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Abstract 

 

Individuals that reside in the highest social stratum of intelligence (i.e., those that 

have a high IQ) have been shown to generate relatively more national income and are more 

innovative, with those that have the lowest levels of IQ being less influential on economic 

development. However, the degree to which all levels of IQ influence economic growth and 

technological innovation remains unclear. By assuming that the IQ of a population is 

modeled based on a bell curve, we arrange IQ into three strata, namely intellectual class, 

average ability citizens, and non-intellectual class, which are represented by the 95th, 50th, and 

5th percentiles of cognitive ability, respectively. Our multiple hierarchical regression analysis 

of a sample of over 60 countries shows that the intellectual class has the greatest impact on 

economic growth followed by average ability citizens and the non-intellectual class in that 

order. Moreover, we find evidence that the impact of the intellectual class on technological 

progress is exceptionally more significant than even the number of professional researchers 

engaged in R&D activities, with average ability citizens and the non-intellectual class not 

significant. These findings allow us to suggest that the government and private institutions 

should not only employ professionals with good experiences and high academic credentials, 

but also those who has excellent IQ levels to work in their R&D sectors. However, in order to 

foster economic growth, governments should invest into facilities that benefit all societal 
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groups of intelligence level, with highest priority given to the intellectual class, followed by 

the average ability citizens and the non-intellectual class respectively. 

 

Keywords: economic growth; innovation; intellectual class; national IQ; non-intellectual 

class; patent 

JEL Classifications: I25, J24, O3, O47, Z13  

 

1.  Introduction 

Empirical studies have found that intellectual people, namely those that have a high 

IQ, contribute more to socioeconomic development in a society as compared to the average 

ability citizens. For example, assuming that the IQ of a population is modeled based on a 

normal distribution or bell curve (Herrnstein & Murray, 2010), Rindermann and Thompson 

(2011) found that the smartest proportion (i.e., those at the 95th percentile on the IQ scale) is 

more significant in raising cross-national income and technological achievement as compared 

to the citizens that have an average IQ (50th percentile). This finding implies that although the 

size of this “intellectual class” as it is termed in this paper is relatively small in the 

population, they are able to benefit society to a greater degree than society contributes to their 

lives. 

In a similar vein, Rindermann, Sailer, and Thompson (2009) found that the IQ of the 

non-intellectual class (i.e., those at the 5th percentile) is less influential at generating national 

income and technological progress compared with the 50th and 95th percentiles. However, 

neither of these studies employed standard models that consists of important control variables 

to measure how IQ affects their well-established determinants of technological achievement 

and national income. Moreover, although some prominent economists such as Hanushek and 

Woessmann (2012), Mankiw, Romer, and Weil (1992), and Furman, Porter, and Stern (2002) 

have identified the major determinants of economic growth and technological progress (e.g., 

GDP/GDP per capita, government investment, number of scientists and engineers, R&D 

expenditure, population growth rates), the degree to which all levels of IQ influence 

economic growth and technological innovation remains unclear. 
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In order to bridge this gap in the body of knowledge on this topic, the present study 

uses a standard estimation model to examine the influence of IQ at the 95th, 50th, and 5th 

percentiles on economic growth and technological achievement. For example, when 

formulating long-term plans for improving economic development, how should governments 

organize their human resources development policies? Should policymakers concentrate on 

small groups of brilliant people or provide an equal (moderately good) education for all 

citizens, as manifested by the United Nations (UNESCO, 2005). Identifying which classes of 

IQ are more or less important for boosting economic development will thus assist in the 

formulation of education, development, and R&D policies at the national level. 

This paper contributes to the literature in two important ways. First, it employs an 

econometric approach using standard growth model (Mankiw et al., 1992; Ram 2007) in 

examining the relative impact of different IQ classes on economic growth. This includes 

specific control variables, i.e., initial GDP per capita, population growth, proportions of 

government investments, and society education level. Secondly, it employs ideas production 

model (Furman et al., 2002) in measuring the impact of the IQ level of societal groups on 

technological progress, where the IQ-impact is controlled for population size, total GDP, and 

the number of professional researchers in R&D. 

