC,

makes extensive use of fare distributions that are organized in a way similar to its European

counterparts.

As far as FSCs are concerned, the analysis is complicated by their adoption of a nested-

classes system, where the same seat can belong to different classes, each with different ticket

restrictions; therefore, one would need to retrieve a distribution for each class category, with

precise information on the number of seats (and classes) each category is designed to contain.

It is however possible to connect some features of FSCs’ pricing approach with the present

analysis based on fare distributions. For instance, various papers present graphical evidence

of the temporal profile of fares by FSC, i.e., they report the fare of the seat on sale and its

evolution over time (Escobari, 2012; McAfee and te Velde, 2007; Puller et al., 2009). It turns

out that such temporal paths also follow a step-wise pattern, which can be rationalised along

the terms we use to define a fare distribution. Indeed, one could view each bucket as a different

“fare class”, which, like buckets, is stored in the reservation system, regardless of whether it

is immediately available for sale or not. To shed light on this assumption, starting from 2nd

November 2016, we saved data from the website expertflyer.com, whose ‘Pro’ subscription

allows access to the list of fare classes (and associated fare and ticket restrictions) an airline

uses on a specific route (i.e., the list is not flight-specific). To minimize network pricing

effects, we chose one direct flights departing on 15 November 2016 operated by American

Airlines (AA), connecting New York JFK to Chicago ORD. In addition to the list of classes

from www.expertflyer.com, starting from the 3rd November 2016, we visited AA’s website

and recorded manually all the different fares therein reported.

In Figures 5, the posted fares are joined by a line; the other symbols refer to specific

classes listed by expertflyer.com, of which we report only the first letter.14 There are at least

13The data comes from a work in progress involving the authors and another scholar based in a U.S.
institution.

14For instance, the full code for the class Q in Figure 5 is Q7ALKNN3. It is noteworthy that expertflyer.com
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two main aspects worth highlighting. One, our analogy between buckets and classes appears

to be supported by the fact that expertflyer.com reports most classes for the full period,

regardless of the posted online fares. For instance, the non-refundable class N or G for a seat

in the main cabin (top panel of Figure 5) was available on the computer reservation system

during the whole period. Interestingly, the class Q in the top part of Figure 5 and the class

N in the central part cease to appear on the 8th November, i.e., seven days prior to the flight

departure.

It could be argued that the fare classes in Figure 5 are not relevant because they are not

specific to the flight under study; however, such a criticism is thwarted by the second aspect

the Figure shows. Indeed, we find that the website’s fares often perfectly match the class

fares reported by expertflyer.com. This happens for the days 6-8 and 10-12 November (classes

Q and N in the top part), 3-8 November (class N in central part), and 3-12 November (class

V 3 in bottom part).15 Interestingly, for the case of the Main Cabin lowest fare, the posted

fares depict a step-wise path with fare levels defined by predetermined fare classes. Although

with the limitations due to matching data from different sources, the short period of analysis,

and the fact that FSCs rely extensively on the traditional travel agents’ channel, the overall

analysis based on Figures 5 suggests that the notion of a fare distribution provides a useful

starting point for any investigation of FSCs’ pricing methods.

5 Descriptive analysis

To lay the foundations for the empirical strategy we will adopt to study the properties in

Proposition 2, we need to shed more light on the link between the fare distribution and

dynamic pricing (DP). Indeed, for property B., it is essential to describe “the hidden side”

of DP, i.e., how DP can take place even if the selling price does not change; as for property

A., we need to describe how the fare distribution operates like a template that, at each point

in time, defines the sequence of fares as the flights fills up.

5.1 Defining Dynamic Pricing

As Figure 2 suggests, DP clearly goes beyond the mere fluctuation of the price of the first

seat in the distribution. One of the novel aspects of this paper is to show that DP entails

a restructuring of the fare distribution, and that this practice may involve either a mod-

reports a very large number of classes, and that we only report those whose value is close to that of the posted
online fares.

15Due to time zone difference, we could retrieve the fares on the date of departure when in the USA it was
still nighttime.

15



ification of the buckets sizes (i.e., a reallocation of remaining seats across buckets) or the

creation/deletion of bucket levels, or both. To fully capture this behavior, we now refer to

the entire set of data for the flight used in Figure 2, as reported in Table 2. Each cell contains

the bucket size, with columns identifying the days prior to departure and rows the bucket

price. The last row in each sub-panel indicates whether the number of available seats is

censored (that is, there are at least 40 or more seats left on the flight) or the precise number

of available seats (this is visible from fifteen days onwards in Panel B, when the maximum

number of prices observed is for 38 seats). The fare of the seat on sale corresponds to the

lowest fare of the bucket with a strictly positive number of seats.

Table 2 provides examples of the various forms of DP implemented by the carrier. We

define as DP any change in the distribution of seats across two sequential query dates. That

is, we do not consider as DP the fare increase from £31 to £38 that takes place between 129

and 121 days from departure, because it corresponds to a movement along the distribution

and is consistent with the selling out of the seats in the £31 bucket. Similarly, during the

last fortnight, the fare of the seat on sale assumes the values £68, £80, £96, £112; such

a movement does not count as DP because it automatically occurs when the first available

bucket becomes sold out and the system moves to the next available bucket level.

For a better visual identification, we use circles to denote cases of DP associated with

bucket size changes, and with rectangles the more standard DP cases of creation or deletion

of a bucket price level. Note, however, that the appearance or reappearance of a bucket

fare is equivalent to an increase of its bucket size from zero to a positive number of seats;

so effectively all forms of DP are equivalent to a reallocation of seats to an upper or lower

bucket. For instance, we do consider as DP the fare drop observed between 119 and 111 days

to departure, because it corresponds to a reopening of the £31 bucket. Similarly, between 2

and 1 days to departure when the number of available seats drops from 6 to 4, one seat is

moved up from the £112 to the £133 bucket.

More interestingly, based on our definition, DP takes place even if the fare of the seat on

sale remains unchanged (the “hidden DP”). This happens several times in the Table. For

instance, between 70 and 69 days to departure, the size of the £48 bucket increases from four

to six seats; another instance in which the bucket on sale is replenished is observed between

fifteen and fourteen days to departure, when six out of nine seats from the top £158 bucket

are moved down to the £68 bucket (each of the other three seats are reallocated to the £80,

£96 and £112 buckets, respectively).

****Insert Table 2 around here*****

To quantify DP consistently in our dataset and identify whether a seat has received a
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DP treatment, it is necessary to study what happens to that seat between two consecutive

booking days. In its simplest form, DP occurs if we observe a seat has changed its fare either

upwards or downwards; this implies a movement to a bucket that either has already been

observed as part of the distribution, as in the case of the reopening of the £48 bucket twenty-

one days to departure, or to an entirely new bucket. A complementary way is to look at

whether a seat’s bucket size has increased (e.g., 1 day to departure in Table 2), or decreased

(5 days to departure). For the case of the first seat on sale, if its bucket size decreases we

cannot distinguish whether that has happened due to a reduction of the available seats or to

DP, and so we limit the analysis to bucket size’s increases only. Overall, the distribution is

deemed to have changed whenever we register any of the above movements for at least one

seat.

