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1 Introduction

While spatial econometric methods have solidly become part of a standard methodological toolkit
of applied researchers in many fields of economics that deal with spatial data which include appli-
cations such as land use, hedonic pricing or cross-country growth studies, most empirical work has
confined its analysis to linear spatial models only. However, to paraphrase Paelinck & Klaassen
(1979), econometric relations in space result more often than not in highly nonlinear specifications
(as cited in van Gastel & Paelinck, 1995). For instance, allowing for nonlinearities in the hedonic
house price function is often argued to be crucial in order to obtain realistic marginal valuations
of housing attributes (e.g., see Parmeter, Henderson & Kumbhakar, 2007). Taking such potential
nonlinearities in spatial models for granted is likely to lead to inconsistent parameter estimates and
thus misleading conclusions.

This paper proposes a semiparametric method to handling nonlinearity (and parameter hetero-
geneity) in models of spatial dependence. We extend a particular class of semiparametric models in
which parameters of a linear regression are permitted to be unspecified smooth functions of some
contextual variables (Hastie & Tibshirani, 1993; Cai, Fan & Li, 2000; Li, Huang, Li & Fu, 2002) to
the case of data with spatial dependence. Specifically, we generalize a popular parametric spatial
autoregressive mixed-regressive model by allowing its coefficients, including the spatial autoregres-
sive parameter, to be nonparametric functions of unknown form [for concreteness, see eq. (2.1)].

While our “smooth coefficient” spatial autoregressive model closely relates to the family of
partially linear semiparametric spatial models recently proposed in the literature (Su & Jin, 2010;
Su, 2012; Zhang, 2013; Sun, Hongjia, Zhang & Lu, 2014), its distinct feature is that it permits
the spatial autoregressive parameter to meaningfully vary across units. The latter may be highly
desirable from a practitioner’s point of view since it allows the identification of a neighborhood-
specific spatial dependence measure conditional on the vector of contextual variables. For instance,
when a spatial autoregressive model is game-theoretically rationalized as a “response function”,
our model empowers a researcher to estimate heterogeneous “reaction” parameters that can vary
with some environmental control factors. Some potential applications of our model, for instance,
include the estimation of growth models that explicitly account for technological interdependence
between countries in the presence of spillover effects. Such technological interdependence is usually
formulated in the form of spatial externalities (e.g., see Ertur & Koch, 2007). However, the inten-
sity of knowledge spillovers is naturally expected to greatly depend on institutional and cultural
compatibility of neighboring countries (Kelejian, Murrell & Shepotylo, 2013). Our smooth coef-
ficient spatial autoregressive model presents a practical, easy-to-implement way to allow for such
indirect effects of institutions on the degree of spatial dependence in the cross-country conditional
convergence regressions.

Our semiparametric treatment of nonlinearities is also relatively more flexible than pioneer
nonlinear modeling approaches in spatial dependence models put forward by van Gastel & Paelinck
(1995), Baltagi & Li (2001), Pace, Barry, Slawson & Sirmans (2004) and Yang, Li & Tse (2006).
At the same time, like in all these studies as well as many others (e.g., Kelejian & Prucha, 1998,
1999, 2010; Lee, 2004, 2007; Su & Jin, 2010; Su, 2012), the consistency of our estimator rests on
an admittedly rather restrictive assumption of a correctly pre-specified spatial weighting matrix.
Dispensing with this assumption requires either making an alternative assumption of strong spatial
mixing along with spatial stationarity or modeling spatial weights as nonparametric functions of
the distance between neighbors (see Sun, 2016, and the references therein). The acute disadvantage
of both of these alternative approaches is an inability to quantify a spatial autoregressive parameter
(a “reaction” parameter) which many empirical studies are specifically interested in. In this paper,

2



we therefore abstract from the issue concerning the correct specification of spatial weights.1

We propose several (locally) nonparametric Generalized Method of Moments (GMM) estimators
for our model. The developed estimators incorporate both the linear and quadratic orthogonality
conditions and are capable of accommodating a variety of data generating processes, including the
instance of a pure spatially autoregressive semiparametric model with no relevant regressors as well
as multiple partially linear specifications. To this end, we contribute to the literature on four fronts.
First, our paper is the first (to the best of our knowledge) attempt in the nonparametric estimation
literature to make use of local quadratic orthogonality conditions, which are necessary for the IV
identification of spatially autoregressive models in the case when all explanatory covariates are
irrelevant in predicting the outcome variable (see Lee, 2007). Second, we propose a two-stage
estimation procedure whereby we first obtain an initial estimator of unknown parameter functions
using feasible, but likely not so strong, instruments which we then use for the construction of
more natural instruments suggested by the model’s reduced form. Again, to our knowledge, no
prior attempt has been made in the nonparametric econometrics literature to study such a class
of estimators which themselves are based on the estimated instruments. Third, we also consider
two special cases of our model by allowing some of its parameter functions to be constant thus
resulting in a partially linear specification. Our proposed estimators present an alternative to
those by Su (2012) and Zhang (2013) who study a similar class of partially linear spatial models.
Unlike their estimators, ours however preserves its consistency property if the true model is a pure
spatial autoregression. Fourth, we discuss ways of ensuring that the estimated model satisfies the
non-singularity condition needed to rule out unstable Nash equilibria. In the instance of a mixed-
regressive model, we impose this non-singularity restriction via the “tilting” procedure à la Hall &
Huang (2001) whose theoretical results we generalize to the case of GMM estimators in the presence
of endogenous regressors. Under fairly mild regularity conditions, we show that all our proposed
estimators are consistent and asymptotically normal.

Further, we contribute to the literature by putting forward two test statistics to test for pa-
rameter constancy in our model. These model specification tests allow us to discriminate between
a standard linear spatial autoregressive and our semiparametric models. The first consistent test
utilizes a popular residual-based specification test technique which we extend to spatial data with
cross-sectional dependence.2 Given the well-known poor performance of nonparametric residual-
based tests in finite samples, we also suggest a (wild) bootstrap procedure for it which we show
to be asymptotically valid in approximating the null distribution of our test statistic regardless of
whether the null hypothesis holds true or not. However, our residual-based test is impractical when
the spatial model has no regressors. We therefore propose an alternative consistent test statistic à
la Henderson, Carroll & Li (2008) which provides a vehicle for testing for parameter constancy in
our model even when the model is a pure spatial autoregression.

We investigate the finite sample performance of the proposed estimators and test statistics in a
small set of Monte Carlo experiments. The results are encouraging and show that all estimators and
tests perform well in finite samples with considerable improvements as the sample size increases.
Overall, simulation experiments lend support to our asymptotic results. To showcase our method-
ology, we then apply it to estimate a spatial hedonic price function using the well-known Harrison
& Rubenfeld’s house price data from Gilley & Pace (1996), where we let unknown parameter func-

1Furthermore, theoretical basis for the widely-believed sensitivity of the estimates to the choice of spatial weights
remains rather unclear, as recently argued by LeSage & Pace (2014).

2Asymptotic properties of such a test have been studied for independent data (e.g., Zheng, 1996; Li & Wang, 1998;
Stengos & Sun, 2001), weakly dependent time series data (e.g., Fan & Li, 1999; Li, 1999) and integrated time series
data (e.g., Gao, King, Liu & Tjøstheim, 2009; Wang & Phillips, 2012; Sun, Cai & Li, 2015), to mention few among
many contributions.
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tions to vary with the NOx concentration in the air. We find that spatial dependence between
house prices is statistically significant only at higher values of the NOx concentration in the air and
that the degree of this spatial dependence, on average, increases as the air quality declines. This
finding suggests that locational similarity may matter little for house valuations in pollution-free
localities.

The rest of the paper proceeds as follows. Section 2 outlines the model. We present our
estimators in Section 3, where we also provide their large-sample statistical properties. In Section 4,
we consider two different types of partially linear spatial autoregressive models. Section 5 discusses
specification tests for parameter constancy. The results of Monte Carlo simulations are described
in Section 6. Section 7 concludes.

Throughout the paper, we use M to denote a generic finite constant that can take different
values at different appearances and vec {A} stacks columns of an n×m matrix A into an (nm)×1
vector. Lastly, tr {A} refers to the trace of a square matrix A.

2 Semiparametric Spatial Autoregressive Model

Consider a semiparametric generalization of the conventional (linear) spatial autoregressive mixed-
regressive model, where the coefficients are now permitted to be unknown smooth functions of some
relevant exogenous variables, i.e.,

yi = ρ(zi)
∑

j 6=i

wijyj + x′
iβ(zi) + ui ∀ i = 1, . . . , n, (2.1)

where yi is the (scalar) outcome variable of interest; xi and zi are p × 1 and q × 1 vectors of
exogenous covariates, respectively, and xi can contain a constant 1; wij is the (i, j)-th element of
a given n × n non-stochastic spatial weighting matrix W such that wii = 0 for all i. Further,
β(zi) is a conformable vector of unknown slope parameter functions of zi, and ρ(zi) is an un-
known (scalar) spatial lag parameter function of zi. The random disturbance ui is identically and
independently distributed over i conditional on (xi, zi) with zero mean and finite variance, i.e.,
ui|xi, zi ∼ i.i.d. (0, σ2u).

We proceed by rewriting model (2.1) in the matrix form as

y = ρ(Z)Wy +mtx {X,β(Z)}+ u, (2.2)

where y = (y1, . . . , yn)
′ and u = (u1, . . . , un)

′ are n × 1 vectors; ρ(Z) ≡ diag {ρ(z1), . . . , ρ(zn)} is
an n×n diagonal matrix of spatial autoregressive parameter functions; and mtx{·} is the operator
that stacks up x′

iβ(zi) into an n× 1 vector with the i subscript matching those of y, u and ρ(Z).

Also, X =
[
x1 . . . xn

]′
and Z =

[
z1 . . . zn

]′
are n× p and n× q data matrices, respectively.

To facilitate the economic interpretation of ρ(zi) as the “reaction” parameter (and to rule out
unstable Nash equilibria), we assume the following condition for ρ(·) to ensure the non-singularity
of In − ρ(Z)W:3

max
1≤i≤n

|λi {ρ(Z)W}| < 1, (2.3)

where λi{A} is the ith eigenvalue of an n× n matrix A.

3See Kelejian & Prucha (2010) for an excellent discussion of the assumptions concerning the parameter space of a
spatial autoregressive parameter.
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Model (2.1) nests a standard smooth coefficient model with strictly exogenous covariates (Cai
et al., 2000; Li et al., 2002) as a special case when ρ(zi) = 0 for all i, which implies no spatial
interaction in the outcome variable yi. In many applications, it is however imperative to allow
for potential spatial dependence in the data. For instance, house prices are widely believed to
be spatially autoregressive because residential property values tend to reflect shared local ameni-
ties as well as observed and unobserved neighborhood characteristics. While these characteristics
can be partly controlled for using locality fixed effects, such an approach may be quite unsat-
isfactory since it does not let characteristics of neighboring houses affect the price of a given
house (Anselin & Lozano-Gracia, 2009). However, by including the spatial lag in a house pricing
function, we are able to accommodate such cross-neighbor effects as can be seen from the follow-
ing expansion of the reduced form of equation (2.2) under the non-singularity condition in (2.3):

E[y|X,Z] = [In − ρ(Z)W]−1mtx {X,β(Z)} =
∞∑

s=0

[
ρ(Z)W

]s
mtx {X,β(Z)} . (2.4)

From (2.4), it is evident that the conditional mean of yi depends not only on its own xi and zi
but also on its neighbors’ xj and zj for j 6= i. Perhaps more importantly, house prices are likely to
be spatially autoregressive because the very process of property valuation at its core relies on sale
price information for comparable houses in the local neighborhood that real estate agents base their
appraisals on. The latter is known as the “sales comparison approach” to a real estate appraisal
which can systematically influence equilibrium prices in the housing market, especially if property
owners have limited information about the market (see the reference in Small & Steimetz, 2012).
Our model will be able to accommodate this spatial dependence in house prices while also allowing
for nonlinearities and parameter heterogeneity in the house valuation function.

Studies of institutional change provide another example of applications where it is crucial to
explicitly model spatial dependence in the data. Existing theoretical and empirical work indicate
that institutional development in one country affects that of its neighbors (Mukand & Rodrik, 2005),
where the institutional diffusion may be driven, say, by lobbying of multinational corporations for
the harmonization of the commercial law across countries, requirements for members of a trade pact
to standardize regulations or even military conflicts (see Kelejian et al., 2013). The semiparametric
model we propose is equipped to examine such institutional diffusions across space while also
allowing for nonlinearities and heterogeneity in institutional spillovers.

Lastly, in the instance when ρ(zi) is a non-zero constant for all i, our model nests a partially
linear smooth coefficient spatial autoregressive model as a special case (see Sun et al., 2014).

Remark 1 The differentiation between the two sets of covariates, xi and zi, is a practitioner’s
prerogative which is likely to change from one empirical application to another. The assignment
of relevant regressors into either of the two sets of variables may be done on the basis of practical
convenience or, better yet, economic theory suggesting the direct (X) and indirect, contextual (Z)
determinants of the spatially correlated outcome variable. From the theory’s point of view however,
our results do not require the variables in xi to be different from or unrelated to those in zi.

3 Nonparametric GMM Estimator

We propose to estimate the unknown coefficient functions [ρ(zi),β(zi)
′]′ in (2.1) by a local linear

regression approach. First, we rewrite equation (2.1) in a compact form as follows:

yi = m′
iγ(zi) + ui ∀ i = 1, . . . , n, (3.1)
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where mi ≡
[(∑

j 6=iwijyj

)
,x′

i

]′
and γ(zi) ≡ [ρ(zi),β(zi)

′]′ are (p + 1) × 1 vectors. Model (3.1)

seemingly takes the form of the standard semiparametric smooth coefficient model subject to en-
dogeneity in one of the covariates, namely, the spatial lag term

∑
j 6=iwijyj . We estimate the above

model using the (locally) nonparametric GMM estimator along the lines of Cai & Li (2008) subject
to the non-singularity condition (2.3).

Under the assumption that smooth parameter functions are twice continuously differentiable
in the neighborhood of z, each element in γ(·) can then be approximated by its first-order Taylor
expansion around z, i.e., γs(zi) ≈ γs(z) +∇γs(z)

′(zi − z) at point zi close to z for s = 1, . . . , p+1,
where ∇γs(z) ≡ [∂γs(z)/∂z1, . . . , ∂γs(z)/∂zq]

′ is a q× 1 vector of the first-order derivative of γs(·).
Therefore, for zi close to z, we can approximate (3.1) by

yi ≈ m′
iθ(z)Zi(z) + ui = [Zi(z)⊗mi]

′ vec{θ(z)}+ ui ∀ i = 1, . . . , n, (3.2)

where Zi(z) ≡ [1, (zi − z)′H−1]′ is a (q + 1) × 1 vector with H = diag{h1, . . . , hq} being a q × q
diagonal bandwidth matrix, and

θ(z) ≡



γ1(z) ∇γ1(z)

′H
...

...
γp+1(z) ∇γp+1(z)

′H




denotes a (p+ 1)× (q + 1) parameter matrix.

Before introducing our estimator, we first take a closer look at the spatial lag term. Denoting
Sn (Z) ≡ [In−ρ(Z)W]−1 and Gn (Z) ≡ WSn (Z), we have the reduced form of our model in (2.2):

y = Sn (Z) (mtx {X,β(Z)}+ u) ,

from where it is evident that the spatial lag term Wy = Gn (Z) [mtx {X,β (Z)}+ u] is endogenous
because E

[
(Gn (Z)u)

′
u
]
= σ2uE [tr {Gn (Z)}] 6= 0 in general. Now, let Pn be some n × n matrix

satisfying E
[
(Pnu)

′
u
]
= 0. We then can rewrite Wy as follows: Wy = Gn (Z)mtx {X,β (Z)}+

Pnu + [Gn (Z)−Pn]u, where both Gn (Z)mtx {X,β (Z)} and Pnu are uncorrelated with u.
This observation suggests that Gn (Z)mtx {X,β (Z)} and Pnu can be reasonable valid instru-
ments for Wy. There are multiple choices for the matrix Pn with a zero-trace Pn = Gn (Z) −
n−1tr{Gn (Z)} In and a zero-diagonal Pn = Gn (Z)−diag {Gn (Z)} being among the most popular
specifications in the parametric spatial regression literature (e.g., Kelejian & Prucha, 1999; Lee,
2007). However, note that neither Gn (Z)mtx {X,β (Z)} nor Pnu are feasible instruments due to
the presence of unknown smooth coefficients ρ (Z) and β (Z) in Gn (Z). In this paper, we therefore
propose to first obtain an initial consistent estimator of unknown parameter functions using feasible
instruments (in Section 3.1) and then to construct a second-stage estimator (in Section 3.2) which
instruments for the endogenous spatial lag with Gn (Z)mtx {X,β (Z)} and Pnu constructed using
the initial first-stage consistent estimator of ρ (·) and β (·). In what follows, we describe these two
proposed estimators.

3.1 First-Stage Estimator

The expansion in (2.4) suggests that WX, WZ, W2X, W2Z, . . . with linearly dependent columns
removed can be valid instruments for the endogenous spatial lag term Wy. Also note that
both matrices Pn,l = Wl − n−1tr

{
Wl
}
In and Pn,l = Wl − diag

{
Wl
}

for l = 1, 2, . . . satisfy
E
[
(Pn,lu)

′
u
]
= 0. We thus have identified feasible instruments which can be employed to obtain

an initial estimator for our model in (3.2).
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Define an n×d matrix of instruments Qn = [Q1n,X] ≡
[
Qn,1 . . . Qn,n

]′
, where Q1n contains

linearly independent instruments taken from
{
WX,WZ,W2X,W2Z, . . .

