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Abstract 

 

The aim of this paper is to estimate a small dynamic factor model (DFM) for nowcasting GDP 

growth in Slovakia. The model predicts the developments of real activity based on monthly 

indicators, such as sales, employment, employers’ health care contributions, export and 

foreign surveys. The forecast accuracy of the model prevails over naive models that ignore 

monthly data. This result holds especially on the shortest horizon of one quarter ahead and on 

the evaluation period including the crisis of 2008-2009. Thus we may conclude that our small 

DFM is a valuable indicator of business cycle turning points in Slovakia. Further, the model 

allows for frequent and automatic updates of the GDP forecast each time new monthly data 

becomes available. This makes it useful for institutions which monitor the developments of 

monthly indicators of real activity. 
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1. Introduction 

National statistical offices publish quarterly national accounts data with a substantial delay. 

The first release of Slovak GDP is available after nine weeks, while an early estimate of it is 

published seven weeks after the end of each quarter. At the same time, numerous monthly 

indicators are released much sooner, i.e. immediately after the end of each month or, at most, 

six weeks later. Some of these are regarded as coincident indicators of GDP, which 

macroeconomic analysts at central banks, finance ministries or the private sector follow and 

comment on regularly. Apart from the expert view that monthly data are useful, several 

studies of GDP nowcasting
3
 (see e.g. the review paper by Bańbura et al., 2013) have shown 

that timely information inherent in monthly indicators help reduce the out-of-sample forecast 

errors of GDP models. As a further advantage, the sequential publication of new monthly data 

allows updating of the GDP estimate on about a weekly basis. This includes updates well 

before the official flash estimate. 

At the same time, the combination of mixed frequency data (quarterly and monthly) in the 

same model can be challenging. An additional issue, specific to the context of GDP 

nowcasting, emerges from ragged edges of data. This means uneven endpoints of time series 

due to differences in publication lags. Fortunately, dynamic factor models (DFM) are able to 

deal with those issues. In what follows we provide a brief non-technical description of factor 

models available in the literature, which are commonly grouped into three model generations. 

The first generation of DFMs are also called strict or exact factor models
4
. In the context of 

GDP nowcasting, the DFM links output growth to the developments of a few monthly 

indicators and at the same time can handle mixed frequencies and ragged edges of data. The 

model is set up in state-space and is estimated via maximum likelihood on monthly frequency. 

The latent common factor is filtered using the Kalman filter. In this setup, GDP is observed 

only in one month of each quarter and it is treated as missing in the remaining two months. 

Missing values are typically filled in by random i.i.d. draws from the normal distribution, as 

suggested by Mariano and Murasawa (2003). Alternatively, GDP can be interpolated from 

quarterly to monthly frequency using standard statistical techniques. 
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 The term nowcasting refers to a situation, when the last GDP figure available at the time of producing the 
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4
 Appropriate estimation methods were suggested by Dempster et al. (1977), Shumway and Stoffer (1982), 

Watson and Engle (1983) and Stock and Watson (1989). Applications include Engle and Watson (1981), 

Mariano and Murasawa (2003), Auroba et al. (2009) and Camacho and Pérez-Quirós (2010, 2011). 



As the main disadvantage of the first generation approach, the total number of indicators that 

can be included in the model is somewhat limited. The main reason is that the maximum 

likelihood method cannot reliably estimate a large number of parameters of such a model
5
. 

For this reason, a small set of indicators was also considered in the applications of Camacho 

and Pérez-Quirós (2010, 2011), who included less than ten variables. However, as the above 

authors show, using just a few good predictors of real activity can be a fruitful strategy. 

According to their findings, their small-sized model for the euro area beats most of its large-

scale competitors in a real-time out-of-sample forecasting exercise. Further, the above authors 

also argue that oversampling monthly indicators of the same type (i.e. different sub-sectors or 

essentially very similar series) may increase the cross-correlation of idiosyncratic shocks 

across series. This could lead to biased estimates of the common factor, therefore including 

more variables is not necessarily a better approach. 