The descriptive analysis of DP is carried out using only the non-censored observations

because doing so allows the position of each seat to be precisely identified. Consider again

the bottom left panel of Figure 2, when only 38 seats remain on the flight. If we look at the

distribution from the bottom up (left to right), the first seat is the one on sale, and the 38th

identifies the “last” seat that would be put up for sale. In the bottom right panel, the number

of available seats dropped to 11. In this case, the seat that occupied the 28th position in the

other panel is now the first seat (the seat has clearly dropped down two buckets); and the

position of the last seat would be now the 11th. That is, it is not possible to use the bottom-up

perspective to uniquely identify seats. However, if we assign the position using a top-down

approach (that is, we count seats starting from the extreme right of the distribution), it

turns out that in both panels the top right seat would be assigned a position equal to 1, the

one immediately on its left position equal to 2, etc; the first seat in the left bottom panel

would then take position 2. We report these values in a variable denoted as Position.16 That

is, over different query dates, we can track the evolution of each seat’s fare, as long as the

observation is non-censored.

5.2 Descriptive statistics on Dynamic Pricing

Table 3 reports the probability that each seat in the distribution is treated with one of

the forms of DP defined in the previous subsection, obtained by considering only variations

between query dates separated by one day (e.g., in Table 2, between 3 and 2 days to departure)

and only non-censored observations. The qualitative results do not change if the probabilities

were obtained considering variations between any two consecutive, but not adjacent, query

16We are using the same notation of the theoretical model where Position is identified by the reverse index
m.
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dates. The first four columns investigate whether a seat has moved up or down, that is,

whether it has moved to a bucket previously observed as part of the distribution or to an

entirely new one. The subsequent two columns report whether the size of the bucket where

the seat is positioned, has increased or decreased. The Table provides several insights into

how DP affects the fare distributions. First, consistent with the property B. of Proposition

2, the probability that a seat is moved to a lower bucket is much higher relative to that

of being moved in the opposite direction; the maximum probability of moving to a higher

bucket is about 5% for the seat in position 26, which also records a 17.6% likelihood to be

shifted down to a previously observed bucket. Second, the design of a fare distribution is

rarely altered by adding new buckets, given the generally low probability of observing the

creation of a new bucket. Third, and relatedly, the size of buckets in the right tail of the

distribution (i.e., those with low positions) tends to shrink, while seats in the left tail belong

to buckets whose size is more likely to increase. Indeed, the buckets for the seats in positions

1 to 9 exhibit a probability of more than 25% to be shrunk; conversely, the probability of a

size increase is larger for seats in lower positions 20 to 39. Overall, Table 3 provides strong

descriptive support to the role of the temporal dimension in driving down the option value

of all the seats in the fare distribution.

***** Insert Table 3 around here *****

Table 4 is based on the distance between the query date and the departure date. It

reports the probability of whether the overall distribution has received a DP treatment, that

is, whether at least one of the seats in Table 3 has changed bucket fare or size. The “Any

fare move” column reports the probability that the distribution has changed due to a fare

movement in either directions; similarly, the “Any fare change” denotes a change in bucket

size. The highest of these two values constitutes the probability that a distribution changes

during the specified booking period. The “Overall” row provides a sample estimate: on

average, a flight distribution has a probability of 48.6% of changing between two consecutive

days; that is, distributions change less than once every two days. There are however important

variations across the booking period. Distributions rarely change when more than fifty days

separate the query date from the date of departure: the probability of 21.1% implies that

distributions remain unchanged for about four out of five days. Between thirty-six and eleven

days to departure, the likelihood of observing a fare distribution increases drastically, but, in

line with property B that predicts a decreasing option value, this is largely due to seats being

moved to lower, pre-existing buckets. Moreover, even when frequently applied, DP does not

generally involve a drastic redesign of the fare distribution via the creation of new buckets;

this finding lends support to the new approach in this paper linking airline pricing and fare
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distributions. Finally, within ten days to departure the probability of a fare distribution

change drops again to values below 40%; that is, fares remain unchanged for about 2-3 days.

This period appears to be characterized by a larger (lower) probability to observe a movement

of seats towards higher (lower) buckets.

***** Insert Table 4 around here *****

A comparison between Table 4 and Table 5 indicates that changes in the distribution do

not necessarily involve the first seat on sale. For instance, between eleven and twenty-eight

days to departure, the probability of a downward fare movement of any seat in the entire

distribution is always higher than 70%, but it is less than 20% for the fare of the seat on

sale.17 Similarly, the size of the bucket where the first seat is placed increases less frequently

than in the full distribution. A possible exception can be found in the fare movement to a

higher bucket, where the two Tables present values which are similar but well below 20%;

that is, in the last three days, less than one flight out of five receives the treatment. Relatedly,

the total probability of a fare drop during the last three (seven to four) days is lower than

6.0% (9.0%) but it is reaches the value of about 20% between eleven and fourteen days to

departure. The fact that, during the last three days, the first seat is moved up to a higher

bucket consistently more than it is moved down suggests that DP can be used to pursue

an inter-temporal price discrimination strategy aimed at capturing the higher proportion of

customers with a higher willingness to pay, generally those flying for business purposes (Dana,

1998; Gale and Holmes, 1993). Overall, the type of DP most frequently applied to the seat

on sale appears to be that involving the increase in its bucket size, consistent with the idea

that the property B. of Proposition 2 is implemented by shifting seats initially allocated to

the higher-priced buckets to lower-priced ones, what we term as “the hidden DP”. Often, this

results in the replenishment of the bucket where the first seat is placed, leading to a slowing

down in the rate in which the selling fare would increase due to the pure capacity dimension

effect. For instance, in Table 2, the first bucket’s size increases significantly fourteen days to

departure, thus postponing the increase in the posted fare from £68 to £80.

*****Insert Table 5 around here *****

The foregoing descriptive analysis provides the necessary backdrop for Table 6, which

reports the mean fare of the same seat (i.e. with the same value of the variable Position) at

various clusters of days to departure. The numbers clearly indicate a decreasing pattern of

the mean fare as we approach the departure day, in line with the property B in Proposition

2. The decline appears to be inversely proportional to the position. That is, the last seat

17The fact that easyJet does not resort to last-minute deals to clear capacity was also noted in Koenisgsberg
et al. (2008).
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(Position = 1) drops from an average fare of £182 to £139; the 20th seat from the top also

has a starting mean of £181, which falls drastically down to £82. This is consistent with

what we observe in Figure 2, where, between fifteen and five days to departure, the left seats

in the £158 bucket end up being moved down by several buckets, unlike the last two on the

right.

***** Insert Table 6 around here *****

To sum up, a combined analysis of Tables 3-5, in addition to providing empirical support

to the properties of the equilibrium solution in Proposition 2, highlights several practical

aspects of DP in airline markets. First, DP takes many forms and shapes, all aimed at

redesigning the distribution of fares uploaded on the carrier’s reservation system; second,

fares are seldom added to the original structure of a distribution; third, changes in the

distribution are carried out at lumpy time intervals, so that a flight’s distribution remain

unaltered for an average of 2-3 days; fourth, DP treatments may not necessarily involve the

first seat in the distribution, whose bucket is however highly likely to increase in size.

