
Munich Personal RePEc Archive

Technical efficiency, productivity change

and environmental degradation

Halkos, George and Bampatsou, Christina

Department of Economics, University of Thessaly, Public Power

Corporation S.A.

February 2017

Online at https://mpra.ub.uni-muenchen.de/77176/

MPRA Paper No. 77176, posted 28 Feb 2017 17:30 UTC



 1 

 
 

Technical efficiency, productivity change  
and environmental degradation 

 
 
 

    Christina Bampatsou1  &  George Halkos2 
  1 Public Power Corporation S.A.  
         2 Laboratory of Operations Research,  
Department of Economics, University of Thessaly  

         c.bampatsou@gmail.com,         halkos@econ.uth.gr 
 
 
 
 
Abstract 
This study deals with the nonparametric frontier analysis in the case of the EU 28 
countries for a period spanning from 1993 to 2012. It provides statistical inference about 
the radial output based measure of technical efficiency under the assumption of Constant 
Returns to Scale (CRS) and it performs scale analysis that allows determining the nature 
of scale inefficiency of each data point. Furthermore, an order-α approach is developed 
for determining partial frontiers. Both traditional Malmquist-Luenberger and 
bootstrapped Malmquist productivity indexes between 1993 and 2012 are constructed. 
Analysis of productivity change by decomposing the Total Factor Productivity Index into 
Efficiency Change and Technical Change is performed showing respectively whether 
productivity gains derive mainly from improvements in efficiency or are mostly the result 
of technological progress. 
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1. Introduction 

Data Envelopment Analysis (hereafter DEA) has been widely used in evaluating 

technical and allocative efficiency of Decision Making Units (DMUs) in terms of relating 

inputs with outputs (Lovell, 1993 and Seiford, 1996, 1997). DEA  relies on a linear 

programming method to define technical efficiency (TE) levels, under constant (Charnes 

et al., 1978) or variable (Banker et al.,1984) returns to scale.  

 An important point to note is that DEA method as a non-parametric technique, 

cannot distinguish between noise and inefficiency. Several methods to cope with the 

usual misspecification and measurement problems due to statistical noise and outlier 

DMUs have been proposed (see among others Wilson, 1993, 1995; Simar, 2003; Simar 

and Wilson, 1998).  

Various applications of DEA and of the Malmquist Productivity Index are utilized 

to calculate the performance of different DMUs over time in the presence of undesirable 

outputs. The latter are in the form of environmental degradation either as damages in the 

nature or pollutants’ emissions (see among others Kortelainen, 2008; Halkos and 

Tzeremes, 2009, 2011; Mahlberg et al., 2011; Apergis et al., 2015; Long et al., 2015; 

Halkos and Polemis, 2016).  

However, the research on production function under the lines of sustainable 

development, taking into consideration the impact of energy consumption (exhaustible 

resources) and environmental degradation (CO2 emissions1) is very limited in terms of 

bias correction using the smoothed homogeneous bootstrap. Therefore, this study aims to 

cover this gap and to provide more reliable and useful results for decision-makers.  

 Specifically we aim here to derive estimators of production frontiers, which 

represent the optimal combinations of inputs (labor, capital and energy) and outputs 

                                                             
1 For  details on climate change issues see among others Halkos (2011, 2015),  Halkos and Skouloudis 
(2015) and Halkos and Tsilika (2014, 2016, 2017). 
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(GDP, CO2 emissions) through an order-α approach and consistent bootstrap procedures 

in order to consider the sensitivity of distance functions and thus efficiency. To overcome 

the usual specification and measurement problems of DEA methodology our paper uses 

the latest advances of DEA analysis as has been introduced by Daraio and Simar (2005, 

2007a, b), Jeong et al. (2010) in combination with the inferential approach introduced by 

Simar and Wilson (1998, 2000a, b).  

For this reason we estimate and provide statistical inference in nonparametric 

output oriented frontier models where all outputs are scaled by the same proportion. 

Hence, radial technical efficiency measures are calculated (Fare, 1988; Fare and Lovell, 

1994; Fare et al., 1994a). Furthermore, we follow Simar and Wilson (1998, 2000a,b, 

2002) by performing statistical inference regarding the radial technical efficiency 

measures via bootstrap technique.  

