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Abstract

This study examines the effects of bottleneck congestion and an optimal time-varying con-

gestion toll on the spatial structure of cities. We develop a model in which heterogeneous

commuters choose departure times from home and residential locations in a monocentric city

with a bottleneck located between a central downtown and an adjacent suburb. We then demon-

strate that commuters sort themselves temporally and spatially on the basis of their value of

travel time and their flexibility. Furthermore, we reveal that introducing an optimal congestion

toll alters the urban spatial structure. We further demonstrate using an example that congestion

tolling can lead to urban sprawl, which helps rich commuters but hurts poor commuters.

JEL classification: D62; R21; R41; R48

Keywords: bottleneck congestion; residential location; congestion toll; urban sprawl

∗We are grateful to Daisuke Fukuda, Tomoru Hiramatsu, Yukihiro Kidokoro, and Tatsuhito Kono for helpful comments
and discussions. This research was supported by JSPS Grant-in-Aid for Young Scientists (B) 15K18136.
†Corresponding author. Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-

1192, Japan. Phone/Fax: +81-76-234-4915, E-mail: ytakayama@se.kanazawa-u.ac.jp
‡Graduate School of Information Sciences, Tohoku University.

1



1 Introduction

Traditional residential location models describe the spatial structures of cities and their evolution

based on the trade-off between land rent and commuting costs (Alonso, 1964; Mills, 1967; Muth,

1969). Traditional and subsequent studies have successfully predicted the empirically observed

patterns of residential location (e.g., spatial distribution of rich and poor) and the effects of

assorted urban policies.1 However, most previous studies describe traffic congestion using static

flow congestion models. Their use renders these models inappropriate for dealing with peak-

period traffic congestion and for examining the effects of measures intended to alleviate it (e.g.,

time-varying congestion tolls, flextime, staggered work hours).

The bottleneck model most successfully describes peak-period congestion and how com-

muters choose their departure times from home (Vickrey, 1969; Hendrickson and Kocur, 1981;

Arnott et al., 1990b, 1993). Its simple, effective framework for studying the efficacy of various mea-

sures to alleviate peak-period congestion has inspired numerous extensions and modifications.

However, only Arnott (1998), Gubins and Verhoef (2014), and Fosgerau et al. (2016) developed

models to describe how commuters choose where they live and when they depart from home.

Arnott (1998) considered a (discrete space) monocentric closed city comprising two areas—a

downtown and a suburb—connected by a single road with a bottleneck. He showed that imposing

an optimal congestion toll without redistributing its revenues affects neither commuting costs

nor commuters’ residential locations. Gubins and Verhoef (2014) considered a (continuous space)

monocentric closed city with a bottleneck at the entrance to its central business district (CBD).

Their model introduced an incentive for commuters to spend time at home, which the standard

bottleneck model disregards,2 and assumed that a commuters’ house size affects their marginal

utility of spending time at home. They demonstrated that congestion tolling causes commuters

to spend more time at home and to have larger houses, leading to urban sprawl. Fosgerau

et al. (2016) developed a model similar to that of Gubins and Verhoef (2014). Unlike Gubins and

Verhoef (2014), Fosgerau et al. (2016) did not introduce the assumption that the marginal utility

of spending time at home depends on house size and considered a monocentric open city. They

defined the social optimum as the global maximizer of total revenue from congestion tolling and

land rents and showed that the optimal policy induces lower density in the center and higher

density farther out.

The results obtained by Arnott (1998), Gubins and Verhoef (2014), and Fosgerau et al. (2016)

differ fundamentally from the results given by traditional models with static flow congestion,

which predict that cities become denser with congestion pricing (Kanemoto, 1980; Wheaton, 1998;

Anas et al., 1998). Their models, however, assumed that commuters are homogeneous, although

it has been established that optimal congestion tolling changes commuting costs in bottleneck

models with heterogeneous commuters (Arnott et al., 1992, 1994; van den Berg and Verhoef, 2011).

That is, the effects of congestion tolling in the bottleneck model with heterogeneous commuters

can fundamentally differ from those in models with homogeneous commuters.

1Fujita (1989), Glaeser et al. (2008), Fujita and Thisse (2013), and Duranton and Puga (2015) provided detailed overviews
of traditional residential location models. For the effects of congestion pricing, see Kanemoto (1980), Wheaton (1998),
and Anas et al. (1998). Recently, Brueckner (2007), Anas and Rhee (2007), Joshi and Kono (2009), Kono et al. (2008); Kono
and Joshi (2012), and Pines and Kono (2012) showed the efficiency of urban policies to substitute for congestion pricing
(urban growth boundary, floor-to-area ratio regulations).

2Vickrey (1973), Tseng and Verhoef (2008), Fosgerau and Engelson (2011), Fosgerau and de Palma (2012), Fosgerau
and Lindsey (2013), and Fosgerau and Small (2014) considered the utility of spending time at home.
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This study extends the model developed by Arnott (1998) to consider commuter heterogeneity

and a continuous space monocentric city with a bottleneck located between a central downtown

and an adjacent suburb.3 We systematically analyzed our model using the properties of com-

plementarity problems that define the equilibrium.4 Our analysis shows that commuters sort

themselves both temporally and spatially on the basis of their value of time and their flexibility:

commuters with a higher time-based cost per unit schedule delay (marginal schedule delay cost

divided by marginal travel time cost) arrive at work earlier; commuters with a higher value of

travel time and a higher marginal schedule delay cost live closer to their workplace.

This study also investigates the effects of an optimal time-varying congestion toll on the

spatial distribution of commuters. We show that introducing a congestion toll (with and without

redistributing its revenues) changes commuters’ commuting costs, thereby altering their spatial

distribution. To demonstrate the effects of congestion tolling concretely, we also analyzed the

model for a case in which commuters with a high value of travel time have a higher time-based

cost per unit schedule delay.5 This analysis indicates that congestion tolling causes urban sprawl

and induces higher density and land rent at suburban locations and lower density and land

rent at downtown locations. This finding is not merely inconsistent with the standard results

of traditional location models, but it also contradicts those of Arnott (1998). This implies that

interactions among heterogeneous commuters change the effects of congestion tolling on urban

spatial structure. We further show that, although the optimal congestion toll (without toll-revenue

redistribution) generates a Pareto improvement in this case if commuters do not relocate (Arnott

et al., 1994; Hall, 2015), it leads to an unbalanced distribution of benefits: commuters with a high

value of time (rich commuters) gain, whereas those with a low value of time (poor commuters)

lose from tolling.

This study proceeds as follows. Section 2 presents a model in which heterogeneous commuters

choose their departure times from home and residential locations in a monocentric city. Sections

3 and 4 characterize equilibrium in our model without and with tolling using the properties of

complementarity problems, respectively. Section 5 presents the effects of the optimal time-varying

congestion toll. Section 6 concludes the study.

2 The model

2.1 Assumptions

We consider a long narrow city with a spaceless CBD, where all job opportunities are located.

The CBD is located at the edge of the city, and a residential location is indexed by distance x from

the CBD (Figure 1). Land is uniformly distributed with unit density along a road. As is common

in the literature, the land is owned by absentee landlords.6 The road has a single bottleneck with

capacity µ at location d > 0. If arrival rates at the bottleneck exceed its capacity, a queue develops.

3We do not introduce the utility of spending time at home.
4As we show in Appendix A, the equilibrium defined by the complementarity problems coincides with that obtained

by the traditional bit-rent approach (Alonso, 1964; Fujita, 1989; Duranton and Puga, 2015).
5This case includes situations analyzed in the literature employing bottleneck models and commuter heterogeneity

(Arnott et al., 1992, 1994; van den Berg and Verhoef, 2011).
6We can make the alternative assumption that land is publicly owned and that the aggregate land rent is equally

redistributed to all commuters. The results under this assumption are essentially identical to those obtained with
absentee landlords since we assume that the utility function u is quasi-linear (i.e., income elasticity of demand for land is
zero).
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Figure 1: Long narrow city

To model queuing congestion, we employ first-in-first-out (FIFO) and a point queue, in which

vehicles have no physical length as in standard bottleneck models (Vickrey, 1969; Arnott et al.,

1993). Free-flow travel time per unit distance is assumed to be constant at τ > 0 (i.e., free-flow

speed is 1/τ).

There are I types of commuters, each of whom must travel from home to the CBD and who have

the same preferred arrival time t∗ at work. The number of commuters of type i ∈ I ≡ {1, 2, · · · , I},

whom we call “commuters i,” is fixed and denoted by Ni. Since the bottleneck is located at d,

only commuters who reside at x > d pass through it, whereas those who reside at x ∈ [0, d] do

not. Following Arnott (1998), we denote locationsXs = {x ∈ R+ | x > d} as “suburb” and locations

Xd = {x ∈ R+ | x ∈ [0, d]} as “downtown.” We denote the number of commuters i in the suburb

and downtown by Ns
i

and Nd
i
(= Ni − Ns

i
), respectively. If d is sufficiently large, all commuters

reside downtown and no commuter traverses the bottleneck. Because we are uninterested in that

case, d is assumed to be small, such that
∑

k∈INs
k
> 0.

Commuting cost ci(x, t) of commuters i who reside at x and arrive at work at time t is expressed

as the sum of travel time cost mi(x, t) and schedule delay cost si(t − t∗):

ci(x, t) = mi(x, t) + si(t − t∗), (1a)

mi(x, t) =



















αiτx if x ∈ Xd,

αi
{

q(t) + τx
}

if x ∈ Xs,
(1b)

si(t − t∗) =



















βi(t
∗ − t) if t ≤ t∗,

γi(t − t∗) if t ≥ t∗,
(1c)

where q(t) denotes the queuing time of commuters arriving at work at time t, τx represents free-

flow travel time of commuters residing at x, and αi > 0 is the value of travel time of commuters i.