 

2. Literature Review 

The centuries-old relationship between cognitive ability and technological 

achievement has recently been explored. Lynn (2012), for example, examined 120 countries 

in order to assess the degree to which technological achievement over millennia at the 

national level has been significantly correlated with variation in IQ. Variation in IQ was 

borrowed from the approach taken by Meisenberg and Lynn (2011) and the measures of 

technological achievement were derived from the study by Comin, Easterly, and Gong 

(2010). Based on this analysis, Lynn (2012) verified their correlation at r=.42 for 1000 BCE, 

r=.63 for 1500 AD, and r=.75 for 2000 AD. High-IQ nations have further been shown to 

demonstrate extraordinary expansion in their economic growth and productivity (Hanushek & 

Kimko, 2000; Jones & Schneider, 2006, 2010; Lynn & Vanhanen, 2002, 2006), arising from 

relatively high levels of technological achievement (Davies, 1996; Jamison, Jamison, & 

Hanushek, 2007; Rindermann, 2012). Similarly, Hart (2007, p. 23) showed that the most 
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notable inventions and innovations throughout history have been formulated by individuals 

with substantially above-average intelligence. 

The studies by Rindermann (2012) and Hanushek and Woessmann (2008, 2012) both 

showed that societal progress is mostly attributed by those that have an exceptional IQ. By 

employing the internationally renowned scholastic achievement scores (SAS), they found that 

economic growth and technological progress are accelerated in countries in which a larger 

proportion of the population has high cognitive skills (SAS≥600 points, or IQ≥115) 

compared with basic cognitive skills (SAS≥400 points, or IQ≥85).1,2 Moreover, the impact of 

the intellectual class on growth is four times that of basic performers, indicating that the size 

of the former is relatively more important for expanding economic growth. 

Other studies have verified the significant role of the intellectual class in coping with 

the increasing complexity of technology in daily life. The comprehensive European study of 

the determinants of innovation by Furman et al. (2002) found that the impact of scientists and 

engineers (β=1.407) and size of the economy (i.e., GDP) (β=1.034) on technological 

innovation were significantly positive, whereas population size (β=-1.337) was significantly 

negative.3 Ciccone and Papaioannou (2009) confirmed that a larger number of highly skilled 

people contributes to the more rapid adoption of new technologies and production processes, 

resulting in faster productivity growth in sophisticated skill-intensive industries. On the 

contrary, increasing population size hampers innovation rate, as similarly found in growth 

studies (e.g., Mankiw et al., 1992; Ram, 2007). However, unfortunately, Furman et al. (2002) 

neglected to examine the role of IQ in technological progress, thus leaving a large 

unanswered question regarding this IQ–innovation relationship. 

Gelade (2008) proved that countries that have a higher percentage of high-IQ 

individuals engineer a greater number of patents per capita compared with other nations. In a 

study of 112 countries, the author discovered a correlation of .51 between average IQ at the 

national level and number of patents per capita. Surprisingly, however, when investigating 

                                                 
1 Previous studies found high correlations between SAS scores and Lynn and Vanhanen’s (2002, 2006) national 
IQs, with r=.92–1.00 (Lynn & Meisenberg, 2010; Lynn, Meisenberg, Mikk, & Williams, 2007; Lynn & Mikk, 
2007, 2009), hence they are equivalent and sufficiently similar to be alternative measures of the same construct 
(Meisenberg & Lynn, 2011; Rindermann, 2007). 
2 The Programme for International Student Assessment (PISA) 2003 science and math test establishes the 
threshold of 400 points as the lowest bound for a basic level of achievement and 600 points for high 
performance (OECD, 2010). These values are comparable to an IQ level of 85 and 115, respectively. 
3 Accordingly, a 1% raise in GDP and the number of scientists and engineers will raise the number of patents by 
1.034% and 1.407%, respectively. A 1% decrease in population size will raise the number of patents by 1.337%. 
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the influence of the intelligent class (IQ≥140), the correlation only increased to .64. Despite 

these findings, it could be argued that setting an IQ threshold level of 140 is vague since it is 

purely based on assumptions and it lacks strong justification. Additionally, because Gelade’s 

analysis does not include major control variables such as those employed in Furman et al. 