The second generation is also known as approximate or static factor models
6
. Estimating such 

a model usually takes two steps. First, the common factors of the indicators are estimated via 

principal components analysis
7
. Second, the variable to be forecasted is linked to the 

components from the first step by a linear OLS equation. This approach was introduced in 

order to handle large datasets comprised of tens or hundreds of indicators. However empirical 

studies generally find that including more than 30-40 variables does not usually improve the 

model’s forecasting accuracy
8
. Among the main disadvantages of this approach we can 

mention the static specification of factors and the way mixed frequencies and ragged edges of 

data are treated. The latter problem is typically solved by aggregation and realignment of the 

series, which may distort the relationship between GDP and monthly series. 

The third generation of factor models aims to benefit from the advantages of the first two 

generations. This means that static factors are first estimated by principal components on the 

balanced subsample of the data. Next, the above initial values of factors are treated as 

observed when estimating the parameters of a large-scale DFM in state-space. The final step 

consists of iterating between smoothing the factors by the Kalman filter while taking the 
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parameters from the previous iteration as given, and re-estimating the parameters while taking 

the factors from the previous iteration as given
9
. The advantages of the third generation can be 

summarised as the ability to handle large datasets of mixed frequencies and with uneven 

publication lags. 

Apart from factor models, there are additional methods one could adopt for the purposes of 

forecasting GDP on short horizons. Popular and successful approaches include bridge 

equations
10

, mixed data sampling
11

 (MIDAS) and mixed-frequency vector autoregressions
12

 

(MF-VAR). As the present paper is an application of factor models, the above models are not 

reviewed here in more detail. An interested reader may refer to excellent survey articles on 

both factor models and other approaches to GDP forecasting
13

. 

In the present paper we apply a first generation small DFM following the work of Camacho 

and Pérez-Quirós (2010, 2011), with some minor modifications
14

. Our choice was motivated 

by the advantages of a state-space model, which can deal with missing values arising from 

publication lags and can combine different data frequencies in an elegant way. This feature is 

beneficial if a forecasting practitioner aims to update GDP nowcasts frequently. Given the set 

of variables we included, GDP nowcasts from our model can be updated on about a weekly 

basis each time new monthly data become available. This represents a clear time advantage 

compared to GDP flash estimates of the statistical office. 

Another factor prompting us to pick a small model was the set of monthly indicators available 

in Slovakia. Note that large DFMs in the literature typically include at least 30-40 variables. 

In our case, compiling such a big dataset of unique indicators which are relevant for the 

developments of real activity would be quite challenging. However, as already noted above, 

oversampling indicators from the same class could lead to biased estimates of the common 

factor. Therefore, considering data limitations in Slovakia, a small DFM with less than ten 

variables included seems the most feasible approach. 
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Our paper is the first to estimate a first-generation small DFM on Slovak data. Unlike some of 

the related studies, we use historical versions of the GDP series in our out-of-sample forecast 

evaluation. This makes the evaluation more realistic. Similar papers from Slovakia and the 

Central and Eastern European (CEE) region have been published before, however those are 

based on different types of factor models. Huček et al. (2015) and Kľúčik and Juriová (2010) 

use methods similar to the second generation of DFM using Slovak data. From neighbouring 

countries, with comparable data limitations to the Slovak case, we can mention Arnoštová et 

al. (2011), Franta et al. (2014), Rusnák (2016) using Czech data, a Slovenian study by 

Radovan (2017) and a Latvian paper by Bessonovs (2015)
15

. Cross-country studies from the 

CEE region include Feldkircher et al. (2015), Havrlant et al. (2016) and Rünstler et al. (2009). 

The above listed authors mostly estimate second or third generation large scale factor models, 

as well as various non-factor models. They generally find that incorporating information from 

monthly data in the GDP forecast improves the out-of-sample forecasting accuracy compared 

to benchmark models neglecting monthly data. This result is also in line with our findings. 

The paper is organised as follows. The next section specifies the small dynamic factor model. 

The third section describes the dataset used for estimation. Section 4 discusses estimation 

issues. Section 5 presents estimation results. The sixth section evaluates the accuracies of out-

of-sample forecasts by the DFM and naive benchmarks. The final section summarises the 

main findings. 