βi > 0 and γi > 0 are early and late delay costs per unit time, respectively. We assume αi > βi for

all i ∈ I so that an equilibrium in our model satisfies the FIFO property (i.e., vehicles must leave

the bottleneck in the same order as their arrival at the bottleneck). We also assume the value of

travel time αi of commuters i is positively correlated to their income wi.

The utility of commuters i who reside at x and arrive at work at time t is given by the following

quasi-linear utility function7:

u(zi(x, t), ai(x)) = zi(x, t) + f (ai(x)), (2)

where zi(x, t) denotes consumption of the numéraire goods, ai(x) is the lot size at x, and f (ai(x))

7As Arnott (1998) proved, if commuters are homogeneous, congestion tolling does not affect their spatial distribution
under a quasi-linear utility function (2).
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is the utility from land consumption. We assume f (x) is a strictly increasing, concave, and

twice differentiable function for x > 0. We also assume limx→0+ f ′(x) = ∞. The logarithmic

( f (x) = κ ln[a]) and the hyperbolic ( f (x) = − κ2x ) utility functions are examples satisfying these

assumptions.8 The budget constraint is expressed as

wi = zi(x, t) + {r(x) + rA} ai(x) + ci(x, t), (3)

where rA > 0 is exogenous agricultural rent and r(x) + rA denotes land rent at x.

The first-order condition of the utility maximization problem gives



















f ′(ai(x)) = r(x) + rA if ai(x) > 0,

f ′(ai(x)) ≤ r(x) + rA if ai(x) = 0,
(4)

where the prime denotes differentiation. Since the marginal utility of land consumption is infinity

at ai(x) = 0, we must have ai(x) > 0 and

ai(x) = g(r(x) + rA), (5)

where g(·) is the inverse function of f ′(·). This implies that lot size ai(x) is independent of

commuters’ type i as well as commuting cost (and congestion toll levels) ci(x, t). Therefore, we

denote lot size at x by a(x).

From (2), (3), and (5), we obtain the indirect utility vi(x, t) as follows:

vi(x, t) = wi − ci(x, t) +H(r(x) + rA), (6)

where H(r) = f (g(r)) − rg(r). Because H(r(x) + rA) can be rewritten as f (a(x)) − {r(x) + rA}a(x), this

represents net utility from land consumption at x. Furthermore, since H′(r(x)+rA) = −g(r(x)+rA) <

0, H(·) is a strictly decreasing function.

2.2 Equilibrium conditions

Similar to models in Peer and Verhoef (2013), Gubins and Verhoef (2014), and Takayama (2015), we

assume commuters make long-run decisions about residential location and short-run decisions

about day-specific trip timing. In the short run, commuters i minimize commuting cost ci(x, t) by

selecting their arrival time t at work taking their residential location x as given. In the long run,

each commuter i chooses a residential location x so as to maximize his/her utility. We therefore

formalize the short- and long-run equilibrium conditions.

2.2.1 Short-run equilibrium conditions

Commuters in the short run determine only their day-specific arrival time t at work, which

implies that the number Ni(x) of commuters i residing at x (i.e., spatial distribution of commuters)

is assumed to be a given. Since commuting costs are given by (1), short-run equilibrium conditions

differ according to commuters’ residential locations. We first consider commuters residing in the

suburb (suburban commuters), who must traverse the bottleneck. The commuting cost cs
i
(x, t) of

8The same utility function has been introduced by, e.g., Blanchet et al. (2016) and Akamatsu et al. (2017).
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suburban commuters i consists of a costαiτx of free-flow travel time depending only on residential

location x and a bottleneck cost cb
i
(t) owing to queuing congestion and a schedule delay depending

only on arrival time t:

cs
i (x, t) = αiτx + cb

i (t), (7a)

cb
i (t) = αiq(t) + si(t − t∗). (7b)

This implies that each suburban commuter chooses arrival time t so as to minimize bottleneck cost

cb
i
(t). Therefore, short-run equilibrium conditions coincide with those in the standard bottleneck

model, which are given by three conditions:



















ns
i
(t)

{

cb
i
(t) − cb∗

i

}

= 0

ns
i
(t) ≥ 0, cb

i
(t) − cb∗

i
≥ 0

∀i ∈ I, (8a)



















q(t)
{

µ −
∑

k∈I ns
k
(t)

}

= 0

q(t) ≥ 0, µ −
∑

k∈I ns
k
(t) ≥ 0

∀t ∈ R+, (8b)

∫

ns
i (t)dt = Ns

i ∀i ∈ I, (8c)

where ns
i
(t) denotes the number of suburban commuters i who arrive at work at time t (i.e., arrival

rate of suburban commuters i at the CBD) and cb∗
i

is the short-run equilibrium bottleneck cost of

suburban commuters i.

Condition (8a) represents the no-arbitrage condition for the choice of arrival time. This

condition means that, at the short-run equilibrium, no commuter can reduce the bottleneck cost

by altering arrival time unilaterally. Condition (8b) is the capacity constraint of the bottleneck,

which requires that the total departure rate
∑

k∈I ns
k
(t) at the bottleneck9 equals capacity µ if there

is a queue; otherwise, the total departure rate is (weakly) lower than µ. Condition (8c) is flow

conservation for commuting demand. These conditions give ns
i
(t), q(t), and cb∗

i
at the short-run

equilibrium as functions of the number N
s = [Ns

i
] of suburban commuters i ∈ I. This implies

that, at the short-run equilibrium, the bottleneck cost of suburban commuters i depends on N
s

but not on N(x).

We next consider commuters who reside downtown (downtown commuters). Since these

commuters do not traverse the bottleneck, their commuting cost cd
i
(x, t) is expressed as

cd
i (x, t) = αiτx + si(t − t∗). (9)

Thus, all downtown commuters will arrive at t = t∗, and their commuting cost at the short-run

equilibrium is given by αiτx.

2.2.2 Long-run equilibrium conditions

In the long run, each commuter i chooses a residential location x so as to maximize indirect utility

vi(x), which is expressed as

vi(x) = yi(x) +H(r(x) + rA), (10a)

9Note that the departure rate from the bottleneck coincides with the arrival rate of suburban commuters at the CBD.
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yi(x) =



















wi − αiτx − cb∗
i

(N s) if x ∈ Xs,

wi − αiτx if x ∈ Xd,
(10b)

where yi(x) denotes the income net of commuting cost earned by commuters i residing at x. Thus,

long-run equilibrium conditions are given by



















Ni(x)
{

v∗
i
− vi(x)

}

= 0

Ni(x) ≥ 0, v∗
i
− vi(x) ≥ 0

∀x ∈ R+, ∀i ∈ I, (11a)



















r(x)
{

1 −
∑

k∈I a(x)Nk(x)
}

= 0

r(x) ≥ 0, 1 −
∑

k∈I a(x)Nk(x) ≥ 0
∀x ∈ R+, (11b)

∫ ∞

0

Ni(x) dx = Ni ∀i ∈ I, (11c)

where v∗
i

denotes the long-run equilibrium utility of commuters i.

Condition (11a) is the equilibrium condition for commuters’ choice of residential location.

This condition implies that, at the long-run equilibrium, no commuter has incentive to change

residential location unilaterally. Condition (11b) is the land market clearing condition. This

condition requires that, if total land demand
∑

k∈I a(x)Nk(x) for housing at x equals supply 1, land

rent r(x)+ rA is (weakly) larger than agricultural rent rA. Condition (11c) expresses the population

constraint.

Note that the traditional bid-rent approach (Alonso, 1964; Fujita, 1989; Duranton and Puga, 2015) is

equivalent to our approach using complementarity problems, as shown in Appendix A. More precisely,

long-run equilibrium conditions (11) coincide with those of the bid-rent approach.10 Therefore,

even if we used the traditional bid-rent approach, we would obtain the same results as those

presented in this study.

Substituting (5) into (11b), we obtain r(x) as follows:

r(x) + rA =



















f ′( 1
N(x) ) if f ′( 1

N(x) ) ≥ rA,

rA if f ′( 1
N(x) ) ≤ rA,

(12)

where N(x) =
∑

k∈INk(x) represents the total number of commuters residing at x. It follows from

(10a) and (12) that the equilibrium conditions in (11) are rewritten as (11a) and (11c) with (10a)

and

vi(x) =



















yi(x) + h(N(x)) if f ′( 1
N(x) ) ≥ rA,

yi(x) +H(rA) if f ′( 1
N(x) ) ≤ rA,

(13a)

h(N(x)) = H( f ′( 1
N(x) )) = f ( 1

N(x) ) −
1

N(x) f ′( 1
N(x) ), (13b)

where h(N(x)) = H(r(x)+rA). Since h′(N(x)) = 1
N(x)3 f ′′( 1

N(x) ) < 0, h(·) is a strictly decreasing function;

that is, the net utility from land consumption decreases as the number of residents increases.

To study the spatial distribution of commuters, it is useful to rewrite the equilibrium conditions

10The equivalence between the bid-rent and our approaches has been shown in Fujita (1989, Chapter 2).
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(11a) and (11c) as follows:



















Ni(x)
{

vs∗
i

(N s) − vs
i
(x)

}

= 0

Ni(x) ≥ 0, vs∗
i

(N s) − vs
i
(x) ≥ 0

∀x ∈ Xs, ∀i ∈ I, (14a)

∫ ∞

d

Ni(x) dx = Ns
i ∀i ∈ I, (14b)



















Ni(x)
{

vd∗
i

(N d) − vd
i
(x)

}

= 0

Ni(x) ≥ 0, vd∗
i

(N d) − vd
i
(x) ≥ 0

∀x ∈ Xd, ∀i ∈ I, (14c)

∫ d

0

Ni(x) dx = Nd
i ∀i ∈ I, (14d)



















vd∗
i

(N d) ≥ vs∗
i

(N s) if Nd
i
≥ 0

vd∗
i

(N d) ≤ vs∗
i

(N s) if Ns
i
≥ 0

∀i ∈ I, (14e)

Nd
i +Ns

i = Ni ∀i ∈ I, (14f)

where vs∗
i

(N s) and vd∗
i

(N d) denote the utilities that commuters i receive from residing in the

suburb and downtown, respectively.