(2002), it is hard to determine whether IQ does indeed have a substantial influence the rate of 

technological achievement across countries. 

In contrast to the procedures adopted by Hanushek and Woessmann (2008, 2012) and 

Gelade (2008), Rindermann and Thompson (2011) suggested that it is not the percentage of 

the high-IQ population that is crucial but rather the absolute IQ of this population. In 

Rindermann et al. (2009), the authors employed SAS data on cognitive ability for 90 

countries to compare the relative strength of the 95th, 50th, and 5th percentiles of IQ level on 

an array of economic outcomes. Their findings suggested that the IQ of the intellectual class 

is most significant at determining cross-country variations in GDP per capita and scientific-

technological achievement. To our knowledge, this is the only study that considers the low 

impact of the non-intellectual class on national income and scientific-technological 

achievement. Rindermann et al.’s (2009) conclusion that cross-country income inequality and 

the variation in scientific-technological achievement depend mostly on differences in IQ is 

similar to their subsequent findings in Rindermann and Thompson (2011). In this paper, they 

demonstrated that each point of national average IQ is found to raise GDP per capita by 

US$229, increasing to US$468 per IQ point for the brightest 5%. Further, they found 

considerable differential impact between the 95th percentile (β=.70), national average IQ (β=-

.19), and eminent-scientists rate from 800 BC to 1950 (β=.37) on high scientific-

technological achievement today. While these findings confirm the fact that high- and low-IQ 

individuals do not play an equal role in the economic development of a country, these two 

studies did not use standard models that included other major factors or control variables. 

Thus, we use standard models of economic growth and technological progress in order to 

examine the relative impact of different IQ classes. 
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3. Methodology 

3.1.  Measuring intellectual and non-intellectual classes 

As discussed in Section 2, previous studies have examined the effect of intelligence level by 

measuring either the proportion of the population that exceeds a given threshold (e.g., IQ or 

SAS level) or the IQ of an upper-level group, for instance at the 95th percentile of the 

population. Following Rindermann and Thompson (2011), we used the second approach 

because the absolute IQ of the intellectual class enables society-wide progress, not the 

percentage of the population in a higher stratum (i.e., the right-hand tail of the bell curve). In 

order to measure how the intellectual and non-intellectual classes affect economic 

development, we examined the data on cognitive ability used by Rindermann et al. (2009) 

and Rindermann and Thompson (2011). These authors presented an aggregate cognitive 

ability value for 90 countries by using the 95th, 50th, and 5th percentiles from the Trends in 

International Mathematics and Science Study (1995–2007), PISA (2000–2006), and the 

Progress in International Reading Literacy Study (2001–2006). In their study, they also 

transformed the data into an IQ scale, because psychologists are more familiar with the IQ 

scale than the SAS scale. Since the IQ level was taken from the distribution of a society 

(students) at 95%, 50%, and 5% achievement levels, therefore a limitation in our study; that 

is, we don’t analyze the impact of the intellectual classes themselves since we haven’t looked 

at the intelligent people and then analyze their work and impact on economic growth and 

technological achievement. However, this kind of procedure was defended by previous 

studies e.g., Hanushek and Woessmann (2008, 2012) and Rindermann and Thompson (2011). 

 

3.2  Model specifications 

We used the augmented Mankiw et al. (1992) growth model with the IQ measure 

employed by Ram (2007, Table 2 (4)) in order to estimate the impact of the 95th, 50th, and 5th 

percentiles on economic growth: 
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where GROWTH is the annual growth rate of real GDP per capita over the 1970–2010 period, 

β is a constant, and Y1970 is the initial per capita income at the beginning of the sample period. 

The data on GROWTH and Y1970 were obtained from the Penn World Table 7.1 (Heston, 

Summers, & Aten, 2012). I/Y is the investment as a percentage of annual GDP averaged over 

1970–2010 obtained from the World Development Indicators 2013 (World Bank, 2013). 

