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Abstract

This paper introduces the notion of common noncausal features and proposes tools for detect-

ing the presence of co-movements in economic and financial time series subject to phenomena such

as asymmetric cycles and speculative bubbles. For purely causal or noncausal vector autoregressive

models with more than one lag, the presence of a reduced rank structure allows to identify causal from

noncausal systems using the usual Gaussian likelihood framework. This result cannot be extended to

mixed causal-noncausal models, and an approximate maximum likelihood estimator assuming non-

Gaussian disturbances is needed for this case. We find common bubbles in both commodity prices

and price indicators.
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1 Motivation

This paper studies the existence of common cyclical features in economic and financial variables by

considering both causal and noncausal vector autoregressive (VAR) models. A feature is a dominant

characteristic observed in univariate time series. Examples of such features are the presence of a stochastic

trend, a dynamic pattern, a conditional time varying volatility process, seasonality, structural breaks,

nonlinearities, etc. A feature is said to be common if a linear combination of the series no longer has

the feature even though each of the series individually has it. One will then talk about cointegration,

common cyclical features, common ARCH, co-breaking, common seasonality, and co-jumps to name a

few. In this article, we focus on common cyclical features as introduced by Engle and Kozicki (1993) and

Vahid and Engle (1993). That is, we are interested in the existence of commonalities in the dynamics of

time series. Those restrictions have implications for forecasting accuracy, parameter efficiency as well as

for the interpretation of business cycle co-movements and the evaluation of economic theories (Guillén,

Hecq, Issler and Saraiva, 2015; Issler and Vahid, 2001).

Although co-movements in the cyclical fluctuations of many economic time series seem theoretically

well motivated and even graphically visible, it often happens that the presence of common dynamics is

rejected by formal test statistics. The first obvious reason stems from the fact that cycles do not have to

be synchronous and therefore several statistical models have been introduced to account for adjustment

delays.1 Several additional reasons have been suggested in the literature, among which the impact

of misspecifications: presence of conditional heteroskedasticity (Candelon, Hecq and Verschoor, 2005),

seasonal adjustment (Hecq, 1998; Cubadda, 1999), outlying observations and nonlinear phenomena.

In this paper we propose a novel explanation for not being able to detect common cyclical patterns

as often as expected. In fact, one of the most popular approaches to test for serial correlation common

features, SCCF henceforth, is to consider the VAR model of order p of a stationary n−vector time series

Yt, denoted as VAR(p)

Π(L)Yt ≡ (In −Π1L− ...−ΠpL
p

)Yt = εt,

where L is the lag operator, and εt are i.i.d. innovations with E(εt) = 0 and E(εtε
′
t) = Ω (positive

1Those extensions include the polynomial serial correlation common feature specification (Cubadda and Hecq, 2001),
the weak form common feature model (Hecq, Palm and Urbain, 2006) and the codependent cycle approach (Vahid and
Engle, 1997). See Cubadda (2007) for a unifying framework of the various forms of common features.
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definite). Under the existence of SCCF, the VAR(p) can be written as

(In − δ⊥β
′
1L− ...− δ⊥β

′
pL

p

)Yt = εt,

where δ⊥ is a full rank n × (n − k) matrix (0 < k < n) such that there exist k linear combinations

δ′Yt = δ′εt that annihilate the entire dynamics (where δ′ is such that δ′δ⊥ = 0). Hence, a reduced rank

regression approach on the matrix [Π1, ...,Πp] is typically used to detect the commonalities among series

Yt. However, the linear VAR model cannot capture several important characteristics of macroeconomic

and financial variables, such as asymmetric cycles or bubbles phenomena. Noncausal VARs, i.e. VAR

models with leads of series Yt in place of their lags or, more generally, mixed causal-noncausal VARs,

which are models where both lags and leads of Yt are present in the right-hand side (see Lanne and

Saikkonen, 2013), are able to generate much richer dynamics than usual VARs.2

Causal and noncausal VARs are often hardly visually distinguishable (e.g., see the graphs in Section 4)

and non-Gaussian distributions are needed to discriminate between those models by estimation techniques

like Maximum Likelihood (ML). We show in this paper that for purely causal or noncausal VAR models

with more than one lag or lead, the presence of a reduced rank structure in the VAR coefficient matrices

allows to identify causal from noncausal systems even using the Gaussian framework. Using either lags or

leads within a canonical correlation analysis or a Generalized Method of Moments (GMM) approach, the

reduced rank restrictions help to identify the correct model. This result stems from the fact that, except

for VARs with either one lag or one lead only, the existence of SCCF implies that the autocorrelation

matrices of series Yt have a common left null space for either any lag or any lead different from zero.

However, this important observation does not extend to mixed causal-noncausal models.

The rest of the paper is organized as follows. Section 2 summarizes results about the mixed causal-

noncausal autoregressive model with common features. Section 3 introduces our testing strategy for

identifying purely causal and noncausal models with SCCF. The finite sample behavior of reduced rank

regressions and GMM orthogonality tests when noncausality is present is studied in Section 4. Section

5 applies our new modeling procedure to investigate the presence of common bubbles in price index

variables as well as in commodity prices. Section 6 summarizes and concludes.