 After a very brief review of the existing relative literature in section 2, the 

remaining of this article is organized as follows. Section 3 presents the empirical 

methodology and the formulation of the proposed models. Section 4 contains the 

empirical findings. The final section concludes commenting on the derived results. 

2. Data and methodology  

 For our purpose we use a data set of the EU 28 countries, for a period spanning 

from 1993 to 2012 in order to introduce the radial measure of non parametric frontier 

analysis. As inputs labor, capital and energy are used while we utilize GDP as desirable 

and CO2 emissions as undesirable outputs. More specifically, we compute Radial 

(Debreu-Farrell) output-based measures of technical efficiency under the assumption of 

CRS, NIRS, and VRS technology. As next step, we perform statistical inference about 

the radial measure of technical efficiency and compute bias-correction using the 

smoothed homogeneous bootstrap which means that all DMUs in the sample should be 
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similar in terms of technology and characteristics. Furthermore, we perform scale 

analysis of each data point. 

 In our analysis the order-α approach is introduced for determining more robust to 

extreme values partial frontiers compared to traditional full frontiers. More specifically, 

as Daraio and Simar (2007) claim, partial frontiers do not include all data points but just a 

fraction of them. For the partial frontiers specification, Bădin et al. (2012) and 

Mastromarco and Simar (2014) are followed. A median quartile  0.5  is applied 

instead of calculating the extreme quartiles  0.9, 0.95   . According to Bădin et al. 

(2012) median values of   allow us to explore the influence of environmental variables 

on efficiencies’ distribution (technological catch-up) (Figure 2).  

 In the last part of our study, we perform analysis of productivity change during 

the whole period under consideration (see equations 1, 2 and 3) and also between the first 

(1993) and final (2012) years (see equations 1.1, 2.1 and 3.1) of available data, by 

decomposing the Total Factor Productivity Index (TFPCH) into Efficiency Change and 

Technical Change, for both Malmquist-Luenberger and bootstrapped Malmquist index.  

2.1 The model for the determination of Malmquist-Luenberger productivity index  

 The Malmquist-Luenberger productivity index (ML) is employed to estimate 

productivity growth when an undesirable output, in the form of CO2 emissions in our 

case, is included in the production model for directly reducing the creation of undesirable 

output and increasing the production of desirable output. Relying on Chung et al. (1997) 

the output-oriented Malmquist-Luenberger productivity index in the case of undesirable 

output is identified as: 
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 The TFPCHL index may be decomposed into efficiency (EFFCHL) and technical 

changes (TECHCHL). This can expressed as: 
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 The values of the Malmquist-Luenberger index and its components, can be greater, 

equal or smaller than 1. If the Malmquist-Luenberger index is greater than one then there is 

an improvement in productivity (productivity gains). If it is equal to 1 then productivity 

remains unchanged, and if it is smaller than 1 then productivity declines (productivity 

loss).  

2.2 The model for the determination of Bootstrapped Malmquist productivity index  

 In this case the output-based Malmquist Productivity Index between 1993 and 

2012 for data point k makes use of the output distance function which is the reciprocal of 
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the Debreu-Farrell measure of technical efficiency (Caves et al. 1982; Fare et al. 1994a) 

and is defined as follows: 
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The TFPCHb index may be decomposed into efficiency (EFFCHb) and technical change 

(TECHCHb). This can expressed as: 
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 The first component in (5) measures the contribution of EFFCHb index to total 

factor productivity change, while the second component in (5) measures the contribution 

of TECHCHb index to total factor productivity change.  

 Like the Malmquist-Luenberger index, the bootstrapped Malmquist index also 

specifies productivity increases (reductions) if its values are higher (lower) than one. 