6 Econometric design and analysis

We now proceed to test formally the two properties characterizing the equilibrium solution in

Proposition 2, by providing two sets of regressions. In the first, we consider the full sample,

and focus on how the fare of each seat in the distribution is affected by its position and

how it changes over time. The second regression sheds light on how the fare of the first

seat on sale changes as its position changes over time. As far as property A. is concerned,

we have already shown how the adoption of a fare distribution is pervasive and offers the

carrier a practical way to implement DP. The second regression shows that the capacity

dimension is responsible for the movement of the seat on sale along the distribution, leading

to a temporally increasing profile of the “easily observable” fare on sale, while the temporal

dimension operates in a “hidden” way. Both regressions lend strong support to property B.,

after the role of the capacity dimension is taken into account.

6.1 Full distribution analysis

To test both properties in Proposition 2, we estimate the following equation for the fare of

seat with Position = m on flight j departing on date d:

lnFaremjd =
∑

t

βtDt + γPositionm + ζjd + εjdt, (8)

20



where Dt defines a set of dummy variables Days to departure, with t defining the intervals

between the query and the departure date. As far as property B. is concerned, they represent

our variables of interest as they track the time evolution of the fare of a specified seat’s

position, which we expect to be declining, while Property A. would be supported by a negative

and significant coefficient of Position (recall that we count the position by starting from the

right of the distribution).

The econometric strategy takes into account two related sources of sample selection. One,

Position is identified precisely only when an observation is non-censored, and so we have to

restrict the sample to only those observations of flights that, on a given query date t, have

fewer than 40 seats left to sell (see Alderighi et al. (2015) for a similar problem). Two,

conditional on a flight being non-censored, seats in lower buckets have a higher probability

to be sold and disappear from the sample at an earlier stage, thus biasing the estimated

relationship of a seat’s fare over time. Formally:

FNCjdt =1[z1θ1 + ν1 > 0] (9)

smjdt =1[z1θ2 + θ3Position
m + ν2 > 0] if FNCjdt=1. (10)

When FNCjdt = 1, i.e., a flight jd is non-censored at booking day t, we can identify, out of

the possible 39 seats that the distribution may potentially include, the seats s in positions m

which are still available for sale.18 Under the assumptions (ν1, ν2) ∼ N(0, 1) and corr(ν1, ν2) =

ρ, (9)-(10) can be estimated using a bivariate probit with sample selection model (Greene,

2003, ch.21), where z1 includes the following regressors: dummies for the number of days

to departure, the day of the week of the departure date, the departure slot time (morning,

afternoon, evening, etc.), the season (Winter and Summer), the route (estimates available

on request). After obtaining the estimated coefficients (θ̂2, θ̂3) using all observations, the

estimated Mill ratios for the selected observations are: λ̂m
jdt(θ̂2, θ̂3) =

φ(z1θ̂2 + θ̂3Position
m)

Φ(z1θ̂2 + θ̂3Position
m)

.

We can then estimate an augmented version of (8):

lnFaremjd =
∑

t

βtDt + γPositionm + λ̂m
jdt(θ̂2, θ̂3) + ζjd + ξjdt, (11)

by panel OLS fixed-effects.19

The panel identifier corresponds to the combination of flight-code plus day of departure;

18Imagine that at t we only retrieve fares for, say, the last 20 seats; these would have sjdt = 1. To estimate
(9)-(10), we would append observations for seats 21-39 and set sjdt = 0.

19The approach we follow to correct for the simultaneous presence of sample selection draws from procedure
17.1 in Wooldridge (2002).
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the panel’s temporal dimension is represented by a sequential counter that uniquely identifies

all the possible combination of Position for all query dates t.20 We set the earliest day to

departure dummy (Days to departure 51+) as reference group and cluster the standard errors

by route and week to take into account the possibility of flight-specific demand shocks on a

given day affecting the demand for all the flights on the route in a given week.21

***** Insert Table 7 around here *****

Table 7 reports the results. Models (1) and (2) use the full sample, while the others

focus the analysis to the case of flights in, respectively, “Leisure” and “Business” routes.

We do so to test whether the estimates for the full sample hold in sub-samples of more

homogeneous flights. Following Alderighi et al. (2016) and Gaggero and Piga (2011), the

routes’ classification is based on data derived from the “International Passenger Survey”

(IPS), a quarterly survey collected by the UK Office of National Statistics.22 Routes are

classified based on the passengers’ stated travel motivations. For each flight, we computed

the share of business travelers carried by all companies on the city-pair comprising the route

where the flight operates. Depending on whether such a share is below or above the value of

16 percent, routes are respectively labeled as “Leisure” or “Business”.

In odd-numbered models, which do not include the interaction between our variables of

interests, the estimates indicate qualitatively similar effects. First, the coefficient of Position

is, as expected, negative. That is, the econometric evidence indicates that the distributions of

all flights are structured as predicted in property A. of Proposition 2. Second, and relatedly,

the Position coefficient provides a rough estimate of the linear average gradient of the fare

distribution: such a value varies from 1.6% to 1.7%. There appear to be no difference between

Leisure and Business routes. Third, and more importantly, the Days to departure dummies

are also negative and their coefficients increase in absolute value as the departure date nears.

Considering that the reference category corresponds to seats in early posted observations,

the dummies’ coefficients suggest a downward trend for the average fare of all the seats in

the fare distribution, holding the position fixed. This finding is consistent with the view that

the carrier generally faces strong incentives to move the seat down to lower buckets as the

departure date nears and that such a move reflects a declining option value, as predicted by

property B. of Proposition 2. Interestingly, in the “Business” sample, the coefficients of the

20Alternatively, we could have incorporated either the variable Position into the fixed effect identifier so
that only the interaction model could be identified in the Fixed Effects estimation. The results would not
change. Estimates available on request.

21For instance, a large group booking for a Wednesday morning flight raise fares for this flight and may
induce other customers to select alternative flights on nearby days.

22The IPS does not cover routes with both endpoints outside the UK; hence, the combined number of
observation in models (3) to (6) is lower than in model (1)-(2).
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temporal dummies are somewhat larger in absolute magnitude, suggesting that in business

routes the carrier tends to drop its fares over time more than it does in leisure routes; this

results is not in line with the standard characterization of business travelers as customers

with a higher willingness to pay, whose need to travel is revealed only at a later stage of

the booking period (Alderighi et al., 2016). However, evidence not reported to save space

indicates that fares in business routes tend to be higher on average.

To get a better appreciation of whether the intensity of the decline over time varies with

the seat’s position, even-numbered models present an interaction of Position with the set

of Days to departure dummies. Because the interaction coefficients are all negative, it can

be inferred that the decline is stronger as the position value increases: the further a seat is

positioned from the top one, the larger the fall in the bucket order (and in fare) it experiences.

Figure 6 shows the predicted effects from model (2) of Table 7. Each line, which represents

the predicted relationship between fare and position, keeping the temporal dummies fixed,

defines a stylized, smooth version of the fare distributions in Figure 2. The slope varies to

reflect the interaction terms in model (2). When the position is fixed, each point depicts the

extent by which the average fare of each seat falls over time. Based on interaction coefficients

in Table 7, the drop over time is larger as the position increases, as also shown descriptively

in Table 6. For instance, the fare of seat 39 drops, on average, from a value around e4.8 = 121

to about e4.1 = 60; of seat 25 from about e4.9 = 134 to about e4.4 = 81, while for seat 1, the

last one to be sold, the predicted fare moves from e5.1 = 164 to only about e4.9 = 134.