2More precisely, we define a noncausal model as a model which has a unique stationary solution in terms of current and
future error terms. For the mixed causal-noncausal model, this is the two-sided MA representation, i.e., past, current and
future disturbances.
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2 Causal and noncausal models

Mixed causal-noncausal models have recently become increasingly popular because of their appealing

properties. On a theoretical level, they offer the possibility to rewrite a process with explosive roots in

direct time into as process in reverse time with roots outside the unit circle. In the applied econometric

literature, there is a growing interest because mixed causal-noncausal models (i) might improve forecast

performances, (ii) can be solutions to rational expectations models which take forward-looking behavior

into account and (iii) are able to model nonlinear features in macroeconomic and financial data. A more

extensive overview and the appropriate references can be found in Hecq, Lieb and Telg (2016A), Lanne,

Luoto and Saikkonen (2012), Lanne and Saikkonen (2011A, 2011B), Hencic and Gouriéroux (2014),

Gouriéroux and Zaköıan (2016).

2.1 Univariate models

The mixed causal-noncausal autoregressive process for a scalar series yt, denoted as MAR(r, s), can be

represented as

π(L)φ(L−1)yt ≡ (1− π1L− ...− πrL
r)(1− φ1L

−1 − ...− φsL
−s)yt = ǫt, (1)

where ǫt are scalar i.i.d. innovations. Notice that the backshift operator L creates lags when raised to

positive powers and leads when raised to negative powers, i.e., Ljyt = yt−j and L−jyt = yt+j . When

φ1 = ... = φs = 0, the process yt is a purely causal MAR(r, 0), also known as the conventional causal

AR(r) process

π(L)yt = ǫt,

while the process is a purely noncausal MAR(0, s) model

φ(L−1)yt = ǫt,

when π1 = ... = πr = 0.

In order to ensure stationarity, the roots of both polynomials π(L) and φ(L−1) are assumed to lie

outside the unit circle. Additionally, the identifiability of the causal and the noncausal part is established
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by assuming that the error terms ǫt are non-Gaussian with E(|ǫt|
δ) < ∞ for δ > 0 (Breidt, Davis, Lii and

Rosenblatt, 1991). Most papers by Lanne, Saikkonen and coauthors use a Student’s t distribution as an

alternative for the Gaussian distribution while Gouriéroux and coauthors rely on α-stable distributions

(in practice, mostly Cauchy or mixtures of Cauchy and Gaussian).

It is well known that one can define a pseudo-causal AR(p) representation of (1) with p = r+ s lags3

a(L)yt = ǫ∗t , (2)

where ǫ∗t is a white noise error, and the autoregressive polynomial a(L) has all roots outside the unit

circle (see, Brockwell and Davis, 1991; Hecq et al, 2016A). Although not autocorrelated, the error term

ǫ∗t is generally not i.i.d. anymore. Gouriéroux and Zaköıan (2016) exploit this property to discriminate

between purely causal and noncausal AR(1) processes.

2.2 Multivariate models with common features

Consider now a mixed vector autoregressive model of order (r, s), denoted as MVAR(r, s), of a second-

order stationary n−vector time series Yt such that

Π(L)Φ(L−1)Yt ≡ (In −Π1L− ...−ΠrL
r)(In − Φ1L

−1 − ...− ΦsL
−s)Yt = εt, (3)

where Π(L) and Φ(L−1) are n× n polynomial matrices with both det{Π(L)} = 0 and det{Φ(L−1)} = 0

having solutions outside the unit circle. The error term εt is an i.i.d. innovation process with E(εt) = 0

and E(εtε
′
t) = Ω (positive definite). From (3) it follows that the series Yt have a strictly stationary

solution as a two-sided MA representation

Yt = Ψ(L,L−1)εt =

∞∑

j=−∞

Ψjεt−j , (4)

where Ψ(L,L−1) ≡ [Π(L)Φ(L−1)]−1, with Ψ0 = In and Ψj converging to zero at a geometric rate as

j → ±∞.

3Lanne and Saikkonen (2011A) propose to use usual information criteria to first get the pseudo-causal AR(p). Hencic
and Gouriéroux (2014) propose to look at the empirical ACF which is consistent even in the infinite variance case to
determine p.
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To extend the SCCF property to the MVAR(r, s) case, we search for the existence of a full rank matrix

δ such that E(δ′Yt|Yt+s, ..., Yt+1, Yt−1, ..., Yt−r) = 0. This gives rise to the following definition.

Definition 1. Series Yt have k common features, CFs henceforth, if there exists a n × k (0 < k <

n) full rank matrix δ such that δ′Π(L)Φ(L−1) = δ′ or, equivalently, δ′Yt = δ′εt. We also have that

δ′Φ̃(L−1)Π̃(L) = δ′ although the product of matrices is not commutative.4

Remark 2. By premultiplying both sides of Equation (3) by δ′ and in view of the definition of CFs we

have that

δ′Ψ(L,L−1) = δ′,

which tells us that the bilateral linear impulse response function of series Yt is collinear at any lag/lead

different from zero. It is easy to check that the reverse implication applies as well.

2.3 Co-movements in purely causal or noncausal models

We first focus on the two polar cases in which data are generated by either a purely causal MVAR(r, 0)

or a purely noncausal MVAR(0, s) model. Then we illustrate the properties of the usual common cyclical

feature test statistics, e.g., canonical correlations, for noncausal models. Finally, we show that the mixed

model necessitates to use a non-Gaussian likelihood framework even when a reduced rank structure is

present.

