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Abstract

The probability of an observed financial return being equal to zero is not nec-
essarily zero. This can be due to price discreteness or rounding error, liquidity
issues (e.g. low trading volume), market closures, data issues (e.g. data impu-
tation due to missing values), characteristics specific to the market, and so on.
Moreover, the zero probability may change and depend on market conditions.
In standard models of return volatility, however, e.g. ARCH, SV and continu-
ous time models, the zero probability is zero, constant or both. We propose a
new class of models that allows for a time-varying zero probability, and which
can be combined with standard models of return volatility: They are nested
and obtained as special cases when the zero probability is constant and equal
to zero. Another attraction is that the return properties of the new class (e.g.
volatility, skewness, kurtosis, Value-at-Risk, Expected Shortfall) are obtained
as functions of the underlying volatility model. The new class allows for au-
toregressive conditional dynamics in both the zero probability and volatility
specifications, and for additional covariates. Simulations show parameter and
risk estimates are biased if zeros are not appropriately handled, and an appli-
cation illustrates that risk-estimates can be substantially biased in practice if
the time-varying zero probability is not accommodated.

Classification: C01, C22, C32, C51, C52, C58

Keywords: Financial return, volatility, zero-inflated return, GARCH, log-GARCH,

ACL

*We are grateful to participants at the SNDE Annual Symposium 2015 (Oslo) and TAAE Con-
ference (Thessaloniki) for useful comments, suggestions and questions.

tCorresponding author. Department of Economics, BI Norwegian Business School.
genaro.sucarrat@bi.no. Webpage: http://www.sucarrat.net/

tDepartment of Economics, BI Norwegian Business School. Email: steffeng@gmail.com.

Email:



Contents:

1 Introduction 2
2 Financial returns with time-varying zero probability 4
2.1 The ordinary model of return . . . . . . . . .. .. ... ... .. ... 4
2.2 The model of return with time-varying zero probability . . . ... ... .. 4
2.3 Some general properties . . . .. ..o oo )
3 Models of n1; and oy 8
3.1 Models of 1y . . v o o e e e e e 8
3.2 Modelsof o; . . . . . e e 9
3.3 A joint model of m; and o, with two-way feedback . . . .. ... ... .. 10
4 Simulations 12
4.1 The effect on parameter and risk estimates . . . . . ... .. ... .. ... 12
4.2 A missing values algorithm . . . . . ... ... .. 0 oL 13
5 Empirical application 13
6 Conclusions 15
References 17
A Derivation of properties 7 to 10 18
Al Pdfsandcedfs . . . . . . L L 18
A2 Quantiles . . . . ... 18
A3 Tail expectations . . . . . . . oL L 18
B Missing values estimation algorithm 19
C Estimation of the joint model of 7; and o; with two-way feedback 20

1 Introduction

It is well-known that the probability of an observed financial return being equal to
zero is not necessarily zero. This can be due to price discreteness and/or rounding
error, liquidity issues (e.g. low trading volume), market closures, data issues (e.g.
data imputation due to missing values), characteristics specific to the market, and
so on. Moreover, the zero probability may change and depend on market condi-
tions. In standard models of financial return volatility, however, the probability of a
zero return is either zero, or non-zero but constant. FExamples include the Autore-
gressive Conditional Heteroscedasticity (ARCH) class of models of Engle (1982), the
Stochastic Volatility (SV) class of models (see Shephard (2005)) and continuous time
models (e.g. Brownian motion).! Hausman et al. (1992) relaxed the constancy as-
sumption by allowing the zero probability to depend on other conditioning variables
(e.g. volume, duration and past returns) in a probit framework. This was then ex-
tended in two different directions by Engle and Russell (1998), and Russell and Engle
(2005), respectively. The latter in particular provides a comprehensive framework,
since there price-changes are modelled by an Autoregressive Conditional Multinomial

!Bauwens et al. (2012) provides a recent survey of these models.



(ACM) model coupled with a continuous time model of the durations between trades.
However, as pointed out by Liesenfeld et al. (2006), there are several limitations and
drawbacks with this approach. Instead, they propose a dynamic integer count model,
which is extended to the multivariate case in Bien et al. (2011). Finally, Rydberg and
Shephard (2003) propose a framework in which the price increment is decomposed
multiplicatively into three components: Activity, direction and integer magnitude.

Even though discrete models in many cases may provide a more accurate charac-
terisation of observed returns, the most common models in empirical practice — e.g.
ARCH, SV and continuous time models — are continuous. Arguably, the discreteness-
point that causes the biggest problem for continuous models is located at zero. This
is because zero often is the most frequently observed single value — particularly in
intraday data, and because its probability is often time-varying and dependent on
random or non-random events (e.g. periodicity), or both. A time-varying zero prob-
ability invalidates the parameter and risk estimates of continuous models, since the
underlying estimation theory relies on the assumption that the conditional density is
identical over time. We propose a new class of financial return models that allows
for a time-varying conditional probability of a zero return. The new class decom-
poses return multiplicatively into a continuous part, which can be specified in terms
of common volatility models, and a discrete part at zero. Standard volatility models
(e.g. ARCH, SV and continuous time models) are therefore nested and obtained as
special cases when the zero probability is constant and equal to zero. Hautsch et al.
(2013) proposed a model for positively valued variables (e.g. volume) that uses a
similar decomposition to ours. However, their dynamics is governed by a (restricted)
log-GARCH specification, and by a specific conditional density. Our model is much
more general. The volatility dynamics need not be specified as a log-GARCH, and
the continuous density (in squared return) need not be a Generalised F. In fact,
their model is nested and obtained as a very specific case in our model class, when
the log-volatility dynamics is interpreted as a Multiplicative Error Model (MEM)
(see Brownlees et al. (2012) for a recent survey of MEM models). Another attraction
of our model class is that many return properties (e.g. conditional volatility, return
skewness, Value-at-Risk and Expected Shortfall) are readily obtained as functions
of the underlying volatility model. Moreover, our model allows for autoregressive
conditional dynamics in both the zero probability and volatility specifications, and
for a two-way feedback between the two. In the absence of a feedback effect from
volatility to the zero probability specification, then estimation becomes particularly
simple, since the model of zero probability and the model of volatility can then be
estimated separately. The model is readily extended to include additional condition-
ing variables (e.g. leverage, volume, duration, spreads, volatility proxies, periodic-
ity /seasonality terms, etc.) in the zero probability or volatility specifications, or in
both, and by introducing new endogenous variables (e.g. volume, durations, spreads,
volatility proxies, etc.) to form a complete dynamic system. Simulations show that
common volatility models are inconsistently estimated by common methods if the
zero probability is time-varying, and that estimates of risk (i.e. conditional volatil-
ity, Value-at-Risk and Expected Shortfall) are biased upwards. Finally, an empirical
illustration shows that risk estimates can be substantially biased in practice if the
time-varying zero probability is not accommodated appropriately.