Conditions (14a) and (14b) are equilibrium conditions for suburban commuters’ choice of resi-

dential location x. Similarly, conditions (14c) and (14d) are those for downtown commuters’ choice

of residential location x. Conditions (14e) and (14f) are equilibrium conditions for commuters’

choice between residing in the suburb and downtown. We use these conditions to characterize

the equilibrium spatial distribution of commuters in Section 3.

3 Equilibrium

3.1 Short-run equilibrium

The short-run equilibrium conditions (8) of suburban commuters coincide with those in the

standard bottleneck model, as shown above. Therefore, we can invoke the results of studies

utilizing the bottleneck model to characterize the short-run equilibrium (Arnott et al., 1994;

Lindsey, 2004; Iryo and Yoshii, 2007; Liu et al., 2015). In particular, the following properties of

the short-run equilibrium are useful for investigating the properties of our model.

Lemma 1 (Lindsey, 2004; Iryo and Yoshii, 2007).

(i) The short-run equilibrium bottleneck cost cb∗
i

(N s) is uniquely determined.

(ii) The short-run equilibrium number [ns∗
i

(t)] of suburban commuters arriving at time t coincides with

the solution of the following linear programming problem:

min
[ns

i
(t)]

∫

si(t − t∗)

αi
ns

i (t) dt s.t. µ −
∑

k∈I

ns
k(t) ≥ 0,

∫

ns
i (t)dt = Ns

i . (15)

Let us define (travel) time-based cost as the cost converted into equivalent travel time. Since

that cost for commuters i is given by dividing the cost by αi, we say that si(t − t∗)/αi represents

the time-based schedule delay cost of commuters i. Therefore, Lemma 1 (ii) shows that, at the
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Figure 2: An example of cumulative arrival and departure curves at the short-run equilibrium

short-run equilibrium, the total time-based schedule delay cost is minimized, but the total schedule

delay cost is not necessarily minimized.

We let supp (ns∗
i

) = {t ∈ R+ | ns∗
i

(t) > 0} be the support of the short-run equilibrium number

ns∗
i

(t) of suburban commuters i who arrive at work at t. From Lemma 1 (ii), we then have

supp (
∑

i∈I ns∗
i

) = [tE, tL], (16)

where tE and tL denote the earliest and latest arrival times of commuters, which satisfy

tL = tE +

∑

i∈INi

µ
. (17)

This indicates that, at the short-run equilibrium, a rush hour in which queuing congestion occurs

must be a single time interval (Figure 2).

Furthermore, by using short-run equilibrium condition (8a), we obtain

cb
i (ti) + cb

j (t j) ≤ cb
i (t j) + cb

j (ti) ∀ti ∈ supp (ns∗
i ), t j ∈ supp (ns∗

j ). (18)

Substituting (7) into this, we have the following conditions as given in Arnott et al. (1994) and

Liu et al. (2015): for any ti ∈ supp (ns∗
i

), t j ∈ supp (ns∗
j

), and i, j ∈ I,

(

βi

αi
−
β j

α j

)

(

ti − t j

)

≥ 0 if max{ti, t j} ≤ t∗, (19a)

(

γi

αi
−
γ j

α j

)

(

ti − t j

)

≤ 0 if min{ti, t j} ≥ t∗. (19b)

These conditions indicate that the short-run equilibrium has the following properties: if

marginal time-based early delay cost of commuters i is lower than that of commuters j (i.e.,

βi/αi < β j/α j), early-arriving commuters i (commuters i arriving at the CBD before the preferred

arrival time t∗) arrive at the CBD earlier than early-arriving commuters j; if the marginal time-

based late delay cost of commuters i is lower than that of commuters j (i.e., γi/αi < γ j/α j), late-

arriving commuters i (commuters i arriving after t∗) arrive later than late-arriving commuters j.

This occurs because commuters with a lower time-based schedule delay cost avoid queuing time

rather than a schedule delay. This result shows that, at the short-run equilibrium, commuters sort

9



themselves temporally on the basis of their marginal time-based schedule delay cost.

In the following analysis, we make the following assumption about marginal early and late

delay costs, which is common to the literature employing a bottleneck model with commuter

heterogeneity (Vickrey, 1973; Arnott et al., 1992, 1994; van den Berg and Verhoef, 2011; Hall,

2015).

Assumption 1.
γi

βi
= η for all i ∈ I.

This assumption implies that commuters with a high early delay cost also have a higher late delay

cost. Therefore, commuters are heterogeneous in two dimensions: the value of travel time αi and

marginal schedule delay cost βi (γi).

For convenience, we call commuters with a high (low) value of travel time “rich (poor) com-

muters.” We call commuters with a low (high) marginal schedule delay cost “flexible (inflexible)

commuters.” We can then say from (19) that richer or more flexible commuters prefer to arrive

further from their preferred arrival time t∗ to avoid queuing.

Under Assumption 1, we can explicitly obtain the short-run equilibrium bottleneck cost as a

function of the numberN s = [Ns
i
] of suburban commuters i. For the moment, we assume, without

loss of generality, that commuters with small i have a (weakly) higher time-based schedule delay

cost:

Assumption 2.
βi−1

αi−1
≥
βi

αi
for any i ∈ I\{1}.

Then, from (19), early-arriving (late-arriving) commuters with smaller i arrive later (earlier) at

the short-run equilibrium. Under Assumptions 1 and 2, therefore, the short-run equilibrium

bottleneck cost cb∗
i

(N s) of suburban commuters i is derived by following the procedure employed

in literature featuring bottleneck models with commuter heterogeneity (see, e.g., van den Berg

and Verhoef, 2011):

cb∗
i (N s) =

η

1 + η















βi

∑i
k=1 Ns

k

µ
+ αi

I
∑

k=i+1

βk

αk

Ns
k

µ















∀i ∈ I. (20)

This clearly shows that richer or more inflexible commuters incur higher bottleneck costs at the

short-run equilibrium.

Properties of the short-run equilibrium obtained above can be summarized as follows.

Proposition 1. The short-run equilibrium has the following properties.

(i) Total time-based schedule delay cost is minimized.

(ii) Early-arriving commuters arrive at work in order of increasing marginal time-based early delay cost

(βi/αi). Late-arriving commuters arrive at work in order of decreasing marginal time-based late

delay cost (γi/αi).

(iii) The short-run equilibrium bottleneck cost cb∗
i

(N s) of commuters i is uniquely determined. Further-

more, if Assumptions 1 and 2 hold, cb∗
i

(N s) is given by (20).

10



3.2 Long-run equilibrium

3.2.1 Suburban and downtown spatial structures

We first examine the properties of suburban and downtown spatial structures at the long-run

equilibrium using the properties of equilibrium conditions (14a), (14b), (14c), and (14d). We

therefore consider in this subsection that the suburban and downtown populations are given.

From equilibrium conditions (14a) and (14c), we see there is no vacant location between any two

populated locations, as shown in Lemma 2.

Lemma 2. The long-run equilibrium number N∗(x) of commuters residing at x has the following properties:

(i) the support of N∗(x) is given by

supp (N∗) = [0,XB], (21)

where XB denotes the residential location for commuters farthest from the CBD (city boundary).

(ii) N∗(x) satisfies

f ′( 1
N∗(x) ) > rA ∀x ∈ supp (N∗)\{XB}, (22a)

f ′( 1
N∗(XB)

) = rA. (22b)

Proof. See Appendix B. □

Let Ns∗
i

(x) and Nd∗
i

(x) be the respective long-run equilibrium number of suburban and down-

town commuters i residing at x. Then, it follows from Lemma 2 that, for any xs
i
∈ supp (Ns∗

i
) and

xd
i
∈ supp (Nd∗

i
), indirect utilities vs

i
(xs

i
) and vd

i
(xd

i
) are expressed as

vs
i (x

s
i ) = wi − cb∗

i (N s) − αiτx
s
i + h(N(xs

i )), (23a)

vd
i (xd

i ) = wi − αiτx
d
i + h(N(xd

i )). (23b)

In addition, equilibrium conditions (14a) and (14c) give the following conditions for Ns∗
i

(x) and

Nd∗
i

(x):

vs
i (x

s
i ) + vs

j(x
s
j) ≥ vs

i (x
s
j) + vs

j(x
s
i ) ∀xs

i ∈ supp (Ns∗
i ), ∀xs

j ∈ supp (Ns∗
j ), ∀i, j ∈ I, (24a)

vd
i (xd

i ) + vd
j (x

d
j ) ≥ vd

i (xd
j ) + vd

j (x
d
i ) ∀xd

i ∈ supp (Nd∗
i ), ∀xd

j ∈ supp (Nd∗
j ), ∀i, j ∈ I. (24b)

Substituting (23) into (24) yields the following conditions: for any xi ∈ supp (Ns∗
i

), x j ∈ supp (Ns∗
j

),

and i, j ∈ I,

(

αi − α j

) (

xi − x j

)

≤ 0. (25)

This condition also holds for any xi ∈ supp (Nd∗
i

), x j ∈ supp (Nd∗
j

), and i, j ∈ I.

This condition states that richer suburban commuters reside closer to the CBD to reduce their

free-flow travel time cost. This property also holds for downtown commuters. This implies that

suburban and downtown commuters sort themselves spatially on the basis of their value of travel time.

11



Furthermore, spatial distribution of suburban commuters and that of downtown commuters are

unaffected by the short-run equilibrium bottleneck cost cb∗
i

(N s).

In our model, the free-flow travel time cost is more income elastic than the demand for land

since we assume that the income elasticity of demand for land is zero. Therefore, this result

is in accordance with the standard result of traditional location models, which show that rich

commuters reside closer to the CBD if the income elasticity of commuting costs is larger than the

income elasticity of demand for land.