Definition 3. In purely causal [noncausal] models with Φ(L−1) = In [Π(L) = In], series Yt have k causal

[noncausal] common features, CCFs [NCCFs] henceforth, if there exists a n × k (0 < k < n) full rank

matrix δc [δnc] such that δ′cΠ(L) = 0 [δ′ncΦ(L
−1) = 0]. The common cyclical feature model in the purely

causal [noncausal] case implies E(δ′cYt|Yt−1, Yt−2, ...) = 0 [E(δ′ncYt|Yt+1, Yt+2, ...) = 0]. The n × (n − k)

orthogonal complement of matrix δc [δnc] is denoted as δc⊥ [δnc⊥].

Remark 4. The usual SCCF in a VAR(r) is obviously equivalent to the CCF in a MVAR(r, 0).

We start the analysis by concentrating on the cases in which data are generated by a purely noncausal

MVAR(0, s) model. Assuming that the matrix δnc exists (we skip the indexes nc and c to simplify

4Notice that, differently from the univariate case, representation (3) is not unique. Since the polynomial matrices are
generally not commutative, one may alternatively use the model Φ̃(L−1)Π̃(L)Yt ≡ (In − Φ̃1L−1 − ...− Φ̃sL−s)(In − Π̃1L−

... − Π̃rLr)Yt = εt. Gouriéroux and Jasiak (2015) have a different respresentation for the MVAR which does not involve
the multiplicative structure of two coefficient matrices.
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notations when no confusion is possible). The noncausal VAR model then reads as

Yt =
s∑

j=1

ΦjYt+j + εt = δ⊥

s∑

j=1

A′
jYt+j + εt, (5)

where δ′⊥δ = 0 and at least one of the n × (n − k) matrices Aj , for j = 1, ..., s, has full rank. As shown

by Lanne and Saikkonen (2013), series Yt admit a causal autoregressive representation MVAR(s, 0) with

the same spectral density as (5) and with errors that are multivariate white noise but not innovations

with respect to the past. When no CFs exist, this implies that the noncausal and the pseudo-causal

representation cannot be distinguished by means of the Gaussian likelihood framework.

We wish to examine the implications of the presence of such CFs in the pseudo-causal VAR represen-

tation of the system. In order to do that, we start by defining autocovariances Γy(−j) = E(YtY
′
t+j) and

note that

δ′Γy(−j) = δ′E(YtY
′
t+j) = δ′E(εtY

′
t+j) = 0, ∀j > 0,

as δ′Yt = δ′εt. Hence, it follows that we can factorize these autocovariances as the product

Γy(−j) = δ⊥Υ
′
y(−j), ∀j > 0,

where Υy(−j) is (n − k) × n matrix. Let us now rewrite the noncausal VAR in (5) under reduced rank

restrictions as

Yt = Φ′Xt + εt = δ⊥A
′Xt + εt, (6)

where X ′
t = [Y ′

t+1, ..., Y
′
t+s], Φ

′ = [Φ1, ...,Φs] and A′ = [A′
1, ..., A

′
s]. The coefficient matrix Φ is linked to

the autocorrelation matrix function Γy(−j) through the relation

Φ′ = E(YtX
′
t)[E(XtX

′
t)]

−1 = [Γy(−1), ...,Γy(−s)][Γx(0)]
−1 (7)

= δ⊥[Υ
′
y(−1), ...,Υ′

y(−s)][Γx(0)]
−1,
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where

Γx(0) =




Γy(0) Γy(−1) · · · Γy(−s+ 1)

Γy(1) Γy(0) · · · Γy(−s+ 2)

...
...

Γy(s− 1) Γy(s− 2) · · · Γy(0)




,

and hence δ′Φ′ = 0. Let us now write the pseudo-causal representation of series Yt as follows

Yt =

s∑

j=1

Φ̃jYt−j + ε̃t = Φ̃′Zt + ε̃t, (8)

where Z ′
t = [Y ′

t−1, ..., Y
′
t−s] and ε̃t is a multivariate white noise process such that E(ε̃tY

′
t−j) = 0 for any

j > 0. The coefficient matrix Φ̃′ = [Φ̃1, ..., Φ̃s] of the pseudo-causal VAR is linked to the autocorrelation

matrix function of series Yt through the relation

Φ̃′ = E(YtZ
′
t)[E(ZtZ

′
t)]

−1 (9)

= [Γy(1), ...,Γy(s)][Γz(0)]
−1 = [Υy(1)δ

′
⊥, ...,Υy(s)δ

′
⊥][Γz(0)]

−1,

where

Γz(0) =




Γy(0) Γy(1) · · · Γy(s− 1)

Γy(−1) Γy(0) · · · Γy(s− 2)

...
...

Γy(−s+ 1) Γy(−s+ 2) · · · Γy(0)




,

which implies that δ′Φ̃′ 6= 0. In view of (9), we conclude that the pseudo-causal VAR in (8) generally does

not have any (pseudo) CFs. It is easy to see that the reverse is also true, i.e., the noncausal representation

of a causal VAR with CFs does not generally exhibit the (pseudo) CFs.