The rest of the paper is organised as follows. Section 2 presents the new class and
derives some general properties. Section 3 proposes specific models of the zero prob-
ability and of the volatility, and a joint model that allows for a two-way feedback.
Section 4 contains a Monte Carlo study of the parameter and risk estimation bias
induced in some common models of volatility, when the time-varying zero probability
is not appropriately accommodated. Section 5 contains our empirical application,
whereas Section 6 concludes. The Appendix contains auxiliary derivations, and ad-
ditional material and simulations. Tables and figures are located at the end.

2 Financial returns with time-varying zero proba-
bility
2.1 The ordinary model of return

The ordinary model of a financial return r; (possibly mean-corrected) is given by
Ty = O¢Wy, thI]D(0,0-Z)), Pt,l(wt:()) :0, te Z, (1)

where oy > 0 is a time-varying scale or volatility (that needs not equal the conditional
standard deviation), w; € R is an Independentically and Identically Distributed (IID)
innovation conditional on the past Z; ; and P,_;(w; = 0) is the zero probability of
w; conditional on the past. The subscript ¢ — 1 is thus notational shorthand for
conditioning on past information Z;_;. We refer to (1) as an “ordinary” model of

return, since the zero probability of return r; is 0 and constant. An example of an
ordinary model is the GARCH(1,1) of Bollerslev (1986), where

af =+ 0417"?,1 + 610,5271, wy ~ I1D(0, ai =1). (2)

Another example is the Stochastic Volatility (SV) model, where
lnaf :O[()_'—ﬁl 1110‘?714-77'1%,1, V¢ N]ID(O,U?)), (3)

with v; being independent of w; for all pairs 7, j. Other examples include quadratic
variation (e.g. Brownian motion) and other continuous time notions of volatility,
the log-GARCH class proposed independently by Geweke (1986), Pantula (1986)
and Milhgj (1987), the EGARCH model of Nelson (1991), the mixed data sampling
(MIDAS) regression of Ghysels et al. (2006), and the Dynamic Conditional Score
(DCS)/Generalised Autoregressive Conditional Score (GAS) models of Harvey (2013)
and Creal et al. (2013).

2.2 The model of return with time-varying zero probability

The model of return with time-varying conditional zero probability is given by

Ty = Oz, Zt = wt]t’ﬂ';tl/Q, Wt ~ ]ID(O, 0-121))7 Pt,l(wt = O) = O, (4)
I, € {0, ]_}, T = Pt—l([t = 1), 0<my <1, I 1 wy. (5)



The variable I; determines whether return r; is zero or not. If I; = 1, then r, # 0 with
probability 1, and if I; = 0, then r;, = 0. The probability of a zero return conditional
on the past is thus mo; = 1 — 7. For convenience we will sometimes refer to my; (and
transformations thereof, e.g. hy = In(m;/mo:)) as the zero probability, since mg; can
straightforwardly be obtained via 7y, (and transformations thereof, e.g. mo; = 1 —7y;).
The symbolism [I; | w; means I; and w, are independent at ¢ conditional on the past.
The motivation for letting 7, enter the way it does in z;, is that this ensures that
Var, 1(z) = 02 (see Property 2 in Section 2.3).
In (4), o; can be specified as a wide range of volatility models in terms of the
zero-adjusted return
Ty = OW;. (6)

We refer to this quantity as “zero-adjusted” return, since r; = rtﬁt/ ? whenever I, =1.
For example, the GARCH(1,1) model in terms of zero-adjusted return is given by

Uf =qp + 0417"?_1 + 5103_17 (7)

whereas the zero-adjusted log-GARCH(1,1) model is given by
Ino? =ag+a;n7 , + B Inol ;. (8)

In both cases their ordinary counterparts are obtained as special cases when 7y, is
constant and equal to 1. In empirical practice we observe r; rather than the zero-
adjusted return 7. But for a given set of values of 7y, (or estimates of 7y, rather),
we can obtain 7; (or an estimate of 7, rather) whenever I; = 1, since then we have
ry = rmif. Whenever I; = 0, the zero-adjusted return r; will be unobserved or
“missing”. Nevertheless, algorithms that handles missing values can be used for
estimation and inference. Details of how this may be implemented is given in Section
3.2 and in the Appendix . An alternative way of specifying o;, which avoids the need
for an algorithm that handles missing values, is to let the zero-adjusted return enter
the volatility equation only at non-zero locations. This is for example the strategy
employed by Hautsch et al. (2013) in their model of positively-valued variables (e.g.
volume). For example, a simplified version of their log-GARCH(1,1) specification is
Ino? = ap + oy (In7?_,)I;_1 + Ino? ;. Finally, subject to appropriate assumptions,
specifications of o; may be formulated in which return r; enter unadjusted. We will
discuss all three approaches in Section 3.2.

2.3 Some general properties

An attractive feature of the model (4)-(5) is that many of its properties follow
straightforwardly (assuming the quantities in question exist) as a function of the
underlying models of volatility and zero probability. These properties are:

1. Ordinary models of return are obtained when the zero probability is constant
and equal to zero, i.e. when m; = 1, for all ¢.

2. Although z; is not IID conditional on the past when 7y, is non-constant, z
does have a constant conditional mean E; (z;) equal to zero, and a constant



conditional second moment Var,_i(z) equal to o2. As a consequence, the

return series {r;} remains a martingale difference sequence even though my, is
non-constant.

. Both the conditional and unconditional second-moment properties of the un-
derlying volatility model are retained:

and Var(ry) = E(07)o? (9)

Var,_i(ry) = oo, o

w?
In a zero-adjusted stationary GARCH(1,1), for example, where the identifi-
ability condition is o2 = 1, we have that Var,_1(r;) = o} and Var(r,) =
ap/(1 — a; — B1). This holds regardless of whether my; is constant or time-

varying.
. The conditional second-moment assuming return is non-zero is given by

Var(rl, = 1,1,_,) = olnytol. (10)
In other words, conditional volatility is scaled upwards under the assumption
that return is non-zero, and the more so the higher the conditional zero proba-
bility mo.

. The sth. conditional moment of return is given by
s s _(2—s)/2 s
Eia(r}) = opmy, P E(wy). (11)

Higher order (i.e. s > 2) conditional moments (in absolute value) are thus scaled
upwards by positive conditional zero probabilities, whereas the opposite is the
case for lower order (i.e. s < 2) conditional moments (in absolute value). In
particular, conditional skewness (s = 3) and conditional kurtosis (s = 4) become
more pronounced when my; > 0, whereas F; 1(r;) in absolute value is usually
scaled downwards since E|w;| < 1 for most densities of empirical relevance.