By using condition (25), we can obtain the spatial distribution of commuters N(x), land rent

r(x), and lot size a(x). For this, we introduce the following assumption.11

Assumption 3. αi−1 > αi for all i ∈ I\{1}.

This means that commuters with small i are richer than those with large i.

Let Xs
i

and Xd
i

denote the respective locations for suburban and downtown commuters i

residing nearest the CBD. It follows from (25) and Assumption 3 that suburban and down-

town commuters i reside in [Xs
i
,Xs

i+1
] and [Xd

i
,Xd

i+1
], respectively (i.e., supp (Ns∗

i
) = [Xs

i
,Xs

i+1
] and

supp (Nd∗
i

) = [Xd
i
,Xd

i+1
] for all i ∈ I). Therefore, we have

vs
i (x) = vs

i (X
s
i ) ∀x ∈ [Xs

i ,X
s
i+1], (26a)

vd
i (x) = vd

i (Xd
i ) ∀x ∈ [Xd

i ,X
d
i+1]. (26b)

These, together with the population constraints (14b) and (14d), lead to the following lemma.

Lemma 3. Suppose Assumption 3. Then the long-run equilibrium land rents at locations Xs
i

and Xd
i

are

given by

r(Xs
i ) + rA = rA +

I
∑

k=i

αkτN
s
k, r(Xd

i ) + rA = r(d) + rA +

I
∑

k=i

αkτN
d
k , (27)

where r(d) + rA is the land rent at location d.

Proof. See Appendix C. □

Substituting (27) into (26), we obtain Xs
i

and Xd
i

as follows.

Xs
i = d +

i−1
∑

j=1

1

α jτ

{

H(rA +
∑I

k= j+1 αkτN
s
k
) −H(rA +

∑I
k= j αkτN

s
k
)
}

, (28a)

Xd
i =

i−1
∑

j=1

1

α jτ

{

H(r(d) + rA +
∑I

k= j+1 αkτN
d
k
) −H(r(d) + rA +

∑I
k= j αkτN

d
k
)
}

. (28b)

Recall that H(r) = f (g(r))− rg(r), and thus h(N(Xs
i
)) = H(r(Xs

i
)+ rA). Land rent r(d)+ rA at location

d is obtained from the following condition:



















r(d)
{

d − Xd
I+1

}

= 0,

r(d) ≥ 0, d − Xd
I+1
≥ 0.

(29)

11This assumption ensures that “no pair of bit rent functions intersects more than once” in the suburb and downtown
when we use the bit-rent approach. As discussed in Fujita (1989, Chapter 4), this is a necessary condition for the
uniqueness of the equilibrium in the traditional residential location model.
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This condition means that, if Xd
I+1
< d for any r(d) ∈ R+, land rent at d equals the agricultural rent

rA (i.e., r(d) = 0); otherwise, r(d) is determined such that Xd
I+1
= d. r(d) is uniquely determined by

condition (29), because the following conditions hold:

dXd
I+1

dr(d)
=

∑

k∈I

{

g(r(Xd
k ) + r(d) + rA) − g(r(Xd

k+1) + r(d) + rA)
}

< 0 if
∑

k∈I

Nd
k > 0, (30a)

lim
r(d)→∞

Xd
I+1 = 0, (30b)

where the second condition follows from H′(·) = −g(·) and limr→∞ g(r) = 0 (lima→0+ f ′(a) = ∞).

By using (26), (27), and (28), we obtain Lemma 4.

Lemma 4. Suppose Assumption 3. Then at the long-run equilibrium,

(i) the city boundary XB is given by

XB = d +
1

τ

















1

αI
H(rA) −

∑

k∈I\{1}

{

1

αk
−

1

αk−1

}

Hs
k −

1

α1
Hs

1

















, (31)

where Hs
i
= H(rA +

∑I
k=i αkτN

s
k
);

(ii) the number N(x) of commuters, lot size a(x), and land rent r(x) + rA are given by

N(x) =



















h−1
(

αiτ(x − d) + αi

∑i
k=2

{

1
αk
− 1
αk−1

}

Hs
k
+
αi

α1
Hs

1

)

if x ∈ [Xs
i
,Xs

i+1
],

h−1
(

αiτx + αi

∑i
k=2

{

1
αk
− 1
αk−1

}

Hd
k
+
αi

α1
Hd

1

)

if x ∈ [Xd
i
,Xd

i+1
],

(32a)

a(x) =
1

N(x)
∀x ∈ [0,XB], (32b)

r(x) + rA = f ′(a(x)) ∀x ∈ [0,XB], (32c)

where h−1(·) is the inverse function of h(·) and Hd
i
= H(r(d) + rA +

∑I
k=i αkτN

d
k
).

Proof. Since XB = Xs
I+1

and Hs
i
= H(r(Xs

i
)+ rA), we have (31). (32) is obtained from the straightfor-

ward calculation of (4), (12), and (26). □

It follows from this lemma that, for any i, j ∈ I,

∂XB

∂Ns
i

> 0,
∂N(x)

∂Ns
i



















> 0 if x ∈ (Xs
j
,Xs

j+1
),

< 0 if x ∈ (Xd
j
,Xd

j+1
).

(33)

This shows that the city boundary moves outward as the suburban population increases. That

is, a population increase in the suburb leads to urban sprawl. Furthermore, it induces higher

density and land rent at any populated suburban location and lower density and land rent at any

populated downtown location.

We see from this lemma that the long-run equilibrium spatial distribution of suburban com-

muters and that of downtown commuters are uniquely determined if Xs
i

and Xd
i

are finite. There-

fore, we make the following assumption to ensure the uniqueness of the long-run equilibrium in

the suburb and downtown.

Assumption 4. H(r) < ∞ for any r ≥ rA.

13



Indeed, since Xs
i

and Xd
i

are given by (28), they are finite under Assumption 4.

In addition, the long-run equilibrium conditions (14a), (14b), (14c), and (14d) are equivalent

to Karush–Kuhn–Tucker (KKT) conditions of the following optimization problem:

Lemma 5. The spatial distribution [N∗
i
(x)] (x ∈ Xs) of suburban commuters is a long-run equilibrium if

and only if it is a KKT point of the following optimization problem:

max
[Ni(x)]

∫ ∞

d















∑

k∈I

{

wk − αkτx − cs∗
k (N s) + f ( 1

N(x) )
}

Nk(x) − rA















dx (34a)

s.t.

∫ ∞

d

Ni(x)dx = Ns
i ∀i ∈ I, Ni(x) ≥ 0 ∀i ∈ I, ∀x ∈ R+. (34b)

Furthermore, the spatial distribution [N∗
i
(x)] (x ∈ Xd) of downtown commuters is a long-run equilibrium

if and only if it is a KKT point of the following optimization problem:

max
[Ni(x)]

∫ d

0















∑

k∈I

{

wk − αkτx + f ( 1
N(x) )

}

Nk(x) − rA















dx (35a)

s.t.

∫ d

0

Ni(x)dx = Nd
i ∀i ∈ I, Ni(x) ≥ 0 ∀i ∈ I, ∀x ∈ R+. (35b)

Since 1
N(x) equals the lot size a(x) and f ′( 1

N(x) ) equals the market land rent at location x, the objective

functions of (34) and (35) represent the total surplus
∫

∑

k∈I vk(x)Nk(x)dx+
∫

r(x)a(x)N(x)dx of the

suburb and the downtown, respectively. Hence, this lemma demonstrates that the land market is

efficient in both the suburb and downtown, as in the traditional residential location model (Fujita,

1989). Note that since the number N s of suburban commuters is taken as given, Lemma 5 does

not indicate that the long-run equilibrium is efficient but instead shows that market failures in

our model are caused only by traffic (bottleneck) congestion.

The results obtained above can be summarized as Proposition 2.

Proposition 2. Suppose Assumptions 3 and 4. Then, given the number N s of suburban commuters, the

long-run equilibrium suburban and downtown spatial structures have the following properties.

(i) The long-run equilibrium spatial distribution of suburban commuters and that of downtown com-

muters are uniquely determined.

(ii) Among commuters residing in the suburb, those with a high value of travel time reside closer to the

CBD. Among commuters residing downtown, those with a high value of travel time reside closer to

the CBD.

(iii) Population increase in the suburb leads to urban sprawl. Furthermore, it induces higher density and

land rents at any populated suburban location, and lower density and land rents at any populated

downtown location.

(iv) The total surplus of the suburb and that of the downtown are maximized.

3.2.2 Population of suburban and downtown commuters

We next characterize the long-run equilibrium number N s∗ = [Ns∗
i

] and N
d∗ = [Nd∗

i
] of suburban

and downtown commuters i under Assumptions 3 and 4 by using equilibrium conditions (14e)
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and (14f). From (28) and Lemma 4, utilities that commuters receive from residing in the suburb

and downtown are given by

vs∗
i (N s) = yi − cb∗

i (N s) − αiτX
s
i +H(rA) −

I
∑

k=i

αkτ(X
s
k+1 − Xs

k), (36a)

vd∗
i (N d) = yi − αiτX

d
i +H(r(d) + rA) −

I
∑

k=i

αkτ(X
d
k+1 − Xd

k ), (36b)

where Xs
i

and Xd
i

are represented as (28). The utility difference vd∗
i

(N d) − vs∗
i

(N s) is thus given by

vd∗
i (N d) − vs∗

i (N s) = cb∗
i (N s) +

I
∑

k=i+1

(αk−1 − αk)τ(Xs
k − Xd

k ) + αIτ(X
B − d) +H(r(d) + rA) −H(rA).