}
. We then obtain the

following kernel-weighted (local) orthogonal conditions:

E

[
Q(z)′KH(z)

(
y −M(z)vec{θ(z)}

)]
≈ 0d (3.3)

and

E

[(
y −M(z)vec{θ(z)}

)′
Pn,lKH(z)

(
y −M(z)vec{θ(z)}

)]
≈ 0 ∀ l = 1, 2, . . . ,m (3.4)

for a finite integer m, where M(z) =
[
Z1(z)⊗m1 . . . Zn(z)⊗mn

]′
is an n × [(p + 1)(q + 1)]

data matrix; Q(z) =
[
Z1(z)⊗Qn,1 . . . Zn(z)⊗Qn,n

]′
is an n × [d(q + 1)] instrument matrix;

KH(z) = diag {KH(z1, z), . . . ,KH(zn, z)} is an n × n diagonal matrix of kernel weights with
KH(zi, z) = K

(
H−1(zi − z)

)
being a product kernel.

Denoting

gn (θ) =




(
y −M(z)vec{θ}

)′
Pn,1KH(z)

(
y −M(z)vec{θ}

)

...(
y −M(z)vec{θ}

)′
Pn,mKH(z)

(
y −M(z)vec{θ}

)

Q(z)′KH(z)
(
y −M(z)vec{θ}

)




(3.5)

for a (p+1)× (q+1) vector θ, we construct our initial first-stage nonparametric GMM estimator:

vec
{
θ̂(z)

}
= arg min

θ(z)
gn (θ(z))

′
gn (θ(z)) . (3.6)

Below, we list assumptions used to derive the limiting distribution of our proposed estimator.

Assumption 1 {(xi, zi, ui)} is i.i.d. over index i, yi is generated according to (2.1) satisfying

(2.3). Also, E
(
‖xi‖2(2+δ1)

)
< M and E

[
‖zi‖4(2+δ1)

]
< M for some δ1 > 0.

(i) E [ui|xi = x, zi = z] = 0, E
[
u2i |xi = x, zi = z

]
= σ2u > 0 and E

[
|ui|4+δ

∣∣∣xi = x, zi = z
]
< M

for any x ∈ R
p and z ∈ R

q and some δ > 0;

(ii) There exists a positive integer N such that both W and [In − ρ (Z)W]−1 have finite row-
and column-sum matrix norms for all n > N ;

(iii) Pn,l is an n × n matrix with finite row- and column-sum matrix norms for all n > N and
tr {Pn,l} = 0 for all l = 1, . . . ,m, where m ≥ 1 is a finite positive integer. And, the n × d
instrument matrix Qn has a full rank d ≥ p+ 1.

Here, the row- and column-sum matrix norms of some n× n matrix A are respectively defined
as ‖A‖row = max1≤i≤n

∑n
j=1 |aij | and ‖A‖column = max1≤j≤n

∑n
i=1 |aij |. Assuming ui has a finite

(4 + δ)th-order conditional moment in Assumption 1(i) is necessary to apply the central limit
theorem derived by Kelejian & Prucha (2001).

Assumption 2 (i) ρ (z), β (z), f (z) and E [Qn,im
′
i|zi = z] are all twice continuously differentiable

in a neighborhood of z, where f (z) > 0 is the probability density function of zi evaluated at point

z; (ii) E

(
‖Qn,i‖2+δ1 |zi = z

)
is continuous and bounded in the neighborhood of z for some δ1 > 0.
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Assumption 3 The kernel function k (v) is a symmetric probability density function with a com-
pact support [−1, 1]. Also, we define µi,j (k) =

∫
ki (v) vjdv and R2 (K) =

∫
K2 (v) dv, where

K (v) =
∏q

j=1 k (vj) and v = [v1, . . . , vq]
′.

Assumption 4 As n → ∞, ‖H‖ → 0, n |H| → ∞, and limn→∞ n |H| ‖H‖4 = c0 > 0, a finite
constant, where |H| =

∏q
j=1 hj and ‖H‖2 =

∑q
j=1 h

2
j .

Theorem 1 Under Assumptions 1–4, and if κB (H, z) is nonsingular at an interior point z, we
have

√
n |H|

(
γ̂(z)− γ(z)− µ1,2(k)

2
Bias (H, z)

)

d→ N

(
0p+1, f

−1 (z)R2 (K) plim
n→∞

κB (H, z)−1
Ω (z) plim

n→∞
κB (H, z)−1

)
,

where Bias (H, z) = Sp+1κB (H, z)−1
κA (H, z)′ = Op

(
‖H‖2

)
, Sp+1 equals the first p + 1 rows

of the identity matrix I[(p+1)(q+1)], and κA (H, z), κB (H, z), and Ω(z) are respectively defined in
Lemmas 1, 2 and 3 in Appendix A.

Theorem 1 states that the local linear estimator of the varying coefficients ρ (z) and β (z) has

the conventional bias term of order Op

(
‖H‖2

)
and asymptotic variance of order Op

(
(n |H|)−1/2

)
.

Remark 2 As discussed in Lemma 2, κB (H, z) can be singular if X is irrelevant in predicting y

or β(z) = 0p holds true over its domain. However, this problem occurs only to the local linear
regression approach and not to the local constant approach. Thus, the estimator derived from the
nonparametric GMM via a local constant fitting does not suffer from the singularity problem even
if X is irrelevant for y.

Next, notice that, since θ̂(z) in (3.6) does not have an analytic formula due to the use of the
quadratic moment (3.4), the computation of our estimator can be significantly slow for relatively
large samples. However, if one is reasonably confident that β (z) is a non-zero vector over at least
one non-empty subset, we are able to construct an alternative consistent estimator of γ(z) which
has a simple closed-form formula and hence is fast to compute. This alternative estimator uses the
linear local orthogonal condition in (3.3) only.4

Specifically, we are interested in minimizing the following (local) objective function:

min
θ(z)

[
Q(z)′KH(z)

(
y −M(z)vec{θ(z)}

)]′
Q(z)′KH(z)

(
y −M(z)vec{θ(z)}

)
, (3.7)

which yields

vec
{
θ̂(z)

}
=
[
M(z)′ΞH(z)M(z)

]−1
M(z)′ΞH(z)y, (3.8)

where ΞH(z) ≡ KH(z)′Q(z)Q(z)′KH(z). Following the proof of Theorem 1, we obtain the limit

result for vec
{
θ̂(z)

}
as follows.

4Note that Qn is not a valid instrument matrix if X and Z are both irrelevant in predicting y, which occurs if
β (z) = 0p and ρ (z) = ρ0 over their domains and our model (2.1) becomes a pure spatial autoregression yi =
ρ0

∑
j 6=i

wijyj + ui ∀ i. See Lee (2007) for the detailed discussion in a parametric spatial autoregressive framework.
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Corollary 2 Under Assumptions 1–4 and assuming E1(z)
′E1(z) is non-singular, at an interior

point z, we have

√
n |H|

(
γ̂(z)− γ(z)− µ1,2(k)

2
Bias (H, z)

)
d→ N

(
0p+1,

σ2u
f(z)

R2 (K)Σ(z)
)
,

where Bias (H, z) = [E1(z)
′E1(z)]

−1
E1(z)

′E2 (H, z)
′ = O

(
‖H‖2

)
,

Σ(z) =
[
E1(z)

′E1(z)
]−1 [

E1(z)
′E3(z)E1(z)

] [
E′

1(z)E1(z)
]−1

and E1(z), E2 (H, z) and E3(z) are respectively defined in (A.8), (A.9) and (A.24) in Appendix A.

3.2 Second-Stage Estimator

Having obtained the initial estimator of unknown parameter functions ρ(·) and β(·) in (3.6), we
can now construct the feasible versions of our originally desired instruments, namely, Q̂1n =

Ĝn (Z)mtx
{
X, β̂ (Z)

}
and, e.g., the zero-trace P̂n = Ĝn (Z)−n−1tr

{
Ĝn (Z)

}
In, where Ĝn (Z) =

W [In − ρ̂ (Z)W]−1. With this, we derive our second-stage nonparametric GMM estimator:

vec
{
θ̃(z)

}
= arg min

θ(z)
gn (θ(z))

′
gn (θ(z)) , (3.9)

where the moment function is defined as

gn (θ) =



(
y −M(z)vec{θ}

)′
P̂nKH0

(z)
(
y −M(z)vec{θ}

)

Q̂(z)′KH0
(z)
(
y −M(z)vec{θ}

)

 , (3.10)

H0 is the new q× q diagonal bandwidth matrix; and M(z), Q̂(z) and vec{θ} are as defined earlier
except for Q̂(z) being constructed using Q̂1n in place of Q1n.

Asymptotic results for our second-stage estimator require the following additional assumptions.

Assumption 5 supz∈Sz
‖γ̂ (z)− γ (z)‖ = Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
.

Assumption 6 (i) ‖H‖ → 0, ‖H0‖ → 0 , n |H| → ∞, n |H0| → ∞, and n |H0| ‖H0‖4 = O (1); (ii)

‖H‖4 /
(
|H0| ‖H0‖2

)
→ 0, n |H| |H0| ‖H0‖2 / lnn→ ∞, and n

√
|H| |H0| ‖H0‖3 / lnn→ ∞.

Assumption 5 strengthens the pointwise consistency result for γ̂ (z) to a uniform convergence
result over its domain Sz. This is a reasonable result to be expected if one assumes that Sz is a
compact subset of Rq and vjk (v) satisfies Lipschitz condition for 0 ≤ j ≤ 3 by closely following
the proof in Masry (1996). If the random variable zi contains a component taking values along the
real line, Assumption 5 will hold for an expanding subset growing at proper speed (Hansen, 2008).

Assumption 6 regulates the choice of the two bandwidth matrices for the first- and second-
stage estimators. For ease of discussion, we set H = diag {h, . . . , h} and H0 = diag {h0, . . . , h0}
with h = cn−α and h0 = c0n

−α0 . Assumption 6(ii) implies α0 = 1/ (4 + q). Assumption 6(i)
requires α0 (2 + q) /4 < α < min {[1− (q + 3)α0] 2/q, [1− (q + 2)α0] /q} which, when combined
with Assumption 6(ii), implies that q < 2. When q = 1, Assumption 6 states that α0 = 1/5
and 0.15 < α < 0.4 so that we can set α0 = α = 1/5 in both steps. However, when zi contains
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more than one continuous variable, one needs to apply a higher-order local polynomial approach
in the first-stage estimation to ensure the optimal convergence rate in the second-stage estimation.
For instance, if we apply the local rth-order polynomial approach with an odd integer r ≥ 1,

‖H‖4 /
(
|H0| ‖H0‖2

)
= o (1) in Assumption 6(ii) will be replaced by ‖H‖2(r+1) /

(
|H0| ‖H0‖2

)
=

o (1). With α0 = 1/ (4 + q), we have α0 (2 + q) / [2 (r + 1)] < α < [1− (q + 3)α0] 2/q which implies
that q <

√
4r + 5 − 1. So, if q = 2, r > 1 is required, and hence we can apply the local cubic

polynomial approach in the first-stage estimation in that instance.

Theorem 3 Under Assumptions 1–3, 5 and 6, at an interior point z, we have

√
n |H0|

(
γ̃(z)− γ(z)− µ1,2(k)

2
Bias (H0, z)

)

d→ N

(
0p+1, f

−1 (z) plim
n→∞

κB (H0, z)
−1

Ω(z) plim
n→∞

κB (H0, z)
−1
)
,

where Bias (H0, z) = Sp+1κB (H0, z)
−1

κA (H0, z)
′, and κA (H0, z), κB (H0, z) and Ω(z) are re-

spectively defined in Lemmas 4, 5 and 6 in Appendix A.

Theorem 3 states that the second-stage estimator is consistent and has an asymptotic normal
distribution at the usual nonparametric convergence rate with the proper order of a local polyno-
mial estimation approach. Intuitively, the second-stage estimator is expected to be asymptotically
more efficient than its first-stage counterpart because the instruments employed in the first-stage
estimation have lower predictive power for Wy than those used in the second stage. This intuition
is confirmed by our Monte Carlo simulations in Section 6.1. However, we are unable to analytically
verify this result since both asymptotic variances in Theorems 1 and 3 take complex forms.

Remark 3 The consistency and asymptotic normality results for the second-stage estimator con-

tinue to hold if we use the zero-diagonal P̂n = Ĝn (Z) − diag
{
Ĝn (Z)

}
in (3.10). Naturally, the

definition of κA (H0, z), κB (H0, z) and Ω(z) referenced in Theorem 3 will change accordingly.

3.3 Non-Singularity Constraint

Until now, we have proceeded with the estimation of (2.1) as if it were a standard smooth coefficient
model subject to endogeneity in one of its covariates, namely Wy. However, recall that the said
endogenous covariate is a spatially-weighted average of the left-hand-side variable. To ensure that
the outcome variable y is uniquely defined by (2.2), the non-singularity condition in (2.3) needs
to be satisfied. We do so using the “tilting” procedure proposed by Hall & Huang (2001) and Du,
Parmeter & Racine (2013). Here, we generalize Hall & Huang’s (2001) theoretical results to the
case of GMM estimators in the presence of endogenous regressors. The procedure essentially mutes
or magnifies the impact of any given data point used in the estimation. This allows us to impose
the non-singularity restriction post-estimation via a quadratic programming technique. The idea
is to reweigh observations used in the estimation so that the non-singularity constraint is satisfied
in the local neighborhood of point z:

max
1≤i≤n

|λi {ρ(z)W}| < 1. (3.11)

Since the estimator derived using not only linear orthogonality condition (3.3) but also quadratic
condition (3.4) does not have an analytical solution, the “tilting” procedure proposed by Hall &
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Huang (2001) does not apply. We therefore limit our attention to a more practical estimator in
(3.8) which makes use of linear moments only and hence is valid when β (z) 6= 0p over at least one
non-empty subset.5

In order to facilitate the imposition of condition (3.11) in the neighborhood of z, we assume that
max1≤i≤n |λi {W}| ≤ 1 holds true, which is satisfied if one standardizes a raw spatial weighting
matrix by dividing all of its elements by its largest eigenvalue in absolute value. Then, the non-
singularity condition (3.11) is satisfied if |ρ(z)| < 1 (Kelejian & Prucha, 2004, 2010). To impose
the latter condition, we rewrite the kernel estimator of ρ(z) from (3.8) as a weighted average of the
outcome variable:

ρ̂(z) =
n∑

i=1

ωi(X, z)yi, (3.12)

where ωi(X, z) is the ith (column) element in the first row of
[
M(z)′ΞH(z)M(z)

]−1
M(z)′ΞH(z).

Following Hall & Huang (2001), we can generalize (3.12) as

ρ̃(z|p) = n
n∑

i=1

piωi (X, z) yi, (3.13)

where p = (p1, . . . , pn)
′ is the sequence of additional weights such that

∑n
i=1 pi = 1. Note that pi

equals 1/n (i.e., uniform weights) in the case of an unconstrained estimator in (3.12).

If necessary, we can impose the non-singularity condition by selecting weights p to minimize the
L2-metric D(p) = (1/nin−p)′(1/nin−p) subject to i′np = 1 and −in <

[
ρ̃(z1|p), . . . , ρ̃(zn|p)

]′
< in,

where in is an n × 1 vector of ones. Here, D(p) is the sum of squared deviations of pi from the
unrestricted value of 1/n. In our choice of the distance metric, we thus follow Du et al. (2013), which
allows p to be both positive and negative.6 The minimization problem is solved via a standard
quadratic programming technique. Let p̂ be the solution to this optimization problem. To derive
the asymptotic results for ρ̃(z|p̂), we need the following additional assumptions.

Assumption 7 (i) The random variable zi has a compact support, i.e., Sz = [a,b] = [a1, b1]×. . .×
[aq, bq] is a compact subset of Rq and has a common Lebesgue probability density f (z) satisfying
infz∈Sz

f (z) > 0; (ii) β (z) 6= 0p over at least one non-empty interval; (iii) the kernel function k (v)
satisfies

∣∣vjk (v)− sjk (s)
∣∣ ≤M |v − s| for any v, s ∈ R and 0 ≤ j ≤ 3.

Assumption 8 Let An,ǫ = {j : ρ̃(z|p̂) = ±(1− ǫ)} for a given very small ǫ ∈ (0, 1) and Wn

be an n × |An,ǫ| matrix with a typical element ωi(X, zj)yi for j = 1, . . . , |An,ǫ|, where An,ǫ ={
j1, . . . , j|An,ǫ|

}
⊆ {1, . . . , n}. Here, Wn has a full rank of |An,ǫ| with λmin {E [W ′

nWn] /n} n→∞−→
c1 > 0 for a finite constant c1.

Assumption 7 is required to ensure that ρ̂(z) converges to ρ(z) uniformly over z ∈ Sz. Assump-
tion 8 holds if matrix Z has a full rank and the partial derivative of ωi(X, zj)yi with respect to zj
does not equal zero for all i. Note that it is not essential to know the value of ǫ since it is introduced
to ensure that ρ̃(z|p̂) does not reach ±1. Under these additional assumptions, below we provide
the limit result for the constrained estimator ρ̃(z|p̂).
5In practice, when estimating the estimators in (3.6) and (3.9), which incorporate quadratic orthogonality condi-
tions, the non-singularity condition (3.11) may be easily imposed via box constraints on ρ(z) during the numerical
optimization.

6Hall & Huang (2001) use a power divergence metric which has a rather complicated form and is only valid for
non-negative weights.
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Theorem 4 Under Assumptions 1–4, 7 and 8, we have: (i) there exists {p̂i}i≤n such that max1≤i≤n |p̂i| =
Op

(
n−1

)
holds for all z ∈ Sz; (ii) ρ̃(z|p̂) = ρ̂(z) +Op

(
(n |H|)−1/2

)
for an interior point z ∈ Sz.