POPGR is the growth rate of the population obtained from the United States Census Bureau 

(USCB, 2013) database.4 SCHOOL is the average percentage of the working-age population 

(those aged 15–19)  in secondary schools over 1970–2010 obtained from Barro and Lee’s 

(2010) dataset.5 IQ is the cognitive ability at the 95th, 50th, and 5th percentiles and ei is the 

error term. The data on IQ were obtained from Rindermann et al. (2009).6 

The next stage was to examine the impact of IQ on technological achievement. We 

added the IQ of the intellectual class, mean ability, and non-intellectual class into Furman et 

al.’s (2002, Table 4 (4.1)) ideas production function. The model structure takes the following 

form: 

                                                                                                                    

where PATENTS is the average annual number of patents granted in the United States to 

establishments in country i within 2000–2009, which serves as a proxy for innovative output. 

Patent data were obtained from the database of the World Intellectual Property Organization 

(WIPO, 2009). GDP (real GDP in billions of PPP-adjusted 2005 US$) and POP (population 

(thousand persons)) were both obtained from the Penn World Table 7.1 (Heston et al., 2012) 

and their annual values were averaged for 2000–2009. IQ is the cognitive ability at the 95th, 

50th, and 5th percentiles and ei is the error term.  

Furman et al. (2002) used the full-time equivalent scientists and engineers in all 

sectors obtained from the OECD’s science and technology indicators database in order to 
                                                 
4 This variable is equal to (n + δ + g), namely population growth (n) plus the depreciation rate of capital (δ) plus 
the growth rate of total factor productivity (g), which is assumed to be exogenously growing at an exponential 
rate. Since δ and g are assumed to remain equal to .05 over time and identical across countries, (n + δ + g) is 
equal to the population growth rate, n (Mankiw et al., 1992). 
5 Population aged 15–19 is considered as a working-age group. Thus, Mankiw et al. (1992) suggested that 

percentage of this working-age population that is in secondary school can be used to proxy for the rate of human 

capital accumulation that benefits long-term economic growth. They found that the impact of initial GDP per 

capita, I/Y, POPGR, and SCHOOL were significant on economic growth over the 1960–1985 period. 
6 A similar dataset was employed by Rindermann and Thompson (2011). 
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proxy for a common innovation infrastructure. However, the unavailability of data on non-

OECD countries forced us to instead use RESEARCHER, namely the number of professional 

researchers (per million people) engaged in R&D, which was obtained from the World 

Development Indicators 2013 (World Bank, 2013). As before, its annual values were 

averaged for 2000–2009. Researchers in R&D are defined as professionals engaged in the 

invention of new knowledge, processes, products, methods, or systems and in the supervision 

of the projects involved. This includes postgraduate PhD students engaged in R&D. Table 1 

shows the list of countries ranked by selected variables. 

[Insert Table 1 here] 

 

4.  Results 

Tables 2 and 3 present correlation matrices for variables. 

[Insert Table 2 here] 

[Insert Table 3 here] 

In Table 4, we find that POPGR (Model 1) is inversely correlated with GROWTH, 

implying that increasing population growth rates negatively affect economic growth, as 

described by Mankiw et al. (1992) and Ram (2007). SCHOOL is not significant in all models 

(1, 5, 6, and 7), while IQ alone (Models 2, 3, and 4) is also insufficient to explain the 

economic growth rate in 1970–2010 as the R2 values of these models are very small, ranging 

from .060 to .067. Therefore, IQ-only regressions are not a good test of IQ-growth theory. 

[Insert Table 4 here] 

However, when IQ is added into Model 1, it substantially raises the adjusted R2 values 

from .336 to .573 (Model 5), .574 (Model 6), and .524 (Model 7). This trend is associated 

with beta-convergence of growth process, as evidenced by the negative sign of Y1970 (Models 

1, 5, 6, 7), showing that poor countries grow faster than rich ones and thus able to catch up on 

them, because decreasing returns to capital are not as strong as in capital-rich countries 

(Barro & Sala-i-Martin, 1997; Mankiw et al., 1992). With specific amount of human capital 

(e.g., IQ), the poorer countries gain advantages of relative backwardness due the ability to 

imitate the production methods and technologies of advanced countries with lower cost, and 
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then enjoying a more rapid growth than developed countries (Gerschenkron, 1962; Howitt, 

2005). Therefore, the rate of convergence estimates (Model 5, 6, 7) becoming higher (|β|>|-

1.693|) especially when IQ is included in the regression, given that long-run steady state level 

of income per capita is partially determined by human capital (Mankiw et al., 1992). 