(37)

The difference in utility of commuters with high bottleneck cost cb∗
i

(N s) or small i grows. More

specifically, because the utility difference satisfies

{

vd∗
i (N d) − vs∗

i (N s)
}

−
{

vd∗
i−1(N d) − vs∗

i−1(N s)
}

=
{

cb∗
i (N s) + αiτ

(

Xs
i − Xd

i

)}

−
{

cb∗
i−1(N s) + αi−1τ

(

Xs
i − Xd

i

)}

, (38)

where cb∗
i

(N s) + αiτ
(

Xs
i
− Xd

i

)

denotes the commuting cost difference between suburban and

downtown commuters i, commuters with a large commuting cost difference have a greater utility

difference. Since the short-run equilibrium bottleneck cost cb∗
i

(N s) is given by (20), this implies

that richer or more inflexible commuters prefer to reside downtown under Assumptions 1, 3, and

4. Indeed, if rich commuters are inflexible, they reside downtown. To see this, we consider the

case in which Assumption 3 and the following assumption hold.

Assumption 5. βi−1 > βi for all i ∈ I\{1}.

Under Assumptions 1 and 3–5, cb∗
i

(N s) < cb∗
i−1

(N s) for any N
s and i ∈ I\{1}; that is, the income

elasticity of commuting cost differences is positive. Thus, we have

vd∗
i (N d) − vs∗

i (N s) < vd∗
i−1(N d) − vs∗

i−1(N s) (39)

for any N
s and i ∈ I\{1}. This implies that there exists i∗ ∈ I such that































vd∗
i

(N −N
s) > vs∗

i
(N s) for any i < i∗,

vd∗
i

(N −N
s) ≤ vs∗

i
(N s) if i = i∗,

vd∗
i

(N −N
s) < vs∗

i
(N s) for any i > i∗,

(40)

where N = [Ni] denotes the total number of commuters i. Because vd∗
i

(N − N
s) − vs∗

i
(N s)

increases with an increase in Ns
i
, this condition indicates that a long-run equilibrium number N s∗

of suburban commuters exists uniquely and is given by

Ns∗
i = 0 if i < i∗, (41a)

Ns∗
i = Ni if i > i∗, (41b)
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Ns∗
i∗ =



















Ni∗ if vd∗
i∗

([N1, · · · ,Ni∗−1, 0, 0, · · · , 0]) < vs∗
i∗

([0, · · · , 0,Ni∗ ,Ni∗+1, · · · ,NI]),

φNi∗ otherwise,
(41c)

where φ ∈ [0, 1] is uniquely determined from

vd∗
i∗ ([N1, · · · ,Ni∗−1, (1 − φ)Ni∗ , 0, · · · , 0]) = vs∗

i∗ ([0, · · · , 0, φNi∗ ,Ni∗+1, · · · ,NI]). (42)

Therefore, we have the following proposition.

Proposition 3. Suppose Assumptions 1 and 3–5. Then the long-run equilibrium number of suburban

and downtown commuters is uniquely determined. Furthermore, at the long-run equilibrium, commuters

with a high value of travel time reside downtown and commuters with a low value of travel time reside in

the suburb.

Propositions 2 and 3 show that, under Assumptions 1 and 3–5, rich and inflexible commuters

reside closer to the CBD since rich commuters have a higher commuting cost. This result is

consistent with empirical observations in cities with heavy traffic congestion (see, e.g., McCann,

2013, p.126). Furthermore, introducing Assumptions 3 and 5 implies that the income elasticity of

commuting costs is positive and larger than the income elasticity of demand for land. Therefore,

this result is consistent with the standard result given by the traditional location model.

Although we mainly focus on this type of heterogeneity to clearly demonstrate the properties

of our model, in other cases, we can have different equilibrium spatial distributions of commuters.

As an example, we consider the opposite case: poor commuters are highly inflexible and rich

commuters are highly flexible. In this case, the bottleneck cost of poor commuters can be much

higher than that of rich commuters, such that cb∗
i

(N s)+αiτ(Xs
i
−Xd

i
) > cb∗

i−1
(N s)+αi−1τ(Xs

i
−Xd

i
) for

some N
s and i ∈ I under Assumption 3 (i.e., income elasticity of commuting cost differences is

negative). This, together with (38), implies that poor commuters can reside downtown at the long-run

equilibrium. This result occurs because commuters who are relatively rich but highly flexible are

able to traverse the bottleneck early or late to avoid queuing congestion at a low cost. This will

save them a significant amount on their lot size, with a fairly small bottleneck cost. Thus, they

prefer to do so. Likewise, commuters who are relatively poor but highly inflexible can avoid their

incredibly costly traversing of the bottleneck by paying to reside downtown. Therefore, we can

say that, in our model, commuters sort into residing in the suburb or downtown based on their value of

travel time and their flexibility.

4 Optimal congestion toll

Studies utilizing the standard bottleneck model show that queuing time is a pure deadweight

loss. Hence, in our model, there is no queue at the social optimum, and the social optimum

can be achieved by imposing an optimal time-varying congestion toll that eliminates queuing

congestion, as shown later. This section considers the introduction of an optimal congestion toll

p(t) and characterizes equilibrium under this pricing policy.
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4.1 Short-run equilibrium

Congestion toll p(t) eliminates queuing congestion.12 Thus, the commuting cost ct
i
(x, t) of com-

muters i is given by

ct
i(x, t) =



















si(t − t∗) + αiτx if x ∈ Xd,

cbt
i

(t) + αiτx if x ∈ Xs,
(43a)

cbt
i (t) = p(t) + si(t − t∗). (43b)

Superscript t describes variables under the congestion toll. Since we consider heterogeneous

commuters, congestion toll p(t) does not equal queuing time cost αiq(t) at the no-toll equilibrium

and is set so that travel demand
∑

i∈I nst
i

(t) at the bottleneck equals supply (i.e., capacity) µ.

Therefore, short-run equilibrium conditions for suburban commuters are expressed as



















cbt
i

(t) = cbt∗
i

if nst
i

(t) > 0

cbt
i

(t) ≥ cbt∗
i

if nst
i

(t) = 0
∀i ∈ I, ∀t ∈ R, (44a)



















∑

i∈I nst
i

(t) = µ if p(t) > 0
∑

i∈I nst
i

(t) ≤ µ if p(t) = 0
∀t ∈ R, (44b)

∫

nst
i (t) dt = Nst

i ∀i ∈ I. (44c)

Condition (44a) is the no-arbitrage condition for suburban commuters’ arrival time choices.

Condition (44b) denotes the bottleneck’s capacity constraints, which assure that queuing con-

gestion is eliminated at the equilibrium. Condition (44c) provides the flow conservation for

commuting demand. From these conditions, we have nst
i

(t), p(t), and cbt∗
i

at the short-run equilib-

rium as functions of the number N st of suburban commuters i ∈ I.

As in the case without the congestion toll, by invoking the results of studies employing the

bottleneck model, we have Lemma 6

Lemma 6 (Lindsey, 2004; Iryo and Yoshii, 2007).

(i) The short-run equilibrium bottleneck cost cbt∗
i

(N st) under the congestion toll is uniquely determined.

(ii) The short-run equilibrium number [nst∗
i

(t)] of suburban commuters arriving at time t under the

congestion toll coincides with the solution of the following linear programming problem:

min
[nst

i
(t)]

∑

i∈I

∫

si(t − t∗) nst
i (t) dt (45a)

s.t.
∑

i∈I

nst
i (t) ≤ µ ∀t ∈ R,

∫

nst
i (t) dt = Nst

i ∀i ∈ I, nst
i (t) ≥ 0 ∀i ∈ I, ∀t ∈ R. (45b)

Lemma 6 (ii) suggests that total schedule delay cost is minimized at the short-run equilibrium

under the congestion toll. Note that total schedule delay cost equals total commuting cost minus

12The tradable network permit scheme proposed by Akamatsu (2007) and Wada and Akamatsu (2013) has the same
effect as the optimal congestion toll. Similar schemes have been proposed by, e.g., Verhoef et al. (1997), Yang and Wang
(2011), Nie (2012), He et al. (2013), and Nie and Yin (2013).
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total toll revenue. Hence, Lemma 6 (ii) indicates that, in the short run, the optimal congestion toll

minimizes the social cost of commuting.

From equilibrium condition (44a), we have

cbt∗
i (ti) + cst∗

j (t j) ≤ cbt∗
i (t j) + cst∗

j (ti) ∀ti ∈ supp (nst∗
i ), ∀t j ∈ supp (nst∗

j ), ∀i, j ∈ I. (46)

Thus, the following condition is obtained by substituting (43b) into (46): for any ti ∈ supp (nst∗
i

),

t j ∈ supp (nst∗
j

), and i, j ∈ I,

(

βi − β j

) (

ti − t j

)

≥ 0 if max{ti, t j} ≤ t∗, (47a)
(

γi − γ j

) (

ti − t j

)

≤ 0 if min{ti, t j} ≥ t∗. (47b)

This condition indicates that early-arriving commuters arrive at the CBD in order of increasing

βi and that late-arriving commuters arrive in order of decreasing γi under the congestion toll.

Since commuters with a high marginal time-based schedule delay cost arrive closer to their

preferred arrival time at the no-toll equilibrium, imposing the congestion toll alters the arrival order

of commuters.

This result and Lemmas 1 and 6 reveal that the equilibrium bottleneck cost under the congestion toll

cbt∗
i

(N st) generally differs from the no-toll equilibrium bottleneck cost cb∗
i

(N st) when we consider commuter

heterogeneity in the value of travel time. Indeed, we can see that the bottleneck cost at equilibrium

with tolling differs from that at the no-toll equilibrium. For this, we suppose Assumptions 1 and

5. Then equilibrium bottleneck cost cbt∗
i

(N st) under the toll is obtained in the same manner as in

(20).

cbt∗
i (N st) =

η

1 + η















βi

∑i
k=1 Nst

k

µ
+

I
∑

k=i+1

βk

Nst
k

µ















∀i ∈ I. (48)

This shows that inflexible commuters have higher bottleneck costs at the equilibrium under the

congestion toll, which is fundamentally different from the properties of the no-toll equilibrium

bottleneck cost.