By Corollary 2 and Theorem 4, we show that ρ̃(z|p̂) = ρ(z)+Op

(
‖H‖2 + (n |H|)−1/2

)
. Hence,

ρ̃(z|p̂) is a consistent estimator of ρ(z) and has the same convergence rate as ρ̂(z) does. From the
proof of this theorem in Appendix A, we obtain

√
n |H|

(
ρ̃(z|p̂)− ρ(z)− S1,(p+1)Bias (H, z)− (n |H|)−1/2∆(z)

)
d→ N

(
0, S1,(p+1)Σ(z)S′

1,(p+1)

)
,

where Bias (H, z) and Σ(z) are defined in Corollary 2, S1,r is the first row of the identity matrix
Ir, and ∆ (z) is some continuous function of z. Thus, compared with ρ̂(z), ρ̃(z|p̂) has an additional

vanishing asymptotic bias term of order Op

(
(n |H|)−1/2

)
resulting from the “tilting” procedure.

However, the two estimators have the same asymptotic variance.

4 Special Case: Partially Linear Spatial Autoregressive Model

In this section, we consider two special cases of our model in (2.1) by allowing some of the varying
coefficients to be constant. That is, we study a partially linear semiparametric spatially autore-
gressive model. The primary advantage of such a model (over a fully semiparametric specification)
is its potential for efficiency gains stemming from the additional information about constancy of
some of the parameter functions.

Such partially linear semiparametric models have been extensively studied for sampling with
no spatial or cross-sectional dependence by, e.g., Ahmad, Leelahanon & Li (2005), Kai, Li & Zou
(2011) and Cai & Xiao (2012). In the spatial autoregression literature, Su (2012) and Zhang (2013)
both focus on the case when ρ (zi) = ρ0 over its domain, however, with varying assumptions about
x′
iβ (zi) (in our notation). Zhang (2013) assumes that x′

iβ (zi) = x′
iβ1+β2 (zi), whereas Su (2012)

assumes that xi = 1. The nonparametric GMM estimators proposed in these papers are however
inconsistent if the true model is a pure spatial autoregressive model without other regressors. In
contrast, the estimators that we put forward here do not suffer from such a problem.

Specifically, we study the case when x′
iβ (zi) = x′

1iβ1 + x′
2iβ2(zi), where xi = [x′

1i,x
′
2i]

′ is

partitioned into two pj × 1 sub-vectors xji for j = 1, 2, and β (zi) =
[
β′
1,β2(zi)

′
]′

is accordingly
split into a p1×1 vector of constant parameters β1 and p2×1 vector of varying parameter functions
β2(·). Depending on whether the spatial lag parameter ρ (zi) is also constant or not, we study two
alternative partially linear specifications of our model. Section 4.1 treats ρ (zi) as a varying function,
while Section 4.2 lets ρ (zi) be constant.

To keep our notation simple and to make a better connection with the results derived earlier,
throughout this section we adhere by the notation used in Section 3 wherever possible and redefine
variables when necessary.

4.1 Nonlinear in the Spatial Autoregressive Parameter

Consider the following partially linear model:

yi = ρ(zi)
∑

j 6=i

wijyj + x′
1iβ1 + x′

2iβ2(zi) + ui ∀ i = 1, . . . , n (4.1)

12



for which we redefinemi ≡
[(∑

j 6=iwijyj

)
,x′

2i

]′
, γ (zi) ≡ [ρ(z),β2(zi)

′]′. Also, let ẏi ≡ yi−x′
1iβ1.

Closely following the methodology introduced in Section 3, we have the following kernel-weighted
orthogonal moment conditions:

E

[
Q(z)′KH(z)

(
ẏ −M(z)vec{θ(z)}

)]
≈ 0d (4.2)

E

[(
ẏ −M(z)vec{θ(z)}

)′
Pn,lKH(z)

(
ẏ −M(z)vec{θ(z)}

)]
≈ 0 ∀ l = 1, 2, . . . ,m (4.3)

for some finite positive integer m, where ẏ = [ẏ1, . . . , ẏn]
′; Q (z), Pn,l and KH(z) are as defined

earlier in Section 3; and both M(z) and θ(z) are defined in the same fashion as in Section 3 but
using newly redefined mi and γ (·). Then, our nonparametric GMM estimator is given by

[
β̂1 (z)

′ , vec
{
θ̂(z)

}′
]′

= arg min
β1,θ(z)

gn (θ(z))
′
gn (θ(z)) , (4.4)

where gn (·) has the same form as in (3.5) with y being replaced with ẏ.

Since model (4.1) is nested within our model (2.1), the asymptotic normality result shown in
Theorem 1 continues to hold for θ̂(z) and is thus omitted. Remark 2 applies here too.

Lastly, we estimate constant parameters β1 in the second stage by β̃1 = n−1
∑n

i=1 β̂
(−i)

1 (zi),

where β̂
(−i)

1 (zi) is a leave-one-out (first-stage) estimator computed via (4.4) while excluding the
ith unit. We make use of the leave-one-out technique in order to remove an asymptotic bias term

of order Op

(
(n |H|)−1/2

)
in the estimation of β1. To this end, we make the following assumption.

Assumption 9 ‖H‖ → 0, lnn/ (n |H|) → ∞ and n ‖H‖4 → 0 as n→ ∞.

Theorem 5 Under Assumptions 1–3, 5 and 9, we have

√
n
(
β̃1 − β1

)
d→ N (0p1 ,Ω0) ,

where Ω0 is defined in Lemma 11 in Supplementary Appendix.

Theorem 5 shows that β̃1 is a root-n consistent estimator of β1 if the bandwidth converges to
zero at a faster speed than the optimal bandwidth would suggest.

4.2 Linear in the Spatial Autoregressive Parameter

Next, consider a partially linear model with the constant spatial autoregressive parameter:

yi = ρ0
∑

j 6=i

wijyj + x′
1iβ1 + x′

2iβ2(zi) + ui ∀ i = 1, . . . , n, (4.5)

where both the ρ0 and β1 are constant parameters. Incidentally, Sun et al. (2014) study a special
case of (4.5) where β1 = 0p1 . Extending their estimation method, one can apply a local linear
regression method to recover β2(·) and a profile likelihood method to recover ρ0 and β1. Given that
a likelihood-based method may not be computationally feasible in many instances with moderate-
or large-sized samples (Kelejian & Prucha, 1999), we propose a nonparametric GMM estimator
which differs from the one introduced in Sun et al. (2014).
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Specifically, we define m1i ≡
[(∑

j 6=iwijyj

)
,x′

1i

]′
, mi ≡ x2i, γ0 ≡

[
ρ0,β

′
1

]′
, γ (z) ≡ β2(z) and

ẏi ≡ yi − m′
1iγ0. In addition, we redefine Sn ≡ [In − ρ0W]−1 and Gn ≡ WSn. Again, we have

the same form of the kernel-weighted orthogonal moment conditions given in (4.2)–(4.3) with the
newly redefined ẏ, M(z) and θ(z). The corresponding nonparametric GMM estimator is

[
γ̂0 (z)

′ , vec
{
θ̂(z)

}′
]′

= arg min
γ0,θ(z)

gn (θ(z))
′
gn (θ(z)) , (4.6)

where gn (·) has the same form as in (3.5) with y being replaced with ẏ. As in Section 4.1, we

estimate constant parameters γ0 in the second stage via γ̃0 = n−1
∑n

i=1 γ̂
(−i)
0 (zi), where γ̂

(−i)
0 (zi)

is a leave-one-out (first-stage) estimator computed via (4.6) while excluding the ith unit.

Theorem 6 Under Assumptions 1–3, 5 and 9, we have

√
n (γ̃0 − γ0)

d→ N

(
0p1+1, Ω1

)

where Ω1 is as defined in Lemma 15 in Supplementary Appendix.

Analogous to the estimator in (4.4), the asymptotic normality result continues to hold for θ̂(z)
and is thus omitted. Remark 2 carries to this section too. Lastly, Theorem 6 shows that γ̃0 is a
root-n consistent estimator of γ0 if we undersmooth in the first stage.

5 Consistent Testing for a Linear Spatial Autoregressive Model

Given that our semiparametric model nests the parametric linear spatial autoregressive model as
a special case, one may naturally wish to formally discriminate between the two models. In this
section, we propose two test statistics for testing the null hypothesis of a linear spatial autoregressive
model against a smooth coefficient spatial autoregressive model defined in (2.1). The proposed are,
essentially, specification tests for parameter constancy. Specifically, we consider the following null
and alternative hypotheses:

H0 : Pr
{[
ρ(zi),β(zi)

′
]′
=
[
ρ0,β

′
0

]′}
= 1 for some

[
ρ0,β

′
0

]
∈ Θ ⊂ R

1+p

H1 : Pr
{[
ρ(zi),β(zi)

′
]′
=
[
ρ,β′

]′}
< 1 for any

[
ρ,β′

]
∈ Θ,

where Θ is a compact subset of R
1+p. With model (2.1) as the model under the alternative

hypothesis, we are interested in testing whether it is necessary to allow for parameter heterogeneity
when studying spatial autoregressive models. In what follows, we adhere by our original notation
used in Section 3.

The first specification test we propose is based on the following residual-based test statistic:

Tn =
1

n2|H|

n∑

i=1

n∑

j 6=i

ûiûjKH (zi, zj) , (5.1)

where ûi = yi −m′
iγ̆ with γ̆ =

[
ρ̆, β̆′

]′
being a consistent estimator of

[
ρ0,β

′
0

]′
, and KH (zi, zj) =

K
(
H−1(zi − zj)

)
. Under H0, model (2.1) becomes a linear spatial autoregressive model, i.e., yi =

ρ0
∑

j 6=iwijyj + x′
iβ0 + ui, i = 1, . . . , n with an i.i.d. zero-mean finite-variance error ui. Hence,
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Lee’s (2007) GMM estimator can be used to estimate ρ0 and β0. Further, the test does not require
β0 6= 0p so long as one can obtain a consistent estimator for ρ0 and β0 under H0. Since our test

statistic involves the construction of an estimator of
[
ρ,β′

]′
, the following assumption is required

to regulate the limiting performance of the estimator under the alternative hypothesis.

Assumption 10 (i) Under H1, there exists γ =
[
ρ,β′

]′
such that γ̆ − γ = Op

(
n−1/2

)
; (ii)

supz∈Sz
E
(
u6i |zi = z

)
≤M ; (iii) β (z) 6= 0p holds over at least one non-empty subset.

With the properly chosen instrumental variables as discussed in Lee (2007), following his proof,
one can show that Assumption 10(i) holds. Assumption 10(ii) is required to calculate the stochastic
order of the test statistic under H1. We make Assumption 10(iii) because our test statistic Jn
given below has the same limiting distribution under both the null and alternative hypotheses if
β (z) = 0p. Below we give the limiting distribution of the test statistic and relegate the proof to
Appendix B.

Theorem 7 Under Assumptions 1–4 and 10 , we have, under H0,

Jn = n
√

|H|Tn/
√
σ̂2n

d→ N (0, 1) ,

where

σ̂2n =
2

n2 |H|

n∑

i=1

n∑

j 6=i

û2i û
2
jK2

H(zi, zj)
p→ 2σ4uR2 (K)E [f (z)] ,

and under H1, Pr {|Jn| ≥Mn} → 0 for any non-stochastic, positive sequence Mn = o
(
n
√
|H|
)
.

Theorem 7 indicates that Jn is a consistent test. Since the test statistic is based on the fact
that E [εiE (εi|zi)] equals zero under H0 and takes a positive value under H1, where εi = yi −
ρ
∑

j 6=iwijyj − x′
iβ for i = 1, . . . , n, the proposed test is a one-sided test. That is, we reject the

null hypothesis if the test statistic Jn is greater than cα, where cα is the upper 100α percentile of
a standard normal distribution for a given α ∈ (0, 1).

However, it is well-known that the residual-based nonparametric tests perform rather poorly in
finite samples leading to a widely popular use of bootstrap methods in order to improve their finite
sample performance. Sharing this sentiment, below we propose a bootstrap procedure for our test
statistic Jn:

Step 1. Estimate the linear model under the null, i.e., yi = ρ
∑

j 6=iwijyj + x′
iβ + εi, via Lee’s

(2007) efficient GMM estimator to obtain residuals ûi = yi− ρ̆
∑

j 6=iwijyj −x′
iβ̆ for all i = 1, . . . , n.

Step 2. Obtain two-point wild bootstrap errors by setting u∗i = aûi with probability r and
u∗i = bûi with probability 1−r, where a =

(
1−

√
5
)
/2, b =

(
1 +

√
5
)
/2 and r =

(
1 +

√
5
)
/
(
2
√
5
)
.

Then, compute y∗ = [In − ρ̆W]−1
(
Xβ̆ + u∗

)
and call {(xi, zi,y

∗
i )}ni=1 the bootstrap sample.

Step 3. Reestimate the model under the null via efficient GMM estimator using the constructed
bootstrap sample, i.e., y∗i = ρ

∑
j 6=iwijy

∗
j + x′

iβ + u∗i to obtain bootstrap residuals û∗i = y∗i −
ρ̆∗
∑

j 6=iwijy
∗
j − x′

iβ̆
∗
for all i = 1, . . . , n.

Step 4. Compute the bootstrap test statistic J∗
n = n

√
|H|T ∗

n/
√
σ̂∗2n , where T ∗

n =
(
n2|H|

)−1∑n
i=1

∑n
j 6=i

û∗i û
∗
jKH (zi, zj) and σ̂

∗2
n = 2

(
n2|H|

)−1∑n
i=1

∑n
j 6=i û

∗2
i û

∗2
j KH (zi, zj).

Step 5. Repeat steps 1–4 B times.
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Step 6. Use the empirical distribution of B + 1 bootstrap statistics, where the first bootstrap
test statistic equals the test statistic calculated from the raw data, to obtain the upper 100α
percentile value c∗α. Use this c∗α to approximate the upper percentile value of the test statistic Jn
under H0.

Theorem 8 Under Assumptions 1–4 and 10, we have

sup
s∈R

|Pr∗ (J∗
n ≤ s)− Φ (s)| = op (1) , (5.2)

where Pr∗ (·) = Pr
(
·| {(xi, zi,y

∗
i )}ni=1

)
, and Φ (·) is the standard normal cumulative distribution

function.

Theorem 8 shows that the proposed bootstrap method is asymptotically valid in approximating
the null distribution of Jn regardless of whether the null hypothesis holds true or not. Specifically,
the result in (5.2) means that the bootstrap test statistic J∗

n converges to a standard normal random
variable in distribution in probability.

As discussed earlier, our test statistic Jn has its limitations when Assumption 10(iii) is violated.
In what follows, we therefore propose an alternative test statistic à la Henderson et al. (2008) which
provides a vehicle for discriminating between H0 and H1 even when β (z) = 0p. The new test
statistic is defined as

Dn =
1

n

n∑

i=1

[
m′

iγ̆ −m′
iγ̂ (zi)

]2
, (5.3)

where γ̂ (zi) is estimated via local constant regression approach following the methodology we
propose in Section 3. The below theorem gives the limit property of Dn.

Theorem 9 Under Assumptions 1–5 and 10(i), we have: Dn → 0 under H0, and Dn =
2n−1

∑n
i=1 [m

′
i (γ − γ0)]

2 + op (1) = Oe (1) under H1.

Theorem 9 states that Dn is a consistent, one-sided test. It is reasonable to expect the proposed
test statistic to be asymptotically normal after some proper scaling but we are unable to derive its
limit distribution due to the complexity of our estimator γ̂ (·). We therefore suggest employing a
bootstrap procedure to approximate the finite sample null distribution of Dn. For details on the
appropriate bootstrap procedure, see Henderson et al. (2008).

6 Finite Sample Performance

We first study the finite sample performance of our proposed estimators and test statistics in
a small set of Monte Carlo simulations. We then showcase our methodology by applying it to
estimate a spatial hedonic price function using the well-known Harrison & Rubenfeld’s house price
data from Gilley & Pace (1996), where we let unknown parameter functions to vary with the NOx

concentration in the air. To conserve space, we relegate the discussion of empirical application to
Supplementary Appendix and, in what follow, we only report the results of Monte Carlo simulations.

6.1 Estimators

We generate the data using the following process:

yi = ρ(zi)
∑

j 6=i

wijyj + xiβ(zi) + ui ∀ i = 1, . . . , n, (6.1)
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where the variables are randomly drawn as follows: zi ∼ i.i.d. U(0, 1), ξi ∼ i.i.d. N(0, 1) and ui ∼
i.i.d. N(0, 0.5); all are mutually independent. Variables xi and zi correlate as follows: xi = 0.5zi+ξi.
As in Lee (2007) and Liu, Lee & Bollinger (2010), rather than generating {wij}, we instead use
the spatial weighting matrix from the crime study for 49 districts in Columbus, OH from Anselin
(1988). The spatial weighting matrix is contiguity-based and uses the (first-order) queen definition
for Columbus and corresponds to a sample of n = 49. To increase the sample size, we generate a
block-diagonal spatial matrix with the original 49× 49 Columbus matrix used as a diagonal block.

We consider sample sizes n = {98, 245, 490}. For each n, we simulate the model 500 times.
We use the same Silverman’s (1986) rule-of-thumb bandwidth for the smoothing variable zi in all
stages, i.e., h = h0 = 1.06 × σ̂zn

−1/5, where σ̂z is the sample standard deviation of zi. For each
simulation, we compute the root mean squared error (RMSE) and the mean absolute error (MAE)
for each coefficient function and report their averages computed over 500 simulations.