A special case occurs when p = 1. Equations (7) and (9) simplify to

Φ′ = Γy(−1)[Γy(0)]
−1 = δ⊥Υ

′
y(−1)[Γx(0)]

−1,

Φ̃′ = Γy(1)[Γy(0)]
−1 = Υy(1)δ

′
⊥[Γz(0)]

−1,

from which we see that the existence of k CFs in a MVAR(0, 1) implies the presence of k CFs in the
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pseudo-causal representation of series Yt. It is easy to check that the reverse is true as well. We summarize

the above results in the following proposition.

Proposition 5. If series Yt are generated by a second-order stationary MVAR(r, 0) [MVAR(0, s)] with

r > 1 [s > 1], the existence of k CFs does not imply the presence of any CF in the pseudo-noncausal

[pseudo-causal] representation of series Yt.

With regard to statistical inference, a relevant implication of the above proposition is that, except

for the case of VAR models with either one lead or lag, the Gaussian ML approach is able to identify

the unique representation of series Yt that exhibit the common features. As is well known, the Gaussian

likelihood analysis of the reduced rank regression model (6) is based on canonical correlations between

Yt and Xt, denoted as CanCor(Yt, Xt); see e.g. Johansen (2008) and the references therein.

Remark 6. In case of the MVAR(1, 0) and MVAR(0, 1) model, it is impossible to discriminate between

causal and noncausal CFs using the Gaussian ML analysis. Indeed, by the assumption of stationarity

and noting that autocorrelation is a symmetric measure, it follows that

CanCor(Yt, Yt+1) = CanCor(Yt−1, Yt) = CanCor(Yt, Yt−1).

Consequently, even if there exists a NCCF, we will also detect a CCF using canonical correlations. How-

ever, although the eigenvalues from the solutions of CanCor(Yt, Yt+1) and CanCor(Yt, Yt−1) are identical,

the eigenvectors, and hence the relationships that link series, will be different. This might explain why

“strange” estimates of common cycle relationships are sometimes obtained in empirical works.

2.4 Co-movements in mixed models

Let us now consider the general case of a MVAR(r, s) where both r and s are larger than zero. As shown by

Lanne and Saikkonen (2013), series Yt admit a pseudo-causal MVAR(p, 0) representation, where p = r+s,

with the same spectral density as (3) and with errors that are multivariate white noise but not innovations

with respect to the past. In view of (4), we see that when both r and s are positive, the autocorrelation

matrix function of series Yt reads

Γy(j) =

∞∑

i=−∞

Ψi+jΩΨ
′
i = ΩΨ′

−j +
∑

∀i 6=−j

ΨiΩΨ
′
i−j ,
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which implies that the coefficient matrix of the corresponding pseudo-causal VAR

[Φ̃1, ..., Φ̃p] = [Γy(1), ...,Γy(p)][Γz(0)]
−1,

will generally be full rank. It is easy to see that the same conclusion applies to the pseudo-noncausal

representation as well. We summarize the above results in the following proposition.

Proposition 7. If series Yt are generated by a second-order stationary MVAR(r, s) with r > 0 and s > 0,

the existence of k CFs does not imply the presence of any CFs in the pseudo-noncausal [pseudo-causal]

representation of series Yt.

Notice that a simple solution to detecting CFs in mixed models such as CanCor (Yt, Ut), where U ′
t =

[X ′
t, Z

′
t], cannot be adopted. The reason is that in the associated reduced rank regression model

Yt = δ⊥C
′Ut +Θ−1

0 εt,

where C is a full rank np× (n− k) matrix and Θ0 ≡
min(r,s)∑

j=−min(r,s)

ΠjΦj , the regressors are correlated with

the errors.

3 Test statistics

In order to test for common cyclical features in purely causal or noncausal models, we first determine

the lag order p in standard VAR models by means of various information criteria, see Section 4 for

details. Even in the presence of a noncausal component, we obtain an estimate of the pseudo-causal

order p = s. Having fixed p, we perform both Likelihood Ratio (LR) and GMM tests to detect the

presence of co-movements both in purely causal and noncausal models.

3.1 LR tests

The Gaussian LR test is based on the partial canonical correlations between Yt and Wt, where

Wt =





[Y ′
t−1, ..., Y

′
t−p]

′ for the causal VAR,

[Y ′
t+1, ..., Y

′
t+p]

′ for the noncausal VAR,

10



having concentrated out the effects of the deterministic terms Dt (e.g., intercepts and dummies). This

procedure is denoted as

CanCor {Yt,Wt | Dt} , (10)

The LR test for null hypothesis that there exists at least k common feature vectors is based on the

statistic

ξLR = −T

k∑

i=1

ln(1− λ̂i), k = 1, 2, ..., n,

where λ̂i is the i-th smallest squared canonical correlations computed from (10). More specifically, λ̂i is

the i-th smallest eigenvalue of

Σ̂
−1/2
WW Σ̂WY Σ̂

−1
Y Y Σ̂YW Σ̂

−1/2
WW ,

where Σ̂AB denotes the sample covariance matrix of two vector time series At and Bt. Under the null

hypothesis, ξLR follows asymptotically a χ2(ν) distribution with ν = knp− k(n− k).