 

3. Results 

 First of all, we need to know what type of bootstrap to employ. We perform 

therefore the nonparametric test of independence. We run the test2 for all returns to scale 

assumption for output based frontier models. More specifically we compute Radial 

(Debreu-Farrell) output-based measures of technical efficiency under the assumption of 

CRS, NIRS, and VRS technology  

                                                             
2 P-value of H0 that T4n = 0 (Ho that radial (Debreu-Farrell) output-based measure of technical efficiency 
under assumption of CRS technology and mix of outputs are independent) = 0.0010: hat{T4n} = 0.0052 is 
statistically greater than 0 at the 5% significance level.  
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 The results indicate that output-based measure of technical efficiency, under the 

assumption of constant returns to scale is independent of the mix of outputs. Therefore, 

the smoothed homogeneous bootstrap can be used under assumption of CRS technology.  

  

Figure 1: DEA Efficiencies using Bootstraping 
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Subsequently, we perform statistical inference about the radial measure of 

technical efficiency and compute bias-correction using the smoothed homogeneous 

bootstrap with 999 replications.  In this regard we manage to show that ignoring this bias, 

the obtained output-oriented efficiency measures are biased downwards (Figure 1). In 
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addition, partial frontier approach enables us to reduce the sensitivity to outliers by 

enveloping just a subsample of observations (Figure 2). As derived from the empirical 

analysis, full frontiers which are sensitive to outliers, exceed partial frontiers in all 

countries (Figure 2). 

 
Figure 2: Full and partial frontiers 
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 In the next step of our analysis (Table 1), we perform nonparametric test3 of 

returns to scale and analysis of scale efficiency.4 We provide the results using the 

                                                             
3 The binomial test requires bootstrap replications for each of K data points independently. 
4 The full Table of technical efficiency, bias-corrected measure, bias, variance, three times the ratio of bias 
squared to variance, lower bounds, and upper bounds of the 95% confidence interval in variables is 
available on request. 
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homogeneous bootstrap procedure, in order to provide inference with regards to the 

underlying technology and to perform scale analysis of each data point.  

The P-value of the null hypothesis that the technology is constant returns to scale 

(vs VRS) using homogeneous smoothed bootstrap is 0.0000 implying CRS is not an 

appropriate assumption. Hence, nonparametric test of returns to scale advises performing 

efficiency measurement under assumption of VRS technology. In the second stage of 

scale analysis, the null hypothesis that the data point is scale efficient is tested. More 

specifically, the p-value of the null hypothesis that the technology is NIRS (vs VRS) 

using homogeneous smoothed bootstrap is 0.9990 implying NIRS is an appropriate 

assumption. Taking into account that not all data points are scale efficient, it is 

determined where the reason for scale inefficiency is operating under decreasing returns 

to scale (DRS) (Table 1).  

As already mentioned previously, the values of the TFPCH index and its 

components, can be greater, equal or smaller than 1. If the TFPCH index is greater than 

one, then there is an improvement in productivity (productivity gains). Greece, France, 

Croatia, Austria, Belgium, Sweden, Czech Republic, Romania, Slovakia, United 

Kingdom, Italy, Portugal, Finland, Denmark, Netherlands, Ireland, Latvia, Lithuania, 

Poland, Cyprus, Germany and Estonia are countries that have productivity gains (Table 

2).  

Subsequently, taking into account the relationships that have been recorded in the 

literature regarding the TFPCH indicators, an attempt is made to a further deepening and 

recording of the driving forces of total factor productivity index for DMUs under 

consideration (Table 2). 

If the TFPCH Index is equal to 1, then the productivity remains unchanged, and if 

it is smaller than 1, then the productivity declines (productivity loss). Bulgaria, Malta, 
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Spain, Hungary, Slovenia, Luxembourg are countries that have productivity loss (Table 

2). 