In the first stage, we use the following feasible instruments: Q1n = (Wx,Wz), where x =
(x1, . . . , xn)

′ and z = (z1, . . . , zn)
′, for linear moment conditions and Pn,l = Wl−n−1tr

{
Wl
}
In for

l = 1, 2 for quadratic moments. For the second-stage estimation, we set Q̂1n = Ĝn (z)mtx
{
x, β̂ (z)

}

and P̂n = Ĝn (z) − n−1tr
{
Ĝn (z)

}
In, where Ĝn (z) = W [In − ρ̂ (z)W]−1; all constructed using

the first-stage estimates of ρ(zi) and β(zi).
7

We begin by first considering the case when xi is a relevant variable, i.e., β(zi) 6= 0. In particular,
the coefficient functions are specified as follows: β(zi) = 1−z2i and ρ(zi) = 0.75×sin(πzi). Here, we
use a local linear fitting. Table 1 reports the corresponding results for both the first- and second-
stage nonparametric GMM estimators fitted using two sets of orthogonality conditions: (i) linear
and quadratic moments (left panel) and (ii) linear moments only (right panel).

For each of the two stages, we also report the results for the local linear least squares estimator
of β (zi) from the equation constructed by moving the endogenous spatial lag term ρ (zi)

∑
j 6=iwijyj

to the left-hand side of model (2.1) and replacing unknown ρ (zi) with its estimator ρ∗ (zi), where
the latter equals ρ̂ (zi) in the first stage and ρ̃ (zi) in the second stage. It is attractive to explore
such a model for likely efficiency gains in finite samples. More concretely, we apply the conventional
local linear least squares approach to [In − ρ∗(Z)W]y = mtx {X,β(Z)}+u to obtain, in the local
neighborhood of z:

y∗ ≈ X (z)vec{B(z)}+ u∗, (6.2)

where y∗ ≡ [In − ρ∗(Z)W]y; X (z) =
[
Z1(z)⊗ x1 . . . Zn(z)⊗ xn

]′
is an n × [p(q + 1)] data

matrix; and B(z) ≡
[
β(z)

[
∇β1(z) . . . ∇βp(z)

]′]
. It is easy to show that the resulting non-

parametric least squares estimator is given by

vec
{
B̆(z)

}
=
[
X (z)′KH(z)X (z)

]−1
X (z)′KH(z)y∗. (6.3)

The results in Table 1 indicate that, in all instances, the estimation of both ρ(·) and β(·) co-
efficients becomes more stable as the sample size increases. Both the RMSE and MAE decline
significantly as n increases. Regardless of the instrument set, as expected, the second-stage estima-
tor delivers a sizable improvement over its first-stage counterpart, with a greater impact exhibited
for the estimation of ρ(·). We also observe that adding quadratic orthogonality conditions leads
to an increase in accuracy of the first-stage estimator only. Similarly, the reestimation of β(·) via
least squares also yields better results in the first stage only.

7Throughout, to ensure the non-singularity of In − ρ(z)W, we impose (3.11) via either box constraints on ρ(z)
during the numerical optimization when employing quadratic moments or the post-estimation “tilting” procedure
when making use of linear moments only.
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Table 1. Simulation Results for the Estimators when xi is Relevant

Linear & Quadratic Moments Linear Moments Only

n = 98 n = 245 n = 490 n = 98 n = 245 n = 490

First Stage First Stage

ρ(zi)
RMSE 0.2335 0.1451 0.1067 0.2786 0.2009 0.1638
MAE 0.1844 0.1146 0.0846 0.2096 0.1418 0.1081

β(zi)
RMSE 0.1163 0.0764 0.0564 0.1205 0.0821 0.0598
MAE 0.0884 0.0582 0.0425 0.0917 0.0612 0.0443

β(zi) via LS
RMSE 0.0992 0.0641 0.0477 0.1025 0.0681 0.0509
MAE 0.0791 0.0515 0.0383 0.0811 0.0538 0.0401

Second Stage Second Stage

ρ(zi)
RMSE 0.2078 0.1299 0.0959 0.2011 0.1203 0.0878
MAE 0.1665 0.1034 0.0761 0.1586 0.0960 0.0699

β(zi)
RMSE 0.1010 0.0660 0.0483 0.0994 0.0643 0.0474
MAE 0.0802 0.0528 0.0388 0.0798 0.0516 0.0381

β(zi) via LS
RMSE 0.0974 0.0634 0.0470 0.0975 0.0632 0.0468
MAE 0.0777 0.0508 0.0377 0.0774 0.0507 0.0375

Notes: The reported are the averages of respective statistics over 500 simulations. LS
stands for least squares.

Next, we turn to the case when xi is irrelevant in explaining yi, i.e., β(zi) = 0. The coefficient
functions are specified as follows: β(zi) = 0 for all zi and ρ(zi) = 0.75×sin(πzi). In this instance, we
estimate our first- and second-stage nonparametric GMM estimators via a local constant approach8

using the following two sets of orthogonality conditions: (i) linear and quadratic moments (left
panel) and (ii) quadratic moments only (right panel). The first set of instruments is meant to
simulate the case when the researcher is not aware that β(zi) = 0, whereas the second set assumes
the researcher knows that the model is a pure spatial autoregressive model with no covariates (and
hence, only ρ(·) is estimated).

Table 2 presents the results. Consistent with our theory, all estimators improve with an increase
in the sample size. The second-stage estimator offers some gains in the estimation of the ρ(·)
coefficient function primarily only when the model incorrectly presumes that β(z) 6= 0; no gains
are exhibited for β(·) in this case (left panel of Table 2). In line with one’s intuition, the results
indicate that the estimator of a correctly specified pure spatial autoregressive model (right panel
of Table 2) outperforms that of a “misspecified” model which includes an invalid instrument Wx

in its instrument set.

Overall, simulation experiments lend support to asymptotic results for our proposed estimators.

8Consistent with Remark 2.
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Table 2. Simulation Results for the Estimators when xi is Irrelevant

Linear & Quadratic Moments Quadratic Moments Only

n = 98 n = 245 n = 490 n = 98 n = 245 n = 490

First Stage First Stage

ρ(zi)
RMSE 0.2451 0.1841 0.1592 0.2094 0.1751 0.1587
MAE 0.1979 0.1495 0.1320 0.1735 0.1458 0.1335

β(zi)
RMSE 0.0761 0.0524 0.0395
MAE 0.0638 0.0436 0.0331

Second Stage Second Stage

ρ(zi)
RMSE 0.2214 0.1759 0.1548 0.2076 0.1737 0.1573
MAE 0.1810 0.1457 0.1324 0.1720 0.1445 0.1321

β(zi)
RMSE 0.0767 0.0524 0.0395
MAE 0.0645 0.0437 0.0331

Note: The reported are the averages of respective statistics over 500 simulations.

6.2 Specification Tests

We next examine the small sample performance of our proposed specification tests. As earlier, we
consider sample sizes n = {98, 245, 490}. For each n, we simulate the model 500 times. Test
statistics are bootstrapped 299 times each to obtain the 1%, 5%, 10% and 20% upper percentile
(critical) values of their null distributions.

We first study our residual-based statistic Jn. To assess its size and power, we consider the
following two experimental designs for the data-generating process given in (6.1):

(i) Linear model: β(zi) = 0.75 and ρ(zi) = 0.5 for all zi.

(ii) Nonlinear model: β(zi) = 1− z2i and ρ(zi) = 0.75× sin(πzi).

The residuals under the null hypothesis necessary for the construction of Jn are estimated via
Lee’s (2007) GMM estimator using the same linear and quadratic instruments as the ones we use
in the first-stage estimation in Section 6.1 above. To assess the sensitive of the results to the choice
of bandwidth for zi, we try different values of the scale parameter in the Silverman’s (1986) rule-
of-thumb bandwidth: c = {0.80, 1.06, 1.50}. Table 3 reports the estimated size [design (i)] and
power [design (ii)] of our test computed as rejection frequencies over 500 simulations. We find that
out test statistic Jn exhibits a relatively good size across all considered sample sizes and bandwidth
values. From the right panel of Table 3, we also see that the power of the test increases with the
sample size as anticipated.

Given that the applicability of the Jn statistic does not extend to the case of pure spatial
autoregressive models, we next analyze the performance of our second test statistic Dn. To examine
its size and power, we consider the following four experimental designs for the data-generating
process given in (6.1):

(i) Linear model:

− Relevant xi: β(zi) = 0.75 and ρ(zi) = 0.5 for all zi;
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Table 3. Simulation Results for the Jn Statistic when xi is Relevant

Estimated Size Estimated Power

Sign. Level n = 98 n = 245 n = 490 n = 98 n = 245 n = 490

c = 0.8
1% 0.012 0.006 0.008 0.164 0.548 0.868
5% 0.034 0.080 0.054 0.359 0.756 0.954
10% 0.073 0.134 0.100 0.485 0.813 0.988
20% 0.153 0.247 0.218 0.615 0.898 0.996

c = 1.06
1% 0.010 0.012 0.006 0.171 0.569 0.870
5% 0.034 0.075 0.054 0.376 0.770 0.966
10% 0.071 0.126 0.092 0.493 0.827 0.986
20% 0.153 0.260 0.192 0.630 0.894 1.00

c = 1.5
1% 0.010 0.012 0.006 0.141 0.556 0.878
5% 0.042 0.070 0.048 0.363 0.780 0.970
10% 0.080 0.116 0.086 0.510 0.839 0.988
20% 0.158 0.234 0.198 0.640 0.902 1.00

Note: The reported are the rejection frequencies over 500 simulations.

− Irrelevant xi: β(zi) = 0 for all zi and ρ(zi) = 0.5 for all zi.

(ii) Nonlinear model:

− Relevant xi: β(zi) = 1− z2i and ρ(zi) = 0.75× sin(πzi);

− Irrelevant xi: β(zi) = 0 for all zi and ρ(zi) = 0.75× sin(πzi).

We use Silverman’s (1986) rule-of-thumb bandwidth with c = 1.06 throughout. For the case
of a relevant xi, both the model under H0 and the model under H1 are estimated using linear
and quadratic moments. However, in the case of a pure spatial autoregressive model, we make
use of quadratic moments only thus assuming that the irrelevancy of xi is an a priori knowledge.
The results reported in Table 4 show that the Dn test has quite accurate size across all n regard-
less whether xi is relevant or not. It exhibits superb power when xi is relevant in predicting yi.
The power is also decent and rises with the sample size when the true model is a pure spatial
autoregression.

7 Conclusion

Most empirical work that deals with spatial data employs standard linear spatial models. These
models are however prone to misspecification due to a rather strong assumption of linearity of the
spatial relationship. The literature has long ago recognized that econometric relations in space
result more often than not in highly nonlinear specifications.

This paper offers a semiparametric method to handling nonlinearity (and parameter heterogene-
ity) in models of spatial dependence. Specifically, we consider a semiparametric spatial autoregres-
sive (mixed-regressive) model in which unknown coefficients are permitted to be nonparametric
functions of some contextual variables to allow for potential nonlinearities and parameter het-
erogeneity in the spatial relationship. Unlike other semiparametric spatial dependence models,
ours permits the spatial autoregressive parameter to meaningfully vary across units. The latter
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Table 4. Simulation Results for the Dn Statistic

Estimated Size Estimated Power

Sign. Level n = 98 n = 245 n = 490 n = 98 n = 245 n = 490

Relevant xi

1% 0.008 0.012 0.006 0.932 1.00 1.00
5% 0.043 0.053 0.056 0.997 1.00 1.00
10% 0.101 0.117 0.112 1.00 1.00 1.00
20% 0.224 0.207 0.205 1.00 1.00 1.00

Irrelevant xi (Pure SAR Model)

1% 0.010 0.006 0.014 0.035 0.149 0.392
5% 0.061 0.064 0.064 0.158 0.382 0.652
10% 0.130 0.116 0.132 0.281 0.500 0.768
20% 0.245 0.235 0.235 0.440 0.672 0.892

Notes: The reported are the rejection frequencies over 500 simulations. SAR
stands for spatially autoregressive.

may be highly desirable from a practitioner’s point of view since it allows the identification of a
neighborhood-specific spatial dependence measure conditional on the vector of contextual variables.

We propose several (locally) nonparametric GMM estimators for our model. The developed two-
stage estimators incorporate both the linear and quadratic orthogonality conditions and are capable
of accommodating a variety of data generating processes, including the instance of a pure spatially
autoregressive semiparametric model with no relevant regressors as well as multiple partially linear
specifications. All proposed estimators are shown to be consistent and asymptotically normal.
We also contribute to the literature by putting forward two test statistics to test for parameter
constancy in our model. Both tests are consistent.

Appendix

To simplify notation, we define the following: πi ≡ KH(zi, z) = K(H−1(zi − z)); As
n = An + A′

n

for any n× n matrix An; ▽2g(z) = ∂2g(z)/∂z∂z′ is the second-order derivative of a differentiable
function g : Rq → R; is and 0s is an s× 1 vector of ones and zeros, respectively; is×t and 0s×t is an
s×t matrix of ones and zeros, respectively;

∑
i 6=j ≡

∑n
i=1

∑n
j 6=i and

∑
i 6=j 6=i′ ≡

∑n
i=1

∑n
j 6=i

∑n
j 6=i 6=i′ .

Also, Xn = Oe (an) means that Xn = Op (an) but not Xn = op (an), and An ≈ Bn indicates that
Bn is the leading term of An.

A Brief Mathematical Proofs of Theorems 1–4

Proof of Theorem 1. Define θn = ξn
[
γ̂ (z)− γ (z) [▽γ̂ (z)−▽γ (z)]H

]
, a (p+ 1)× (q + 1)

matrix, y∗i = yi − m′
iγ (z) − m′

i ▽ γ (z) (zi − z) and ui (θ) = y∗i − ξ−1
n m′

iθZi(z), where {ξn} is a
sequence of positive constants such that 0 < M1 < ‖θn‖ < M2 <∞ for all n. Then, we can rewrite
(3.5) as

gn (θ) =




u (θ)′Pn,1KH(z)u (θ)
...

u (θ)′Pn,mKH(z)u (θ)
Q(z)′KH(z)u (θ)


 , (A.1)
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where u (θ) is an n× 1 vector with a typical element being equal to ui (θ). Then, we have

∂gn (θ)

∂vec (θ)′
= −ξ−1

n




u (θ)′ [Pn,1KH(z)]sM (z)
...

u (θ)′ [Pn,lKH(z)]sM (z)
Q(z)′KH(z)M (z)


 .

Minimizing the GMM objective function referenced in (3.6) is equivalent to minimizing Λn (θ) =
gn (θ)

′
gn (θ) over θ ∈ S, where the latter is a compact subset of Rp+1×R

q+1. Since θn minimizes
Λn (θ) = gn (θ)

′
gn (θ), we have that

0(p+1)(q+1) =
∂gn (θn)

′

∂vec (θ)
gn (θn) =

∂gn (θn)
′

∂vec (θ)


gn (0) +

∂gn

(
θ̃n

)

∂vec (θ)′
vec (θn)


 ,

where θ̃n lies between θn and 0(p+1)(q+1). From above, we obtain

vec (θn) = −


∂gn (θn)

′

∂vec (θ)

∂gn

(
θ̃n

)

∂vec (θ)′



−1

∂gn (θn)
′

∂vec (θ)
gn (0) .

Denoting ΞH(z) ≡ KH(z)Q(z)Q(z)′KH(z), we decompose the two components of vec (θn)
above as follows

An (z) ≡ −∂gn (θn)
′

∂vec (θ)
gn (0)

=
1

2ξn

m∑

l=1

M (z)′ [Pn,lKH(z)]s u (θn)y
∗′ [Pn,lKH(z)]s y∗ +

1

ξn
M(z)′ΞH(z)y∗

and

Bn (z) ≡ ∂gn (θn)
′

∂vec (θ)

∂gn

(
θ̃n

)

∂vec (θ)′

=
1

ξ2n

m∑

l=1

[
u (θn)

′ [Pn,lKH(z)]sM(z)
]′
u
(
θ̃n

)′
[Pn,lKH(z)]sM(z) +

1

ξ2n
M(z)′ΞH(z)M(z).

For each i, we define a (p+ 1) × 1 vector Π(z∗i ) whose lth element equals Πl(z
∗
i ) = (zi −

z)′ ▽2 γl(z
∗
i )(zi − z), and z∗i lies between zi and z for l = 1, . . . , p + 1. Then, we have y∗i =

ui + m′
iΠ(z∗i )/2. Further, we define an n × 1 vector C (z), whose ith term equals m′

iΠ(z∗i )/2,
along with Γ1,l = u′ [Pn,lKH(z)]sC(z), Γ2,l = C (z)′ [Pn,lKH(z)]sC(z), Γ3,l = u′ [Pn,lKH(z)]s u,
Ψ1,l = u′ [Pn,lKH(z)]sM(z), Ψ2,l = C (z)′ [Pn,lKH(z)]sM(z) and Ψ3,l = M (z)′ [Pn,lKH(z)]sM(z)
for l = 1, . . . ,m. Then, we have An (z) = An1 (z) +An2 (z)−An3 (z) with

An1 (z) =
1

2ξn

m∑

l=1

[
Γ2,l (Ψ1,l +Ψ2,l)

′ + (2Γ1,l + Γ3,l)Ψ
′
1,l

]
+

1

ξn
M (z)′ΞH(z)C(z)

An2 (z) =
1

2ξn

m∑

l=1

(2Γ1,l + Γ3,l)Ψ
′
2,l +

1

ξn
M(z)′ΞH(z)u
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An3 (z) =
1

2ξ2n

m∑

l=1

(2Γ1,l + Γ2,l + Γ3,l)Ψ3,lvec (θn) ,

and

Bn (z) =
1

ξ2n

m∑

l=1

(
Ψ1,l +Ψ2,l −

1

ξn

[
vec
(
θ̃n

)]′
Ψ3,l

)′(
Ψ1,l +Ψ2,l −

1

ξn

[
vec
(
θ̃n

)]′
Ψ3,l

)
+

1

ξ2n
M(z)′ΞH(z)M(z).