3.2 GMM tests

When the time series Yt is bivariate to simplify notation, i.e., Y ′
t = [y1t, y2t], a GMM single equation

common feature test can be conducted. First, we write δ = [1,−α]′ and estimate α by the instrumental

variable (IV) estimator using Wt as instruments. The IV estimator of α is given by

α̂IV =
(
y′
2W(W

′
W)−1W′y2

)−1 (
X′W(W

′
W)−1W′y1

)
,

where [y1,y2] ≡ Y and W respectively indicate the matrices of T − p observations of variables Yt

and Wt after having removed the linear influence of the deterministic terms Dt. Second, we run an

overidentification J-test (Hansen, 1982) for the validity of the orthogonality conditions, i.e. the existence

of a common feature relationship, using the statistic

J1(α̂IV ) = (u′W)(σ̂2
uW

′W)−1(W′u),

where u = y1−y2α̂IV and σ̂2
u = u′u/(T − p).

The tests presented so far embed the assumption of homoscedasticity. Candelon et al (2005) have
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illustrated in a Monte Carlo exercise that J1(α̂IV ) has large size distortions in the presence of GARCH

disturbances. Therefore, we also use the White heteroskedasticity robust estimator (see, e.g., Hamilton,

1994):

α̂IV−W =
(
y′
2W(W

′
BW)−1W′y2

)−1 (
y′
2W(W

′
BW)−1W′y1

)
, (11)

where B = diag(u2
1, u

2
2, ...u

2
T ) and ut = y1t − α̂′

IV y2t. Then we run a J-test robust to heteroskedasticity

using the statistic

J2(α̂IV−W ) = (u∗′W)(W′BW)−1(W′u∗). (12)

where u∗ = y1−y2α̂IV−W .5 Under the null hypothesis, both J1(α̂IV ) and J2(α̂IV−W ) follow asymptoti-

cally a χ2(2p− 1) in the bivariate case with k = 1.

4 Monte Carlo results

4.1 The pseudo-causal VAR(p) order

We first investigate by Monte Carlo simulations the frequency with which various information criteria

select the correct order p of the pseudo-causal VAR(p). The data generating process is a MVAR(1,2)

(1−Π1L)(1− Φ1L
−1 − Φ2L

−2)Yt = εt, with the following coefficient matrices

Π1 =


 0.4 0

0 0.7


 , (13)

Φ1 =


 0.5 0.2

0.5 0.2


 , Φ2 =


 −0.35 0.25

−0.35 0.25


 . (14)

Note that the presence of reduced rank matrices in the noncausal part (14) has no implications for the

order of the pseudo-causal VAR representation. We consider two relatively small sample sizes, T =

{100, 250}.6 For εt, we consider the following correlated distributions in addition to the multivariate

N(0, 1): (i) Student’s t(ν) = ζt⊙ (ν/χ2(ν))1/2 and (ii) Laplace = ζt⊙ (− ln(U [0, 1]))1/2, where ⊙ denotes

5Alternative approaches for handling heteroskedastic disturbances have been evaluated in Hecq and Issler (2012).
6We simulate an additional 50×2 observations (both sides) burn in period to initialize processes.
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the Hadamar product. The ζt are simulated according to

ζt ∼ N




 0

0


 ,


 10 3

3 2




 . (15)

For (i) we consider the following values for the degrees of freedom ν = {10, 3, 1}, where ν = 1 corresponds

to the Standard Cauchy case. Each distribution has its own seed. The four information criteria are AIC,

BIC, HQ and the Takeuchi information criterion (TIC).7 We let them find their minimum for p = 0 to

pmax = 8.

Table 1 reports the results over 10,000 replications. Overall, information criteria determine the pseudo-

causal VAR order rather well for T = 250 (in particular HQ). As usual BIC detects a proportion of models

with too parsimonious dynamics. This is clearly a problem for the identification of mixed causal-noncausal

models because r lags and s leads are going to be estimated within that p. AIC tends to overestimate the

number of lags. The TIC does not perform very well by construction when the kurtosis does not exist,

e.g., the t(3). The frequency with which the correct model is found is approaching 100% when T > 250

for instance (except for the Cauchy).

4.2 Testing for common cyclical features

The previous subsection has illustrated that usual information criteria can guide us towards the right

choice for the pseudo-causal VAR order p. Let us now focus on common cyclical feature test statistics

using the tests reviewed above. For this study, we restrict our attention to two different data generating

processes: a purely causal and purely noncausal VAR. More precisely, we consider a noncausal bivariate

MVAR(0,2) with a reduced rank in coefficient matrices such as (14). For the causal MVAR(2,0) we have

the same parameters in the first two lags, i.e., Π1 = Φ1 and Π2 = Φ2. Under the null hypothesis, there

is a CCF [NCCF] relationship with a cofeature vector δ′ = [1,−1]. It should be noted that although we

7The TIC has been proposed by Takeuchi (1976) as an alternative to the AIC as it does not rely on the assumption
that the true model is included in the set of investigated specifications. He obtained the following criterion

TIC = ln(Σ̂) + 2η̂/T,

where

η̂ =
T∑

t=1

ε̂′tΣ̂
−1ε̂tht +

1

2

[

T−1

T∑

t=1

(
ε̂′tΣ̂

−1ε̂
)
2

− n(n+ 2)

]