 
Table 1: Scale analysis 

Period Country Scale analysis 

1993-2012 

Austria, Belgium, Croatia, Czech 
Republic, Finland, Greece, Hungary, 
Italy, Lithuania, Slovakia, Slovenia, 

Spain, Sweden  

scale inefficient due to DRS 

1993-1996 scale efficient 
1997-2006 scale inefficient due to DRS 
2007-2009 scale efficient 
2010-2012 

Bulgaria 

scale inefficient due to DRS 
1993-2012 Cyprus, Luxembourg, Malta scale efficient 
1993-2007 scale inefficient due to DRS 
2008-2009 scale efficient 
2010-2012 

Denmark 
scale inefficient due to DRS 

1993-1994 scale efficient 
1995 scale inefficient due to DRS 

1996-1998 scale efficient 
1999-2004 scale inefficient due to DRS 
2005-2012 

Estonia 

scale efficient 
1993-2011 scale inefficient due to DRS 

2012 
France, Poland 

scale efficient 
1993-2000 scale inefficient due to DRS 
2001-2012 

Germany 
scale efficient 

1993-1999 scale inefficient due to DRS 
2000 scale efficient 
2001 scale inefficient due to DRS 

2002-2012 

Ireland 

scale efficient 
1993-2006 scale inefficient due to DRS 
2007-2009 scale efficient 
2010-2012 

Latvia, Portugal 
scale inefficient due to DRS 

1993-2000 scale inefficient due to DRS 
2001-2008 scale efficient 
2009-2012 

Netherlands, United Kingdom 
scale inefficient due to DRS 

1993-2008 scale inefficient due to DRS 
2009 scale efficient 

2010-2012 
Romania 

scale inefficient due to DRS 
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      Table 25: Annual means of Malmquist index and its components by country 
Periods DMU TFPCH EFFCH TECHCH 
1993-2012 Bulgaria 0.96091 0.994337 0.966438 
1993-2012 Malta 0.983883 1 0.983883 
1993-2012 Spain 0.989091 0.985051 1.005753 
1993-2012 Hungary 0.99257 0.992035 1.002045 
1993-2012 Slovenia 0.997359 0.99282 1.006876 
1993-2012 Luxembourg 0.999675 0.991577 1.007863 
1993-2012 Greece 1.00056 0.982628 1.019463 
1993-2012 France 1.001311 0.99211 1.010741 
1993-2012 Croatia 1.001347 1.001366 1.001472 
1993-2012 Austria 1.002141 0.99422 1.009706 
1993-2012 Belgium 1.004953 0.990474 1.015569 
1993-2012 Sweden 1.007587 1.007757 1.002287 
1993-2012 Czech Republic 1.009166 0.998157 1.013545 
1993-2012 Romania 1.009623 1.015849 0.995441 
1993-2012 Slovakia 1.009815 1.011344 1.000554 
1993-2012 United Kingdom 1.010347 0.990286 1.018845 
1993-2012 Italy 1.011508 0.985645 1.02765 
1993-2012 Portugal 1.011833 0.988324 1.027685 
1993-2012 Finland 1.013775 1.006183 1.009614 
1993-2012 Denmark 1.014421 1.002003 1.014774 
1993-2012 Netherlands 1.01716 0.997019 1.019332 
1993-2012 Ireland 1.01914 1 1.01914 
1993-2012 Latvia 1.019197 1.002317 1.019215 
1993-2012 Lithuania 1.019395 1.019796 1.000729 
1993-2012 Poland 1.023849 1.019849 1.005668 
1993-2012 Cyprus 1.02464 1.005092 1.01964 
1993-2012 Germany 1.025792 1.000451 1.024266 
1993-2012 Estonia 1.036956 1.011382 1.026486 

 
 

If EFFCH>TECHCH, then the productivity change (gains or loss) is primarily the 

result of an improvement in efficiency, (Bulgaria, Malta, Sweden, Romania, Slovakia, 

Lithuania, Poland), while if EFFCH<TECHCH, then the productivity change (gains or 

loss) is mainly the result of technological progress (Spain, Hungary, Slovenia, 

Luxembourg, Greece, France, Croatia, Austria, Belgium, Czech Republic, United 

Kingdom, Italy, Portugal, Finland, Denmark, Netherlands, Ireland, Latvia, Cyprus, 

Germany, Estonia) (Table 2). 