By Lemmas 1–3, we have

(n |H|)−2 ξnAn1 (z) = f2 (z)κA (H, z)′ + op

(
‖H‖2

)
(A.2)

(n |H|)−3/2 ξnAn2 (z)
d→ N

(
0[(p+1)(q+1)], f

3 (z)R2 (K)Ω (z)
)

and

(n |H|)−2 ξ2nAn3 (z) = Op

((
‖H‖2 + (n |H|)−1/2

)
‖H‖−1

)

(n |H|)−2 ξ2nBn (z) = f2 (z)κB (H, z) +Op

(
(ξn ‖H‖)−1 + (ξn ‖H‖)−2

)
+ op (1) (A.3)

uniformly over all θ̃n ∈ S. Therefore, we have

ξn

([
γ̂ (z)− γ (z) [▽γ̂ (z)−▽γ (z)]H

]
−
[
(n |H|)−2 ξ2nBn (z)

]−1
(n |H|)−2 ξnAn1 (z)

)

=
ξn√
n |H|

[
ξ2nBn (z)

(n |H|)2
]−1

ξnAn2 (z)

(n |H|)3/2
+

[
ξ2nBn (z)

(n |H|)2
]−1

ξ2nAn3 (z)

(n |H|)2
. (A.4)

Combining (A.2)–(A.4) with the fact that ‖θn‖ < M for all n, we can deduce that ξn must be
of order

√
n |H|. The logic is as follows.

First, if ξn/
√
n |H| → ∞, it implies that

√
n |H|

[
γ̂ (z)− γ (z) [▽γ̂ (z)−▽γ (z)]H

]
→ 0 as

n→ ∞. By (A.2)–(A.4) and Assumption 4, we obtain

√
n |H|

([
γ̂ (z)− γ (z) [▽γ̂ (z)−▽γ (z)]H

]
− κB (H, z)−1

κA (H, z)′
)

d
= κB (H, z)−1

N
(
0(p+1)(q+1), f

3 (z)R2 (K)Ω (z)
)
+Op

(√
n |H|
ξn

(
‖H‖2 + (n |H|)−1/2

)
‖H‖−1

)
,

where An
d
= Bn means that An and Bn have the same distribution asymptotically. Since the first

term is of order Oe (1), a contradiction occurs.

Now, suppose that ξn/
√
n |H| → 0 holds true. By (A.2)–(A.4) and Assumption 4, we have

θn = op (1) which contradicts the fact that ‖θn‖ is uniformly bounded and positive.

Therefore, applying the exclusion method, we have shown that ξn must be of order
√
n |H|

exactly, which gives

√
n |H|

([
γ̂ (z)− γ (z) [▽γ̂ (z)−▽γ (z)]H

]
− κB (H, z)−1

κA (H, z)′
)

d
= κB (H, z)−1

N
(
0(p+1)(q+1), f

3 (z)R2 (K)Ω (z)
)
.
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This completes the proof of this theorem.

In the following three lemmas, we define κj (H,z) = κj,Q (H, z) + κj,P (H, z) for j = {A,B}
and Ω (z) = ΩQ (z) + ΩP (z) + ΩQ,P (z), where the subscripts Q and P mean that the variable
comes from the use of Qn and {Pn,lu} as an instrument, respectively, while the “double” subscript
Q,P indicates the use of both types of instruments.

Lemma 1 Under Assumptions 1–4, we obtain (n |H|)−2 ξnAn1 (z) = f2 (z)κA (H, z)′ +op

(
‖H‖2

)
.

(i) If β (z) 6= 0p holds over at least one non-empty subset, we have

κA,Q (H, z) =
µ1,2(k)

2

[
E2 (H, z)E1 (z) 0′q(p+1)

]
(A.5)

κA,P (H, z) =
[
1,0′q

]
⊗

m∑

l=1

(
F3,l (H, z)

[
F1,l (H, z) +

1

4
F2,l (z)

]
+

2F4,l (H, z)F1,l (H, z)

)
, (A.6)

where E1 (z), E2 (H, z), F1,l (H, z), F2 (z), F3,l (H, z) and F4,l (H, z) are defined below;
(ii) If β (z) = 0p holds over its domain and ρ (z) is not constant over at least one non-empty subset,

we have κA,Q (H, z) = Op

(
‖H‖2 (n |H|)−1/2

)
and κA,P (H,z) = 2

[
1,0′q

]
⊗
∑m

l=1F4,l (H, z)F1,l (H, z);

(iii) If both β (z) = 0p and ρ (z) = ρ0 hold over their domains, we have κA,Q (H, z) = 0(p+1)(q+1)

and κA,P (H,z) = Op

((
n
√

|H|
)−1

)
.

Proof. We first consider case (i). Applying straightforward calculation, we obtain

1

n |H|Q(z)′ KH(z)M(z) =
1

n |H|

n∑

i=1

πi
[
Zi(z)Zi(z)

′
]
⊗
(
Qn,im

′
i

)

= f (z)

[
1 0′q
0q µ1,2 (k) Iq

]
⊗E1 (z) +Op

(
‖H‖2 + (n |H|)−1/2

)
(A.7)

and

1

n |H|C(z)′KH(z)Q(z) =
1

2n |H|

n∑

i=1

πim
′
iΠ(z∗i )

[
Zi(z)

′ ⊗Q′
n,i

]

=
f (z)

2
µ1,2(k)

[
E2 (H, z) 0′qd

] (
1 +Op

(
‖H‖2 + (n |H|)−1/2

))
,

where we define

E1 (z) ≡ lim
n→∞

n−1
n∑

i=1

E
[
Qn,im

′
i|zi = z

]
(A.8)

E2 (H, z) ≡ n−1
n∑

i=1

(
tr

{
H
∂2ρ(z)

∂z∂z′
H

}
E
[
(Wy)iQ

′
n,i|zi = z

]
+

E

[
tr

{
H
∂2 [β(z)′xi]

∂z∂z′
H

}
Q′

n,i

∣∣∣∣ zi = z

])
. (A.9)

This gives (A.5).
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Next, let the (i, j)th element of Gn (Z) = W [In − ρ (Z)W]−1 be gij . Since {Pn,l} has finite
row- and column-sum norms for all l, letting pl,ij be the (i, j)th element of Pn,l, we obtain that

Ψ1,l

n |H| =
1

n |H|

n∑

i=1

n∑

j=1

(pl,ijπj + pl,jiπi)ui
(
Z ′
j(z)⊗m′

j

)

=
2

n |H|

n∑

i=1

pl,iiπiZ ′
i(z)⊗

[
giiu

2
i , uix

′
i

]
+Op

(
(n |H|)−1/2

[
1, ‖H‖−1

i′q

]
⊗ i′p+1

)

= 2f (z)
[
1,0′q

]
⊗ F1,l (H, z) + op (1) (A.10)

Ψ2,l

n |H| =
1

2n |H|

n∑

i=1

n∑

j=1

(pl,ijπj + pl,jiπi)m
′
iΠ(z∗i )

(
Z ′
j(z)⊗m′

j

)

=
1

2n |H|
∑

i 6=j

pl,ijπjm
′
iΠ(z∗i )

(
Z ′
j(z)⊗m′

j

)
+Op (‖H‖)

=
1

2
f (z)

[
1,0′q

]
⊗ F2,l (z) + op (1) (A.11)

and

Γ2,l

n |H| =
1

4n |H|

n∑

i=1

n∑

j=1

(pl,ijπj + pl,jiπi)m
′
iΠ(z∗i )Π(z∗j )

′mj

=
1

2n |H|
∑

i 6=j

pl,ijπjm
′
iΠ(z∗i )Π(z∗j )

′mj +Op

(
‖H‖4

)

=
1

2
f (z)F3,l (H, z) +Op

(
‖H‖4 + (n |H|)−1/2 ‖H‖2

)
,

where we define

F1,l (H, z) =

[
σ2u (n |H| f (z))−1

n∑

i=1

pl,iigiiπi, 0
′
p

]
(A.12)

F2,l (z) = n−1
∑

i 6=j

E
[
pl,ijm

′
iΠ(z∗i )m

′
j |zj = z

]
(A.13)

and

F3,l (H, z) =
1

n

∑

i 6=j

tr

{
HE

[
pl,ijm

′
iΠ(z∗i )

(
(Wy)j

∂2ρ (z)

∂z∂z′
+
∂2
(
x′
jβ (z)

)

∂z∂z′

)∣∣∣∣∣ zj = z

]
H

}
. (A.14)

Since {Pn,l} has finite row- and column-sum norms for all l, we have F1,l (H, z) = Op (1),

F2,l (z) = O (1) and F3,l (H, z) = O
(
‖H‖2

)
.

In addition, denoting ū ≡ Gn (Z)u and ȳ ≡ Gn (Z)mtx {X,β (Z)}, we have Wy = ȳ + ū,
where the ith elements of n × 1 vectors ū and ȳ are respectively denoted by ūi and ȳi. Next,
define m̄i ≡ [ȳi,x

′
i]
′ and ηi (z) ≡ (zi − z)′ ▽2 ρ (z∗i ) (zi − z). With Γ̄1,l ≡ u′ [Pn,lKH(z)]s C̄(z) and

Γ̃1,l ≡ u′ [Pn,lKH(z)]s C̃(z), where the ith elements of C̄(z) and C̃(z) are respectively equal to
m̄′

iΠ(z∗i )/2 and ūiηi (z) /2, and given that tr {Pn,l} = 0, we obtain

Γ̃1,l

n |H| =
1

2n |H|

n∑

i=1

n∑

j=1

(pl,ijπj + pl,jiπi)uiūjηj (z)
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=
1

n |H|

n∑

i=1

pl,iigiiπiu
2
i ηi (z) +Op

((
n
√

|H|
)−1

)
= f (z)F4,l (H, z) +Op

((
n
√
|H|
)−1

)

and
Γ̄1,lΨ1,l

(n |H|)2
= Op

(
‖H‖2√
n |H|

)
and

Γ3,lΨ1,l

(n |H|)2
= Op

(
1

n
√
|H|

)
,

where

F4,l (H, z) =
σ2u

n |H| f (z)

n∑

i=1

pl,iigiiπiηi (z) = Op

(
‖H‖2

)
. (A.15)

Therefore, we verify (A.6), combing all the above results together.

Next, we consider case (ii). In this instance,mi= [ūi,x
′
i]
′ andE1 (z) ≡

[
0d, n

−1
∑n

i=1 E [Qn,ix
′
i|zi = z]

]
.

In addition, we have

1

n |H|C(z)′KH(z)Q(z) =
1

2n |H|

n∑

i=1

πiūiηi (z)
[
Z ′
i(z)⊗Q′

n,i

]
= Op

(
‖H‖2 (n |H|)−1/2

)
,

Γ2,l

n |H| =
1

4n |H|

n∑

i=1

n∑

j=1

(pl,ijπj + pl,jiπi) ūiūjηi(z)ηj(z)

=
1

2n |H|
∑

i 6=j

pl,ijπj ūiūjηi(z)ηj(z) +Op

(
‖H‖4

)
= Op

(
‖H‖2 /n+ ‖H‖4

)

and
Ψ2,l

n |H|=
1

2n |H|

n∑

i=1

n∑

j=1

(pl,ijπj + pl,jiπi) ηi(z)Z ′
j(z)⊗

[
ūiūj , ūix

′
j

]
= Op

(
‖H‖2

)
.

Combining all the above results together gives (n |H|)−2 ξnAn1 (z) ≈ (n |H|)−2∑m
l=1 Γ̃1,lΨ

′
1,l,

which verifies case (ii).

Lastly, note that if both β (z) = 0p and ρ (z) ≡ ρ0 hold over their domains [i.e., case (iii)], we
haveC (z)= 0n, which implies Γ1,l = 0, Γ2,l = 0 and Ψ2,l = 0′(p+1)(q+1). Hence, (n |H|)−2 ξnAn1 (z) =

(2n |H|)−2∑m
l=1 Γ3,lΨ

′
1,l = Op

((
n
√

|H|
)−1

)
. This completes the proof of this lemma.

Remark If diag{Pn,l} = 0 for all l, we have κA,P (H, z) = 4−1
[
1,0′q

]
⊗
∑m

l=1 [F3,l (H, z)F2,l (z)]

in case (i), κA,P (H, z) = op

(
n−1/2 + ‖H‖4

)
in case (ii), and κA,P (H, z) = op

((
n
√
|H|
)−1

)
in

case (iii).

Lemma 2 Under Assumptions 1–4, we obtain

(n |H|)−2 ξ2nBn (z) = f2 (z)κB (H, z) +Op

(
(ξn ‖H‖)−1 + (ξn ‖H‖)−2

)
+ op (1) , (A.16)

where

κB,Q (H, z) =

[
1 0′

q

0q µ2
1,2 (k) Iq

]
⊗
[
E1 (z)

′
E1 (z)

]

κB,P (H, z) =

[
1 0′

q

0q 0q×q

]
⊗
{

m∑

l=1

[
2F1,l (H,z) +

1

2
F2,l (z)

]′ [
2F1,l (H, z) +

1

2
F2,l (z)

]}
.

26



Proof. By (A.7), we have

1

(n |H|)2
M(z)′ΞH(z)M(z) =

1

(n |H|)2
M(z)′KH(z)Q(z)Q(z)′KH(z)M(z)

= κB,Q (H, z) (1 + op (1)) . (A.17)

In addition, we have

Ψ3,l

n |H| =
1

n |H|

n∑

i=1

n∑

j=1

(pl,ijπj + pl,jiπi)
[
Zi(z)Z ′

j(z)
]
⊗
(
mim

′
j

)

=


 Op (1) Op

(
‖H‖−1

i′q

)

Op

(
‖H‖−1

i′q

)
Op (iq×q)


⊗Op

(
i(p+1)×(p+1)

)
.

Combining this result with (A.17), (A.10) and (A.11) yields

(n |H|)−2 ξ2nBn (z) =
1

(n |H|)2
m∑

l=1

[
(Ψ1,l +Ψ2,l)

′ (Ψ1,l +Ψ2,l)
]
+

1

(n |H|)2
M(z)′ΞH(z)M(z) +

Op

(
ξ−1
n ‖H‖−1 + ξ−2

n ‖H‖−2
)

= κB,P (H, z) + κB,Q (H, z) + op (1) +Op

(
ξ−1
n ‖H‖−1 + ξ−2

n ‖H‖−2
)
.

This completes the proof of this lemma.

Remark If diag{Pn,l} = 0 for all l, we have κB,P (H, z) = 4−1diag{1,0q}⊗
[∑m

l=1F2,l (z)
′
F2,l (z)

]
.

Further, E1 (z) ≡
[
0d, n

−1
∑n

i=1 E [Qn,ix
′
i|zi = z]

]
if β (z) = 0p holds over its domain, which leads

to a singular κB (H, z) because E1 (z)
′
E1 (z) becomes singular. However, this problem vanishes if

one uses a local constant estimator (instead of a local linear one) because
∑m

l=1

[
2F1,l (H,z) +

1
2F2,l (z)

]

+ E1 (z)
′
E1 (z) can be non-singular.

Lemma 3 Under Assumptions 1–4, we obtain

(n |H|)−3/2 ξnAn,2 (z)
d→ N

(
0, f3 (z)R2 (K)Ω (z)

)
, (A.18)

where Ω (z) is defined in the proof.

Proof. By (A.7) and (A.11), we have

(n |H|)−3/2 ξnAn,2 (z) =
f (z)

4
√
n |H|

m∑

l=1

(
2Γ̄1,l + Γ3,l

) [
1,0′q

]′ ⊗ F2,l (z)
′ +

f (z)√
n |H|

∆n (z)
′
Q (z)′KH(z)u+ op (1) ≡ Ān,2 (z) + op (1) ,

where ∆n (z) ≡ diag {1, µ1,2 (k) Iq} ⊗ E1 (z). Letting α 6= 0 be a [(p+ 1) (q + 1)] × 1 vector, we
define

Λn (z) ≡ α′Ān,2 (z) = u′Anu+ b′
nu, (A.19)

27



where

An =
f (z)

4
√
n |H|

m∑

l=1

[Pn,lKH(z)]s
[
1,0′q

]
⊗ F2,l (z)α

bn =
f (z)√
n |H|

(
1

2

m∑

l=1

[Pn,lKH(z)]s C̄(z)
[
1,0′q

]
⊗ F2,l (z) +KH(z)Q (z)∆n (z)

)
α.

Since both An and bn are exogenous, we can apply Kelejian & Prucha’s (2001) central limit
theorem for linear-quadratic forms with minor modification. That is, we need to check the following
two conditions:

n∑

i=1

E

[
|bn,i|2+δ1

]
→ 0 for some δ1 > 0 (A.20)

0 < c0 < Var [Λn (z)] < c1 <∞, (A.21)

where bn,i is the ith element of bn.

First, we verify (A.20). Applying direct calculations gives

bn,i =
f (z)

4
√
n |H|

α′
m∑

l=1

[
1
0q

]
⊗F2,l (z)

′
n∑

j=1

(pl,ijπj + pl,jiπi) m̄
′
jΠ(z∗j )+

f (z)√
n |H|

πi
[
Z ′
i(z)⊗Q′

n,i

]
∆n (z)α.