,

ht = X′
t

(∑
t

i=1
XtX′

t

)−1
Xt, ε̂t are the OLS residuals, and Σ̂ is the residual covariance matrix (see Yanagihara, 2006, for

further details).
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Normal T = 100 T = 250
BIC HQ AIC TIC BIC HQ AIC TIC

p = 3 26.07 56.01 67.30 37.56 82.17 96.15 86.98 94.38

p < 3 73.83 42.01 17.39 61.96 17.80 2.68 0.26 5.16

t(10) T = 100 T = 250
BIC HQ AIC TIC BIC HQ AIC TIC

p = 3 26.38 55.38 68.00 38.07 81.67 96.25 86.57 93.67

p < 3 73.55 42.69 17.33 61.47 18.32 2.69 0.26 5.78

t(3) T = 100 T = 250
BIC HQ AIC TIC BIC HQ AIC TIC

p = 3 27.25 55.29 67.03 37.20 80.22 95.05 86.49 81.89

p < 3 72.55 42.82 18.20 59.35 19.63 3.67 0.62 16.24

t(1) T = 100 T = 250
BIC HQ AIC TIC BIC HQ AIC TIC

p = 3 41.77 55.46 61.44 26.29 71.21 78.76 77.80 35.28

p < 3 53.87 35.27 19.83 57.15 24.76 13.25 6.62 53.60

Laplace T = 100 T = 250
BIC HQ AIC TIC BIC HQ AIC TIC

p = 3 29.03 57.88 69.15 39.87 82.56 96.10 87.07 92.21

p < 3 70.91 40.30 16.20 55.55 17.44 2.81 0.30 7.22

Table 1: Frequencies with which ICs find the pseudo-causal VAR(3) for a MVAR(1,2) DGP

have strong co-movements between series, it is impossible to figure out graphically whether we have a

causal or a noncausal pattern. To illustrate this point, Figures 1 and 2 compare causal and noncausal

VAR(2) models with SCCF restrictions for different distributions.

We can now report the frequencies with which the three common feature test statistics that we propose

reject the null that a combination of series is orthogonal to the past for the causal model or to the future

for the noncausal model. At a 5% significance level the null follows a χ2(3) under normality for a VAR(2)

with one SCCF vector. An entry in the vicinity of 5% denotes an absence of size distortion. Results

are based on 10,000 replications. Tables 2 and 3 reveal that, regardless of the distribution chosen to

simulate processes, both canonical correlation and GMM tests do not suffer from severe size distortions.

To obtain this result the “correct”8 set of instruments must be used when performing those tests, namely

orthogonality conditions to {Yt−1, Yt−2} [{Yt+1, Yt+2}] for the causal [noncausal] model. This result

is very encouraging because it means that purely noncausal common features can be easily found by

reverting the timeline of the instruments. The only test that faces a problem is the robust GMM when

8Note that we solely mean lags for the causal model and leads for the noncausal model. We do not comment on under-
or overspecification of these lag and lead orders.
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Figure 1: Causal and noncausal VAR(2) with SCCF - N(0,1) and t(3)

Figure 2: Causal and noncausal VAR(2) with SCCF - Cauchy and Laplace
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T = 100
DGP/instruments {Yt−1, Yt−2} {Yt+1, Yt+2}
Causal VAR(2) Cancor GMM GMMW Cancor GMM GMMW

N(0, 1) 5.64 4.91 4.63 23.52 29.45 26.64
t(10) 5.37 4.82 4.58 23.47 29.52 25.40
t(3) 5.50 5.02 3.80 21.55 27.77 18.13
Cauchy 5.68 5.42 0.97 23.06 29.38 5.38
Laplace 5.83 5.10 4.30 27.67 38.70 31.51

T = 500
{Yt−1, Yt−2} {Yt+1, Yt+2}

Causal VAR(2) Cancor GMM GMMW Cancor GMM GMMW

N(0, 1) 5.16 5.08 4.56 91.84 92.54 91.99
t(10) 4.98 4.84 4.78 91.90 92.54 91.41
t(3) 4.84 4.72 4.15 89.17 89.89 78.32
Cauchy 4.76 4.73 1.00 67.46 69.22 12.61
Laplace 5.27 5.20 4.98 95.62 96.36 95.18

Table 2: Empirical size/power for the causal VAR(2) DGP

the Cauchy distribution is implemented. This is not surprising because in a heteroscedasticity robust

correction à la White, it is assumed that the unconditional variance exists. In practice, the squares of

the residuals cause problems in the Cauchy case when large “outlying” observations are introduced via

the B = diag(u2
1, u

2
2, ...u

2
T ) matrix.

When the wrong set of instruments is used, namely only past variables for the noncausal model or

the future variables for the causal specification, the presence of co-movements measured by a reduced

rank in the dynamics of the systems is rejected. The rejection frequencies increase with the sample

size, indicating that we are under the alternative indeed. Because we cannot distinguish whether co-

movements are present in a causal or a noncausal framework by solely graphical means, we recommend

to first determine the VAR order p (potentially the pseudo-causal model) in empirical works and then to

apply the common cyclical feature test statistics in both directions.

As an additional identification tool, we notice that one should reject the null hypothesis that the

errors are i.i.d. if a pseudo-causal model is estimated when the data are generated by a noncausal model.