. If there is no feedback between 71; and o4, and if their unconditional moments
exist, then the sth. unconditional moment is

E(r}) = BE(o})E(r V) E(w}). (12)

The effect is thus similar to that of conditional moments: Higher order (i.e.
s > 2) unconditional moments (in absolute value) are scaled upwards by positive
zero probabilities, whereas the opposite is the case for lower order (i.e. s < 2)
unconditional moments (in absolute value)

. The probability density function (pdf) and cumulative distribution function
(cdf) of z; conditional on the past are, respectively, given by

3/2 1/2y .
) — 4 Tt Juw(zemy, ") if 2 # 0, 1
fi(=) { (1— ) if 2 = 0, (13

Fz(Zt) = WltFw(Ztﬂ'it/Q) + ]-{thO}(l - Wlt)a (14)
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10.

where f,, is the pdf of w; conditional on the past, F,, is the cdf of w; conditional
on the past and 1y,>0) is an indicator function equal to 1 if z; > 0 and 0
otherwise.

. The pdf and cdf of r, conditional on the past are

3/2 1/2y -
_ iy fr(remy, ) if ry # 0, 15
fr(re) { (1 —my) if re =0, 15
Fo(ry) = WltFF(TtW%t/Q) + 1r>0y (1 = 1), (16)

where fx(7;) = o' f(7:/0y) is the pdf of 7; conditional on the past, Fy(7;) =
F,(7r¢/o:) is the cdf of 7 conditional on the past and 1y,>¢ is an indicator
function equal to 1 if r;, > 0 and 0 otherwise.

. If F, is strictly increasing and ¢ € (0,1), then the cth. quantile of z; and

conditional on the past are

(7, PF (/) if ¢ < Fy(0)my,
Zeg = FYe)=< 0 if Fop(0)my < ¢ < F(0)myy + To(17)

| TSm0 e > By (0)m + T,

w it
,

e P F e /) if ¢ < Fy(0)my,
res = F Y e)={ 0 Af FR(0)myy < ¢ < Fr(0)my + mor (18)

W;tlﬂFF_l (e=mot) if ¢ > FF(O)WU + ;.

Tt

\

The conditional (100 - ¢)% Value-at-Risk (VaR.) of z; and r;, respectively, are
therefore defined as —z.; and —r.;. Note that, since F{l(az) = oF, (),
equation (18) can be written as

res = o F7(c). (19)

This is particularly convenient when the density of 7, is unknown (e.g. when
estimation is by QML).

If F,, is strictly increasing and ¢ > 0, then the (100 - ¢)% Expected Shortfall
(ESc) of z; and r; conditional on the past are given by —E;_1 (2|2 < z.4) and
—E;_((r¢|re < 7ey), respectively, where

i .
Bea(als < 2et) = B (wtl o SEEI(C/M)}) it ¢ < F,(0)ry;, (20)
i ~ .

Note that, since F; '(z) = 0,F, ' (z), equation (21) can also be written as
Etfl(Tt|Tt S Tc,t) == O-tEtfl(Zt|Zt S Zcﬂg) if c< F?(O)ﬂ'lt. (22)

This formulation is particularly convenient when the density of 7, is unknown
(e.g. when estimation is by QML).



3 Models of 7; and oy

If 0 < 7y < 1, then it follows from (15) that the log-likelihood at ¢ conditional on
the past can be written as

Info(r) = Lnfo(remyl?) + LIna? 4+ (1= L) In(1 — myy), (23)

= ]t ln f?(?ft) + It hl 1t + (1 — It) hl(l — Wlt); (24)

since fr(ry) = 7r1_tl/ 2 f;(?“tﬂ'}{ ?) when I, = 1. The total log-likelihood is therefore given
by > In f,(r¢) = LogL, + LogL,, where

LogL, =Y ILnf:(7) and LogL, =Y Llnm+(1—I)In(l—m,). (25)
t=1

t=1

When there is no feedback from o, to my;, then the models of o; and 74, respectively,
can be estimated in two separate steps. First, my; can be estimated by maximising
LogL,. Second, the fitted values of 71; can be used to generate estimates of r;, which
can subsequently be used to estimate o; by maximising LogL,. In the next two
subsections we consider such models that can be estimated in two separate steps.
Then, in subsection 3.3, we propose a joint model of 71; and o; with feedback effects.

3.1 Models of 7y,

The model (4)-(5) admits a wide range of specifications of 7y;. In the simplest, 7, is
constant and can be estimated by computing the fraction of non-zero returns. Another
simple specification, which may be particularly useful in the presence of periodic, say,
intraday zero probabilities, is m; = Z?il ¢;d;;, where the d;;’s are dummy variables
associated with the hours of the day. Then each ¢; is readily estimated by computing
the fraction of non-zero returns in each hour of the day. The logistic representation
of this model is h; = pg + Z?; Nidyy, where my = 1/(1 + exp(—hy)). A third class
of models that is straightforwardly estimated is one in which m; is a function of a
deterministic time-trend, say, hy = py + At. The motivation for this specification
is that market developments (e.g. the influx of high-frequency algorithmic trading,
increased trading volume, increased quoting frequency, lower tick-size, etc.) may have
reduced the probability of zeros in a gradual and monotonous way.

In many situations the models just described are not sufficient to adequately
capture the zero probability dynamics. The 7; may be autoregressively dependent
and/or determined by other variables (e.g. volume, news, etc.), either instead of or
in addition to periodicity effects and trends. For computational simplicity one could
consider modelling all this in a linear probability model with I, as the left-hand side
variable, with the usual problems that this entails (e.g. fitted probabilities outside the
unit interval). Another option, which avoids the drawbacks of the linear probability
model, is the dynamic logit model proposed by Hautsch et al. (2013) for trading
volume. This model is a special case of the Autoregressive Conditional Multinomial



(ACM) model by Russell and Engle (2005), and its specification is

I, — 7y

K L
hi = po + Z PrSt—r + Z Ghi—i, s = sy € R, (26)
k=1 =1

7Tlt(1 - 7T11t)7

where s; conditional on the past is 71D(0,1). We will henceforth refer to (26) as an
Autoregressive Conditional Logit (ACL) model. The {h;} is an ARMA process, so
in the first order case, i.e. hy = py + p1s¢—1 + (1hy_1, each parameter has the usual
ARMA-like interpretation. The py controls the level of the unconditional probability
E(my4), whereas the p; controls the impact of a shock s;: The larger in absolute value,
the greater the departure from recent values of ;. The (; is a persistence parameter
(|¢1] < 1 entails stability): The closer to 1, the higher persistence of 7y;. Finally,
the ACL can be augmented with additional conditioning information or covariates by
including them in the h; specifiction, yielding an ACL-X model of 7y;.