 

2. A Small Dynamic Factor Model 

Our small DFM is estimated on monthly data frequency. It links the quarter-on-quarter 

growth rate of GDP (yit) to month-on-month growth rates of indicators i (xit), where yit is 

observed only in the third month of each quarter. All time series considered are seasonally 

adjusted and are stationary according to the ADF test after their transformation to growth 

rates. To shrink the number of parameters to be estimated, it is common in the related 

literature to normalise all time series to have a zero mean and unit variance. We also adhere to 

the latter approach. As regards the structure of the model, let us assume that the developments 
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of yit and xit are driven by a common monthly factor ft, which is an unobserved variable. Next we can 

define our model in a state-space form as follows: 𝑥𝑖𝑡 =  𝛼𝑖𝑓𝑡+𝐾𝑖 + 𝜀𝑖𝑡 (1) 𝑦𝑡 =  𝛽𝑓𝑡 + 𝜔𝑡 (2) 𝑓𝑡 =  𝜑𝑓𝑡−1 + 𝑢𝑡 (3) 

, where (1) and (2) are signal equations of observed variables. Note the time index Ki in 

equation (1), which defines the monthly lead of indicator xit ahead of the common factor and 

output growth. The relationship expressed in (3) is the state equation and defines the 

dynamics of the unobserved state variable ft. The normally distributed error terms εit, ωt and ut 

have zero means and variances σ2
εi, σ2

ω and σ2
u respectively. The error terms may be 

autocorrelated and weakly cross-correlated, but are assumed to be uncorrelated with factor ft. 

The dynamic factor model defined by (1)-(3) can be understood as the decomposition of the 

variance of xit and yit into a common and an idiosyncratic component. The model can be 

extended to include N monthly indicators, when index i of xit ranges from 1,..,N. 

A standard specification of a small dynamic factor model in the literature differs slightly from 

ours. This concerns mainly equations (1) and (2), where typically the specification of Mariano 

and Murasawa (2003) is used. The  authors mentioned specify the particular equations as: 𝑥𝑖𝑡 =  𝛼𝑖𝑓𝑡 + 𝜀𝑖𝑡      (4) 𝑦𝑡 =  𝛽(𝑓𝑡 + 2𝑓𝑡−1 + 3𝑓𝑡−2 + 2𝑓𝑡−3 + 𝑓𝑡−4) + 𝜔𝑡  (5) 

, which de facto predetermines the partial correlation of yt with all five lags of xit-L (i=1,..N 

and L=0,..,4) at the same time. However, our pre-screening of indicators xit suggested 

a statistically significant partial correlation between xit and yt only for one or two lags. So for 

simplicity we further assumed only one lag of ft to enter equations (1) and (2). In this case it 

suffices to set time index Ki appropriately in equation (1) and skip lagged values of ft in (5). 

 

3. Data 

In the case of GDP we used chain-linked volumes seasonally adjusted by the Statistical Office 

and considered the vintage published in September 2013 as the last one. We took the quarter-



on-quarter growth rates of the series to reach stationarity according to the ADF test performed 

on the whole sample. Finally we normalised the growth rate to have zero mean and unit 

variance. Monthly indicators were downloaded on the 6
th

 of November in 2013 immediately  

after the new release of retail sales data. Initially we considered a full set of 21 time series, 

where we took the seasonally adjusted versions of the data provided by the publishing 

institutions whenever possible
16

. Next, we transformed the series to month-on-month growth 

rates and normalised them to have zero mean and unit variance. All these monthly growth 

rates were found to be stationary according to the ADF test performed on the whole sample. 

As regards monthly variables, we focused on six data categories, which are also similar to 

those favoured by Camacho and Pérez-Quirós (2010, 2011). First, we included real activity 

indicators, such as indexes of production (industry, manufacturing and construction) and real 

sales (retail trade, car sales, industry, manufacturing and construction). Second, from labour 

market indicators we added the series of employment in selected industries, flows to 

employment and free vacancies. The third category was represented by employers’ health care 

contributions, which approximate household income. The fifth group relates to international 

trade and is comprised of monthly exports, imports and the producer price index (PPI) in 

exporting industries. The final group is associated with surveys, such as the economic 

sentiment indicator (ESI) of Slovakia and other foreign soft indicators from surveys (ESI of 

the Eurozone and Germany, the IFO index from Germany, the Eurozone‘s Purchasing 

Managers Index and the ZEW institute’s survey of economic conditions in Germany). 