Consequently, we can run the regression

ε̂t = µ+ Ξε̂2t−1 + ut,
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T = 100
DGP/instruments {Yt−1, Yt−2} {Yt+1, Yt+2}
Noncausal VAR(2) Cancor GMM GMMW Cancor GMM GMMW

N(0, 1) 22.92 28.79 25.74 5.58 5.00 4.73
t(10) 22.86 28.88 24.50 5.74 5.05 4.46
t(3) 22.06 28.39 18.39 5.39 4.83 3.62
Cauchy 23.10 29.86 5.20 5.65 5.47 1.01
Laplace 27.02 38.69 30.94 5.45 4.86 4.23

T = 500
{Yt−1, Yt−2} {Yt+1, Yt+2}

Noncausal VAR(2) Cancor GMM GMMW Cancor GMM GMMW

N(0, 1) 91.39 92.06 89.55 5.13 4.94 5.02
t(10) 91.16 91.81 91.07 5.01 4.88 4.28
t(3) 89.64 90.43 78.77 5.11 4.98 4.17
Cauchy 67.93 69.55 12.72 4.55 4.53 1.00
Laplace 95.72 96.43 95.31 4.99 4.86 4.63

Table 3: Empirical size/power for the noncausal VAR(2) DGP

where ε̂t are the residuals from the pseudo-causal VAR(p) model, and test for the null hypothesis H0 :

vec(Ξ) = 0. We investigate the behavior of a Wald test that is based on the statistic

ξiidW = vec(Ξ̂)′(Σ̂uu ⊗ (W′W)−1)−1vec(Ξ̂),

where Σ̂uu is the sample covariance matrix of the disturbance term ut and W is the matrix of observations

of the demeaned regressor ε̂2t−1. We can also consider a LR test, which is based on the canonical

correlations between ε̂t and ε̂2t−1. The LR test statistic is given by

ξiidLR = −T

m∑

i=1

ln(1− λ̂i),

where λ̂i is the i-th smallest squared canonical correlation coming from CanCor
{
ε̂t, ε̂

2
t−1 | 1

}
. Under the

null hypothesis, both ξiidW and ξiidLR are asymptotically distributed as χ2(n2).

In order to evaluate the extent to which the above tests are able to determine whether we have a

causal or a noncausal VAR, we use the same DGPs (either causal and noncausal) as before, then we

estimate a (pseudo-)causal VAR(2) model and use both the statistics ξiidW and ξiidLR. The results can be

found in Table 4. We obtain the well-known result that, under Gaussianity, causal and noncausal models
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T = 100 T = 500
Causal VAR(2) Wald LR Wald LR
N(0, 1) 6.23 5.50 5.18 5.08
t(10) 5.89 5.16 5.14 4.96
t(3) 5.68 5.14 5.32 5.22
Cauchy 4.76 4.52 3.25 3.22
Laplace 5.66 5.05 5.51 5.29

T = 100 T = 500
Noncausal VAR(2) Wald LR Wald LR
N(0, 1) 5.71 4.85 5.14 5.00
t(10) 10.68 9.56 13.22 12.85
t(3) 42.67 40.58 75.35 75.13
Cauchy 81.20 80.20 98.57 98.56
Laplace 25.24 23.57 33.51 33.04

Table 4: Empirical size/power for the causal vs. noncausal VARs

cannot be distinguished. The rejection frequencies are in the vicinity of 5% for both sample sizes and

both tests. When the model is causal we do not reject the null of i.i.d.-ness using both the Wald and

the LR approaches. The rejection frequencies are all around 5% regardless of the distribution considered.

The only exception is the Cauchy distribution which is slightly undersized. It is likely that other critical

values should be considered in this case. When the true process is a noncausal VAR, both the Wald and

the LR are able to reject the i.i.d. null hypothesis in large samples when the departure from the Normal

distribution is large. The (non-size-adjusted) power is pretty low for T = 100, however with rejection

frequencies of about 25% and around 33% with T = 500 for the Laplace. The t(10) induces low power,

which is expected as this specification is the closest to Gaussianity. The power is relatively high for the

Cauchy and the t(3). Alternative tests are worth investigating, but this is out of the scope of this paper.

5 Empirical illustrations

5.1 Price indicators

We first consider 20 price series from “The Department Store Inventory Price Index” dataset. Those

data are based on inventory weighted price indices of goods carried by department stores. The Bureau

of Labor Statistics (BLS) maintained these statistics until the end of 2013. We work with monthly data

from January 1980 to December 2013. Indices are available for the following 23 items: Piece goods,
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Domestics and draperies, Women’s and children’s shoes, Men’s shoes, Infants’ wear and furniture,

Women’s underwear, Women’s and girls’ hosiery, Women’s and girls’ accessories, Women’s outerwear

& girls’ wear, Men’s clothing, Men’s furnishings, Boys’ wear, Jewelry and silverware, Notions, Toilet

articles & drugs, Furniture and bedding, Floor coverings, Housewares, Major appliances, Radios and

television sets. We do not include the last three items of the dataset in our analysis (Recreation &

education, Home improvements, Automotive accessories) because those series only start in 1986.