IQ at the 95th, 50th, and 5th percentiles is found to be positively significant at the 1% 

level. Indeed, the impact of IQ is so strong that it greatly eliminates the influence of the major 

control variables (i.e., I/Y and POPGR) in the growth models. Of these three percentiles, we 

find that the magnitude of the 95th percentile is the largest (β=.104), followed by the 50th 

(β=.088) and 5th (β=.066) percentiles in that order. The result presented here, interpreted 

causally, imply that a 1 point increase in national IQ at 95th, 50th, and 5th percentiles 

correspond to a total more growth of 3.8%, 3.11%, and 2.46%, correspondingly, within 

1970–2010 period.7 Therefore, these results suggest that the intellectual class is the most 

relevant for increasing the economic growth rate followed by those categorized as mean 

ability and the non-intellectual class. 

As Table 5 shows, we find that the ideas production function (Model 1) explains 

86.7% of the variation in the average number of patents across the 66 sample countries. The 

control variables of GDP, POP, and RESEARCHER are also significant at the 1% level in 

Model 1. Accordingly, increasing GDP and the number of professional researchers as well as 

reducing population size will promote a greater technological achievement, as similarly found 

by Furman et al. (2002). We also show that GDP and RESEARCHER alone are strong enough 

to explain the average number of patents, with R2 values of .737 (Model 2) and .405 (Model 

3), respectively. In contrast to the growth regression, the three percentiles’ IQ alone (Models 

4, 5, and 6) is better at determining national innovative capacity across countries, with higher 

R
2 values (.246–.366). When the percentile-based classification is added into Model 1, we 

further find that IQ at the 95th percentile (Model 7) maintains its significance at the 1% level, 

whereas the 50th (Model 8) and 5th (Model 9) percentiles are not significant. 1 IQ of the 

intellectual class indicates .041% more patents within 2000–2009. Furthermore, Model 7 

shows that the impact of the 95th percentile on technological progress is stronger than that of 

the number of professional researchers in R&D, which is in turn more significant than the 5th 

percentile. 

                                                 
7 To determine the long-run level effect of IQ on economic growth, we adopted Jones and Schneider’s (2006) 
procedure, where the IQ coefficient is divided by 1/100th of the lagged GDP variable (log Y1970). This shows 
how much 1 IQ point raises steady-state living standards. 
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[Insert Table 5 here] 

 

5.  Conclusion 

The present study examined how different levels of IQ affect economic growth and 

technological progress at the national level. Overall, the resulted presented herein lent support 

to earlier studies of this topic. Consistent with the intellectual class theory advocated by 

Rindermann and Thompson (2011) and Rindermann et al. (2009), our research findings 

showed strong evidence that those people that have high IQ are the most relevant influence 

on economic development. Although our results suggested that all three examined IQ 

categories promote higher economic growth, the intellectual class has the highest impact 

followed by the mean ability and non-intellectual classifications. Similarly, the intellectual 

class also has a highly significant effect on generating technological progress, whereas the 

influence of the other two groups is immaterial. 

 IQ in this study is represented by cognitive skills, in which the raise in IQ level brings 

about more efficiencies, thus potentially producing a higher productivity with the same 

amount of resources (i.e., doing more with less). This justifies our finding that all three IQ 

classes have a significantly positive effect on economic growth, suggesting that intelligence 

level is a fundamental component of all economic activities, embracing both the high- and 

low-skilled labor forces, with the high-skilled labors have largest impact on productivity. 

Moreover, we found that the large differential impact between the 95th and 5th percentiles on 

economic growth occurs as an outcome of the increasing returns to scale in human capital 

accumulation (Acemoglu, 1996; Romer, 1986, 1990). For that reason, even a small difference 

between individual IQ could magnify into large income inequalities across countries (e.g., 

Hanushek & Kimko, 2000; Jones & Schneider, 2010). 