***** Insert Figure 6 around here *****

The econometric analysis therefore provides compelling evidence of the persistent effects

of the hidden aspects of DP that the carrier implements to manage its yield; furthermore, it

strongly supports the joint operation of the capacity and temporal dimensions as drivers of

DP interventions.

6.2 The temporal profile of the seat on sale

As the foregoing discussion has highlighted, the use of a fare distribution bears important

implications on the first seat on sale, that is, the seat with the lowest fare and the largest

value for Position still available on a flight. Studying the fare of the seat on sale is important,

because all the existing empirical literature on airline pricing, whether it uses transacted or

posted fares, focusses exclusively on it. There is general consensus that the overall tempo-

ral profile of such a fare is upward sloping, with many papers reporting graphical and/or
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econometric evidence of fares increasing as the departure date nears.23 The pervasiveness

of such a correlation is strongly at odds with the theoretical prediction of fares falling as

the takeoff date approaches (Gallego and van Ryzin, 1994), as first highlighted in McAfee

and te Velde (2007). Subsequent empirical research has shown that after controlling for the

remaining capacity on a flight, the theoretical prediction of temporally declining fares largely

holds (Alderighi et al., 2015; Escobari, 2012).

Using the insights offered by the foregoing theoretical and empirical analysis, in this

section we investigate the extent by which the behaviour of the fare of the seat on sale

conforms to the evidence reported in the existing literature. While this provides further

validation to the approach adopted in the paper, the combined analysis of the capacity and

the temporal dimensions also helps clarify and consolidate an empirical approach to airline

pricing where both dimensions are always properly accounted for. To this purpose, the

econometric strategy hinges on testing properties A. and B. of Proposition 2 on the seat on

sale, using the specification in equation (11) modified to take into account that for such a

seat the censoring process can be modelled using equation (9) only.

***** Insert Table 8 around here *****

Considering their panel fixed-effect design, models (1) and (2) in Table 8 replicate the

regressions in McAfee and te Velde (2007), by first using the full sample with all observations,

and then only the non-censored sample, i.e., the one we use to estimate equation (11). Like

McAfee and te Velde (2007), the temporal trajectory is clearly either increasing or non-

declining, with sharp rises during the last week. In terms of our analysis, we could interpret

such result by saying that the capacity dimension is a stronger driving force than the temporal

dimension, that is, movements along the distribution more than offset the negative impact of

the declining option value. Recall, however, that fares may increase due to intertemporal price

discrimination, aimed at exploiting customers’ heterogeneity in terms of demand uncertainty

and willingness to pay, so that late fares may be pushed up to take advantage of the larger

proportion of business-people among potential buyers.

To tease out the possible separate impact of intertemporal price discrimination, we need

to control for the evolution of available capacity on the flight, as in model (3), which uses only

the non-censored observations to identify the number of seats left on the flight at a given point

in time. Importantly, for the seat on sale, the number of available seats corresponds to the

position of the first seat in the distribution. Such a property has important implications since

it allows a dual interpretation of the estimates. Indeed, unlike the estimates in Table 7 where

23see Alderighi et al. (2015); Bergantino and Capozza (2015); Clark and Vincent (2012); Escobari (2012);
Gaggero and Piga (2010); Koenisgsberg et al. (2008); McAfee and te Velde (2007); Stavins (2001) inter alia.
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each seat occupies a fixed position in the distribution, the position of the first seat varies

over time, and thus captures how the fare changes as the seat moves along the distribution.

Moreover, the dual interpretation in terms of available seats allows a comparison with the

results in the previous literature that looked at how the fare changes as the plane fills up, as

for instance Alderighi et al. (2015) and Escobari (2012).

The inclusion of Position in model (3) drastically alters the structure of the temporal

dummies to reveal a declining time path for fares, consistent with the prediction B. in this

paper. Relative to those posted fifty-one or more days from departure, fares posted twenty-

eight days or later are significantly different, and show a constant decreasing trend which

is minimally reversed in the last three days before departure. Indeed, the coefficient of the

“0− 3 days” dummy is slightly larger than the previous one (−0.363 vs. −0.373), hinting to

a U-shaped temporal profile (Alderighi et al., 2015; Bilotkach et al., 2010; Escobari, 2012).

Combined with the descriptive evidence reported in Table 5, showing a larger probability

of observing the DP treatment of a shift to a higher bucket for the first seat on sale, we

can conclude that the increasing part of the U-shaped temporal path can be ascribed to the

implementation of an inter-temporal price discrimination strategy by means of DP techniques

that increase fares above the natural progression due to the capacity dimension.

The latter, however, is by far responsible for the overall upward trend highlighted in mod-

els (1) and (2). Indeed, the Position’s coefficient of −0.019 is similar to the ones estimated

in Table 7, which, as discussed above, in this case can be interpreted in two ways. One, the

first seat on sale follows an increasing temporal profile determined by the structure of the

distribution. That is, the carrier tends to close a bucket once all the seats in that bucket are

sold out, so that automatically the fare of the next bucket becomes the one advertised on the

site. On average, a one-position movement to the right of the distribution increases fares by

about 1.9%. Our results thus provide a so far undetected perspective, that is, they directly

relate the evolution of the selling fare to the design of the fare distribution for all the seats

available on a flight at each point in time. Two, and equivalently, fares increase by the same

amount as an extra seat is sold.

The fact that the position of the first seat on sale varies over time suggests that the

variable Position is likely correlated with ξjdt in eq. (11), i.e., it is endogenous. So we use

two instruments in our identification strategy, similar to those in Alderighi et al. (2015). The

first one, Lag Position, is simply the mean of the two weekly lagged values of Position, where

the lags are intended over d and not t, that is, we take values for the same flights departing

on the same week day one and two weeks before. The use of lagged values guarantees the

instrument is not correlated with the shock ξjdt; furthermore, fare distributions are flight-

specific, and so is the ideal (from the airline perspective) rate of growth of a flight’s load
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factor. That is, the instrument is correlated with Position because the airline has likely

adopted for the past flights a similar distribution, as well pursued a similar booking curve

for the temporal progression of the load factor. The second instrument, holiday period, is

a dummy variable indicating whether the query date falls within a holiday period in UK

(Christmas, Easter, school breaks, etc) and captures possible differences on the demand side.

That is, the ticket purchasing activity in such periods is likely to be different from non-

holiday periods (e.g., when on holiday, a person has less time to spend planning future trips),

and thus seat fares are likely less affected by shocks. Despite the loss of observations due to

the use of a lagged instrument, the estimates in model (4) are equivalent to those in model

(3), and confirm the presence of a weak U-shaped temporal profile and a slightly stronger

capacity effect, with fares expected to increase by 2.0% every time an extra seat is sold.

The overall evidence we provide offers some insights into two aspects mentioned in the

literature review. As far as inter-temporal price discrimination is concerned, the estimates

indicate, during the last three days from departure, a weakening of the downward pressure

that fares receive due to the temporal dimension. We can link this result to the DP activity

on the first seat on sale in the form of its movement to a higher bucket. Notably, the evidence

suggests a connection between the central role played by the fare distribution as a building

block of airline pricing and its modification to implement price discrimination. As far as the

presence of strategic consumers is concerned, the first two models in Table 8 indicate that a

consumer would generally observe fares following an increasing trend, which Li et al. (2014)

describe as the standard way to curb the incentive to postpone purchase. Although the

temporal dimension is largely responsible for the upward trend of fares throughout the entire

booking period, we record an additional effect due to an inter-temporal price discrimination

motive during the last week.