When choosing from similar alternatives on the list of indicators, first we tried to focus on 

more aggregated versions (e.g. sales in total industry rather than the manufacturing sub-

sector). By this we aimed to minimise the impact of volatility from idiosyncratic shocks 

specific to a smaller sub-sector of the economy, which would make it more difficult to 

identify the common factor. Second, we decided to omit production indexes as the weights of 

the volume index before and after 2008 were not consistent. Bridging the two versions of the 

series would be possible only under the assumption of constant weights of industry sub-

sectors. However, the reason why the Slovak Statistical Office revised those weights was to 

reflect the latest trends in the relative developments of industrial subsectors. 
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 Seasonally adjusted versions were not available for  the producer price index (PPI) in exporting industries and 

health care contributions of employers. In these two cases we used the X12 method for seasonal adjustment. 



In case of labour market variables we only considered indicators related to employment. 

A potentially useful indicator left out by this restriction is the unemployment rate. However 

we preferred not to bring in additional volatility originating from changes in labour force 

participation. Further, we included health care contributions due to the short publication lag of 

this indicator in comparison with other proxies of household income.  

Further, the advantage of survey-based soft indicators lies in their timeliness, as they are 

published mostly by the end of the month in which the survey is conducted. Early availability 

however comes at the cost of somewhat higher volatility of these series. Finally, we totally 

excluded price indexes (except the PPI of exporters), as our simple model would not be able 

to differentiate between supply and demand shocks to prices, each having the opposite effect 

on output. We also ignored financial variables, such as exchange rates, interest rates, asset 

prices and commodity prices. Their main disadvantage is their volatility and merely indirect 

connection to real activity. Similar considerations were made by Camacho and Pérez-Quirós 

(2010, 2011) as well. 

In Table 1 below we summarise the full list of monthly variables considered for inclusion in 

the DFM. The third column shows the approximate day of the month in which new data is 

typically released for the particular series. The fourth column reports the month to which the 

new data point corresponds, where m is the month in which the release occurs and, for 

example, m-1 is the month preceding the month of the release. The last column reports data 

sources. Data are generally downloadable from the websites of the respective institutions. The 

only exception is employers’ health care contributions, which are available upon request from 

the Institute for Financial Policy of the Ministry of Finance of the Slovak Republic. 

Table 1 – List of monthly indicators 

  Monthly indicator Category Approx. release day Month Avail. from Source
*
 

1 Index of production – industry production 10. m-2 2008 m01 SO SR 

2 Index of production – manufact. production 10. m-2 2008 m01 SO SR 

3 Index of production – construct. production 10. m-2 1998 m01 SO SR 

4 Retail sales sales 4. m-2 2000 m01 SO SR 

5 Car sales sales 4. m-2 2000 m01 SO SR 

6 Sales in industry + construct. sales 11. m-2 2000 m01 SO SR 

7 Sales in industry sales 11. m-2 2000 m01 SO SR 

8 Sales in manuf. sales 11. m-2 2000 m01 SO SR 

9 Employment in selected industries labour market 11. m-2 2002 m01 SO SR 



10 Flows to employment labour market 20. m-1 2004 m01 SO SR 

11 Free vacancies labour market 20. m-1 2002 m01 SO SR 

12 Export foreign trade 9. m-2 1998 m01 SO SR 

13 Import foreign trade 11. m-2 1998 m01 SO SR 

14 PPI in exporting industries foreign trade 28. m-1 2003 m01 SO SR 

15 Health c. contrib. of employers income 30. m-1 2000 m01 MF SR 

16 ESI Slovakia surveys 28. m 1998 m01 Eurostat 

17 ESI Eurozone surveys 30. m 1998 m01 Eurostat 

18 ESI Germany surveys 30. m 1998 m01 Eurostat 

19 IFO Germany surveys 25. m 1998 m01 CESifo 

20 PMI Eurozone surveys 23. m 1998 m07 Markit 

21 ZEW Germany surveys 17. m 1998 m01 ZEW 

Notes: 
*
 SOSR – Statistical office of the Slovak Republic, MF SR – Ministry of Finance of the Slovak Republic, 

CESifo – Center for Economic Studies - Ifo Institute Munich, Markit – Markit Economics Financial Information 

Services Ltd., ZEW – Centre for European Economic Research, Mannheim (Germany). 