On the relationship between IQ and technological progress, our findings on 

intellectual class concur with those in the literature. Initiating and formulating innovation and 

invention demand exceptionally high cognitive skill levels. Indeed, even when other factors 

are controlled for, the impact of the intellectual class on technological progress is so strong 

that it largely eliminates the influence of professional researchers employed in the R&D 

sector. These findings allow us to suggest that the role of excellent IQ levels on technological 

progress outperforms the importance of people’s professional experience and academic 
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credentials especially in R&D. Nonetheless, the role of professional researchers was still 

shown to be of greater importance than the non-intellectual class. Moreover, the impact of 

GDP on technological progress maintains its exceptional significance, since larger economies 

can invest greater amounts into facilities that support long-term R&D activities (Furman et 

al., 2002). 

Based on these findings, we can recommend two main development policies. First, in 

order to foster economic growth, governments should invest into facilities that benefit all 

societal groups of intelligence level (UNESCO, 2005). Even though the intellectual class 

adds most value to GDP at the national level, other social classes still play a substantial role 

in this process, implying that development and human resources policies should focus on 

people of average and low IQ as well. Therefore, other than focusing on identifying low-

income high-IQ individuals to foster their educational and economic mobility (Pritchett & 

Viarengo, 2009), governments should enhance public investment in societal and intellectual 

development of non-intellectual class to prevent criminal activities and risky behaviors such 

as teenage pregnancy, school dropouts, and alcohol or drug abuse which actually have 

detrimental effects to wider society. Second, in order to achieve the highest technological 

achievement growth rate, we suggest that the government and private institutions should not 

only employ professionals with good experiences and high academic credentials, but also 

those who has excellent IQ levels to work in their R&D sectors. IQ is so significant that it 

does not only predict differential creative potential in scientific and technological innovation 

within populations that have a master’s or doctoral degree (Park, Lubinski, & Benbow, 

2008), but also to determine whether billionaires could occupy themselves in science, 

technology, engineering, and mathematics (STEM) sectors, or earn less in non-STEM sectors 

(Wai, 2013). A useful development approach would not merely increase the average 

education levels of the society, but would rather enhance the IQ level of the top percentile. 

Pritchett and Viarengo’s (2009) ideas on education policy are worth listening to, where the 

importance should be on “discovering the discoverers” by improving the educational system 

on high-IQ individuals, and promoting international standards of cognitive performance. This 

focus would ensure that the resulting innovation and invention would be of the finest quality 

and thereby generate the highest economic value. 
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Table 1 

List of countries with top- and bottom-10 rankings for selected variables. 

 

a GROWTH is the annual growth rate (%) of real GDP per capita (averaged 1970–2010). 

b PATENTS per 100,000 people is the annual number of patents per 100,000 people granted in the USA to the establishments in country i 

(averaged 2000–2009). 

c 
RESEARCHER is the number of researchers (per million people) engaged in R&D (averaged 2000–2009). 

d GDP is the real gross domestic product (in billions of PPP-adjusted 2005 US$) (averaged 2000-2009). 

e 
IQ is cognitive ability at the 95th, 50th, and 5th percentiles. 

 
GROWTH 

(N=61) 

PATENTS 

per 100,000 people 

(N=66) 

RESEARCHER 

(N=66) 

GDP 

(N=66) 

IQ 95th 

(N=66) 

IQ 50th 

(N=66) 

IQ 5th 

(N=66) 

10 Countries 

at Highest 

Ranking 

S. Korea: 5.89 
Macau: 5.68 
Singapore: 5.36 
Botswana: 5.27 
Malaysia: 4.65 
Malta: 4.60 
Hong Kong: 4.49 
Thailand: 4.28 
Indonesia: 4.11 
Egypt: 3.70 

USA: 28.369 
Japan: 26.712 
Switzerland: 16.434 
Finland: 15.647 
Sweden: 14.806 
Germany: 12.273 
S. Korea: 10.849 
Canada: 10.563 
Singapore: 8.682 
Luxembourg: 7.970 