7 Conclusions

This paper presents several strong reasons, both based on theoretical and empirical grounds,

for modelling airline pricing using the concept of a fare distribution. For instance, it allows

the investigation of many so far neglected aspects of Dynamic Pricing. Furthermore, it helps

solve the contrast between theory and empirical evidence illustrated in McAfee and te Velde

(2007).

Although not the central focus of the study, its main findings have profound implications

on the identification of inter-temporal price discrimination strategies in airline markets. For

instance, carriers may want to discriminate the business travelers’ segment from other lower

demand travelers, e.g., those traveling for leisure. Because the former are more likely to
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learn about their need to travel only a few days before the departure date and their de-

mand is quite inflexible, carriers would implement price discrimination by raising fares at a

specified interval before take-off. But because carriers use fare distributions, identifying the

discriminatory motive is only possible if the researcher can distinguish higher fares driven by

capacity considerations (i.e., the fare is high because only a few seats are left on the flight)

from discriminatory upward changes in the distribution that increase all relevant fares but

are not motivated by a change in a flight’s load factor. Although we find the carrier in our

study does not pursue an inter-temporal price discrimination strategy too intensively, the

approach set out in the paper could be fruitfully applied in future research.
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Table 1: Simulated observed number of seats for each bucket fare across booking periods

bkt pdf periods to departure, t
fares WTP 11 10 9 8 7 6 5 4 3 2 1

50 14/64
65 12/64 5 5 4
80 8/64 6 6 5 4 4 3 3 2 2 1
95 6/64 7 6 6 4 4 4 3 3 2 2 1
110 6/64 5 5 4 4 4 3 3 2 2 1 1
130 5/64 6 5 5 5 4 4 3 3 2 2 1
150 5/64 4 3 3 3 2 2 2 1 1 1
175 4/64 3 4 3 2 3 2 1 2 1
200 4/64 3 2 2 2 1 1 1
seats 39 36 32 22 22 19 16 13 10 7 3

Figure 1: Fare distribution and probability by periods to departure
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Table 2: Number of seats in each bucket price across days to departure

Panel A: days to departure 130-35
Days to dep. 130 129 121 120 119 111 110 109 100 81 79 70 69 50 49 48 36 35

Bkt. price
31 3 1 3 3 1
38 5 5 5 5 5 5 5 5 5

48 5 5 5 5 5 5 5 5 5 4 6 5 5 5

58 6 5 5 5 5 6 6 5 5 4 2 4 4 5 5 5 2 2

68 4 5 6 6 6 4 4 5 6 4 4 4 4 5 5 5 4 4

80 6 6 4 4 4 6 6 6 4 4 4 5 5 5 5 5 4 4

96 4 4 6 6 6 4 4 4 6 5 4 3 3 5 5 5 4 4

112 4 4 4 4 4 4 4 4 3 3 5 5 5 5 5 5 4 4

133 3+ 5+ 5+ 5+ 5+ 3+ 3+ 5+ 4 4 3 3 3 5 5 5 4 4
158 2+ 16+ 18+ 12+ 10+ 5+ 5+ 5+ 18+ 18+

Av. seats 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+

Panel B: days to departure 34-1
Days to dep. 34 22 21 20 19 18 17 16 15 14 13 10 9 5 4 3 2 1

Bkt. price
31
38
48 1

58 2 5 5 4 2 2 2 1

68 4 5 5 5 5 4 4 5 1 7 3

80 4 5 5 5 5 4 4 5 5 6 6 6 6

96 4 5 5 5 5 4 4 5 5 6 6 6 6 1

112 4 5 5 5 5 4 4 5 5 6 6 6 6 6 6 5 3

133 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4

158 18+ 11+ 11+ 13+ 15+ 19+ 19+ 16+ 19 10 10 4 4 2 2 2 0 0

Av. seats 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 38 38 34 25 25 12 11 10 6 4

(a) The + sign indicates a censored value for either the bucket size or the number of available seats.
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Table 3: Probability to observe specific forms of Dynamic Pricing applied to each seat in a
fare distribution

Fare Change to
Position in Higher Higher Lower Lower Bkt size Bkt size Obs.
distribution bkt new bkt bkt new bkt increase decrease

1 0.017 0.012 0.043 0.004 0.074 0.267 126,108
2 0.014 0.011 0.043 0.004 0.076 0.273 123,188
3 0.015 0.010 0.051 0.004 0.067 0.273 120,613
4 0.033 0.010 0.074 0.005 0.079 0.280 118,288
5 0.033 0.010 0.084 0.005 0.085 0.275 115,919
6 0.028 0.010 0.092 0.006 0.091 0.268 113,364
7 0.026 0.009 0.097 0.006 0.099 0.266 110,815
8 0.025 0.008 0.097 0.006 0.103 0.260 108,156
9 0.023 0.008 0.100 0.007 0.109 0.258 105,217
10 0.023 0.009 0.110 0.008 0.119 0.252 102,138
11 0.025 0.008 0.112 0.008 0.126 0.244 98,979
12 0.034 0.010 0.133 0.010 0.130 0.237 95,416
13 0.041 0.003 0.141 0.004 0.135 0.228 92,138
14 0.040 0.004 0.141 0.005 0.138 0.218 88,913
15 0.039 0.004 0.142 0.005 0.142 0.205 85,466
16 0.038 0.004 0.144 0.005 0.146 0.197 81,680
17 0.038 0.005 0.149 0.006 0.148 0.187 77,882
18 0.047 0.007 0.164 0.008 0.151 0.169 73,808
19 0.044 0.007 0.161 0.008 0.153 0.157 70,005
20 0.042 0.008 0.159 0.009 0.157 0.147 66,351
21 0.043 0.009 0.167 0.011 0.163 0.134 62,392
22 0.041 0.008 0.163 0.011 0.167 0.127 58,544
23 0.041 0.009 0.163 0.012 0.169 0.119 54,831
24 0.042 0.011 0.174 0.016 0.178 0.110 50,852
25 0.048 0.006 0.174 0.009 0.179 0.101 47,133
26 0.050 0.008 0.176 0.011 0.185 0.091 43,497
27 0.047 0.009 0.175 0.012 0.189 0.083 39,881
28 0.045 0.010 0.176 0.016 0.197 0.071 36,253
29 0.044 0.012 0.165 0.019 0.208 0.063 32,768
30 0.041 0.013 0.164 0.023 0.217 0.052 29,364
31 0.038 0.016 0.162 0.028 0.221 0.044 25,811
32 0.038 0.019 0.149 0.031 0.223 0.038 22,395
33 0.033 0.022 0.137 0.034 0.231 0.034 18,919
34 0.032 0.024 0.127 0.042 0.244 0.031 15,559
35 0.028 0.025 0.114 0.048 0.258 0.025 12,162
36 0.022 0.022 0.113 0.052 0.276 0.024 8,948
37 0.020 0.018 0.100 0.074 0.305 0.020 5,945
38 0.019 0.013 0.086 0.121 0.341 0.011 3,386
39 0.014 0.005 0.038 0.139 0.446 0.000 1,334
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Table 4: Probability to observe specific forms of Dynamic Pricing applied to a fare distribu-
tion, over booking periods