Source: institutions listed in the last column of the table and the author’s own considerations. 

As suggested by previous applications of the small DFM (Camacho and Pérez-Quirós 2010, 

2011) and found by the Monte Carlo study of Poncela and Ruiz (2012), the maximum number 

of variables that can be included in the model is limited to about ten. Otherwise the set of 

parameters to be estimated grows too large and maximum likelihood is not able to estimate 

the system. In our case this means we need to reduce the list of indicators in Table 1 by more 

than half. To achieve this, we picked one or two alternatives from each category listed in 

column 2 of Table 1, mostly based on correlations with GDP growth. 

The final selection of variables includes (1.) retail sales, which approximates domestic 

consumption according to the expenditure approach to measuring GDP. The next variable, 

(2.) sales in industry and construction approximate GDP from the production point of view. 

Its advantage compared to other sales sub-aggregates stems from its broad coverage of a large 

set of subsectors. The third series, (3.) employment in selected industries, represents an 

important factor of production and reflects developments on the labour market. Employment 

was preferred to flows into employment and free vacancies because it is a somewhat less 

volatile alternative and is better correlated with GDP. The fourth variable, (4.) exports, covers 

foreign demand for Slovak output, which complements domestic demand in the expenditure 

approach to measuring GDP. We favoured exports to imports and exporters’ PPI due to the 

higher correlation of exports with GDP. The fifth indicator, (5.) health care contributions of 

employers, mimics the income approach to measuring output and is included to obtain a more 

heterogeneous indicator base for estimating the common factor. 



The choice was somewhat more difficult in case of soft indicators, as their correlation with 

GDP was high in all cases. Furthermore, their correlations with GDP were in some cases 

significant for several monthly lags at the same time, especially for ESI and IFO. In contrast, 

the eurozone PMI and the German ZEW index were significantly correlated with GDP only in 

one month. We found that the above correlation pattern, i.e. concentration in one month, is 

similar to the first five groups of “hard” data. Therefore, in order to keep consistency with the 

rest of the variables in the model, we included the Eurozone PMI. The latter indicator slightly 

dominated the ZEW index in terms of correlation with GDP. Eurozone PMI can also be 

viewed as superior to ZEW due to its broader geographical coverage. 

4. Estimation 

State-space models such as (1)-(3) are commonly estimated by the maximum likelihood 

method. The unobserved state ft is subsequently filtered by the Kalman filter. For this 

approach one needs to set the initial value of ft in period t=0 and specify starting values for 

parameters αi, β, φ, σ2
εi, σ2

ω and σ2
u. A typical assumption are diffuse priors, which is to set 

zeros for all starting values. However, in the case of more complicated model structures or 

small sample sizes one can assist the estimation process by setting somewhat more 

informative priors. 

For the initial state of the factor we assumed a diffuse prior meaning ft=0 = 0 and ut=0 = 0. 

Starting values for αi, β a φ were set to 0.5, since if considering xit and yt transformed to 

normalised values, we expected the estimates to come from the interval of 0 to 1. Next, we 

were forced to calibrate the starting values for variances σ2
εi, σ2

ω and σ2
u, as their estimation 

failed even with starting values. During calibration we reflected information from the 

Hodrick-Prescott (HP) filter as a rule of thumb. Namely, we computed the variances of the 

gaps of xit and yt, where the gap comes from the HP filter with parameter λ=117
. In most cases 

we used the above HP gap variances in the calibration (see Table 2), except for the variance 

of the idiosyncratic term of x6, i.e. the Eurozone PMI index. Here we significantly increased 

the calibrated variance due to the high volatility of this monthly indicator. Next, we also 

slightly increased the calibrated variance of the idiosyncratic term in (2), σ2
ω, so that 

coefficient β turns less than one as a result. Finally, as for lags Ki in the last columns of Table 
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 Parameter λ was set to 1 judgementally with the aim to filter some of the volatility and to keep only the main 
trends in each series. 