Applying Minkoski’s inequality gives

E




∣∣∣∣∣∣

n∑

j=1

(pl,ijπj + pl,jiπi) m̄
′
jΠ(z∗j )

∣∣∣∣∣∣

2+δ1

 ≤




n∑

j=1

(
E
∣∣(pl,ijπj + pl,jiπi) m̄

′
jΠ(z∗j )

∣∣2+δ1
)1/(2+δ1)



2+δ1

≤M |H|

and
E
∣∣πi
[
Z ′
i(z)⊗Q′

n,i

]
∆n (z)α

∣∣2+δ1 ≤ME [πi ‖Zi(z)‖ ‖Qn,i‖]2+δ1 ≤M |H|

if E
[
‖Qn,i‖2+δ1 |zi = z

]
< M is continuous and bounded in the neighborhood of z, E

[
‖xi‖2(2+δ1)

]
<

M and E

[
‖zi‖4(2+δ1)

]
< M . Hence, we obtain E

[
|bn,i|2+δ1

]
≤ M |H| (n |H|)−(2+δ1)/2. This gives

(A.20).

Second, we verify (A.21). Note that E [Λn (z)] = 0 since tr {Pn,l} = 0 for all l, and

Var [Λn (z)] = 2σ4uE
[
tr
{
A2

n

}]
+
(
E
[
u41
]
− 2σ4u

) n∑

i=1

E
[
a2n,ii

]
+ σ4u

∑

i 6=j

E (an,iian,jj) +

σ2uE
[
b′
nbn

]
+ 2E

[
u31
] n∑

i=1

E [an,iibn,i] , (A.22)

where an,ij is the (i, j)th element of An. Then, we obtain

∑

i 6=j

E [an,iian,jj ] =
f2 (z)

4n |H|α
′

m∑

l=1

m∑

l′=1

[
1 0′q
0q 0q×q

]
⊗
[
F2,l (z)

′
F2,l′ (z)

]
α
∑

i 6=j

E
[
pl,iipl′,jjπiπj

]
= O (|H|)
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and

E
[
tr
{
A2

n

}]
=

f2 (z)

16n |H|α
′

m∑

l=1

m∑

l′=1

[
1 0′

q

0q 0q×q

]
⊗
[
F2,l (z)

′
F2,l′ (z)

]
αE [tr {[Pn,lKH(z)]

s
[Pn,l′KH(z)]

s}]

=
f2 (z)

16n |H|α
′

m∑

l=1

m∑

l′=1

[
1 0′

q

0q 0q×q

]
⊗
[
F2,l (z)

′
F2,l′ (z)

]
α

n∑

i=1

n∑

j=1

E [(pl,ijπj + pl,jiπi) (pl′,ijπj + pl′,jiπi)]

=
f2 (z)

8n |H|α
′

m∑

l=1

m∑

l′=1

[
1 0′

q

0q 0q×q

]
⊗
[
F2,l (z)

′
F2,l′ (z)

]
α

n∑

i=1

E
[
pl,iipl′,iiπ

2
i

]
+O

(
n−1

)

=
n∑

i=1

E
[
a2n,ii

]
/2 +O

(
n−1

)

so that 2σ4uE
[
tr
(
A2

n

)]
+
(
E
[
u41
]
− 2σ4u

)∑n
i=1 E

[
a2n,ii

]
+σ4u

∑
i 6=j E (an,iian,jj) = Var

(
u21
)∑n

i=1 E

[
a2n,ii

]
+

O
(
n−1 + |H|

)
. By definition, we have

n∑

i=1

E
[
a2n,ii

]
=

f2 (z)

4n |H|α
′

m∑

l=1

m∑

l′=1

[
1 0′q
0q 0q×q

]
⊗
[
F2,l (z)

′
F2,l′ (z)

]
α

n∑

i=1

E
[
pl,iipl′,iiπ

2
i

]

≈ f3 (z)R2 (K)α′Ω1 (z)α/4.

Hence, we obtain

Ω1 (z) =

[
1 0′q
0q 0q×q

]
⊗

m∑

l=1

m∑

l′=1

F2,l (z)
′
F2,l′ (z) lim

n→∞
n−1

n∑

i=1

E
[
pl,iipl′,ii|zi = z

]
. (A.23)

Next, we have

b′
nbn =

f2 (z)

4n |H|

m∑

l=1

m∑

l′=1

C̄(z)′ [Pn,lKH(z)]s
[
Pn,l′KH(z)

]s
C̄(z) α′

[
1 0′q
0q 0q×q

]
⊗
[
F2,l (z)

′
F2,l′ (z)

]
α+

f2 (z)

2n |H|α
′

m∑

l=1

[
1
0q

]
⊗ F2,l (z)

′
C̄(z)′ [Pn,lKH(z)]sKH(z)Q (z)∆n (z)α+

f2 (z)

n |H| [∆n (z)α]
′
Q (z)′K2

H(z)Q (z)∆n (z)α

≡ f2 (z)
[
α′An1α/4+α′An2∆n (z)α/2+ [∆n (z)α]

′An3∆n (z)α
]
,

where the definition of Anj for j = 1, 2, 3 is to be clear from the context below.

Applying standard calculations, we obtain

E [An1] =
1

n |H|

[
1 0′q
0q 0q×q

]
⊗

m∑

l=1

m∑

l′=1

[
F2,l (z)

′
F2,l′ (z)

]
E

[
C̄(z)′ [Pn,lKH(z)]s

[
Pn,l′KH(z)

]s
C̄(z)

]

=
1

4n |H|

m∑

l=1

m∑

l′=1

n∑

i=1

n∑

i′=1

n∑

j=1

E
[
(pl,ijπj + pl,jiπi)

(
pl′,i′jπj + pl′,ji′πi′

)
m̄′

iΠ(z∗i )m̄
′
i′Π(z∗i′)

]
×

[
1 0′q
0q 0q×q

]
⊗
[
F2,l (z)

′
F2,l′ (z)

]

=
1

4n |H|

m∑

l=1

m∑

l′=1

∑

i′ 6=i 6=j

E
[
pl,ijpl′,i′jπ

2
j m̄

′
iΠ(z∗i )m̄

′
i′Π(z∗i′)

] [ 1 0′q
0q 0q×q

]
⊗
[
F2,l (z)

′
F2,l′ (z)

]
+
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O
(
‖H‖2

)

≈ f (z)R2 (K)S1 (z) /4,

E [An2] =
1

n |H|E
[

m∑

l=1

[
1
0q

]
⊗ F2,l (z)

′
C̄(z)′ [Pn,lKH(z)]sKH(z)Q (z)

]

=
1

2n |H|

m∑

l=1

[
1
0q

]
⊗ F2,l (z)

′
n∑

i=1

n∑

j=1

E
[
(pl,ijπj + pl,jiπi)πjm̄

′
iΠ(z∗i )Z ′

j(z)⊗Q′
n,j

]

=
1

2n |H|

m∑

l=1

[
1
0q

]
⊗ F2,l (z)

′
∑

i 6=j

E
[
pl,ijπ

2
j m̄

′
iΠ(z∗i )

[
Z ′
j(z)⊗Q′

n,j

]]
+O

(
‖H‖2

)

≈ f (z)R2 (K)S2 (z) /2

and

E [An3] =
1

n |H|E
[
Q (z)′K2

H(z)Q (z)
]

=
1

n |H|

n∑

i=1

E
[
π2i
[
Zi(z)Z ′

i(z)
]
⊗
(
Qn,iQ

′
n,i

)]
≈ f (z)

[
R2 (K) 0′q

0q µ2,2 (k) Iq

]
⊗E3 (z) ,

where make use of the following definitions:

S1 (z) ≡
[

1 0′q
0q 0q×q

]
⊗

m∑

l=1

m∑

l′=1

F2,l (z)
′
F2,l′ (z) lim

n→∞

1

n

∑

i′ 6=i 6=j

E
[
pl,ijpl′,i′jm̄

′
iΠ(z∗i )m̄

′
i′Π(z∗i′)|zj = z

]

S2 (z) ≡
[

1 0′q
0q 0q×q

]
⊗

m∑

l=1

F2,l (z)
′ lim
n→∞

1

n

∑

i 6=j

E
[
pl,ijm̄

′
iΠ(z∗i )Q

′
n,j |zj = z

]

E3 (z) ≡ lim
n→∞

n−1
n∑

i=1

E
[
Qn,iQ

′
n,i|zi = z

]
. (A.24)

Moreover, we have

n∑

i=1

E [an,iibn,i] =
f2 (z)

8n |H|

m∑

l=1

m∑

l′=1

α′

[
1 0′

q

0q 0q×q

]
⊗
[
F2,l (z)

′
F2,l′ (z)

]
α

n∑

i=1

n∑

j=1

E
[
pl,iiπi (pl′,ijπj + pl′,jiπi) m̄

′
jΠ(z∗j )

]
+

f2 (z)

2n |H|

m∑

l=1

m∑

l′=1

α′

[
1
0q

]
⊗ F2,l (z)

′
n∑

i=1

E

[
pl′,iiπ

2
i

[
Z ′

i(z)⊗Q′
n,i

] ]
∆n (z)α

=
f2 (z)

2n |H|

m∑

l=1

m∑

l′=1

α′

[
1
0q

]
⊗ F2,l (z)

′
n∑

i=1

E

[
pl′,iiπ

2
i

[
Z ′

i(z)⊗Q′
n,i

] ]
∆n (z)α+O

(
‖H‖2

)

= f3 (z)R2 (K)α′Ω2 (z)α/2

where

Ω2 (z) ≡
[

1 0′q
0q 0q×q

]
⊗
[

m∑

l=1

m∑

l′=1

F2,l (z)
′ lim
n→∞

n−1
n∑

i=1

E
[
pl′,iiQ

′
n,i|zi = z

]
lim
n→∞

E1 (z)

]
. (A.25)

Combining the above results, we get

ΩQ (z) =

[
1 0′q
0q µ21,2 (k)µ2,2 (k) /R2 (K) Iq

]
⊗
[
E′

1 (z)E3 (z)E1 (z)
]

(A.26)
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ΩP (z) = Var
(
u21
)
Ω1 (z) + S1 (z) /4

=

[
1 0′q
0q 0q×q

]
⊗

m∑

l=1

m∑

l′=1

F2,l (z)
′
F2,l′ (z)

(
Var

(
u21
)
lim
n→∞

n−1
n∑

i=1

E
[
pl,iipl′,ii|zi = z

]
+

1

4
lim
n→∞

1

n

∑

i′ 6=i 6=j

E
[
pl,ijpl′,i′jm̄

′
iΠ(z∗i )m̄

′
i′Π(z∗i′)|zj = z

]

 (A.27)

ΩQ,P (z) = Ω2 (z)/2 + S2 (z)∆n (z) /2

= 2−1

[
1 0′q
0q 0q×q

]
⊗

m∑

l=1

F2,l (z)
′

(
m∑

l′=1

lim
n→∞

n−1
n∑

i=1

E
[
pl′,iiQ

′
n,i|zi = z

]
+

lim
n→∞

1

n

∑

i 6=j

E
[
pl,ijm̄

′
iΠ(z∗i )Q

′
n,j |zj = z

]

 lim

n→∞
E1 (z) . (A.28)

Hence, we have Var [Λn (z)] converges to f3 (z)R2 (K)α′Ω (z)α > 0. This verifies (A.21).
Then, applying Theorem 1 in Kelejian & Prucha (2001) and the Cramér’s Wold device completes
the proof of (A.18). This completes the proof of this lemma.

Remark If β (z) = 0p over its domain, we have F2,l (z) = O
(
‖H‖2 /n

)
for all l, so that ΩP (z) =

O
(
‖H‖4 /n2

)
, ΩQ,P (z) = O

(
‖H‖2 /n

)
and

ΩQ (z) =

[
1 0′q
0q µ21,2 (k)µ2,2 (k) /R2 (K) Iq

]
⊗
[

0 0′p
0p E13 (z)

′
E3 (z)E13 (z)

]
, (A.29)

where E13 (z) = n−1
∑n

i=1 E [Qn,ix
′
i|zi = z]. Hence, Ω (z) becomes singular.

Proof of Theorem 3. In this theorem, we have Ĝn (Z) = WŜn (Z), Ŝn (Z) = [In − ρ̂ (Z)W]−1 =

Sn (Z) +
(
[In − ρ̂ (Z)W]−1 − [In − ρ (Z)W]−1

)
,

Q̂1n = Ĝn (Z)mtx
{
X, β̂ (Z)

}
= Q1n+

[
Ĝn (Z)−Gn (Z)

]
mtx

{
X, β̂ (Z)

}
+

Gn (Z)mtx
{
X, β̂ (Z)− β (Z)

}
(A.30)

and

P̂n = Ĝn (Z)− n−1tr
{
Ĝn (Z)

}
In

= Pn + Ĝn (Z)−Gn (Z)− n−1tr
{
Ĝn (Z)−Gn (Z)

}
In. (A.31)

In addition, closely following the proof of Theorem 1, we also denote

Ân1 (z) =
1

2ξn

[
Γ̂2

(
Ψ̂1 + Ψ̂2

)′
+
(
2Γ̂1 + Γ̂3

)
Ψ̂′

1

]
+

1

ξn
M (z)′ Ξ̂H0

(z)C(z) (A.32)

Ân2 (z) =
1

2ξn

(
2Γ̂1 + Γ̂3

)
Ψ̂′

2 +
1

ξn
M(z)′Ξ̂H0

(z)u

Ân3 (z) =
1

2ξ2n

(
2Γ̂1 + Γ̂2 + Γ̂3

)
Ψ̂3vec (θn)
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and

B̂n (z) =
1

ξ2n

(
Ψ̂1 + Ψ̂2 −

1

ξn

[
vec
(
θ̃n

)]′
Ψ̂3

)(
Ψ̂1 + Ψ̂2 −

1

ξn

[
vec
(
θ̃n

)]′
Ψ̂3

)
+

1

ξ2n
M(z)′Ξ̂H0

(z)M(z), (A.33)

where Γ̂1 ≡ u′
[
P̂nKH0

(z)
]s

C(z), Γ̂2 ≡ C(z)′
[
P̂nKH0

(z)
]s

C(z), Γ̂3 ≡ u′
[
P̂nKH0

(z)
]s

u, Ψ̂1 ≡

u′
[
P̂nKH0

(z)
]s

M(z), Ψ̂2 ≡ C(z)′
[
P̂nKH0

(z)
]s

M(z), Ψ̂3 ≡ M (z)′
[
P̂nKH0

(z)
]s

M(z), Ξ̂H0
(z) ≡

KH0
(z)Q̂ (z) Q̂ (z)′KH0

(z). This notation is analogous to that “without the hat” used in the proof
of Theorem 1 except for the replacement of Pn and Q1n with P̂n and Q̂1n, respectively.

Closely following the proof of Theorem 1, we have ξn =
√
n |H0|, and κA (H0, z), κB (H0, z)

and Ω (z) are defined in Lemmas 4–6, respectively. This completes the proof of this theorem.

Lemma 4 Under Assumptions 1–3, 5 and 6, we obtain (n |H0|)−2 ξnÂn1 (z) = κA (H0, z)
′ +

op

(
‖H0‖2

)
, where κA,Q (H0, z) and κA,P (H0, z) are the same as in Lemma 1 with the l subscript

and
∑m

l=1 dropped from κA,P (H0, z).

Proof. Once we show Ân1 (z) = An1 (z) [1 + op (1)], this lemma’s result follows from Lemma 1.

First, we have
∥∥∥Ŝn (Z)− Sn (Z)

∥∥∥
sp

=
∥∥∥[In − ρ̂ (Z)W]−1 − [In − ρ (Z)W]−1

∥∥∥
sp

=
∥∥∥[In − ρ̂ (Z)W]−1 [ρ̂ (Z)− ρ (Z)]W [In − ρ (Z)W]−1

∥∥∥
sp

≤
∥∥∥[In − ρ̂ (Z)W]−1

∥∥∥
sp
‖[ρ̂ (Z)− ρ (Z)]W‖sp

∥∥∥[In − ρ (Z)W]−1
∥∥∥
sp

where we denote ‖A‖sp ≡ λ
1/2
max (AA′). Note that ‖A‖sp ≤ ‖A‖, where ‖A‖ =

√
tr {AA′}. By

Weyl’s theorem (Seber, 2008, p.117), we have

∥∥∥[In − ρ̂ (Z)W]−1
∥∥∥
sp

= ‖In − ρ (Z)W‖sp +O (‖[ρ̂ (Z)− ρ (Z)]W‖) ,

where we obtain, under Assumption 5, that

‖[ρ̂ (Z)− ρ (Z)]W‖ =




n∑

i=1

∑

j 6=i

[ρ̂ (zi)− ρ (zi)]
2 [ρ̂ (zi)− ρ (zj)]

2w2
ij




1/2

= Op

(
‖H‖2 +

√
lnn

n |H|

)
.

In addition, ‖In − ρ (Z)W‖sp ≤ 1 almost surely under Assumption 1. Therefore, we obtain

∥∥∥Ŝn (Z)− Sn (Z)
∥∥∥
sp

= Op (‖[ρ̂ (Z)− ρ (Z)]W‖) = Op

(
‖H‖2 +

√
lnn

n |H|

)
. (A.34)

It then follows that

∣∣∣n−1tr
{
Ĝn (Z)−Gn (Z)

}∣∣∣ =

∣∣∣∣∣n
−1

n∑

i=1

e′iW
[
Ŝn (Z)− Sn (Z)

]
ei

∣∣∣∣∣
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≤ n−1
n∑

i=1

∥∥e′iW
∥∥
∥∥∥Ŝn (Z)− Sn (Z)

∥∥∥
sp
‖ei‖

= Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
, (A.35)

where ei denotes the ith column of the identify matrix In.

Next, we work on each component of (n |H0|)−2 ξnÂn1 (z) given in (A.32).

(i) By Assumption 5 and (A.34) we obtain

1

n |H0|
Q̂(z)′KH0

(z)M(z) =
1

n |H0|
Q(z)′KH0

(z)M(z) +Op

(
‖H‖2 +

√
lnn/ (n |H|)

)

1

n |H0|
C(z)′KH0

(z)Q̂(z) =
1

n |H0|
C(z)′KH0

(z)Q(z) + op

(
‖H0‖2

)
.