Finland: 7507 
Iceland: 7445 
Sweden: 5463 
Japan: 5221 
Singapore: 5219 
Denmark: 5210 
Norway: 4842 
USA: 4688 
Luxembourg: 4509 
N. Zealand: 4148 

USA: 11697 
Japan: 4440 
Germany: 2567 
UK: 2032 
France: 1923 
Italy: 1600 
Canada: 1003 
Spain: 982 
Brazil: 850 
Mexico: 773 

Singapore: 127.22 
S. Korea: 125.25 
Japan: 124.3 
N. Zealand: 122.65 
Australia: 121.94 
UK: 121.92 
Hong Kong: 121.54 
Finland: 120.92 
Estonia: 120.75 
Canada: 120.32 

S. Korea: 106.37 
Singapore: 104.56 
Japan: 104.55 
Hong Kong: 103.66 
Finland: 102.91 
Estonia: 102.26 
Netherlands: 101.89 
Canada: 101.75 
Australia: 101.12 
Macau: 101.11 

S. Korea: 86.11 
Finland: 84.96 
Macau: 84.43 
Estonia: 84.40 
Hong Kong: 83.32 
Japan: 82.85 
Netherlands: 82.74 
Canada: 79.59 
Sweden: 79.21 
Australia: 79.06 

10 Countries 

at Lowest 

Ranking 

Argentina: 1.32 
N. Zealand: 1.28 
Algeria: 1.22 
Peru: 1.21 
El Salvador: 1.11 
S. Africa: .96 
Ghana: .90 
Switzerland: .80 
Iran: .63 
Bahrain: .51 

Colombia: .022 
Turkey: .022 
Philippines: .022 
Tunisia: .017 
Egypt: .009 
Morocco: .008 
Ghana: .005 
Algeria: .004 
Iran: .004 
Indonesia: .003 

Mexico: 328 
Thailand: 294 
Algeria: 170 
Kuwait: 168 
Indonesia: 166 
Colombia: 150 
Albania: 147 
Bosnia: 113 
Philippines: 77 
Ghana: 17 

Cyprus: 15.11 
Iceland: 12.87 
Ghana: 12.51 
Estonia: 12.33 
Macau: 10.89 
Bosnia: 9.82 
Albania: 7.00 
Macedonia: 5.53 
Malta: 5.53 
Moldova: 2.70 

Albania: 103.56 
Colombia: 101.38 
Philippines: 101.02 
Indonesia: 100.93 
Tunisia: 100.63 
S. Africa: 100.06 
Algeria: 97.94 
Kuwait: 97.77 
Morocco: 95.36 
Ghana: 89.38 

Egypt: 81.14 
Albania: 81.10 
Tunisia: 80.81 
Colombia: 80.61 
Algeria: 80.56 
Kuwait: 75.72 
Philippines: 73.55 
Morocco: 71.02 
S. Africa: 63.26 
Ghana: 61.25 

Brazil: 58.43 
Colombia: 58.15 
Albania: 55.84 
Argentina: 54.72 
Egypt: 53.73 
Kuwait: 53.10 
Morocco: 47.48 
Philippines: 46.61 
S. Africa: 35.69 
Ghana: 32.86 
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Table 2 

Correlation matrix for variables in growth model (N=61). 

 

Note: *p < .05 ; **p < .01 

a GROWTH is the annual growth rate (%) of real GDP per capita (averaged 1970–2010). 

b Y1970 is the GDP per capita in 1970. 

c 
I/Y is the investment as a percentage of annual GDP (averaged 1970–2010). 

d POPGR is the percentage of population growth rate (averaged 1970–2010). 

e SCHOOL is the percentage of the working-age population (those aged 15–19) in secondary schools (averaged 

1970–2010). 

f 
IQ is cognitive ability at the 95th, 50th, and 5th percentiles. 