3.2 Models of oy

When there is no feedback from o; to my, then the former can be estimated in
a second step conditional on the estimates of my;. One strategy in formulating a
specification for oy, or In oy, is to simply skip the zeros. An example of this is Francq
et al. (2013), where the log-GARCH(1,1) specification (without asymmetry) is In o =
ag+a;InT2 I, 1+ By Ino? . This, in fact, this is equivalent to replacing a zero on 7
with the value 1 (rather than a small non-negative value, which is the more common
approach), and may not the best solution empirically since it creates a “jumpy”
or erratic contribution from the log-ARCH term. A similar effect is induced in the
GARCH model if the ARCH-term 77_; is replaced by 72, I;_1. Moreover, if the model
relies on the assumption that P, ;(w; = 0) = 0, then parameter estimates will in fact
be biased, see Sucarrat and Escribano (2013). An alternative strategy is to treat zeros
as “missing values”. The main advantage with this approach is that the contribution
of the ARCH-term is less erratic, and that the properties of the volatility model in
question carry over more straighforwardly. In particular, the properties derived in
Section 2.3 are easier to exploit.

We propose the following general procedure to estimate models of o; while treating
7y as missing at zero locations:

1. Record the locations at which the observed return r; is zero and non-zero,
respectively. Use these locations to estimate 7y; by maximising LogL.

2. Obtain an estimate of 7; by multiplying r; with ﬂt/ ?_ where 7y, is the fitted value
of my; from Step 1. At zero locations the zero-adjusted return 7; is unobserved
or “missing”.

3. Use an estimation procedure that handles missing values to estimate the volatil-
ity model o; by maximising LogL,.

Sucarrat and Escribano (2013) propose an algorithm for the log-GARCH model where
missing values are replaced by estimates of the conditional expectation. If Gaussian



(Q)ML is used for estimation, then this can be viewed as a variant of the Expec-
tation Maximisation (EM) algorithm. A similar algorithm can be devised for many
additional volatility models, including the GARCH model. The Appendix contains
the details of this algorithm, whereas Section 4.2 contains a small simulation study
that compares its accuracy with ordinary methods. Additional conditioning vari-
ables or covariates (“X”), e.g. past values of leverage, volume, duration and periodic-
ity /seasonality terms, can be added to the GARCH and log-GARCH specifications,
respectively, to form GARCH-X and log-GARCH-X models, see Han and Kristensen
(2014), Francq and Thieu (2015), Sucarrat et al. (2015), and Francq and Sucarrat
(2015). A zero-adjusted version of the log-GARCH-X model constitutes a particu-
larly attractive alternative, since it does not impose any negativity restrictions on the
parameters, and since estimation, inference and missing values can be handled via its
ARMA-X representation.

The main disadvantage of specifying o, in terms of r; rather than directly in r; is
that 7, is unobserved and thus needs to be estimated. Accordingly, this may create
issues of invertibility, which in fact is aggravated when there are missing values of
7¢.  One solution is thus to simply retain 7; in the specification of g, rather than
substituting it with 7. If so, then the plain GARCH(1,1) and log-GARCH(1,1)
specifications, for example, remain equal to

0‘? = + 0417"?_1 + ﬁlO_tQ_l (27)

Ino? = ag+oyInry L1+ pBilnc’ |, (28)

where In72_,I;_; is 0 whenever I, _; = 0 and Inr? | otherwise. Subject to appropriate
stationarity conditions on z;, it is reasonable to conjecture that standard estima-
tion methods will be provide consistent and asymptotically normal estimates of the
parameters, see e.g. Francq and Thieu (2015) in the former case.

3.3 A joint model of 7; and o; with two-way feedback

If there is feedback from o, to mq;, then the models of m; and o, cannot be estimated
separately. Here, we propose a joint model with two-way feedback together with a
QML estimation procedure. The model is a combination of the log-GARCH model
and the ACL model, so we refer to it as a log-GARCH-ACL model. In general form
the model is

P K Q L
In O'tg = + Z Oélp In ;ﬂ?—p + Z P1kSt—k + Z 61(1 In O'tg_q + Z Cllht—l (29)
p=1 k=1 q=1 =1

P K Q L
hy = po+ Z Qrgp In ?f_p + Z PorSt_k + Z Baq In of_q + Z Cahe . (30)
p=1 k=1 q=1 =1

The exponential specifications ensure the positivity of o, and m;, and enable more
flexible dynamics (e.g. parameters can be negative). Also, the logit-specification
ensures that m; € (0,1). The motivation for the log-GARCH specification for In o?
instead of, say, the EGARCH of Nelson (1991), is that the latter is not amenable to

10



QML estimation and inference in the presence of missing values of 7;.2 Also, it is not
clear that an ML-based procedure for the EGARCH would yield consistent estimates
due to invertibility issues, see Wintenberger (2013), since the invertibility-problem is
in fact compounded in the presence of missing values.

For notational economy we will hereafter work with the first order specification
only. The first order version of the model can be written as

Y = w+ Av1 + Biyi-a, (31)

where Yt = (hl at27 ht)l7 W= (04107 p10)17 Ut = (lﬂ}?7 St),7

@11 P11 A Cu
A= and B = . 32
! ( Qo1 P21 > N ! ( Par Ca ) (32)
If |E(In w?)| < oo, which is usually the case for the most commonly used densities in

finance (e.g. the Student’s ¢ and the GED), then a stability condition of the system
is that all the solutions of |15 — (A; o D 4 Bj)c| = 0 are greater than one in modulus,

where
10
D= ( 10 ) (33)

and A; oD is the Hadamard product of A; and D. The estimation procedure that we
propose is based on QML estimation of the VARMA representation. The motivation
for this is to get the system into a form such that missing values can be handled
with the algorithm outlined in Section 3.1. The details of the estimation procedure,
together with simulations, are contained in the Appendix .