We summarize the properties of the equilibrium in Proposition 4.

Proposition 4. The short-run equilibrium under the congestion toll has the following properties.

(i) Total schedule delay cost is minimized.

(ii) Early-arriving commuters arrive at work in order of increasing marginal early delay cost (βi).

Late-arriving commuters arrive at work in order of decreasing marginal late delay cost (γi).

(iii) Equilibrium bottleneck cost cbt∗
i

(N st) of commuters i is uniquely determined. Furthermore, under

Assumptions 1 and 5, cbt∗
i

(N st) is given by (48).

As in the case without tolling, downtown commuters arrive at t = t∗, as they need not

traverse the bottleneck. That is, the commuting cost of downtown commuters i at the short-run

equilibrium under the congestion toll is given by αiτx.
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4.2 Long-run equilibrium

We characterize the long-run equilibrium spatial distribution of commuters by using the short-run

equilibrium bottleneck cost. In the long-run, the difference between cases with and without tolling

appears only in the indirect utility of suburban commuters. Specifically, under the congestion

toll, the indirect utility vst
i

(x) of suburban commuters i is expressed as

vst
i (x) = wi − αiτx − cbt∗

i (N st) +H(rt(x) + rA), (49)

where rt(x) + rA denotes the land rent at x under the congestion toll. The long-run equilibrium

conditions are thus represented as (11) with the use of (49).

Following the same procedure as in Section 3.2 reveals that the urban spatial structure at the

long-run equilibrium under the congestion toll has the same properties as those without tolling

(Propositions 2 and 3).

Proposition 5. Suppose Assumptions 1 and 3–5. Then under the congestion toll, the long-run equilibrium

has the following properties.

(i) Spatial distributions of commuters are uniquely determined.

(ii) Commuters with a high value of travel time reside closer to the CBD.

(iii) The city boundary XBt, spatial distribution Nt(x) of commuters, lot size at(x), and land rent rt(x) in

the suburb and downtown have the same functional form as in the no-toll equilibrium (i.e., (31) and

(32)).

Note that this proposition does not suggest that the urban structure at the long-run equilibrium

with tolling coincides with that at the no-toll long-run equilibrium. Indeed, imposing a congestion

toll can change the number of suburban and downtown commuters since it changes the short-run

equilibrium bottleneck cost. Therefore, this proposition demonstrates that differences between the

long-run equilibria with and without tolling arise only when the long-run equilibrium number (N s∗ and

N
st∗) of suburban commuters changes by tolling. In the next section, we will show the effects of

tolling on the urban spatial structure by examining differences between N
s∗ and N

st∗.

Before studying the effects of tolling, we show that the social optimum is achieved by imposing

the congestion toll. We define the social optimum as the global maximizer of commuters’ total

utility subject to budget, land, bottleneck capacity, and population constraints:

max
[ni(x,t)],[zi(x,t)],[ai(x,t)]

∑

i∈I

"
u(zi(x, t), ai(x, t)) ni(x, t) dtdx, (50a)

s.t.
∑

i∈I

"
{

wi − zi(x, t) − rAai(x, t) − ci(x, t)
}

ni(x, t) dtdx ≥ 0, (50b)

1 −
∑

i∈I

∫

ai(x, t)ni(x, t)dt ≥ 0 ∀x ∈ R+, (50c)

µ −
∑

i∈I

∫

ni(x, t)dx ≥ 0 ∀t ∈ R, (50d)

Ni −

"
ni(x, t)dxdt = 0 ∀i ∈ I, (50e)

ni(x, t) ≥ 0, zi(x, t) ≥ 0, ai(x, t) ≥ 0 ∀i ∈ I, ∀x ∈ R+, ∀t ∈ R. (50f)
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Then we have Proposition 6.

Proposition 6. The KKT conditions of problem (50) coincide with the short-run and long-run equilibrium

conditions under the congestion toll.

Proof. See Appendix D □

This proposition shows that the social optimum is a long-run equilibrium under the congestion

toll, which indicates that market failures are caused only by bottleneck congestion in our model.

5 Effects of congestion toll on urban spatial structure

5.1 Long-run equilibria with and without tolling

This section demonstrates that imposing the congestion toll alters urban spatial structure. As

discussed in the previous section, the difference between the long-run equilibria with and without

tolling arises when the number of suburban and downtown commuters (N s and N
d) changes by

imposing the congestion toll. Therefore, to examine effects of the congestion toll, we compare the

number of suburban commuters at the long-run equilibria with and without tolling.

We denote the utilities of commuters i residing in the suburb and downtown under the

congestion toll by vst∗
i

(N s) and vdt∗
i

(N d), respectively, which are derived from (14a)–(14d), with

the use of (49). Then under Assumptions 3 and 4, vst∗
i

(N s) and vdt∗
i

(N d) are obtained in the manner

of (36):

vst∗
i (N s) = yi − cbt∗

i (N s) − αiτX
st
i +H(rA) −

I
∑

k=i

αkτ(X
st
k+1 − Xst

k ), (51a)

vdt∗
i (N d) = yi − αiτX

dt
i +H(rt(d) + rA) −

I
∑

k=i

αkτ(X
dt
k+1 − Xdt

k ), (51b)

where Xst
k

and Xdt
k

are, respectively, residential locations for suburban and downtown commuters

i closest to the CBD, which are given by the same functional form as in the no-toll equilibrium

(i.e., (28)). Thus, vdt∗
i

(N d) − vds∗
i

(N s) is represented as

vdt∗
i (N d) − vst∗

i (N s) = cbt∗
i (N s) +

I
∑

k=i+1

(αk−1 − αk)τ(Xst
k − Xdt

k ) + αIτ(X
Bt − d) +H(rt(d) + rA) −H(rA).

(52)

It follows from this and (37) that

(

vdt∗
i (N d) − vst∗

i (N s)
)

−
(

vd∗
i (N d) − vs∗

i (N s)
)

= cbt∗
i (N s) − cb∗

i (N s) ∀i ∈ I. (53)

This leads to Proposition 7.

Proposition 7. Suppose Assumptions 3 and 4. Then for any N
s and i ∈ I\{1},

(

vdt∗
i (N −N

s) − vst∗
i (N s)

)

−
(

vdt∗
i−1(N −N

s) − vst∗
i−1(N s)

)

=
(

vd∗
i (N −N

s) − vs∗
i (N s)

)

−
(

vd∗
i−1(N −N

s) − vs∗
i−1(N s)

)

, (54)
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if and only if there exists δ such that cbt∗
i

(N s) = cb∗
i

(N s) + δ for all i ∈ I.

This proposition implies that the urban spatial structure does not change by imposing the

congestion toll if cbt∗
i

(N s) = cb∗
i

(N s) + δ for all i ∈ I\{1}. However, in general, this condition does

not hold when commuters are heterogeneous in their value of travel time, as discussed in Section

4.1. This means that imposing the optimal congestion toll changes the short-run equilibrium

bottleneck cost and creates incentives for commuters to relocate. Unlike Arnott (1998), therefore,

congestion tolling does alter the urban spatial structure in our model. It is, however, difficult to examine

how the urban spatial structure changes by imposing the congestion toll. Therefore, the following

subsection analyzes our model in a simple setting to elucidate the effects of tolling.

Note that the results presented thus far were obtained under the assumption that toll revenues

are not redistributed. Since the optimal congestion toll minimizes the short-run social cost of

traversing the bottleneck, bottleneck costs for all suburban commuters can be reduced. More

specifically, if policymakers can observe the type of commuters, they can redistribute toll revenue

to suburban commuters such that

cbt∗
i (N s) − ρi(N

s) < cb∗
i (N s), (55)

where ρi(N
s) denotes the toll-revenue redistribution for each suburban commuter i (type-specific

lump-sum rebate). Thus, under this toll-revenue redistribution ρi(N
s), the following condition is

satisfied for any N
s and i ∈ I:

vdt∗
i (N −N

s) − vst∗
i (N s) − ρi(N

s) < vd∗
i (N −N

s) − vs∗
i (N s). (56)

This indicates that if every commuter does not relocate (i.e., in the short-run), imposing congestion toll

with this toll-revenue redistribution helps all suburban commuters and hence makes residing in the suburb

more desirable. Furthermore, this and (40) indicates that this toll-revenue redistribution leads to

urban sprawl under Assumptions 1 and 3–5.

5.2 A simple example

5.2.1 Theoretical analysis

We consider a simple setting to show concretely the effects of the congestion toll on urban

spatial structure. Specifically, we suppose that Assumptions 1–4 hold.13 That is, rich commuters

are assumed to have a higher marginal time-based schedule delay cost. This implies that rich

commuters tend to avoid a schedule delay rather than queuing time and paying the toll.

As Hall (2015) shows, this is a situation wherein congestion tolling does not alter the arrival

order of commuters and generates a Pareto improvement if every commuter does not relocate.

Indeed, it follows from (20) and (48) that the difference between short-run equilibrium bottleneck

costs with and without tolling is non-positive for any N
s:

cbt∗
i (N s) − cb∗

i (N s) =
η

1 + η
αi

I
∑

k=i+1

{

1

αi
−

1

αk

}

βk

Ns
k

µ



















= 0 ∀i ≥ max{supp (N s)},

< 0 ∀i < max{supp (N s)}.
(57)

13Note that if Assumptions 1–4 hold, the condition in Assumption 5 is also satisfied.
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This shows that the short-run equilibrium bottleneck cost incurred by the poorest commuters

does not change. This reflects the fact that the poorest commuters are the most inflexible and

have the highest time-based marginal schedule delay cost. That is, commuters who face no

queuing cost at the equilibrium without tolling and face no toll at the equilibrium with tolling

are the poorest ones.