(ii) By (A.31), we have

Ψ̂1

n |H0|
=

1

n |H0|
u′
[
P̂nKH0

(z)
]s

M(z)

=
Ψ1

n |H0|
+

1

n |H0|
u′
[(

Ĝn (Z)−Gn (Z)
)
KH0

(z)
]s

M(z)−

2

n2 |H0|
tr
{
Ĝn (Z)−Gn (Z)

}
u′KH0

(z)M(z) =
Ψ1

n |H0|
+ op (1) (A.36)

since applying (A.34) gives

1

n |H0|
∥∥∥u′

[(
Ĝn (Z)−Gn (Z)

)
KH0

(z)
]s

M(z)
∥∥∥

≤ 1

n |H0|
∥∥∥Ŝn (Z)− Sn (Z)

∥∥∥
sp

(∥∥u′W
∥∥ ‖KH0

(z)M(z)‖+
∥∥u′KH0

(z)
∥∥ ∥∥W′M(z)

∥∥
)

= Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

((√
|H0| ‖H0‖

)−1
)

= op (1)

under Assumption 6.

Similarly, we have

Ψ̂2

n |H0|
=

1

n |H0|
C (z)′

[
P̂n,lKH0

(z)
]s

M(z)

=
Ψ2

n |H0|
+

1

n |H0|
C (z)′

[(
Ĝn (Z)−Gn (Z)

)
KH0

(z)
]s

M(z)−

2

n2 |H0|
tr
{
Ĝn (Z)−Gn (Z)

}
C (z)′KH0

(z)M(z)

=
Ψ2

n |H0|
+Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
|H0|−1/2

)
+

Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
‖H0‖2

)
=

Ψ2

n |H0|
+ op (1) (A.37)

by (A.35) under Assumption 6, since applying (A.34) gives

1

n |H0|
∥∥∥C (z)′

[(
Ĝn (Z)−Gn (Z)

)
KH0

(z)
]s

M(z)
∥∥∥
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≤ 1

n |H0|
∥∥∥Ŝn (Z)− Sn (Z)

∥∥∥
sp

(∥∥C (z)′W
∥∥ ‖KH0

(z)M(z)‖+
∥∥C (z)′KH0

(z)
∥∥ ∥∥W′M(z)

∥∥
)

= Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
|H0|−1/2

)
.

Furthermore, following the proof of (A.36), we obtain

Γ̂2

n |H0|
=

1

n |H0|
C (z)′

[
P̂nKH0

(z)
]s

C(z)

=
Γ2

n |H0|
+

1

n |H0|
C (z)′

[(
Ĝn (Z)−Gn (Z)

)
KH0

(z)
]s

C(z)−

2

n2 |H0|
tr
{
Ĝn (Z)−Gn (Z)

}
C (z)′KH0

(z)C(z)

=
Γ2

n |H0|
+Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
‖H0‖2 |H0|−1/2

)
+

Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
‖H0‖4

)
=

Γ2

n |H0|
+ op

(
‖H0‖2

)

under Assumption 5.

Next, following the proof of (A.37), we obtain

̂̃
Γ1

n |H0|
=

1

n |H0|
u′
[
P̂nKH0

(z)
]s

C̃(z)

=
Γ̃1

n |H0|
+

1

n |H0|
u′
[(

Ĝn (Z)−Gn (Z)
)
KH0

(z)
]s

C̃(z)−

2

n2 |H0|
tr
{
Ĝn (Z)−Gn (Z)

}
u
′
KH0

(z)C̃(z)

=
Γ̃1

n |H0|
+Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
‖H0‖2 + (n |H0|)−1/2

)
=

Γ̃1

n |H0|
+ op

(
‖H0‖2

)
,

where
∣∣∣∣

1

n |H0|
u′
[(

Ĝn (Z)−Gn (Z)
)
KH0

(z)
]s

C̃(z)

∣∣∣∣

≤ 1

n |H0|
∥∥∥Ŝn (Z)− Sn (Z)

∥∥∥
sp

(∥∥u′W
∥∥
∥∥∥KH0

(z)C̃(z)
∥∥∥+

∥∥u′KH0
(z)
∥∥
∥∥∥WC̃(z)

∥∥∥
)

= Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
(n |H0|)−1/2

)
.

(iii) Under Assumptions 5 and 6, we have

̂̄Γ1Ψ1

(n |H|)2
=

Γ̄1Ψ1

(n |H0|)2
+

(
1

(n |H0|)2
u′
[(

Ĝn (Z)−Gn (Z)
)
KH0

(z)
]s

C̄(z) +

1

n3 |H0|2
tr
{
Ĝn (Z)−Gn (Z)

}
u
′
KH0

(z)C̄(z)

)
u′ [PnKH0

(z)]sM(z) =
Γ̄1Ψ1

(n |H0|)2
(1 + op (1))

by (A.35), and

1

(n |H0|)2
u′
[(

Ĝn (Z)−Gn (Z)
)
KH0

(z)
]s

C̄(z)u′ [PnKH0
(z)]sM(z)
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=
1

(n |H0|)2
n∑

i=1

n∑

j=1

[(ĝij − gij)πj + (ĝji − gji)πi]uim̄
′
jΠ(z∗j )×

n∑

i′=1

n∑

j′=1

(
pi′j′πj′ + pj′i′πi′

)
ui′Zj′ (z)

′ ⊗m′
j′

≈ 1

(n |H0|)2
n∑

i=1

n∑

j=1

[(ĝij − gij)πj + (ĝji − gji)πi]u
2
i m̄

′
jΠ(z∗j )×

n∑

j′=1

(
pij′πj′ + pj′iπi

)
Zj′ (z)

′ ⊗m′
j′

≈ 1

(n |H0|)2
n∑

i=1

n∑

j′=1

pj′i

n∑

j=1

[
(ĝji − gji)π

2
i

]
u2i m̄

′
jΠ(z∗j )Zj′ (z)

′ ⊗m′
j′

= Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
1

n |H0|3/2 ‖H0‖

)

= Op

(
‖H‖2 +

√
lnn/ (n |H|)

√
n |H0| ‖H0‖3

)
Op

(
‖H0‖2√
n |H0|

)
= op

(
‖H0‖2√
n |H0|

)

along with

1

(n |H0|)2
u′KH0

(z)C̄(z)u′ [PnKH0
(z)]sM(z)

=
1

(n |H0|)2
n∑

i=1

πiuim̄
′
iΠ(z∗i )

n∑

i′=1

n∑

j′=1

(
pi′j′πj′ + pj′i′πi′

)
ui′m̄

′
j′Π(z∗j′)

≈ 1

(n |H0|)2
n∑

i=1

n∑

j′=1

(
pij′πj′πi + pj′iπ

2
i

)
u2i m̄

′
iΠ(z∗i )m̄

′
j′Π(z∗j′)

≈ 2

(n |H0|)2
n∑

i=1

piiπ
2
i u

2
i

[
m̄′

iΠ(z∗i )
]2

+
1

(n |H0|)2
n∑

i=1

∑

j′ 6=i

pj′iπ
2
i u

2
i m̄

′
iΠ(z∗i )m̄

′
j′Π(z∗j′)

= Op

(
(n |H0|)−1 ‖H0‖4

)
+Op

(
(n |H0|)−1 ‖H0‖2

)
= Op

(
(n |H0|)−1 ‖H0‖2

)
.

This completes the proof of this lemma.

Lemma 5 Under Assumptions 1–3, 5 and 6, we obtain

ξn

(n |H0|)2
B̂n (z) = f2 (z)κB (H0, z) + op (1) , (A.38)

where κB (H0, z) is as defined in Lemma 2 except for the l subscript and
∑m

l=1 being removed.

Proof. By Lemma 2, we only need to show that (n |H0|)−2 ξn

(
B̂n (z)−Bn (z)

)
= op (1). Making

use of the results in the proof of Lemma 4, we only need to show the following

Ψ̂3

n |H0|
=

1

n |H0|
M (z)′

[
P̂nKH0

(z)
]s

M(z)

35



=
Ψ3

n |H0|
+

1

n |H0|
M (z)′

[(
Ĝn (Z)−Gn (Z)

)
KH0

(z)
]s

M(z)−

2

n2 |H0|
tr
{
Ĝn (Z)−Gn (Z)

}
M (z)′KH0

(z)M(z)

=
Ψ3

n |H0|
+Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
|H0|−1/2

)

by (A.35) under Assumption 6, since applying (A.34) gives

1

n |H0|
∥∥∥M (z)′

[(
Ĝn (Z)−Gn (Z)

)
KH0

(z)
]s

M(z)
∥∥∥

≤ 2

n |H0|
∥∥∥Ŝn (Z)− Sn (Z)

∥∥∥
sp

(∥∥M (z)′W
∥∥ ‖KH0

(z)M(z)‖
)

= Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
|H0|−1/2

)
= op (1)

and

Γ̂3

n |H0|
=

1

n |H0|
u′
[
P̂nKH0

(z)
]s

u

=
Γ3

n |H0|
+

1

n |H0|
u′
[(

Ĝn (Z)−Gn (Z)
)
KH0

(z)
]s

u−

2

n2 |H0|
tr
{
Ĝn (Z)−Gn (Z)

}
u
′
KH0

(z)u =
Γ3

n |H0|
(1 + op (1))

because we have

1

n |H0|
∥∥∥u′

[(
Ĝn (Z)−Gn (Z)

)
KH0

(z)
]s

u

∥∥∥ ≤ 2

n |H0|
∥∥∥Ŝn (Z)− Sn (Z)

∥∥∥
sp

∥∥u′W
∥∥ ‖KH0

(z)u‖

= Op

(
‖H‖2 +

√
lnn/ (n |H|)

)
Op

(
(n |H0|)−1/2

)
.

This completes the proof of this lemma.

Lemma 6 Under Assumptions 1–3, 5 and 6, we obtain

ξnÂn,2 (z)

(n |H0|)3/2
d→ N

(
0, f3 (z)R2 (K)Ω (z)

)
, (A.39)

where Ω (z) is as defined in Lemma 3 except for the l subscript and
∑m

l=1 being removed.

Proof. By means of the results in Lemmas 8 and 9 (see Supplementary Appendix), we can show
that

ξnÂn,2 (z)

(n |H0|)3/2
=

ξnAn,2 (z)

(n |H0|)3/2
+ op (1) .

Then, applying Lemma 3 completes the proof of this lemma.

Proof of Theorem 4. We first discuss the existence of p̂, where p̂ = arg minp∈Rn(1/nin −
p)′(1/nin − p) subject to i′np = 1 and −in <

[
ρ̃(z1|p), . . . , ρ̃(zn|p)

]′
< in.
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For some very small constant ǫ ∈ (0, 1), our restrictions can be equivalently written as |ρ̃(z|p)| ≤
1−ǫ or 1−ǫ+ρ̃(z|p) ≥ 0 and 1−ǫ−ρ̃(z| p) ≥ 0. Since

∑n
i=1 pi = 1, we have R1 (z) ≡ 1−ǫ+ρ̃(z|p) ≡∑n

i=1 pir1,i (z) and R2 (z) ≡ 1 − ǫ − ρ̃(z|p) ≡
∑n

i=1 pir2,i (z), where r1,i (z) = nωi(X, z)yi + 1 − ǫ
and r2,i (z) = −nωi(X, z)yi + 1− ǫ are both continuous functions of z ∈ R

q for all i ∈ {1, . . . , n}.
Let d1 (z) and d2 (z) be the numerator and denominator of ρ̂ (z), respectively, where the former

can be written as

d1 (z) =

n∑

i=1

πiyi

n∑

j=1

πj (Wy)j Zj(z)
′Zi(z)Q

′
njQni ≡

n∑

i=1

d1,i (X, z) yi.

Hence, we have ωi(X, z) ≡ d1,i (X, z) /d2 (z) for all i. Under Assumption 3, we have πi = 0 and
r1,i (z) = r2,i (z) = 1 − ǫ > 0 if |zl,i − zl| > hl for some l ∈ {1, . . . , q}, where zl,i and zl are the lth
element of the q × 1 vector zi and z, respectively. Consequently, for a given bandwidth matrix H,

we can construct a sequence of overlapping open subsets Oij =
(
oL1,ij ,o

U
1,ij

)
×· · ·×

(
oLq,ij ,o

U
q,ij

)
⊂ R

q

such that (i) for each j, both r1,ij (z) > 0 and r2,ij (z) > 0 hold for z ∈ Oij ; (ii) Sz ⊆ ∪k
j=1Oij

for {i1, . . . , ik} ⊆ {1, . . . , n}; (iii) for any give z ∈ Sz, z is contained in at least one of the subsets.
Then, following the induction method used in the proof of Theorem 4.1 in Hall & Huang (2001),
we can show that there exists a solution p̂ such that i′np̂ = 1 , p̂i ∈ (0, 1) for all i and Rj (z) > 0
for all z ∈ Sz and j = 1, 2.

Next, we study the property of p̂. We define the Lagrangian function of our optimization
problem as follows:

L (p, ζ,ϕ,ψ) =

n∑

i=1

(
pi − n−1

)2
+ζ

(
n∑

i=1

pi − 1

)
−

n∑

j=1

ϕj

(
ρ̃(zj |p)+1−ǫ

)
−

n∑

j=1

ψj

(
1−ǫ− ρ̃(zj |p)

)
,

where ρ̃(z|p) = n
∑n

i=1 piωi(X, z)yi, ϕ = [ϕ1, . . . , ϕn]
′ and ψ = [ψ1, . . . , ψn]

′. Under Assumption 6
and the proof of the existence of p̂, the Karush-Kuhn-Tucker theorem holds so that there exist ζ,
ϕ and ψ such that

2
(
p̂i − n−1

)
+ ζ − n

n∑

j=1

(ϕj − ψj)ωi(X, zj)yi = 0 (A.40)

ϕj

(
ρ̃(zj |p̂) + 1− ǫ

)
= 0 ∀ j (A.41)

ψj (1− ǫ− ρ̃(zj | p̂)) = 0 ∀ j (A.42)
n∑

i=1

p̂i = 1 (A.43)

and ϕj ≥ 0, ψj ≥ 0 and ǫ− 1 ≤ ρ̃(zj |p̂) ≤ 1− ǫ for all 1 ≤ j ≤ n. Solving (A.40) yields

p̂i =
1

n
+
n

2

n∑

j=1

(ϕj − ψj)ωi(X, zj)yi −
ζ

2
. (A.44)

Combining (A.43) with (A.44), we have ζ =
∑n

j=1 (ϕj − ψj)
∑n

i=1 ωi(X, zj)yi =
∑n

j=1 (ϕj − ψj) ρ̂ (zj),
which implies that

p̂i =
1

n
+
n

2

n∑

j=1

(ϕj − ψj)ωi(X, zj)yi −
1

2

n∑

j=1

(ϕj − ψj) ρ̂ (zj)
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=
1

n
+

1

2

n∑

j=1

(ϕj − ψj) [nωi(X, zj)yi − ρ̂ (zj)] . (A.45)

It then follows that

ρ̃(zj |p̂) = ρ̂ (zj) +
1

2

n∑

i=1

n∑

l=1

(ϕl − ψl) [nωi(X, zl)yi − ρ̂ (zl)]nωi(X, zj)yi

= ρ̂ (zj) +
1

2

n∑

l=1

(ϕl − ψl)
n∑

i=1

[nωi(X, zl)yi − ρ̂ (zl)] [nωi(X, zj)yi − ρ̂ (zj)] . (A.46)

Let An1 = {j : ϕj > 0} = {js, s = 1, . . . , |An1|} and An2 = {j : ψj > 0} = {j′s, s = 1, . . . , |An2|},
where |An1| and |An2| define the number of elements in An1 and An2, respectively. By (A.41), we
have ρ̃(zj |p̂) = ǫ− 1 for j ∈ An1. By (A.42), we have ρ̃(zj |p̂) = 1− ǫ for j ∈ An2. Clearly, An1 and
An2 share no common elements since ǫ ∈ (0, 1), hence |An1| + |An2| ≤ n. Therefore, for jt ∈ An1,
having denoted χi,l = nωi(X, zl)yi − ρ̂ (zl), we obtain

ρ̂ (zjt) + 1− ǫ =
1

2




|An2|∑

s=1

ψj′s

n∑

i=1

χi,jtχi,j′s −
|An1|∑

s=1

ϕjs

n∑

i=1

χi,jtχi,js


 . (A.47)

For j′t ∈ An2, we obtain

ρ̂
(
zj′t

)
− (1− ǫ) =

1

2




|An2|∑

s=1

ψj′s

n∑

i=1

χi,j′t
χi,j′s −

|An1|∑

s=1

ϕls

n∑

i=1

χi,j′t
χi,js


 . (A.48)

Let δ =
[
−φj1 , . . . ,−φj|An1|

, ψj′
1
, . . . , ψj′

|An2|

]′
, b = [ρ̂ (zj1)+1−ǫ, . . . , ρ̂

(
zj|An1|

)
+1−ǫ, ρ̂

(
zj′

1

)
−

(1− ǫ) , . . . , ρ̂
(
zj′

|An2|

)
− (1− ǫ)]′. Further, let α′

i =
[
χi,j1 , . . . , χi,j|An1|

, χi,j′
1
, . . . , χi,j′

|An2|

]
be the

ith row of an n × (|An1|+ |An2|) matrix An. Then, we can rewrite (A.47) and (A.48) in the
matrix form: A

′
nAnδ = 2b, where A

′
nAn equals n times the sample covariance of {αi}ni=1 and is

non-singular under Assumption 6. Hence, δ = 2 (A′
nAn)

−1
b and by (A.45) we then obtain

p̂i =
1

n
− 1

2
α′

iδ =
1

n
−α′

i

(
A
′
nAn

)−1
b. (A.49)

Therefore, we obtain
∑n

i=1

(
p̂i − n−1

)2
= b′ (A′

nAn)
−1∑n

i=1αi α′
i (A

′
nAn)

−1
b = b′ (A′

nAn)
−1

b.