                                                             
5 The full table of year by year changes in Malmquist index and its components is available on request. 
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Table 3: Measures of technical efficiency and Malmquist Productivity Index  

Country TE1993b TE2012b TFPCHb TFPCHL EFFCHb EFFCHL TECHCHb TECHCHL 

Austria 1.111823 1.267533 1.260291 1.16996 0.877155 0.868221 1.436793 1.347531 

Belgium 1.085484 1.317985 1.178599 1.065507 0.823593 0.81668 1.431045 1.304679 

Bulgaria 1 1.115806 0.535425 0.50693 0.896213 0.882371 0.597431 0.574508 

Croatia 1.295411 1.282463 1.313151 1.315722 1.010096 1.009042 1.300026 1.303932 

Cyprus 1.077754 1 1.222395 1.268424 1.077754 1.08197 1.134206 1.172327 

Czech Republic 1.563827 1.661482 1.219347 1.170768 0.941224 0.928135 1.295491 1.261417 

Denmark 1.123238 1.112242 1.376608 1.362747 1.009886 0.987479 1.363132 1.380024 

Estonia 1.186267 1 1.367701 1.486885 1.186267 1.189435 1.152945 1.250077 

Finland 1.41822 1.310985 1.301844 1.372126 1.081797 1.11435 1.203408 1.231324 

France 1.024401 1.208891 1.186716 1.062855 0.847389 0.827602 1.400438 1.284254 

Germany 1.092617 1.12648 1.226605 1.198423 0.969939 0.962742 1.264621 1.244804 

Greece 1.24157 1.774565 1.283452 1.074356 0.699648 0.707354 1.834426 1.518836 

Hungary 1.184647 1.408362 1.116799 1.025342 0.841153 0.839384 1.327701 1.221537 

Ireland 1 1 1.41426 1.409457 1 1 1.41426 1.409457 

Italy 1 1.344389 1.272612 1.080112 0.743833 0.740494 1.710885 1.458634 

Latvia 1.337135 1.341451 1.279301 1.275107 0.996783 0.998811 1.28343 1.276624 

Lithuania 1.495029 1.058859 1.103026 1.309852 1.411925 1.408391 0.781222 0.930034 

Luxembourg 1 1.183519 1.028494 0.944118 0.844938 0.844937 1.217243 1.11738 

Malta 1 1 0.782136 0.782136 1 1 0.782136 0.782136 

Netherlands 1.09497 1.183299 1.186709 1.153454 0.925353 0.938122 1.282439 1.229533 

Poland 1.418112 1 1.213723 1.465337 1.418112 1.418114 0.855873 1.0333 

Portugal 1.077208 1.408164 1.331941 1.166861 0.764974 0.774557 1.74116 1.506491 

Romania 1.623105 1.247027 1.19237 1.357458 1.301579 1.290622 0.916095 1.051786 

Slovakia 1.470049 1.222324 1.164338 1.279538 1.202667 1.197798 0.96813 1.068241 

Slovenia 1.287015 1.519904 1.122025 1.029927 0.846773 0.846167 1.32506 1.217164 

Spain 1.053035 1.424126 1.229081 1.063455 0.739426 0.749856 1.66221 1.418212 

Sweden 1.263382 1.116478 1.273631 1.36305 1.131577 1.146992 1.125536 1.18837 

United Kingdom 1.024228 1.277092 1.164351 1.055725 0.802001 0.806692 1.451809 1.308714 
TE1993b: Measure of technical efficiency under the assumption of CRS in 1993 by using the non 
parametric bootstrap method  
TE2012b: Measure of technical efficiency under the assumption of CRS in 2012 by using the non 
parametric bootstrap method  
TFPCHb: Bootstrapped Malmquist productivity index  
TFPCHL: Malmquist-Luenberger productivity index  
EFFCHb: Efficiency change by using the non parametric bootstrap method  
EFFCHL: Malmquist-Luenberger Efficiency change  
TECHCHb: Technical change by using the non parametric bootstrap method  
TECHCHL: Malmquist-Luenberger Technical change 
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DEA being deterministic lacks statistical power and is by construction highly 

sensitive to outliers and measurement errors. In our study we employ the bootstrap 

procedure and therefore we are able to overcome the main limits of the DEA procedure. 

In this context we examine the different results (Table 3) between deterministic and 

bootstrapped Malmquist.  