Conditioning variables or covariates (“X”) can be added to either (29) or (30), or
both, since the transformation to the VARMA representation needed for estimation
is not affected by the additional variables. The model can also be extended with
additional endogenous variables like (say) volume, volatility proxies, volatilities from
other return series, and so on. Specifically, let y; = (Ino?, hy,Ino3,, ..., Ino3,,)" and
x; be the vectors of endogenous and exogenous variables, respectively, where the time
index in x; does not necessarily mean that all (or any) of the exogenous terms are
contemporaneous. The o3,,...,0%,, are either return-volatilities or the conditional
expectations of the square of a positively valued variable, e.g. volume. The first order
version of the system (generalisation to higher orders is straightforward) can then be
written as

Y = w+ Ay + Biyia + Chry, (34)
where w = (aig, p1o, @30, ---,a0)’s vy = (In7%,s,In7%, ..., In72%,,,), and where
Ay, By and C are appropriately sized coefficient matrices. The additional vari-
ables T3, ..., Ty either take on values in the whole real space (e.g. return) or are

positively-valued (e.g. volume or duration). In the latter case the In7? specification

is a logarithmic Multiplicative Error Model (MEM), see Brownlees et al. (2012) for
a survey of MEMs. The stability properties of the system can be investigated in the
same way as earlier, and QML estimation and inference procedures are available via
the VARMA-X representation.

2The EGARCH of Nelson (1991) requires exact ML methods for the algorithm to be applicable.
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4 Simulations

4.1 The effect on parameter and risk estimates

If the zero probability is time-varying, then the estimation theory of common volatility
models is not valid. Here, we study how this affects parameter and risk estimates. In
the simulations the Data Generating Process (DGP) of return is given by

re = oy Loy, wy ~ N(0,1), t=1,...,n= 10000, (35)

where the 0-DGP is governed by a deterministic trend equal to
w1 =1/(1+exp(—hy)), hi=po+ A", t"=t/n. (36)
The term t* = t/n is thus “relative” time with ¢t* € (0,1]. We use three parameter
configurations for the 0-DGP: (pg, A) = (00, 0), (po, A) = (0.1,3) and (pg, A) = (0.2, 3).

These yield fractions of zeros over the sample equal to 0, 0.1 and 0.2, respectively.
The DGPs of the GARCH and log-GARCH models, respectively, are given by

o = ap+oTi,+0,q, (37)
Ino? = ap+aoIn7 | +Ino} |, (38)

with (g, a1, 1) = (0.02,0.1,0.8) in each. In both cases estimation proceeds by
replacing 77 with r7 in the recursions. For the log-GARCH, whenever r7 = 0, its value
is set to 1 (i.e. the specification of Francq et al. (2013), but without asymmetry).
Estimation of the GARCH model is by Gaussian QML, whereas estimation of the
log-GARCH is by Gaussian QML via the ARMA-representation, see Sucarrat et al.
(2015).

The upper row of graphs in Figure 1 contains the average parameter biases, where
the bias in replication i is computed as average estimate; — true; (the no. of repli-
cations is 1000). The general tendency is clear: The higher the proportion of zeros,
the greater the bias. Seemingly, this is not the case for o in the GARCH model.
However, this is simply due to the y-scale of the graph, since closer inspection reveals
that there is indeed a (small) upwards bias. Generally, the magnitude of the bias is
smaller for the GARCH. The exact bias in the log-GARCH, however, depends on the
value used to replace zeros. So a different replacement-value for zeros may in fact
result in a smaller bias than for the GARCH. The middle and lower rows of graphs in
Figure 1 contain the Mean Percentage Errors (MPESs) of the risk estimates, computed
as 100 - >} (x; — 1) in replication i, where z; = estimate,/true,. For example, the
volatility percentage error at ¢ is 100 - (z; — 1) with x; = 7,/0;. The VaR and ES
graphs are for a risk level equal to 1%. Again, the graphs show a clear tendency:
The higher the proportion of zeros, the greater the bias. Moreover, the bias is always
positive.?

3This is in line with previous studies on the effect of discreteness. Gottlieb and Kalay (1985)
found that variance estimates of daily stock returns were biased upwards due to discreteness, but
their analysis assumed the nature of the discreteness was constant, and that the conditional density
of returns was normal. Cho and Frees (1988) also found that volatility was overestimated in most
cases, using a measure of how quickly prices change. Li and Mykland (2014) find that Realised
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Additional simulations with fat-tailed w;, other values on «g, aq, 81 and risk level
(for VaR and ES), and with a different 0-DGP, produce similar results. These simu-
lations are not reported, but are available on request.

4.2 A missing values algorithm

I order to study the finite sample bias of the algorithm outlined in Section 3.2, we
undertake a simulation study similar to that above. The DGP is exactly the same,
but estimation proceeds differently. In the GARCH, whenever 77 is zero, then it is
replaced by an estimate of its conditional expectation F; {(72) at that point (see the
Appendix ). Estimation of the log-GARCH proceeds similarly, except that now it is
In7?2 that is replaced by an estimate of E(In72) whenever r; is zero.

Figure 2 contains the parameter biases for the GARCH(1,1) and log-GARCH(1,1)
models, respectively. A solid blue line stands for the bias produced by the algorithm,
whereas a dotted red line stands for the bias of ordinary Gaussian QML estimation
without zero-adjustment. The Figure confirms that the algorithm provides approxi-
mately unbiased estimates in finite samples in the presence of missing values. Nomi-
nally, the biases produced by the ordinary method may appear small. However, as we
will see in the empirical applications, such small nominal differences in the parameters
can produces large differences in the dynamics.

Additional simulations with fat-tailed w;, other values on «ag, oy and 5, and with
a different 0-DGP, produce similar results. These simulations are not reported, but
are available on request.

5 Empirical application

In order to shed light on how returns with time-varying zero probabilities affect
volatility dynamics, Value-at-Risk (VaR) and Expected Shortfall (ES) in practice, we
revisit three of the return series in Sucarrat and Escribano (2013). These series are
of interest, since they exhibit a variety of zero probability characteristics. The three
series are the daily Standard and Poor’s 500 stock market index (SP500) return,
the daily Apple stock price return and the daily Ekornes stock price return. The
first two return series are well-known, whereas the third is a leading Nordic furniture
manufacturer listed on the Oslo Stock Exchange. Ekornes is a medium-sized company
in international terms, since its market value is approximately 300 million euros (at
the end of the series). Our interest in Ekornes is due to its relatively large — for daily
returns — proportion of zeros over the sample (about 19%). The source of the data
is Yahoo Finance (http://finance.yahoo.com). All three returns are computed as
(In S;—1In S; 1)-100, where S; is the index level or stock price at day ¢. Saturdays and
Sundays, where returns are usually 0, are not included in our sample. Descriptive
statistics are contained in the upper part of Table 2. The statistics confirm that the
returns exhibit the usual properties of excess kurtosis compared with the normal,
and ARCH as measured by first order serial correlation in the squared return. The

Volatility (RV) is biased and overestimates volatility in the presence of discreteness, and that the
bias is increasing in the sampling frequency.
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number of zeros varies from only 2 observations (about 0.1% of the sample) for SP500
to 667 observations (about 19% of the sample) for Ekornes.