2, we slightly modified the lags suggested by correlations between xit and yt in most cases to 

keep αi in the range from 0 to 1. 

 

Table 2 – Calibrated parameters 

Equation   Calibrated value 
implied by 

HP gaps 

Lag K’i 
(correlations) 

Lag Ki 

(calibrated) 

Retail sales x1 σ2
ε1 0.6 0.6 2 0 

Sales in indust. & constr. x2 σ2
ε2 0.4 0.4 4 2 

Employment in sel. ind. x3 σ2
ε3 0.3 0.3 0 0 

Export x4 σ2
ε4 0.6 0.6 4 2 

Health care contributions x5 σ2
ε5 0.7 0.7 2 0 

Eurozone PMI x6 σ2
ε6 1.5 0.3 4 3 

GDP yt σ2
ω 0.2 0.1 - - 

Factor ft σ2
u 0.6 - - - 

Source: the author’s own calculations 

 

5. Results 

This section summarises estimation results of the state-space model defined in (1)-(3). Table 3 

below reports parameter estimates. The model was estimated on the time interval from the 

beginning of 2002 to September 2013 and data was downloaded onn November 6, 2013. All 

parameter estimates in Table 3 are statistically significant at 5% and fall into the expected 

range of 0 to 1. Not surprisingly, the largest partial correlation with factor ft is found in case of 

the GDP series. In contrast, the partial correlation of the factor with monthly indicators is 

somewhat diminished for employment, retail sales and sales in industry and construction, 

while the same coefficient is quite small for the Eurozone PMI and health care contributions 

(below 0.2). This means that idiosyncratic variance seems to dominate their evolution and so 

the common factor shows a diminished explanatory power for the latter two variables. 

  



Table 3 – Estimates 

Equation   Coefficient     Standard error 

1. Retail sales x1 α1 0.53 (0.04)
***

 

2. Sales in industry & constr. x2 α2 0.36 (0.04)
***

 

3. Employment in sel. indust. x3 α3 0.81 (0.04)
***

 

4. Export x4 α4 0.32 (0.05)
***

 

5. Health care contributions x5 α5 0.12 (0.04)
***

 

6. Eurozone PMI x6 α6 0.18 (0.07)
**

 

7. GDP yt β 0.99 (0.05)
***

 

8. Factor ft φ 0.63 (0.06)
***

 

Number of observations: 141 

 

    

Estimation interval:  2002m01 : 2013m09   

Notes: *, **, *** denote statistical significance at 10%, 5% and 1%. 

Source: the author’s own calculations. 

Figure 1: GDP and the common factor (%, q-o-q growth) 
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         Source: Statistical Office of the Slovak Republic and the author’s own calculations 

Figure 1 above depicts quarterly GDP growth together with the evolution of the monthly 

factor. GDP growth is treated as observed in the third month of each quarter and is assumed to 

be unobserved otherwise. In contrast, the estimated monthly factor is continuously observed 

in every month. In this figure, the factor is expressed as a contribution to GDP growth, 

meaning the product βft. In Figure 2 we show a similar comparison for the six monthly 

indicators included in the model. This means the respective subfigures illustrate a monthly 

indicator and its component that is shared with the rest of the indicators including GDP 



growth. The common component is again understood as the product αift+Ki. Looking at 

Figure 2, we can infer that important structural breaks, such as the impact of the global 

financial crisis in 2008-2009, are apparent in all monthly indicators as well as in the 

development of the common factor. On the contrary, the higher idiosyncratic volatility 

characteristic for some series (especially the Eurozone PMI and health care contributions) 

does not enter their sub-component represented by the common factor. 

Figure 2 – Monthly indicators and the common factor (%, m-o-m growth) 
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Source: Data publishing institutions listed in Table 1 and the author’s own calculations 

 



6. Evaluation of Forecast Accuracies 

In order to evaluate the accuracy of our small DFM we performed a so-called out-of-sample 

forecasting exercise in pseudo-real time. First we restricted the end of the estimation interval 

to the end of 2007, corresponding with the pre-crisis period. Next we gradually added new 

observations of monthly data and GDP mimicking the publication calendar of the series. In 

each step we re-estimated the model and recorded its out-of-sample forecast for GDP growth 

on the horizon of up to three quarters ahead. For each GDP quarter from 2008 to 2.Q of 2013 

we made 12 forecast simulations. This means 4 estimates for each month within the quarter 

adding  up to 264 forecasts in total.  