More specifically, in the case of Luxembourg we observe that bootstrapped 

Malmquist productivity index is 1.028494 and therefore the productivity has increased 

between 1993 and 2012, while at the same time the Malmquist-Luenberger productivity 

index with a value of 0.944118 indicates productivity loss. In Slovakia, Romania and 

Poland we observe that the index of technical change by using the non parametric 

bootstrap method is less than 1 and therefore the technology has deteriorated between 

1993 and 2012, while at the same time the Malmquist-Luenberger technical change index 

with values greater than 1 indicates an improvement in technology. In the case of 

Denmark, we observe that the index of Efficiency change by using the non parametric 

bootstrap method is 1.009886 and therefore the efficiency has increased between 1993 

and 2012, while at the same time the Malmquist-Luenberger Efficiency change index 

with a value of 0.987479 indicates efficiency loss. 

From table 36 we observe that productivity of Austria, Belgium, Czech Republic, 

France, Germany, Greece, Hungary, Italy, Latvia, Luxembourg, Netherlands, Portugal, 

Slovenia, Spain, United Kingdom has increased as a result of technological progress 

while productivity has fallen for Bulgaria and Malta. In Bulgaria, the main reason for 

decreased productivity was loss both in efficiency and technology. In Malta, efficiency 

change leaves the TFPCHb unchanged, but technology has deteriorated to such an extent 

that the entire productivity has decreased. In Ireland, on the contrary efficiency change 

                                                             
6 The full table of technical efficiency, output based measure of scale efficiency, as well as indicator 
variables if statistically scale efficient and the nature of scale inefficiency are available on request. 
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leaves the TFPCHb unchanged, but technology has improved to such an extent that the 

entire productivity has increased.   

We also observe that productivity of Lithuania, Poland, Romania and Slovakia 

has increased as a result of efficiency progress, while in the case of Croatia, Cyprus, 

Denmark, Estonia, Finland and Sweden the main reason for increased productivity was 

gain both in efficiency and technology. 

 Examining the cases of Bulgaria, Luxembourg and Italy we observe that they 

were on the frontier in 1993 but moved away from the 2012 frontier. On the contrary, 

Poland, Cyprus and Estonia were inefficient in 1993 but in 2012 they define the frontier. 

Malta and Ireland were on the frontier in both 1993 and 2012. Finally we observe that the 

remaining countries, Lithuania, Hungary, Slovenia, Slovakia, United Kingdom, Belgium, 

Netherlands, France, Romania, Czech Republic, Germany, Spain, Austria, Sweden, 

Latvia, Greece, Finland, Croatia, Portugal, Denmark, were inefficient in both 1993 and 

2012. 

 

4. Conclusions  

 This study applies a non-parametric frontier method by using bootstrap techniques 

to correct the biased estimators of DEA in productivity and efficiency analysis of the EU 

28 countries in the presence of undesirable output in the form of carbon dioxide 

emissions for the time period of 1993 to 2012. 

 Concerning the methodologies applied to cope with the misspecification and 

measurement problems mentioned the latest advances of DEA analysis have been used. 

In this context, we manage to show that ignoring bias can lead to an underestimation of 

the inefficiency of DMUs (Figure 1). In addition, we show that the determination of 

partial frontiers can improve estimates of productivity in a production frontier that is 
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usually biased upwards (Figure 2). Furthermore, by investigating the scale efficiency of 

EU 28 it is determined where the reason for scale inefficiency is operating under 

decreasing returns to scale (DRS) (Table 1). 

 Finally, we perform analysis of productivity change between 1993 and 2012, by 

decomposing both Malmquist-Luenberger and bootstrapped Malmquist index into 

Efficiency Change and Technical Change. The detailed decomposition of the Total Factor 

Productivity Index (TFPCH) offers additional insights for policy implications, 

representing the driving forces of productivity gains or losses for the entire EU 28  

(Tables 2, 3). The decomposition of total factor productivity index into efficiency and 

technical changes may provide policy makers with the appropriate framework in 

understanding whether productivity gains are obtained mostly from efficiency 

enhancements or are generally derive from technological progress. 
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