The middle part of Table 2 contains estimates of three dynamic logit models for
each return. The three models are:

Constant: hy = po,
Trend: hy po + A7, t* =t/n, t* € (0,1],
ACL(l,l)Z ht = po+ p1Si—1+ Clht—b

In the first model the zero probability is constant, in the second it is governed by
a deterministic trend (¢* is “relative time”) and in the third it is an ACL(1,1). For
SP500 returns, it is the first logit specification that fits the data best according to
the Schwarz (1978) information criterion (SIC). Accordingly, we use its fitted values
of 7m; to compute the zero-adjusted returns r;. For Apple and Ekornes returns the
best model according to SIC is the ACL(1,1).

The bottom part of Table 2 contains estimates of two GARCH(1,1) specifications
for each return. These are

: : 2 _ 2 2

Ordinary: o, = oag+agr,_y + oy,
: 2 ~2 2

0-adj: o, = ap+oar; |+ fo; .

Estimation of the Ordinary specification proceeds by Gaussian QML without adjust-
ment of the observed returns r,. Estimation of the second specification is also by
Gaussian QML, but here the observed returns are replaced by estimates of the zero-
adjusted ones, 7, treating zeros as missing values. For SP500, in which there are only
2 zeros, the two sets of estimates are virtually identical. For the two other returns, by
contrast, the nominal differences vary between 0.003 and 0.007. These may appear
small. However, as we will see shortly, these small nominal parameter differences —
together with the different treatment of zeros — can lead to substantially different risk
measure dynamics.

Figure 3 contains graphs of the fitted conditional zero probabilities To; (upper row
of graphs), and ratios of the conditional risk measures from the two estimation meth-
ods. The ratio of the fitted conditional standard deviations (second row of graphs)
is computed as G¢ ordinary/0t,0-adj, 0-€. the values from the Ordinary specification over
those from the 0-adjusted specification. The VaR and ES ratios (third and fourth
rows of graphs) are computed similarly. The first column of graphs are those of
SP500. Unsurprisingly, since the SP500 return series only contain 2 zeros, and since
the estimated parameters are virtually identical, the ratios are essentially equal to
1 throughout the sample. This is reflected in the Mean Percentage Errors (MPEs),
computed as n~ 'Y " (x; — 1) - 100, where z; is the ratio in question. The second
column of graphs are those of Apple. The fitted zero probability declines over the
sample in a non-stationary fashion, and in the latter part it is essentially zero. This
is reflected in the ratio between the conditional standard deviations. In the first part
of the sample, until 1998 approximately, the conditional standard deviations of the
Ordinary specification are about 3-5% higher, whereas in the latter part they are only
about 1% higher (the MPE over the whole sample is 2.36%). Interestingly, there is not
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much difference between the specifications for the 1% VaR, and this holds throughout
the sample. For the 1% ES, however, the values of the Ordinary specification start
at about 8-10% higher. Then they fall steadily before stabilising towards the end at
3-4% lower than the values of the 0-adjusted specification. Finally, the third column
of graphs are those of Ekornes. The evolution of the zero probabilities are very dif-
ferent from the others’ in two ways. First, they are substantially higher throughout
the sample. Second, in contrast to those of Apple, the dynamics appears stationary.
This is reflected in the evolution of the ratios. The conditional standard deviations
of the Ordinary method, for example, are — on average — 8.38% higher than those
of the 0-adjustment method, and stably so throughout. Again, the 1% VaRs are,
on average, very similar throughout the sample, and again the 1% ESs are different.
However, this time the ESs are not only different, but substantially different, since
the Ordinary specification yields a 1% ES that is on average 11.51% higher than that
of the 0-adjusted specification — and this difference appears stationary throughout
the sample.

All in all, the empirical comparison reveals that the biased parameter estimates of
the Ordinary method can lead to substantially different values on two common risk
measures, namely volatility and ES. Moreover, the extent and sign (i.e. whether it
is higher or lower) of the magnitude depend on how big the zero probability is, and
on the exact nature of the zero probability dynamics (e.g. whether it is stationary or
not).

6 Conclusions

We propose a new class of financial return models that allows for a time-varying
zero probability. A key feature of the new class is that standard volatility models
(e.g. ARCH, SV and continuous time models) are nested and obtained as special
cases when the zero probability is constant and equal to zero. Another attraction
is that the properties of the new class (e.g. conditional volatility, skewness, kurtosis,
Value-at-Risk, Expected Shortfall, etc.) are obtained as functions of the underlying
volatility model. The new class allows for autoregressive conditional dynamics in
both the zero probability and volatility specifications, and for a two-way feedback
between the two. In the absence of a feedback effect from volatility to the zero prob-
ability specification, then estimation becomes particularly simple, since the model of
zero probability and the model of volatility can then be estimated separately. Our
empirical illustration shows that risk estimates can be substantially biased if the
time-varying zero probability is not accommodated appropriately.
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A Derivation of properties 7 to 10
A.1 Pdfs and cdfs

Let X; = wtfmftlm, and let P, 1(X; < x;) denote the cdf of X; conditional on the
past. Then

P (X;<z) = P 1(wtft7r1t < xy) (39)
Wb (widir? < w1 = 1) + Poy(wlyr, ' < @y, I = 0Y40)
O po i <w L, =1)+ Py (0 < a2, 1, = 0) (41)
9 p(wy < 2 /T P (I = 1) + Pr_y (0 < 2) Po_y (I, = 0) (42)
D Py (wy € 2o/Ti) T+ Locommar, (43)

where we use: (a) P(4) = P(ANB) + P(AN B, (b) I, = 1 in wlyry,”” in the
first term and I, = 0 in the second, (¢) w; and I; are independent conditional on the
past and (d) P, 1(0 < ) reduces to the indicator function for non-random events.
Replacing X; with z; in the derivation gives (14), whereas replacing X; with 7, and
wy with 7 gives (16). Next, the pdfs in (13) and (15) are obtained by differentiating
the cdfs.

A.2 Quantiles

Let X, = wIym,,"”” with ¢df Fx(2;) = Fo(2/T1)T10 + Lim0y7m0i. We wish to find
the generalised inverse of Fx, given by F'(c) = inf{z € R : Fx(z) > ¢}. Suppose
first that ¢ < F,(0)myy, so that z; < 0. Then

Folzp/m)mu=c &  an/mu=F, (c/m:) & x= 7T1_151/2F1;1(C/7T1t). (44)

Suppose now that ¢ > F,,(0)my; + 7o;. Then

Fo(rey/m)mu+ e =c¢ & Fy(o/m) = (¢ — o) /T, (45)

so that z; = Wﬂl/QF Y(e — mor) /7). Finally, if F,(0)my < ¢ < Fu(0)myy + mor,
then x; = 0 by the definition of the generalised inverse. Replacing X; with z; in the
derivation gives (17), whereas replacing X, with r; and w, with 7 gives (18).