We see from (57) that congestion tolling weakly decreases short-run equilibrium bottleneck

costs of all commuters. However, as we see later, congestion tolling cannot lead to a Pareto

improvement if we consider commuters’ relocation. Moreover, rich commuters gain and poor

commuters lose from imposing the congestion toll.14

We first examine the effects of tolling on urban spatial structure. It follows from (53) and (57)

that, for any N
s and i ∈ I,



















vdt∗
i

(N −N
s) − vst∗

i
(N s) = vd∗

i
(N −N

s) − vs∗
i

(N s) ∀i ≥ max{supp (N s)},

vdt∗
i

(N −N
s) − vst∗

i
(N s) < vd∗

i
(N −N

s) − vs∗
i

(N s) ∀i < max{supp (N s)}.
(58)

This clearly indicates that imposing the congestion toll can create incentives for commuters

to reside in the suburb. Since the long-run equilibria with and without tolling are uniquely

determined, this result leads to

Nst∗
i ≥ Ns∗

i ∀i ∈ I. (59)

This implies that imposing the congestion toll can increase the suburban population. Furthermore, it

follows from Propositions 2 and 4 that if there exists i ∈ I such that Nst∗
i
> Ns∗

i
,

XB∗ < XBt∗, (60a)

N∗(x)



















> Nt∗(x) if x ∈ Xd,

< Nt∗(x) if x ∈ Xs ∩ supp (Nt∗),
(60b)

r∗(x)



















> rt∗(x) if x ∈ Xd,

< rt∗(x) if x ∈ Xs ∩ supp (Nt∗),
(60c)

where superscripts ∗ and t∗ describe variables at the long-run equilibria without and with tolling,

respectively. This indicates that the population increase in the suburb leads to urban sprawl and induces

higher (lower) density and land rents at any populated suburban (downtown) location.

This finding is in contrast to the standard results of traditional location models, which consider

static flow congestion (Kanemoto, 1980; Wheaton, 1998; Anas et al., 1998). It also differs from

the results obtained by Arnott (1998), who considers homogeneous commuters. This thereby

demonstrates that interactions among heterogeneous commuters may cause urban sprawl resulting from

imposition of the optimal congestion toll.

We next examine changes in commuters’ utility due to the population increase in the suburb.

There exist commuters i ∈ IR ≡ {i ∈ I | Ndt∗
i
> 0 and Nd∗

i
> 0} who reside downtown at the long-

run equilibria with and without tolling, and their utility changes by tolling from vd∗
i

(N −N
s∗) to

14As Takayama and Kuwahara (2016) shows, essentially the same conclusion is obtained if we introduce the assumption
“βi−1/αi−1 ≤ βi/αi for any i ∈ I\{1}” instead of Assumption 2.
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vdt∗
i

(N −N
st∗). Their difference is obtained from (28), (36), and (51) as

vdt∗
i (N −N

dt∗) − vd∗
i (N −N

d∗) =
{

H(rt∗(0) + rA) −H(r∗(0) + rA)
}

+

i
∑

k=2

(αk−1 − αk) τ
(

Xdt∗
k − Xd∗

k

)

.

(61)

Because Xdt∗
i
≥ Xd∗

i
for all i ∈ IR and rt∗(0) < r∗(0) hold if there exists i ∈ I such that Nst∗

i
> Ns∗

i
, we

have vdt∗
i

(N −N
dt∗) > vd∗

i
(N −N

d∗) for all i ∈ IR. This shows that rich commuters i ∈ IR gain from

the population increase in the suburb.

The poorest commuters I reside farthest from the CBD at the long-run equilibria with and

without tolling. Therefore, their utility difference is equal to the commuting cost difference:

vst∗
I (N st∗) − vs∗

I (N s∗) =
{

cb∗
I (N s∗) + αIτX

B∗
}

−
{

cbt∗
I (N st∗) + αIτX

Bt∗
}

. (62)

Furthermore, (20) and (48) yield

cbt∗
I (N st∗) − cb∗

I (N s∗) =
η

1 + η

βi

µ















∑

k∈I

Nst∗
k −

∑

k∈I

Ns∗
k















. (63)

Thus, we obtain vst∗
I

(N st∗) < vs∗
I

(N s∗) if there exists i ∈ I such that Nst∗
i
> Ns∗

i
; that is, the population

increase in the suburb harms the poorest commuters.

These results establish the following proposition.

Proposition 8. Suppose Assumptions 1–4. Then

(i) congestion tolling weakly decreases bottleneck costs of all commuters in the short-run and can

increase the suburban population in the long-run;

(ii) the population increase in the suburb leads to urban sprawl and induces higher (lower) density and

land rents at any populated suburban (downtown) location;

(iii) rich commuters i ∈ IR gain and the poorest commuters I lose from the population increase in the

suburb.

The results obtained in this subsection can be summarized as follows. In the short-run,

congestion tolling reduces bottleneck costs of all commuters except those incurred by the poorest

commuters, creating incentives for downtown commuters to reside in the suburb. Furthermore,

commuters’ relocation from downtown to the suburb causes downtown rents to fall and utilities to

rise. Since rich commuters reside downtown in this case, they are made better off by congestion

tolling if it leads to relocation. Since the poorest commuters reside farthest from the CBD,

downtown commuters’ relocation pushes them farther out from the CBD. This, together with

increased demand for traversing the bottleneck, exacerbates commuting costs (free-flow travel

time cost and schedule delay cost) of the poorest commuters.
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Figure 3: Number Ns∗
i

of suburban com-
muters i at no-toll equilibrium

Figure 4: Number Nst∗
i

of suburban com-
muters i under the optimal congestion toll

Figure 5: Total number Ns of suburban com-
muters

Figure 6: City boundary XB

5.2.2 Numerical analysis

We numerically analyze our model and show effects of the optimal congestion toll. In this

analysis, we assume f (a) = κ ln[a] and use the following parameter values:

I = 4, d = 10 (km), τ = 2 (min/km), [Ni] = [1000, 1500, 2000, 2500], (64a)

[yi] = [300, 200, 150, 100], κ = 10, rA = 200. (64b)

The values of αi, βi, and η are set to be consistent with the empirical result (Small, 1982) and

Assumptions 1–4.

[αi] = [0.3, 0.2, 0.15, 0.1], [βi] = [0.15, 0.09, 0.06, 0.03], η = 4. (64c)

We conduct comparative statics with respect to bottleneck capacity µ. The no-toll equilibrium

number of commuters i ∈ I is presented in Figure 3. This figure shows that downtown commuters

relocate to the suburb in order of decreasing i with increases in bottleneck capacity. They do so

because increasing µ reduces bottleneck cost cb∗
i

(N s) of all commuters, creating incentives for

downtown commuters to relocate to the suburb. This is consistent with the results presented in

Section 5.2.1.
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Figure 7: Utility v∗
4

of commuters 4

The effects of the optimal congestion toll appear in Figures 4–7. Figure 4 presents the long-run

equilibrium number Nst∗
i

of suburban commuters i under the optimal congestion toll. Although

this result is qualitatively the same as that at the no-toll equilibrium (Figure 3), congestion tolling

changes the total number Ns =
∑

i∈INs
i

of suburban commuters, as illustrated in Figure 5. Note

that when µ is small, imposition of the congestion toll does not alter Ns. This occurs because

for small µ, only commuters 4 reside in the suburb (i.e., commuters traversing the bottleneck

are homogeneous). Thus, congestion tolling does not affect the commuting costs of suburban

commuters, as shown in Arnott (1998). Furthermore, a suburban population increase attributable

to congestion tolling leads to expansion of the city boundary XB, as illustrated in Figure 6. That

is, imposing the optimal congestion toll causes urban sprawl. Figure 7 indicates that congestion

tolling reduces the utility of commuters 4 (i.e., commuters with the lowest value of time). That

is, the poorest commuters lose from congestion tolling. We also see from Figures 5–7 that the

difference between equilibria without and with tolling increases in two ranges of µ where Ns∗

is constant. This occurs because, in these ranges, increases in bottleneck capacity do not alter

the suburban population at the no-toll equilibrium but increase its population at the equilibrium

with tolling. These results are also consistent with those presented in Section 5.2.1.

6 Conclusion

This study has developed a model in which heterogeneous commuters choose their departure

time from home and residential locations in a monocentric city with a single bottleneck. By

using the properties of the complementarity problem, we systematically examined the spatial

distribution of commuters and the effects of time-varying congestion tolling. The results indicate

that commuters sort themselves temporally and spatially on the basis of their value of time

and their flexibility. Furthermore, imposing an optimal congestion toll alters the urban spatial

structure. This finding differs fundamentally from the results obtained by Arnott (1998), who

considered homogeneous commuters. Our finding thus also suggests that interactions among

heterogeneous commuters change the effects of congestion tolling.

In addition, we used a simple example to demonstrate that imposing a congestion toll with-

out redistributing toll revenues causes urban sprawl, which is opposite to the standard results

of traditional location models considering static traffic flow congestion. This difference arises

from the following reasons: in the traditional residential location model, imposing a congestion
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toll makes commuting more expensive; in our model, however, tolling eliminates the queuing

congestion; hence, it can make commuting less expensive. We further show that, although con-

gestion tolling generates a Pareto improvement in this example when commuters do not relocate,

it leads to an unbalanced distribution of benefits among commuters: rich commuters gain and

poor commuters lose from tolling. These results suggest that considering commuter heterogene-

ity and commuters’ residential location choice is important when we examine the efficacy of

transportation policies intended to alleviate peak-period congestion.

This study made simplifying assumptions that each commuter traverses only one bottleneck

and that rich commuters are more inflexible than poor commuters. Furthermore, although we

considered the quasi-linear utility function, it is well known that the income elasticity of demand

for land is positive. Therefore, it is important to examine the robustness of our results by analyzing

a model with multiple bottlenecks,15 general heterogeneity,16 and other utility functions such as

Cobb-Douglas utility. In addition, it would be valuable for future research to investigate effects of

policies other than optimal congestion tolling, such as step tolls (Arnott et al., 1990a; Laih, 1994,

2004; Lindsey et al., 2012) and transportation demand management measures for alleviating traffic

congestion (Mun and Yonekawa, 2006; Takayama, 2015).