Common cyclical feature test statistics have severe size distortions and low power when a wrong

model for the seasonality is considered (Hecq, 1998; Cubadda, 1999). We refrain from using standard

seasonal adjustment methods such as X13-ARIMA and TRAMO/SEATS, as they directly affect (partial)

autocorrelation functions which might create spurious causal and noncausal dynamics (see Hecq, Telg and

Lieb, 2016B). We assume for this application that there is only one unit root at the zero frequency and that

seasonality is deterministic. This means that we take the monthly growth rates ∆ lnPi,t (i = 1, ..., 20) in

deviation from twelve deterministic monthly dummy variables. We construct 190 bivariate models from

the 20 residual series. We have the following lag lengths for each of the 190 pairs of VARs: p = 0 (31%),

p = 1 (5%), p = 2 (37%), p = 3 (5%), p ≥ 4 (21%). There are consequently 59 pairs that are multivariate

white noise and for which we should find both a causal and a noncausal common feature relationship. We

use p = 4 and test for CCF and NCCF using the LR test. We do not reject the null of 74 causal common

feature relationships and 88 noncausal ones. This means that on the top of 59 multivariate white noise

we have 15 additional causal SCCF relationship and 30 noncausal relationships. Obviously the impact of

the assumption of the stochastic versus the deterministic seasonality is an important issue to investigate.

We do not identify mixed models as we have seen (Section 2.4) that we would not have detected the

presence of common cycles if the processes where mixed causal-noncausal.

5.2 Commodity prices co-movements

For the second application we consider raw monthly commodity prices observed during the period January

1992 to October 2016, i.e., 298 observations, released by the IMF.9 These are benchmark prices which are

representative of the global market. They are determined by the largest exporter of a given commodity.

IMF releases many different individual commodity prices but we only focus on the following three indices:

9IMF Primary Commodity Prices, see http://www.imf.org/external/np/res/commod/index.aspx.
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• RAWM: Agricultural Raw Materials Index, 2005 = 100, includes Timber, Cotton, Wool, Rubber,

and Hides Price Indices. IMF name: PRAWM;

• GAS: Natural Gas, Indonesian Liquefied Natural Gas in Japan, US Dollar per Million Metric British

Thermal Unit. IMF name: PNGASJP;

• OIL: Crude Oil (Petroleum), Price index, 2005 = 100, simple average of three spot prices; Dated

Brent, West Texas Intermediate, and the Dubai Fateh. IMF name: POILAPSP.

We consider the vector of series

Yt = (∆ lnRAWMt,∆ lnGASt,∆ lnOILt)
′,

where the monthly growth rates of the series are taken as we do not reject the zero frequency unit root

in all three cases. The resulting series are displayed in Figure 3.
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Figure 3: Growth rates of Raw Materials, Crude Oil and Natural Gas
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The pseudo-causal VAR order is detected to be p = 12 according to AIC in combination with cross

correlogram analysis and seasonal dummies are included because they are jointly significant according to

both ordinary (s.e.ols) and heteroscedasticity robust (s.e.hcse) F -tests. To look at the robustness of our

results we have also considered Y SA
t where series are taken in deviation from a regression on seasonal

dummies. There are signs of non-normality according to the Jarque-Bera (JB) test. Table 5 displays

p-values of the above tests.

Series p JB-test F -test
s.e.ols s.e.hcse s.e.ols s.e.hcse s.e.ols s.e.hcse

Yt 12 0.000 0.000 0.151 0.000 0.001 0.769 0.898 0.329 0.426
Y SA
t 12 0.000 0.000 0.124 - - - - - -

Table 5: Summary statistics of the (pseudo-)causal VAR

It is clear from Table 6 that both the canonical correlation test ξLR and the robust GMM J2-test do

not reject the null of a common feature vector in the noncausal framework while it is rejected (at 5%)

in the purely causal VAR. Eigenvalues are also very interesting to investigate. In the causal VAR there

is not much difference between the first two smallest eigenvalues. Therefore, it is difficult to claim that

the first value is not different from zero while the second one is. This is directly in contrast with the

noncausal case as we do observe a large difference between them.

CCFs=1 NCCFs=1

CanCorξLR
λ̂i GMMJ2

CanCorξLR
λ̂i GMMJ2

Yt 0.015 (0.172, 0.186, 0.513) 0.031 0.333 (0.121, 0.221, 0.567) 0.090
Y SA
t 0.044 (0.158, 0.196, 0.520) 0.013 0.716 (0.096, 0.272, 0.553) 0.363

Table 6: P -values of tests - causal vs. noncausal VARs

The presence of noncausal common features detected in both applications can imply that there exist

some commonalities in the bubble behavior of several variables. It can also be the sign of collinear

nonlinear impulse response functions as noncausal linear VARs have a nonlinear causal interpretation

(Gourieroux and Zaköıan, 2016).
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6 Conclusion

This paper provides a novel explanation for the inability of detecting common features in a VAR frame-

work. We show that common features that cannot be detected in the causal (i.e., backward-looking)

representation might be revealed in the noncausal (i.e., forward-looking) dynamics of the series. Whereas

the difference between data generated from purely causal, purely noncausal and mixed causal-noncausal

VARs is not always graphically visible, it is well-known that the latter two are able to generate much richer

dynamics than the conventional causal VAR. This makes it possible to detect for example speculative

bubbles and asymmetric cycles which are common to a set of series.

We propose tools to highlight the potential presence of noncausal co-movements. Using both sets of

lag and lead instruments within a canonical correlation or a GMM framework, we show how additional

relationships are discovered between series both in Monte Carlo simulations and two empirical illustra-

tions. Interestingly, we find that the presence of a reduced rank structure in the dynamics of purely

causal and noncausal systems with more than one lag/lead permits identification in the usual Gaussian

framework. This result cannot be extended to mixed causal-noncausal models, as the instruments are

correlated with the error term of the reduced rank model by construction. We identify common bubbles

in both commodity prices and price indicators.
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