A.3 Tail expectations

Let z; denote a realisation of the random variable X, = wtfﬂr];lﬁ at t, so that
Fx(xy) = P 1 (X < 2y). If 0 < ¢ < Fx(0)my, then the c-level (lower) tail-expectation
of X; conditional on the past is given by

1 1
EEtil (th{XtSF;l(C)}) — E/Ayt dFX(yt)7 (46)
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where A = (—oo,witl/QFujl(c/m?t)). Because ¢ < Fy(0)7y;, we have that Fy'(c) < 0,
so that the area we integrate over only includes negative numbers. In this region
Fx(xy) = m Fy(x4/T1¢) with derivative dFx (z;) /dz, equal to Wi’ffw(xt, /T1¢). Hence,

Bt (th{xtgFgl(c)}) = W?t/g/ Yefuw(Yev/Tt) dys. (47)
A

Letting uy = yi\ /T gives dy; = duy/+/T1t, so that the area of integration is changed
to (—oo, F;'(¢/m1)). This gives

FyHe/my)
Ey (th{thF;I(c)}) = Wlt/ ug fu(ue) duy (48)
= ﬂ'ltEt_l (wtl{’thFJl(C/ﬂ'M)}) ) (49)
so that )
14
B (Xl pxeniy) = Bt (kg oma ) - (50)

Replacing X; with z; gives (20), whereas replacing X; with 7, and w; with r; gives
(21).

B Missing values estimation algorithm

In Section 3.2 we propose an estimation procedure where volatility models are esti-
mated in a second step conditional on estimates of 7; from a first step, treating zeros
as missing values. Here, we provide the details of how our missing values algorithm
is implemented for the GARCH(1,1) and log-GARCH(1,1) models. Extensions of the
algorithm to specifications of higher orders and/or with covariates is straightforward
and self—exylanatory. R

Let ag’“ ,&gk) and ﬁfk) denote the parameter estimates of a GARCH(1,1) model
after k iterations with some numerical method (e.g. Newton-Raphson). The initial
values are at kK = 0. If there are no zeros so that r, = r; for all ¢, then the kth.
iteration of the numerical method proceeds in the usual way:

1. Compute, recursively, for t =1,...,n:
oy =ay " va L, B E (51)

2. Compute the log-likelihood Y7, In f#(7,7;) and other quantities (e.g. the gra-

dient and/or Hessian) needed by the numerical method to generate Z)?(()k), &gk)

and 3.

Usually, f7 is the Gaussian density, so that the estimator may be interpreted as a
Gaussian QML estimator. The algorithm we propose modifies the kth. iteration in
several ways. Let (G denote the set that contains the locations of the non-zeros, and
let n* denote the number of non-zero returns. The kth. iteration now proceeds as
follows:
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1. Compute, recursively, for t =1,...,n:

)7, = 72 ifteG (52)
VT 62 ift ¢ G, where 52 =al Y + a2, 4 BEVs2
b) 57 = ay " +alt ez, 4 G2 (53)

2. Compute the log-likelihood ), . In f(7,7;) and other quantities (e.g. the gra-
dient and/or Hessian) needed by the numerical method to generate Z)?(()k), al

and 31,

Step 1.a) means r2, is equal to an estimate of its conditional expectation at the
locations of the zero-values. In Step 2 the symbolism ¢ € G means the log-likelihood
only includes contributions from non-zero locations. A practical implication of this
is that any likelihood comparison (e.g. via information criteria) with other models
should be in terms of the average log-likelihood, i.e. division by n* rather than n.

QML Estimation of the log-GARCH model is via its ARMA-representation, since
the standard Gaussian ML estimator must be interpreted as exact ML in the presence
of missing values, see Sucarrat and Escribano (2013). If |E(lnw?)| < oo, then the
ARMA(1,1) representation exists and is given by

In7 =g+ 1 7| + 0wy +up,  up =Inw; — E(lnw}), (54)

where ¢y = ag + (1 — f1)E(Inw?), ¢ = a1 + 1, 61 = —p1 and uy is zero-mean and
ITID conditionally on the past. Accordingly, the usual ARMA-methods can be used
to estimate ¢, ¢, and 6, and hence the log-GARCH parameters «; and ;. To
identify ap, however, an estimate of E(Inw?) is needed. Sucarrat et al. (2015) show
that, under very general assumptions, the formula —In[n !>} exp(u;)] provides
a consistent estimate (see also Francq and Sucarrat (2015)). To accommodate the
missing values, this formula is modified to —In [n* "'}, . exp(@)].

C Estimation of the joint model of m; and o, with
two-way feedback

For notational economy we illustrate the first order case only, since the extension to
higher order specifications is straightforward. The procedure starts by casting the
In o7 equation into its “ARMA-X" form and then changing the h; equation accord-
ingly. Assuming that |E(lnw?)| < oo and denoting §; = (In72, hy)', 7 = E(lnw?),

u = (Inw? —7,8) and uf = (Inw? — 7,0)’, the VARMA representation is given by

N7, = o+ o1 In7y + prisi—r + Biiw—1 + Ciiheor + uy, (55)
hy = py+daIn?l |+ parsi 1 + Bt + Corhy1, (56)

where off = ag+(1—f11) E(Inwy), py = po—Par E(lnwy), ¢y = (c11+P11), ¢2 = (a1 +
B21), By = =B, Bay = —Pa1, and vy = Inw?—F(In w?) with u; conditional on the past
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being I11D(0,02). The stability condition for this representation is identical to the
untransformed model, i.e. the log-GARCH-ACL specification, but the unconditional
expectations are now given by
1 — Car)ag + Cuupg
Bl = 0 0 57
7 = =)= G - 57
$205 + (1 — ¢1)p5

E(h . 58
") = 600G - ot 9

More compactly, the VARMA representation can be written as
Ut = ¢o + G101 + Orup1 + uy, (59)

where ¢g = w + (10 D — By o D)1, ¢y = (A, 0 D + B;) and

—fi1 pu
6, = : 60
' ( —Pa1 par ( )
To estimate the VARMA parameters ¢g, ¢ and 6, we replace the density fr in the
log-likelihood at ¢, which is given by (see the beginning of Section 3)

In f.(ry) = LiIn f7(ry) + L Inmyy + (1 — 1) In(1 — 7qy), (61)

with an instrumental QML density (e.g. the normal) f,,, in the IID error u;;. The
joint log-likelihood at ¢ conditional on the past thus becomes

It In fult (Ut) + It In T + (1 - ]t) ln(l - 7T1t). (62)