In the above exercise we used historical versions of the GDP series, which were available at 

the time corresponding to each simulation. In other words, the last observation of GDP in 

each of the data vintages was the first release of that quarter by the statistical office. Forecast 

errors of the model were also computed with respect to the first release. Monthly data were 

used in their last available versions as of November 2013, as we did not have a vintage dataset 

at our disposal for those variables. However, monthly data are typically not subject to such 

significant revisions as quarterly national accounts. 

After recording forecast errors of the DFM on the horizon of up to three quarters ahead we 

compared them to the forecast accuracy of so-called naive univariate benchmark models. 

Following the related literature
18

, we used the AR(1) and random walk models of GDP for 

this purpose. The above benchmarks became standard in the nowcasting literature, as they are 

simple to estimate and at the same time difficult to beat by other models due to the notable 

persistence in GDP growth.  

To compare the performance of the models mentioned, we looked at out-of-sample root-

mean-squared errors (RMSE) over two evaluation intervals (see Table 4 below). The first 

interval, reported in the left part of the table, focused on a less volatile period of 2010-2013 

with a smooth GDP growth series. The second interval was somewhat wider as it included the 

crisis year of 2008 and reached to the end of our sample in 2013 (right half of the table). 

RMSEs of the DFM by the three horizons in columns of Table 4 are simple average RMSEs 

of twelve forecast updates. The twelve updates in total come from four weekly updates in 

each of the three months of a quarter. 
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 See for example the survey articles by Bańbura et al. (2011, 2013) and Stock and Watson (2011). 



Table 4 – Root Mean Squared Errors (RMSE) of out-of-sample forecasts 

Interval 2010-2013 

   

Interval 2008-2013 

    

RMSE +1Q +2Q +3Q   RMSE +1Q +2Q +3Q 

AR(1) 0.42 0.40 0.41   AR(1) 2.74 2.77 2.76 

RW 0.38 0.37 0.53   RW 4.12 3.94 4.09 

DFM 0.36 0.39 0.41   DFM 2.31 2.71 2.74 

Source: the author’s own calculations. 

Results in Table 4 above imply that the DFM is more accurate than its benchmarks one 

quarter ahead in both evaluation intervals. This result holds especially in the wider period 

including the crisis. However, on longer horizons of two or three quarters ahead we must note 

that forecast errors differ only slightly, while the DFM performs slightly better than its 

alternatives in most cases. Hence we may conclude that the DFM seems especially valuable 

on the shortest horizon and around business cycle turning points. The latter result and also the 

finding that models using monthly data tend to outperform simple univariate models is in line 

with the conclusions of related studies
19

. 

 

7. Conclusion 

This paper is the first to estimate a small dynamic factor model for nowcasting GDP growth 

in Slovakia. Unlike some of the related studies from Slovakia and the CEE region, we use 

historical vintages of the GDP series in our out-of-sample forecast evaluation. This makes the 

evaluation more realistic. Our findings indicate that the DFM tends to outperform its 

univariate benchmarks in forecast precision. This result holds especially on the shortest 

horizon of one quarter ahead and on the evaluation period including the crisis of 2008-2009. 

The above finding is consistent with other related studies of GDP nowcasting. Hence we may 

conclude that our small DFM incorporating monthly data is a valuable indicator of business 

cycle turning points in Slovakia. As its further advantages, the DFM allows for frequent 

updates of the forecast that take into account new data releases in an automatic way. These 

features make it suitable for institutions, which monitor monthly indicators of the real 

economy on a regular basis. 
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 Note that a more detailed quantitative comparison of our results with other studies from Slovakia is not 

feasible. This is because Feldkircher et al. (2015), Huček et al. (2015) and Kľúčik and Juriová (2010) did not use 
vintage data of GDP and considered different evaluation periods. Quantitative results from other countries are 

not directly comparable for similar reasons. 
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