A Equivalence between the bid-rent and complementarity ap-

proaches

We show that long-run equilibrium conditions (11) coincide with those of the bid-rent approach.

The condition (11a) can be rewritten as



















Ni(x)
{

r(x) + rA −Ψi(x, v∗i )
}

= 0

Ni(x) ≥ 0, r(x) + rA −Ψi(x, v∗i ) ≥ 0
∀x ∈ R+, ∀i ∈ I, (65a)

or equivalently,



















r(x) + rA = Ψi(x, v∗i ) if Ni(x) > 0

r(x) + rA ≥ Ψi(x, v∗i ) if Ni(x) = 0
∀x ∈ R+, ∀i ∈ I. (65b)

Ψi(x, v∗i ) is given by

Ψi(x, v
∗
i ) = H−1(v∗i − yi(x)), (66)

where H−1(·) is the inverse function of H(·). Furthermore, since maxa(x){yi(x) + f (a(x)) − v∗
i
}/a(x) =

Ψi(x, v∗i ),
17 Ψi(x, v∗i ) can be interpreted as the bid-rent function of commuters i. This shows that

conditions in (11b), (11c), and (65a) are the equilibrium conditions of the bid-rent approach (see,

e.g., Fujita, 1989, Definition 4.2).

15Kuwahara (1990) and Akamatsu et al. (2015) have shown the properties of a bottleneck model with multiple bottle-
necks.

16Liu et al. (2015) proposes a semi-analytical approach for solving an equilibrium of a bottleneck model with general
heterogeneous users, which is applicable to our model.

17As shown in, e.g., Fujita (1989), this maximization problem defines the bid-rent function.
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B Proof of Lemma 2

We can show that, for any xa, xb ∈ supp (N∗), there is no xc ∈ (xa, xb) such that N∗(xc) = 0, because

the indirect utilities of suburban and downtown commuters i are given by (13). Thus, we obtain

Lemma 2 (i).

Differentiating the indirect utilities vs
i
(x) and vd

i
(x) with respect to location x, we have

dvs
i
(x)

dx
=























−αiτ + h′(N∗(x))
dN∗(x)

dx
if f ′( 1

N∗(x) ) ≥ rA,

−αiτ if f ′( 1
N∗(x) ) ≤ rA,

(67a)

dvd
i
(x)

dx
=























−αiτ + h′(N∗(x))
dN∗(x)

dx
if f ′( 1

N∗(x) ) ≥ rA,

−αiτ if f ′( 1
N∗(x) ) ≤ rA.

(67b)

Therefore, the long-run equilibrium number N∗(x) of commuters residing at x satisfies

f ′( 1
N∗(x) ) ≥ rA ∀x ∈ supp (N∗). (68)

Furthermore, it follows from long-run equilibrium conditions (14a) and (14c) that N∗(x) also

satisfies



















f ′( 1
N∗(x) ) > rA ∀x ∈ supp (N∗)\{XB},

f ′( 1
N∗(XB)

) = rA.
(69)

This completes the proof.

C Proof of Lemma 3

It follows from (26) that N(x) and
dN(x)

dx are given by

N(x) =



















h−1(h(N(Xs
i
)) + αiτ(x − Xs

i
)) if x ∈ [Xs

i
,Xs

i+1
],

h−1(h(N(Xd
i
)) + αiτ(x − Xd

i
)) if x ∈ [Xd

i
,Xd

i+1
],

(70a)

dN(x)

dx
=

αiτ

h′(N(x))
∀x ∈ supp (N), (70b)

where h−1(·) is the inverse function of h(·). Hence, the population constraints (14b) and (14d) can

be rewritten as

Ns
i =

∫ Xs
i+1

Xs
i

N(x)dx =

∫ N(Xs
i+1

)

N(Xs
i
)

N(x)
dx

dN(x)
dN(x)

=

∫ N(Xs
i+1

)

N(Xs
i
)

N(x)
h′(N(x))

αiτ
dN(x) =

1

αiτ

∫ N(Xs
i+1

)

N(Xs
i
)

{

1

N(x)2
f ′′( 1

N(x) )

}

dN(x)

=
1

αiτ

{

−r(Xs
i+1) + r(Xs

i )
}

, (71a)

Nd
i =

∫ Xd
i+1

Xd
i

N(x)dx =
1

αiτ

{

−r(Xd
i+1) + r(Xd

i )
}

. (71b)
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Since r(Xs
I+1

) = rA and r(Xd
I+1

) = r(d) + rA, we have Lemma 3.

D Proof of Proposition 6

The KKT conditions of problem (50) are given by



















ni(x, t)
[

u(zi(x, t), ai(x, t)) + λ {wi − zi(x, t) − rAai(x, t) − ci(x, t)} − η(x)ai(x, t) − ρ(t) − νi

]

= 0

ni(x, t) ≥ 0, u(zi(x, t), ai(x, t)) + λ {wi − zi(x, t) − rAai(x, t) − ci(x, t)} − η(x)ai(x, t) − ρ(t) − νi ≤ 0,

(72a)


















zi(x, t)ni(x, t)(1 − λ) = 0

zi(x, t) ≥ 0, ni(x, t)(1 − λ) ≤ 0,
(72b)



















ai(x, t)ni(x, t)
{

f ′(ai(x, t)) − η(x) − rA
}

= 0,

ai(x, t) ≥ 0, ni(x, t)
{

f ′(ai(x, t)) − η(x) − rA
}

≤ 0,
(72c)



















λ
∑

i∈I

! {

wi − zi(x, t) − rAai(x, t) − ci(x, t)
}

ni(x, t) dtdx = 0

λ ≥ 0,
∑

i∈I

! {

wi − zi(x, t) − rAai(x, t) − ci(x, t)
}

ni(x, t) dtdx ≥ 0,
(72d)



















η(x)
[

1 −
∑

i∈I

∫

ai(x, t)ni(x, t)dt
]

= 0

η(x) ≥ 0, 1 −
∑

i∈I

∫

ai(x, t)ni(x, t)dt ≥ 0,
(72e)



















ρ(t)
[

µ −
∑

i∈I

∫

ni(x, t)dx
]

= 0

ρ(t) ≥ 0, µ −
∑

i∈I

∫

ni(x, t)dx ≥ 0,
(72f)

Ni −

"
ni(x, t)dxdt = 0, νi ≥ 0, (72g)

where λ, η(x), ρ(t), and νi are Lagrange multipliers.

These conditions lead to λ = 1. It follows from this and lima→0 f ′(a) = ∞ that condition (72c)

can be rewritten as



















ni(x, t)
{

f ′(ai(x, t)) − η(x) − rA
}

= 0,

ni(x, t) ≥ 0, f ′(ai(x, t)) − η(x) − rA ≤ 0.
(73)

This condition is equivalent to



















ai(x, t) = g(η(x) + rA) if ni(x, t) ≥ 0,

ai(x, t) ≥ g(η(x) + rA) if ni(x, t) = 0.
(74)

Because f (a) − a f ′(a) is monotonically increasing with increases in a, we can rewrite condition

(72a) as



















wi + f (g(η(x) + rA)) − {η(x) + rA}g(η(x) + rA) − αiτx − si(t − t∗) − ρ(t) − νi = 0 if ni(x, t) ≥ 0,

wi + f (g(η(x) + rA)) − {η(x) + rA}g(η(x) + rA) − αiτx − si(t − t∗) − ρ(t) − νi ≤ 0 if ni(x, t) = 0.

(75)
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Since this condition is separable with respect to t and x, we have



















c∗
i
− si(t − t∗) − ρ(t) = 0 if

∫

ni(x, t)dx ≥ 0,

c∗
i
− si(t − t∗) − ρ(t) ≤ 0 if

∫

ni(x, t)dx = 0,
(76)



















wi + f (g(η(x) + rA)) − {η(x) + rA}g(η(x) + rA) − αiτx − c∗
i
− νi = 0 if

∫

ni(x, t)dt ≥ 0,

wi + f (g(η(x) + rA)) − {η(x) + rA}g(η(x) + rA) − αiτx − c∗
i
− νi ≤ 0 if

∫

ni(x, t)dt = 0.
(77)

Furthermore, conditions (72e) and (72g) can be represented as



















η
[

1 − g(η(x) + rA)
∑

i∈I

∫

ni(x, t)dt
]

= 0,

η(x) ≥ 0, 1 − g(η(x) + rA)
∑

i∈I

∫

ni(x, t)dt ≥ 0,
(78)

Ni −

∫ {∫

ni(x, t)dt

}

dx = 0, νi ≥ 0. (79)

Therefore, KKT conditions in (72) can be rewritten as



















c∗
i
− si(t − t∗) − ρ(t) = 0 if ni(t) ≥ 0,

c∗
i
− si(t − t∗) − ρ(t) ≤ 0 if ni(t) = 0,

(80a)



















ρ(t)
[

µ −
∑

i∈I ni(t)
]

= 0

ρ(t) ≥ 0, µ −
∑

i∈I ni(t) ≥ 0,
(80b)

∫

ni(t)dt =

∫ ∞

d

Ni(x)dx, (80c)



















wi + f (g(η(x) + rA)) − {η(x) + rA}g(η(x) + rA) − αiτx − c∗
i
− νi = 0 if Ni(x) ≥ 0,

wi + f (g(η(x) + rA)) − {η(x) + rA}g(η(x) + rA) − αiτx − c∗
i
− νi ≤ 0 if Ni(x) = 0.

(80d)



















η
[

1 − g(η(x) + rA)
∑

i∈INi(x)
]

= 0,

η(x) ≥ 0, 1 − g(η(x) + rA)
∑

i∈INi(x) ≥ 0,
(80e)

Ni =

∫

Ni(x)dx. (80f)

This proves Proposition 6.
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