Maximisation of the total log-likelihood provides estimates of the VARMA param-
eters. All the parameters of interest, apart from «g and pg, can be identified from
the VARMA estimates. In order to identify g and py an estimate of 7 is needed,
since the VARMA intercepts are given by ¢19 = o + (1 — f11)7 and ¢og = po — S 7,
respectively. To this end we use the same formula as in the univariate case to estimate
7,4.e. —In [n**l Y oiea exp(ﬂlt)} , where @y, are the residuals from the first equation
in the estimated VARMA model. Next, from the definition of ¢y we can solve for
o and pg, respectively, in order to obtain plug-in estimators of a;9 and py. Table 1
provides a small Monte Carlo study of this estimation procedure. The simulations
show that estimates are close to their population counterparts in finite samples for
different densities of w;, even when as much as 38% of the returns r; are zero.
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Table 1: QML estimation of the log-GARCH-ACL model via the VARMA representation

DGP T @ a1 pi1 Bi1 (i Po Qi1 P21 Ba1 (21 E(lnw}?) E(mot)

wy ~ N(0,1): A 5000 0.04 0.301 0.053 0.082 0.059 0.152 0.053 0.094 0.051 0.949 -1.318 0.375
10000 0.05 0.302 0.054 0.094 0.053 0.152 0.055 0.094 0.042 0.950 -1.321 0.376

B 5000 0.02 0.101 0.006 0.796 -0.006 0.189 0.001 0.099 -0.003 0.937 -1.272 0.050

10000 0.00 0.101 0.001 0.797 -0.002 0.158 0.001 0.100 -0.004 0.947 -1.273 0.050

C 5000 0.00 0.101 0.055 0.794 0.052 0.214 0.051 0.101 0.006 0.945 -1.277 0.076

10000 0.00 0.101 0.053 0.795 0.051 0.209 0.052 0.105 0.001 0.948 -1.275 0.074

wy ~ t(10): A 5000 0.06 0.302 0.062 0.089 0.053 0.148 0.050 0.096 0.055 0.950 -1.457 0.440
10000 0.06 0.303 0.059 0.086 0.051 0.148 0.050 0.100 0.054 0.949 -1.455 0.440

B 5000 0.00 0.101 0.000 0.794 -0.001 0.210 0.001 0.104 -0.003 0.930 -1.391 0.049

10000 0.00 0.101 0.000 0.796 0.001 0.168 0.000 0.101 0.002 0.945 -1.394 0.050

C 5000 0.00 0.104 0.055 0.791 0.052 0.215 0.051 0.105 0.005 0.945 -1.397 0.112

10000 0.01 0.103 0.056 0.797 0.048 0.209 0.051 0.107 0.004 0.948 -1.398 0.112

The table contains the average parameter estimates from 100 simulations. All computations in the programming language R (R Core

Team (2014)) using the same initial values across DGPs. w; ~ N(0,1), w; is standard normal with E(Inw?) = —1.27. w; ~ t(10), wy is
standardised ¢ with 10 degrees of freedom and E(lnw?) = 1.39. T, sample size. DGP A, (g, 11, p11,511,¢11) = (0,0.3,0.05,0.1,0.05)
DGP B, (oo, 11, p11,011,%1) = (0,0.1,0,0.8,0) and (po, @21, p21, 021, C1) =
(0.15,0,0.1,0,0.95). DGP C, (ao,a11,p11, 811, C11) = (0,0.1,0.05,0.8,0.05) and (po, aor, por, fo1, Cor) = (0.2,0.05,0.1,0,0.95). E(mor),
unconditional zero probability (estimated by the fraction of zeros, i.e. 1 — T—1 Zthl I;). All computations in R (R Core Team (2014)).

and (po, Qa21, P21, le, 421) = (015, 005, 005, 005, 095)



Table 2: Descriptive statistics, dynamic logit models and GARCH-
models of SP500, Apple and Ekornes returns (see Section 5)

Descriptive statistics:

52 st ARCH n 0s To
[p—val]
SP500 1.73 10.30 1[4(1)30.01}0 3684 2 0.001
Apple 9.25 55.03 [?).%12] 7303 294 0.040
Ekornes 5.70 10.32 EESL.O%]I 3546 667 0.189

Dynamic logit-models:

Do P G hy SIC  Logl
(s.e.) (s.e.) (s.e.) (s.e.)
SP500 Constant 7.158 0.0115 —17.04
(0.707)
Trend 7.200 0.673 0.0137 —17.00
(1.309) (2.478)
ACL(1,1) 0.032 —1.147 0.997 0.0116  —9.022
(4e—05)  (4e—05)  (4e—05)
Apple Constant  3.171 0.3387 —1232.5
(0.060)
Trend 1.870 3.437 0.3102 -1123.9
(0.094) (0.263)
ACL(1,1) 1le—09 0.024 0.999 0.3095 —1116.9
(4e—05) (0.011)  (9e—05)
Ekornes Constant (10.%?32) 0.9692 —1714.3
Trend 1.183 0.576 0.9673 —1706.9
(0.083) (0.150)
ACL(1,1)  0.445 0.207 0.701 0.9599 —1689.6

(0.130) (0.036) (0.087)

GARCH-models:

o i B

(s.e.) (s.e.) (s.e.)

SP500 Ordinary 0.015 0.083 0.908
(0.003) (0.008) (0.009)

0-adj. 0.015 0.083 0.908

(0.003) (0.008) (0.009)

Apple Ordinary 0.168 0.087 0.901
(0.033) (0.008) (0.010)

0-adj. 0.175 0.093 0.894

(0.037) (0.010) (0.012)

Ekornes  Ordinary 0.036 0.019 0.974
(0.009) (0.002) (0.004)

0-adj. 0.039 0.025 0.968

(0.011) (0.004) (0.005)

s?, sample variance. s*, sample kurtosis. ARCH, Ljung and Box (1979) test
statistic of first-order serial correlation in the squared return. p — wal, the
p-value of the test-statistic. n, number of returns. Os, number of zero returns.
7o, proportion of zero returns. s.e., approximate standard errors (obtained
via the numerically estimated Hessian). k, the number of estimated model
coefficients.  LogL, log-likelihood. SIC, the Schwarz (1978) information

criterion. All computations in R (R Core Team (2014)).
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Figure 1: Simulated parameter and risk estimation biases in GARCH(1,1) and log-
GARCH(1,1) models (see Section 4)
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Figure 2: Simulated parameter biases in GARCH(1,1) and log-GARCH(1,1) models
for the missing values algorithm in comparison with ordinary methods (see Section
4.2)
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Figure 3: Fitted O-probabilities, and the ratios of fitted oy, 1% VaR and 1% ES (see
Section 5).
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