Fare Change to
Days to Higher Higher Lower Lower Any fare Bkt size Bkt size Any size
departure bkt new bkt bkt new bkt move increase decrease change

0-3 0.176 0.038 0.143 0.013 0.330 0.198 0.160 0.229
4-7 0.109 0.040 0.206 0.021 0.327 0.182 0.196 0.231
8-10 0.136 0.042 0.235 0.030 0.374 0.218 0.243 0.280
11-14 0.131 0.047 0.743 0.106 0.822 0.675 0.776 0.799
15-21 0.161 0.051 0.729 0.090 0.840 0.707 0.804 0.820
22-28 0.120 0.059 0.786 0.106 0.874 0.631 0.839 0.861
29-36 0.106 0.036 0.621 0.106 0.726 0.544 0.677 0.700
36-50 0.058 0.040 0.406 0.046 0.464 0.341 0.444 0.457
51+ 0.024 0.048 0.158 0.019 0.211 0.129 0.187 0.191
Overall 0.141 0.042 0.350 0.045 0.486 0.341 0.372 0.412

Table 5: Probability to observe specific forms of Dynamic Pricing applied to the seat on sale,
over booking periods

Fare Change to
Days to Higher Higher Lower Lower Any fare Bkt size
departure bkt new bkt bkt new bkt move increase

0-3 0.138 0.029 0.053 0.006 0.226 0.083
4-7 0.087 0.030 0.074 0.011 0.202 0.068
8-10 0.101 0.029 0.075 0.014 0.218 0.084
11-14 0.073 0.033 0.198 0.063 0.367 0.308
15-21 0.071 0.040 0.118 0.049 0.279 0.309
22-28 0.056 0.046 0.109 0.064 0.275 0.394
29-36 0.043 0.030 0.073 0.082 0.228 0.355
36-50 0.032 0.026 0.076 0.025 0.158 0.274
51+ 0.019 0.014 0.057 0.015 0.105 0.105
Overall 0.098 0.031 0.093 0.025 0.247 0.150
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Table 6: Mean fares by Position in fare distribution and days to departure

Position in Days to departure
distribution 36+ 35-29 28-22 21-15 14-11 10-8 7-4 3-0

1 182 171 172 167 158 152 146 139
2 182 171 172 167 158 152 145 137
3 182 171 171 167 156 150 143 134
4 182 171 171 165 152 143 134 124
5 182 171 170 164 150 141 131 120
6 182 170 170 163 146 137 127 116
7 182 170 169 161 143 135 125 113
8 182 170 168 160 141 133 122 111
9 182 170 167 158 138 131 120 109
10 182 169 166 156 136 128 117 107
11 182 169 164 154 134 126 115 105
12 186 169 162 151 131 121 110 101
13 185 168 161 149 128 119 108 99
14 185 167 159 147 126 117 106 97
15 185 166 156 144 124 115 104 96
16 184 164 154 141 122 114 102 93
17 183 163 151 139 120 111 99 90
18 183 161 148 136 117 106 94 86
19 182 160 146 133 116 105 93 84
20 181 157 143 131 114 103 90 82
21 179 155 140 128 111 100 88 80
22 177 152 138 126 110 99 86 79
23 175 149 135 123 108 97 84 77
24 173 146 132 121 105 94 81 75
25 170 142 130 118 104 92 79 73
26 167 139 127 115 102 88 76 71
27 164 136 125 113 100 86 74 69
28 161 133 122 111 98 84 72 68
29 158 130 120 109 96 82 71 67
30 154 128 117 106 95 80 69 66
31 150 125 115 104 92 78 68 65
32 147 122 113 102 90 76 65 64
33 144 120 111 100 88 74 63 63
34 141 117 108 98 86 71 62 62
35 139 115 106 96 84 69 60 61
36 137 115 104 94 82 67 58 60
37 134 112 102 93 80 65 56 60
38 131 111 99 90 78 64 55 58
39 127 111 94 90 77 62 54 60
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Table 7: OLS Regression analysis of the price of all seats in the distribution (Option value)

(1) (2) (3) (4) (5) (6)

Dependent variable log(p) log(p) log(p) log(p) log(p) log(p)
Sample All routes All routes Leisure Leisure Business Business

Days to departure 0-3 -0.280*** -0.030 -0.272*** -0.005 -0.320*** -0.114*
(0.001) (0.057) (0.063) (0.090) (0.041) (0.053)

Days to departure 4-7 -0.275*** 0.006 -0.272*** 0.024 -0.304*** -0.064
(0.001) (0.057) (0.063) (0.090) (0.041) (0.053)

Days to departure 8-10 -0.265*** 0.038 -0.266*** 0.056 -0.282*** -0.022
(0.001) (0.057) (0.062) (0.089) (0.040) (0.053)

Days to departure 11-14 -0.211*** 0.069 -0.215*** 0.094 -0.220*** 0.008
(0.001) (0.057) (0.062) (0.089) (0.040) (0.053)

Days to departure 15-21 -0.107*** 0.170** -0.106 0.205* -0.115** 0.097
(0.001) (0.057) (0.062) (0.089) (0.040) (0.053)

Days to departure 22-28 -0.056*** 0.185** -0.047 0.228* -0.079* 0.086
(0.001) (0.057) (0.061) (0.089) (0.040) (0.053)

Days to departure 29-35 0.008*** 0.191*** 0.019 0.233** -0.019 0.078
(0.001) (0.056) (0.061) (0.089) (0.039) (0.052)

Days to departure 36-50 0.023*** 0.127* 0.037 0.168* -0.020 0.010
(0.001) (0.053) (0.057) (0.084) (0.037) (0.049)

Position -0.016*** -0.002 -0.017*** -0.001 -0.017*** -0.006***
(0.000) (0.002) (0.000) (0.002) (0.000) (0.001)

Position*Days to dep. 0-3 -0.019*** -0.021*** -0.014***
(0.002) (0.002) (0.001)

Position*Days to dep. 4-7 -0.020*** -0.022*** -0.016***
(0.002) (0.002) (0.001)

Position*Days to dep. 8-10 -0.020*** -0.021*** -0.015***
(0.002) (0.002) (0.001)

Position*Days to dep. 11-14 -0.017*** -0.019*** -0.012***
(0.002) (0.002) (0.001)

Position*Days to dep. 15-21 -0.016*** -0.018*** -0.011***
(0.002) (0.002) (0.001)

Position*Days to dep. 22-28 -0.013*** -0.016*** -0.008***
(0.002) (0.002) (0.001)

Position*Days to dep. 29-35 -0.010*** -0.012*** -0.004***
(0.002) (0.002) (0.001)

Position*Days to dep. 36-49 -0.006*** -0.007** -0.000
(0.001) (0.002) (0.001)

Heckman’s λ -0.102*** -0.015*** -0.092*** -0.000 -0.103*** -0.023***
(0.000) (0.004) (0.005) (0.006) (0.006) (0.006)

R2 0.70 0.71 0.69 0.71 0.72 0.73
Observations 5,510,306 5,510,306 2,430,891 2,430,891 2,087,774 2,087,774

(a) Flight-code fixed effects.
(b) ***, ** and * denote statistical significance at 1%, at 5% and at 10% level.
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Table 8: Regression analysis of the price of the first seat on sale

(1) (2) (3) (4)
Dependent variable log(p) log(p) log(p) log(p)
Estimation technique OLS-FE OLS-FE OLS-FE IV-FE
Sample All obs. Not cens. obs. Not cens. obs. Not cens. obs.