By Corollary 2 and Assumption 5, we have supz∈Sz
|ρ̂ (z)− ρ (z)| = Op

(
‖H‖2 +

√
lnn/ (nH)

)

by, say, Masry (1996), so b′b =
∑|An1|

s=1 (ρ̂ (zjs) + 1− ǫ)2+
∑|An2|

s=1

(
ρ̂
(
zj′s

)
− (1− ǫ)

)2
= Op (|An1|+ |An2|)

= Op (n). Then, we obtain b′
(
A
′
n An/n

3
)−1

b ≤ λ−1
min

(
A
′
nAn/n

3
)
b′b = Op (n) since λmin

{
A
′
nAn/n

3
}
=

λmin { W ′
nWn/n}+op (1) = λmin {E [W ′

nWn/n]}+op (1) under Assumption 6. Hence,
∑n

i=1

(
p̂i − n−1

)2
= Op

(
n−2

)
, which gives max1≤i≤n

∣∣p̂i − n−1
∣∣ = Op

(
n−1

)
. This proves Theorem 4(i).

Lastly, we study the distance between ρ̃(z| p̂) and ρ̂ (z). By Hölder’s inequality, we have

ρ̃(z|p̂)− ρ̂ (z) =

n∑

i=1

(np̂i − 1)ωi(X, z)yi ≤

√√√√
n∑

i=1

(np̂i − 1)2

√√√√
n∑

i=1

ω2
i (X, z)y

2
i
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= Op (1)Op

(
(n |H|)−1/2

)
= Op

(
(n |H|)−1/2

)
,

where
∑n

i=1 ω
2
i (X, z)y

2
i = d−2

2 (z)
∑n

i=1 d
2
1,i(X, z)y

2
i , d2 (z) = Op

(
(n |H|)−2

)
by (A.17), and (n |H|)−4×

∑n
i=1 d

2
1,i(X, z)y

2
i = Op

(
(n |H|)−1

)
following the proof of Theorem 1.

B Brief Mathematical Proofs of Theorems 7–9

Proof of Theorem 7. The proposed test statistic is Tn =
(
n2|H|

)−1∑n
i=1

∑n
j 6=i ûiûjKH (zi, zj),

where ûi = yi −m′
iγ̆ and γ̆ =

[
ρ̆, β̆

′
]′
.

First, under H0, we have ûi = m′
i (γ0 − γ̆) + ui. Hence, we have

Tn =
1

n2|H| (γ0 − γ̆)′
n∑

i=1

n∑

j 6=i

mim
′
jKH (zi, zj) (γ0 − γ̆)+

2

n2|H| (γ0 − γ̆)′
n∑

i=1

n∑

j 6=i

miujKH (zi, zj) +
1

n2 |H|

n∑

i=1

n∑

j 6=i

uiujKH (zi, zj)

≡ Tn1 + 2Tn2 + Tn3, (B.1)

where the definitions of Tnj , j = 1, 2, 3, should be apparent from the following context. Lee (2007)
showed that γ0− γ̆ = Op(n

−1/2), and it is straightforward to show that, under H0, Tn1 = Op(n
−1),

Tn2 = Op

(
n−1

)
and Tn3 = Op

((
n
√

|H|
)−1

)
. Hence, Tn3 is the leading term of Tn under H0

and E [Tn3] = 0. Applying Hall’s (1984, Th.1) central limit theorem for a second-order degenerate
U-statistic, one can show that

n
√
|H|Tn3 d→ N

(
0, 2σ4uR2 (K)E [f (z)]

)
(B.2)

since, denoting χi ≡ [ui, z
′
i]
′, Hn

(
χi,χj

)
≡ |H|−1/2 uiujKH (zi, zj) and

Gn (χ1,χ2) ≡ E [Hn (χ1,χi)Hn (χ2,χi) |χ1,χ2], for i 6= j we have

E
[
G2

n (χ1,χ2)
]
+ n−1

E
[
H

4
n (χ1,χ2)

]

[E [H2
n (χ1,χ2)]]

2 =
O
(
‖H‖2

)
+O

(
(n |H|)−1

)

O (1)
= o (1) .

Second, under H1, we have ûi = m′
i [γ (zi)− γ̆] + ui. We decompose Tn as

Tn =
1

n2|H|

n∑

i=1

n∑

j 6=i

[γ (zi)− γ̆]′ mim
′
j [γ (zi)− γ̆]KH (zi, zj) +

2

n2|H|

n∑

i=1

n∑

j 6=i

[γ (zi)− γ̆]′miujKH (zi, zj) +
1

n2 |H|

n∑

i=1

n∑

j 6=i

uiujKH (zi, zj)

≡ T a
n1 + 2T a

n2 + Tn3,

where Tn3 is as defined in (B.1). Given the proof above, we have Tn3 = Op

((
n
√

|H|
)−1

)
. In

addition, applying straightforward calculations, we obtain

T a
n2 =

2

n2|H|

n∑

i=1

n∑

j 6=i

[γ (zi)− γ̆]′ miujKH (zi, zj)
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=
2

n2|H|

n∑

i=1

n∑

j 6=i

[γ (zi)− γ]′miujKH (zi, zj) +
2

n2|H| (γ − γ̆)′
n∑

i=1

n∑

j 6=i

miujKH (zi, zj)

= Op

(
n−1/2

)
+Op

(
n−1

)
= Op

(
n−1/2

)
.

Next, we show that T a
n1 = Op (1). Under H1, Assumption 10(i) states that there exists γ ∈ Θ

such that γ̆ − γ = Op

(
n−1/2

)
. Then, we have

T a
n1 =

1

n2|H|

n∑

i=1

n∑

j 6=i

[γ (zi)− γ̆]′ mim
′
j [γ (zi)− γ̆]KH (zi, zj)

=
1

n2|H|

n∑

i=1

n∑

j 6=i

[γ (zi)− γ]′mi m
′
j [γ (zi)− γ]KH (zi, zj) +

2

n2|H|

n∑

i=1

n∑

j 6=i

[γ (zi)− γ]′mi m
′
jKH (zi, zj) (γ − γ̆) +

2

n2|H| (γ − γ̆)
n∑

i=1

n∑

j 6=i

mim
′
jKH (zi, zj) (γ − γ̆)

= T a
n1,1 +Op

(
n−1/2

)
+Op

(
n−1

)
, (B.3)

where, denoting ςi ≡ ȳi [ρ (zi)− ρ]+x′
i [β (zi)− β], we have m′

i [γ (zi)− γ] = ςi +ūi [ρ (zi)− ρ] and

T a
n1,1 =

1

n2|H|

n∑

i=1

n∑

j 6=i

[γ (zi)− γ]′mim
′
j [γ (zj)− γ]KH (zi, zj)

=
1

n2|H|

n∑

i=1

n∑

j 6=i

ςiςjKH (zi, zj) +Op

(
n−1/2

)

=
1

n2|H|ς
′KH (Z) ς +Op

(
n−1/2

)

≤ 1

n2|H|ς
′ςλmax {KH (Z)}+Op

(
n−1/2

)
,

where ς is an n× 1 vector with a typical element being equal to ςi, and KH (Z) is an n× n matrix
with zero elements on the principal diagonal, the (i, j)th element being equal to KH (zi, zj) for
i 6= j and the largest eigenvalue λmax {KH (Z)} = max‖̟‖=1̟

′KH (Z)̟ for any n × 1 vector
̟ 6= 0n. Under Assumption 1, we have n−1ς ′ς = Op (1), in addition to which we can show that
λmax {KH (Z)} = Op (n |H|) since

E [|λmax {KH (Z)}|] ≤ max
‖̟‖=1

n∑

i=1

n∑

j 6=i

|̟i| |̟j |E [KH (zi, zj)]

= |H|
[
E [f (z1)] +O

(
‖H‖2

)]
max
‖̟‖=1

n∑

i=1

n∑

j 6=i

|̟i| |̟j |

≤ Mn |H|
[
E [f (z1)] +O

(
‖H‖2

)]

and applying Hőlder’s inequality gives [
∑n

i=1 |̟i|]2 ≤ n ‖̟‖2. Hence, we obtain T a
n1,1 = Op (1).
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Furthermore, redefining χi ≡ [x′
i, z

′
i]
′ andHn

(
χi,χj

)
≡ |H|−1 [β (zi)− β]′ xix

′
j [β (zj)− β]KH (zi, zj)

and because E
[
H

2
n

(
χi,χj

)]
= O

(
|H|−1

)
= o (n), applying Lemma 3.1 in Powell, Stock & Stoker

(1989), we have

1

n2 |H|

n∑

i=1

n∑

j 6=i

[β (zi)− β]′ xix
′
j [β (zj)− β]KH (zi, zj) = E

[
Hn

(
χi,χj

)]
+ op (1)

p→ E

[
f (z1)

(
E
[
x′
1|z1

]
[β (z1)− β]

)2]
> 0.

However, we are unable to show that T a
n1,1 converges to a positive constant since {ȳi} is not an

independent sequence.

Lastly, if β (z) = 0p holds over its domain, we have T a
nj = Op

(
n−1

)
for j = 1, 2 and Tn3 =

Op

((
n
√
|H|
)−1

)
under H1. This means n

√
|H|Tn has the same distribution under both H0 and

H1. Therefore, our test fails to differentiate the null hypothesis from the alternative hypothesis.
Combing the above results with Lemma 7 completes the proof of this theorem.

Lemma 7 Under H0, σ̂
2 p→ 2σ4uR2 (K)E [f (z)]; under H1, σ̂

2 = Op (1), where

σ̂2 =
2

n2 |H|

n∑

i=1

n∑

j 6=i

û2i û
2
jK2

H(zi, zj).

Proof. Under H0, following the proof of Theorem 7 , we can show that the leading term of σ̂2 is
given by

~σ2 =
2

n2 |H|

n∑

i=1

n∑

j 6=i

u2iu
2
jK2

H(zi, zj),

which is a standard second-order U-statistic with Hn

(
χi,χj

)
≡ 2 |H|−1 u2iu

2
jK2

H(zi, zj) and χi ≡
(ui, z

′
i)
′. Given that E

[
H

2
n

(
χi,χj

)]
= O (1) = o (n), applying Lemma 3.1 of Powell et al. (1989)

gives ~σ2 = E
[
~σ2
]
+ op (1), where it is easy to show that E

[
~σ2
]
= 2σ4uR2 (K)E [f (z)] + o (1).

Under H1, we can show that the leading term of σ̂2 is given by

σ̆2 =
2

n2 |H|

n∑

i=1

n∑

j 6=i

{
ui +m′

i [γ (zi)− γ]
}2 {

uj +m′
j [γ (zj)− γ]

}2K2
H(zi, zj)

=
2

n2 |H|

n∑

i=1

n∑

j 6=i

{
uiuj +m′

i [γ (zi)− γ]uj +m′
j [γ (zj)− γ]ui +m′

i [γ (zi)− γ]m′
j [γ (zj)− γ]

}2K2
H(zi, zj)

=
2

n2 |H|

n∑

i=1

n∑

j 6=i

u2iu
2
jK2

H(zi, zj) +
4

n2 |H|

n∑

i=1

n∑

j 6=i

{
m′

i [γ (zi)− γ]
}2
u2jK2

H(zi, zj) +

2

n2 |H|

n∑

i=1

n∑

j 6=i

{
m′

i [γ (zi)− γ]m′
j [γ (zj)− γ]

}2K2
H(zi, zj) +Op

(
(n |H|)−1/2

)
= Op (1)

under Assumptions 1–4 and 10 (ii), following steps in the proof of Theorem 7. This completes the
proof of this lemma.

Proof of Theorem 8. Since Φ (s) is a continuous c.d.f., applying Pola’s Theorem (Bhattacharya
& Rao, 1986), we only need to show that Pr∗ (J∗

n ≤ s)− Φ (s) = op (1) for any given value of s.

41



The bootstrap test statistic T ∗
n =

(
n2|H|

)−1∑n
i=1

∑n
j 6=i û

∗
i û

∗
jKH (zi, zj), where û∗i = y∗i −

ρ̆∗
∑

j 6=iwijy
∗
j − x′

iβ̆
∗
= m∗′

i (γ̆ − γ̆∗) + u∗i and m∗
i =

[∑
j 6=iwijy

∗
j ,x

′
i

]′
. Hence, we have

T ∗
n =

1

n2|H| (γ̆ − γ̆∗)′
n∑

i=1

n∑

j 6=i

m∗
im

∗′
j KH (zi, zj) (γ̆ − γ̆∗)+

2

n2|H| (γ̆ − γ̆∗)′
n∑

i=1

n∑

j 6=i

m∗
iu

∗
jKH (zi, zj) +

1

n2 |H|

n∑

i=1

n∑

j 6=i

u∗iu
∗
jKH (zi, zj)

≡ T ∗
n1 + 2T ∗

n2 + T ∗
n3, (B.4)

where T ∗
nj for j = 1, 2, 3 are defined in the order of their appearance in the first equality.

Let E
∗ [·] = E

[
·| {(xi, zi, y

∗
i )}ni=1

]
. The wild bootstrap method implies that E

∗ [u∗i ] = 0,
E
∗
[
u∗2i
]
= û2i , and E

∗
[
u∗3i
]
= û3i for all i, where ûi = m′

i (γ − γ̆)+εi is the estimated residual from

a parametric linear spatial autoregressive model. Since γ̆ − γ̆∗ = Op(n
−1/2) and E

∗ [u∗i ] = 0, it is

easy to show that T ∗
n1 = Op(n

−1), T ∗
n2 = Op

(
n−1

)
and T ∗

n3 = Op

((
n
√

|H|
)−1

)
. Hence, T ∗

n3 is the

leading term of T ∗
n . Since {u∗i } is independent but not identically distributed, we apply de Jong’s

(1987) central limit theorem for a second-order degenerate U-statistic to show the asymptotic result
for n

√
|H|T ∗

n3.

Specifically, denoting χ∗
i ≡ [u∗i , z

′
i]
′ and H

∗
n

(
χ∗
i ,χ

∗
j

)
≡ 2

(
n2 |H|

)−1
u∗iu

∗
jKH (zi, zj), we have

T ∗
n3 =

n∑

i=1

n∑

j=i+1

H
∗
n

(
χ∗
i ,χ

∗
j

)
,

where E
∗
[
H

∗
n

(
χ∗
i ,χ

∗
j

)
|χ∗

j

]
= 0 for all i 6= j. In addition, we have

σ∗2n = E
∗
[
T ∗2
n3

]
=

4

n4|H|2
n∑

i=1

n∑

j=i+1

n∑

i′=1

n∑

j′=i′+1

E
∗
[
u∗iu

∗
ju

∗
i′u

∗
j′
]
KH (zi, zj)KH

(
zi′ , zj′

)

=
4

n4|H|2
n∑

i=1

n∑

j=i+1

û2i û
2
jK2

H (zi, zj) =
2σ̂2

n2|H| ,

and σ∗2n = Op

((
n2|H|

)−1
)
by Lemma 7.

Further, defining ωij ≡ H
∗
n

(
χ∗
i ,χ

∗
j

)
, we can easily show that G∗

I ≡
∑n

i=1

∑n
j=i+1 E

∗
[
ω4
ij

]
=

Op

((
n4|H|3

)−1
)
, G∗

II ≡ ∑n
i=1

∑n
j=i+1

∑n
l=j+1 E

∗
[
ω2
ijω

2
il + ω2

jiω
2
jl + ω2

liω
2
lj

]
= Op

((
n5|H|2

)−1
)

andG∗
IV ≡∑n

i=1

∑n
j=i+1

∑n
l=j+1

∑n
t=l+1 E

∗ [ωijωilωtjωtl + ωijωitωljωlt + ωilωitωjlωjt] = Op

((
n4|H|

)−1
)

because both ui and mi have finite fourth moments. Hence, G∗
I , G

∗
II and G∗

IV are all of order

op
(
σ∗4n
)
. By Proposition 3.2 in de Jong (1987), we then obtain n

√
|H|T ∗

n3/
√
σ∗2n

d→ N (0, 1). This
completes the proof of this theorem.

Proof of Theorem 9. Under H0, we have

Dn =
1

n

n∑

i=1

[
m′

iγ̆ −m′
iγ̂ (zi)

]2
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=
1

n

n∑

i=1

{
m′

i [γ̂ (zi)− γ0]
}2 − 2

n

n∑

i=1

m′
i [γ̂ (zi)− γ0] (γ̆ − γ0)
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2

n
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i=1
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i (γ̆ − γ0)
]2

= Op

(
‖H‖4 + lnn

n|H|

)

under Assumptions 5. Under H1, we have

Dn =
1

n

n∑

i=1

[
m′

iγ̆ −m′
iγ̂ (zi)

]2

=
1

n

n∑

i=1

{
m′

i [γ̂ (zi)− γ0]
}2 − 2

n

n∑

i=1

m′
i [γ̂ (zi)− γ0] (γ̆ − γ0)

′
mi +

2

n

n∑

i=1

[
m′

i (γ̆ − γ0)
]2

=
2

n

n∑

i=1

[
m′

i (γ̆ − γ0)
]2

+Op

(
‖H‖2 +

√
lnn

n|H|

)
≈ 2

n

n∑

i=1

[
m′

i (γ − γ0)
]2

= Oe (1) .

This completes the proof of this theorem.

C Proofs of Theorems 5–6 and Empirical Application

Supplementary material related to this article can be found online.
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