 

 

 

 

 

 

 

 

 

  1 2 3 4 5 6 7 

1 GROWTH -       

2 log(Y1970) -.396** -      

3 I/Y .426** -.185 -     

4 POPGR -.008 -.449** .229 -    

5 SCHOOL -.031 .543** -.093 -.449** -   

6 IQ 95
th

 .245 .642** .110 -.567** .563** -  

7 IQ 50
th

 .258* .635** .164 -.561** .515** .966** - 

8 IQ 5
th

 .256* .595** .203 -.507** .429** .902** .975** 
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Table 3 

Correlation matrix for variables in ideas production function (N=66). 

 

Note: *p < .05 ; **p < .01 

a PATENTS is the annual number of patents granted in the USA to the establishments in country i (averaged 

2000–2009). 

b GDP is the real gross domestic product (in billions of PPP-adjusted 2005 US$) (averaged 2000-2009). 

c POP is the population size (thousand persons) (averaged 2000–2009). 

d 
RESEARCHER is the number of researchers (per million people) engaged in R&D (averaged 2000–2009). 

e 
IQ is cognitive ability at the 95th, 50th, and 5th percentiles. 

 

 

 

 

 

 

 

 

 

 

 

  1 2 3 4 5 6 

1 log (PATENTS) -      

2 log (GDP) .858** -     

3 log (POP) .410** .740** -    

4 log (RESEARCHER) .636** .384** -.158 -   

5 IQ 95
th

 .605** .291* -.216 .837** -  

6 IQ 50
th

 .548** .267* -.237 .815** .965** - 

7 IQ 5
th

 .496** .257* -.223 .773** .906** .979** 
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Table 4 

The relative impact of the 95
th

, 50
th

, and 5
th

 percentiles on economic growth rates. 

 

Note: Unstandardized and standardized (in parentheses) β coefficients. 

a * p < .05 

b ** p < .01 

 

 

 

 

 

 

 

 

Dependent Variable: GROWTH (GDP Growth Rates, % (1970–2010)) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

log (Y1970) 
-1.693** 
(-.536) 

   
-2.740** 
(-.867) 

-2.832** 
(-.896) 

-2.680** 
(-.848) 

I/Y 
.130** 
(.403) 

   
.058 

(.181) 
.043 

(.132) 
.051 

(.158) 

POPGR 
-.336* 
(-.260) 

   
.014 

(.011) 
.045 

(.035) 
-.034 

(-.027) 

SCHOOL 
.017 

(.181) 
   

.002 
(.026) 

.008 
(.080) 

.015 
(.154) 

IQ 95
th  

.033 
(.245) 

  
.104** 
(.773) 

  

IQ 50
th   

.029* 
(.258) 

  
.088** 
(.783) 

 

IQ 5
th    

.026* 
(.256) 

  
.066** 
(.649) 

        

N 61 61 61 61 61 61 61 

R
2 .380 .060 .067 .065 .608 .610 .564 

Adjusted R
2 .336 .044 .051 .050 .573 .574 .524 
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Table 5  

The relative impact of the 95
th

, 50
th

, and 5
th

 percentiles on national innovative capacity. 

 

 

 

 

 

 

 

 

 

 

Note: Unstandardized and standardized (in parentheses) β coefficients. 

a * p < .05 

b ** p < .01 

Dependent Variable: PATENTS (log (Total Number of Patents (averaged 2000–2009))) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

log (GDP) 
1.591** 
(.999) 

1.367** 
(.858) 

    
1.505** 
(.945) 

1.544** 
(.970) 

1.579** 
(.991) 

log (POP) 
-.511** 
(-.297) 

     
-.394* 
(-.229) 

-.443* 
(-.258) 

-.493** 
(-.287) 

log (RESEARCHER) 
.450** 
(.206) 

 
1.393** 
(.636) 

   
.020 

(.009) 
.247 

(.113) 
.399* 
(.183) 

IQ 95
th    

.090** 
(.605) 

  
.041** 
(.272) 

  

IQ 50
th     

.067** 
(.548) 

  
.016 

(.135) 
 

IQ 5
th      

.053** 
(.496) 

  
.004 

(.036) 

          

N 66 66 66 66 66 66 66 66 66 

R
2 .867 .737 .405 .366 .300 .246 .888 .872 .867 

Adjusted R
2 .860 .733 .396 .356 .289 .234 .880 .864 .858 