Days to departure 0-3 0.785*** 0.323*** -0.363*** -0.393***
(0.007) (0.038) (0.074) (0.101)

Days to departure 4-7 0.666*** 0.205*** -0.373*** -0.399***
(0.007) (0.038) (0.073) (0.101)

Days to departure 8-10 0.490*** 0.050 -0.370*** -0.388***
(0.006) (0.038) (0.072) (0.100)

Days to departure 11-14 0.403*** -0.005 -0.307*** -0.318***
(0.005) (0.038) (0.071) (0.099)

Days to departure 15-21 0.351*** -0.026 -0.211*** -0.216**
(0.005) (0.038) (0.070) (0.099)

Days to departure 22-28 0.305*** -0.035 -0.121* -0.122
(0.005) (0.038) (0.069) (0.099)

Days to departure 29-35 0.277*** 0.000 -0.020 -0.022
(0.004) (0.038) (0.068) (0.098)

Days to departure 36-50 0.170*** -0.005 0.027 0.026
(0.003) (0.037) (0.065) (0.094)

Position=Available Seats -0.019*** -0.020***
(0.000) (0.001)

Heckman’s λ -0.022* -0.024*
(0.011) (0.013)

Kleibergen-Paap rk LM stat 709.215***
Hansen J-stat .00318
R2 0.568 0.411 0.622 0.629
Observations 901,751 252,063 252,063 174,066

(a) Flight-code fixed effects.
(b) ***, ** and * denote statistical significance at 1%, at 5% and at 10% level.
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Figure 2: Fare distribution at various days to departure

Legenda - Flight EZY8716 from Lisbon (6:45) to London Gatwick (9.25) on 22 Jun 2014

Figure 3: Fare distribution at various days to departure (Ryanair)

Legenda - Flight FR 8547 from Berlin Schonefeld (21:55) to London Stansted (22:40) on 21 Oct 2011
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Figure 4: Fare distribution at various days to departure (Southwest). ‘Wanna Get Away’
fares.

Upper Flight - Chicago MDW (6:00) to New York LGA (9:05) on 9 Nov 2012

Lower Flight - Chicago MDW (18:20) to Los Angeles on 21 Sept 2012
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Figure 5: American Airlines, JKF-ORD on 15 November 2016
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Figure 6: Predicted marginal effects of Position and days to departure on prices.
Note: based on Model (4) in Table 7.
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A Appendix - For Online Publication

A.1 Proofs

Proof. of Proposition 1

Non-negativeness. Non-negativity of V can be easily shown from (2) by induction since

V (t,M) comes from the maximization over p of sums and products of nonnegative terms.

Increasing in both arguments. We show that V (t,M) ≥ V (t− 1,M). By contradiction

assume that V (t,M) < V (t− 1,M). Let p∗ (τ,m) with τ = 1, . . . , t− 1 and m = 1, . . . ,M , be the

set of fares that solves (2) when there are t−1 periods and M seats. Define p̂ (τ,m) with τ = 1, . . . , t

and m = 1, . . . ,M , as a set of fares (not necessarily the optimal one) that is chosen when there

are t periods and M seats: p̂ (τ + 1,m) = p∗ (τ,m), for τ = 1, . . . , t − 1 and p̂ (1,m) = p̄ ∈
(

0, θ̄
)

.

Then, under this fare profile the expected return gained in the first t − 1 periods is V (t− 1,M).

Because ϕ < 1, there is a positive probability that some seats are available in the last period (t = 1),

and they generate positive expected revenue, which contradicts our assumption. The proof that

V (t,m) ≥ V (t,M − 1) is similar to the previous case.

Decreasing difference in t and M and increasing differences in (t,M). We organize this

part of the proof in different steps.

Step 1. We introduce the following notation: ∆1 (t,M) = V (t,M)−V (t− 1,M) and ∆2 (t,M) =

V (t,M) − V (t,M − 1). Note that decreasing differences in t and M can be, respectively, defined

as:

∆1(t,M) ≤ ∆1(t− 1,M), ∆2(t,M) ≤ ∆2(t,M − 1). (A.1)

Moreover, increasing differences in (t,M) is guaranteed by one of these two equivalent expressions:

∆2(t− 1,M) ≤ ∆2(t,M), ∆1(t,M − 1) ≤ ∆1(t,M). (A.2)

Indeed, we can write: V (tH ,M)− V (tL,M) = ∆1(tH ,M) + ∆1(tH − 1,M) + · · ·+∆1(tL + 1,M).

Thus, increasing difference property as in Definition 2 requires that the following inequality holds

∆1(tH ,MH) + ∆1(tH − 1,MH) + · · · + ∆1(tL + 1,MH) ≥ ∆1(tH ,ML) + ∆1(tH − 1,ML) + · · · +

∆1(tL +1,ML), or ∆1(tH ,MH)−∆1(tH ,ML) +∆1(tH − 1,MH)−∆1(tH − 1,ML) + · · ·+∆1(tL +

1,MH)−∆1(tL + 1,ML) ≥ 0. This is guaranteed by (A.2).

Step 2. We rewrite the Bellman equation in an useful way. First note that (2) can be rephrased

as:

∆1(t,M) = max
p

{q (p) [p+ V (t,M − 1)− V (t− 1,M)]} (A.3)

= max
p

{q (p) [p+X(t,M)]} ,

where X(t,M) = V (t,M − 1)− V (t− 1,M). Note that the solution of the maximization problem
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p = argmaxp {q (p) [p+X]} does not change since we have added a constant term X(t,M). More-

over, from the Envelope theorem, ∆1(t,M) is increasing in X. Therefore, it is possible to state the

following result:

∆1(t,M) ≤ ∆1(t− 1,M) ⇐⇒ X(t,M) ≤ X(t− 1,M) (A.4)

⇐⇒ V (t,M − 1)− V (t− 1,M) ≤ V (t− 1,M − 1)− V (t− 2,M)

⇐⇒ ∆1(t,M − 1) ≤ ∆1(t− 1,M).

Moreover:

∆1(t,M − 1) ≤ ∆1(t,M) ⇐⇒ X(t,M − 1) ≤ X(t,M) (A.5)

⇐⇒ V (t,M − 2)− V (t− 1,M − 1) ≤ V (t,M − 1)− V (t− 1,M)

⇐⇒ ∆2(t− 1,M) ≤ ∆2(t,M − 1).

Similarly, (2) can be rephrased as:

∆2(t,M) = max
p

{q (p) p+ [1− q (p)] [V (t− 1,M)− V (t,M − 1)]} (A.6)

= max
p

{q (p) p+ [1− q (p)]Y (t,M)} ,

where Y (t,M) = V (t− 1,M) − V (t,M − 1). Also in this case, from the Envelope theorem,

∆2(t,M) is increasing in Y . Therefore:

∆2(t,M) ≤ ∆2(t,M − 1) ⇐⇒ Y (t,M) ≤ Y (t,M − 1) (A.7)

⇐⇒ V (t− 1,M)− V (t,M − 1) ≤ V (t− 1,M − 1)− V (t,M − 2)

⇐⇒ ∆2(t− 1,M) ≤ ∆2(t,M − 1).

Moreover:

∆2(t− 1,M) ≤ ∆2(t,M) ⇐⇒ Y (t− 1,M) ≤ Y (t,M) (A.8)

⇐⇒ V (t− 2,M)− V (t− 1,M − 1) ≤ V (t− 1,M)− V (t,M − 1)

⇐⇒ ∆1(t,M − 1) ≤ ∆1(t− 1,M).

Previous results presented in (A.5), (A.6), (A.8) and (A.9) can be summarized as follows:

∆1(t,M) ≤ ∆1(t− 1,M) ⇐⇒ ∆2(t− 1,M) ≤ ∆2(t,M) ⇐⇒ ∆1(t,M − 1) ≤ ∆1(t− 1,M) (A.9)

∆1(t,M − 1) ≤ ∆1(t,M) ⇐⇒ ∆2(t,M) ≤ ∆2(t,M − 1) ⇐⇒ ∆2(t− 1,M) ≤ ∆2(t,M − 1)(A.10)

Note that inequalities presented in (A.1) are equivalent to those presented in (A.2). Thus, in order
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to show that V (t,M) has decreasing differences in t and M and increasing differences in (t,M) we

can only need to prove that inequalities presented in (A.1) are satisfied.

Step 3. We proof that inequalities in (A.1) are satisfied by induction. We start to show

that inequalities in (A.1) hold for any (t, 1) or (1,M), with t = 1, 2, .., T and M = 1, 2, .., N .

When M = 1, from (A.4), X(t, 1) = −V (t − 1, 1). Since V (t − 1, 1) ≥ V (t − 2, 1), using (A.5),

we have that X(t, 1) ≤ X(t − 1, 1) and ∆1(t,M) ≤ ∆1(t − 1,M). Similarly, when t = 1, from

(A.7), Y (t,M) = −V (t,M − 1). Since V (t − 1,M) ≥ V (t − 2,M), using (A.8), we have that

X(t,M) ≤ X(t− 1,M) and ∆2(t,M) ≤ ∆2(t,M − 1).

Because we have two different indices (t,M), in order to provide a proof by induction we need

to introduce an ordering, ((t,M),≺), on the indexes t = 1, 2, ..T and M = 1, .., N . We assume

that there is a lexicographic order in (t,M), i.e. (t′,M ′) ≺ (t,M) when t′ < t or when t′ = t and

M ′ < M . Thus, we have to prove two different cases.

Case a. We assume that inequalities in (A.1) hold for (t−1, N) and we want to show that they

hold for (t, 1). This has been already done above.

Case b. We assume that inequalities in (A.1) hold for preceding values of (t,M), in particular

for (t− 1,M) and (t,M − 1), and we want to show that they hold for (t,M). Using as assumption

that the first inequality of (A.1) holds for (t,M − 1) and that the second inequality of (A.1) holds

for (t− 1,M), we obtain:

∆1(t,M − 1) ≤ ∆1(t− 1,M − 1) ≤ ∆1(t− 1,M). (A.11)

Using (A.9), we obtain the proof that the first inequality in (A.1) is satisfied for (t,M).

Similarly, using as assumption that the second inequality of (A.1) for (t− 1,M) holds and that

the first inequality of (A.2) holds for (t,M − 1), we obtain:

∆2(t− 1,M) ≤ ∆2(t− 1,M − 1) ≤ ∆2(t,M − 1). (A.12)

Using (A.10), we obtain the proof that the second inequality in (A.1) is satisfied for (t,M).

Proof. of Corollary 1

It directly follows from (A.1) and (A.2) and by the fact that X(t,M) = ∆2(t,M)−∆1(t,M).
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A.2 Algorithm

As noted in proof of Proposition 1, (2) can be written as:

V (t,M) = max
p

{q (p) [p+ V (t,M − 1)− V (t− 1,M)]}+ V (t− 1,M) (A.13)

with boundary conditions V (t, 0) = 0 and V (0,M) = 0, for any t ∈ {0, . . . , T} and M ∈ {0, . . . , N}.

To find a solution for the problem described in (A.4), we consider the following steps.

Step 1. Find the solution for maxp∈Θ q (p) (p+X). Since Θ is compact, there exists a solution for

the problem.

Step 2. Set t = 1 and M = 1.

Step 3. Compute X = V (t,M − 1)− V (t− 1,M) and use Step 1 to get p (t,M). Replace it in (A.4)

to obtain V (t,M).

Step 4. Set m = m+ 1. Repeat Step 3 until m = N .

Step 5. Set t = t+ 1 and m=1. If t < T , then go back to Step 3.

A.3 Data treatment

This Section contains further details on the procedure we applied to derive the fare distributions

from the posted fares.

Through data visual inspection, we learnt that the carriers’ posted fare follow this rule:

PF (s) =
C +

∑s
j=1 pj

s
, (A.14)

where s denotes the number of seats in the query, PF (s) the corresponding posted fare, pj the fare

of each seat, starting from the first one available for sale and C is a fixed charge which we interpret

as a fixed commission per booking. The presence of C implies that the distribution of posted fares

over seats is generally U-shaped, with the decreasing part due to the commission being spread over

more seats and the increasing part due to the increasing values of buckets, as in Figure 2.

To find C, we rely on the fact that in most cases the first and the second seat are likely to belong

to the same bucket. Therefore C (and the value of the first bucket) can be obtained by solving the

following system of two linear equations in two unknowns, using the identity p1 = p2 = p:

PF (1) =C + p

PF (2) =(C + 2p)/2
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The commission changed over the sampling period: it amounted to £5.5 until 25 June 2014, then

to £6 until 6 May 2015 and subsequently to £6.5. For flights priced in euro the corresponding values

are e7, e7.5 and e8.5 with changes taking place simultaneously to the fares in British Pounds.

The values in the two currencies are highly related to the exchange rate in the various periods.

After finding C, using (A.14) it is straightforward to derive the bucket fare tags, Pj :

Pj = j ∗ PF (j)− (j − 1) ∗ PF (j − 1) with j ∈ [2, 40], (A.15)

with P1 = PF (1)− C.24

Two aspects are noteworthy. First, the procedure to derive the bucket values does not impose any

restriction on the monotonicity of the distribution. Second, and most importantly, the distributions

we derive correspond exactly to the distributions advertised on the carrier’s website. As discussed

in the Data Collection section, for each query the crawler retrieved the information that appears

on the booking page regarding the “number of seats available at that fare”.25 We can then gauge

the extent to which the size of each bucket, obtained from (A.15), conforms with the information

provided by the carrier. It turns out that the above procedure generates buckets’ sizes that perfectly

correspond to the sizes implied by the information posted by the carrier on the number of seats

available at a given fare. We take this as a strong indication that we succeeded in reverse-engineering

the carrier’s pricing approach.

24For simplicity, cents and pennies are rounded to unity.
25This and the other website’s features illustrated in the paper were still operative at the date this paper

was completed.
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