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Abstract 
 

This paper examines the predictive power of oil price for gold price using the novel 

nonparametric causality-in-quantiles testing approach. The study uses weekly data over the 

April 1983-August 2016 period for both the spot and 1-month to 12-month futures markets. 

The new approach, the causality-in-quantile, allows one to test for causality-in-mean and 

causality-in-variance when there may be no causality in the first moment but higher order 

interdependencies may exist. The tests are preferred over the linear Granger causality test that 

might be subject to misleading results due to misspecification. Contrary to no predictability 

results obtained under misspecified linear structure, the nonparametric causality-in-quantiles 

test shows that oil price has a weak predictive power for the gold price. Moreover, the 

causality-in-variance tests obtain strong support for the predictive capacity of oil for gold 

market volatility. The results underline the importance of accounting for nonlinearity in the 

analysis of causality from oil to gold.  
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1. Introduction 

 

On account of oil’s frequent tradability, voluminous trades, high liquidity and synchronization 

of its movement, gold has held its righteous positions in not only national but in international 

economies as well. Oil is the commodity with the highest volume of trade and with higher 

price volatility and gold, on the other hand, is the most traded precious metal with the lowest 

price volatility. A comprehensive analysis of oil and gold prices suggests that prices of both 

are strongly related. Oil and gold hold a positive price correlation of 80% in the last 50 years.
1
 

There are a large number of studies suggesting that oil price changes give rise to price 

variations in gold. To illustrate, According to Sari et al. (2010) gold price changes are related 

to the oil price changes and oil price changes explain the 1.7% of the price change in gold. 

Hence, an empirical study is of enormous importance in examining this relationship and this 

study aims to examine the causality-in-quantiles running from oil to gold. 

 

There are several channels accounting for the relation between oil and gold prices. 

Many oil-exporting countries, for instance, perform oil transaction in return for gold. Due to 

its nature of safe investment, oil revenues are invested in gold. Besides, the costs in gold 

mining are very much related to energy and oil issues. This being the case, a rise in energy 

and oil prices inevitably has an impact on the costs in gold mining. Another channel effective 

in explaining the relation between oil and gold prices is inflation. As a support to explain this 

connection, Narayan et al. (2010) argues that the relation between oil and gold prices can be 

best explained through inflation. Other things being equal, a rise in oil prices at the 

international scale will affect the prices in global terms and will have a negative effect on the 

oil importing countries, yielding a negative relation between oil and inflation. Nowadays, 

gold is regarded as an instrument investors buy to balance their portfolio during times with 

high inflation (Ghosh, 2011). Since gold is a safe means of investment (safe heaven) the price 

of gold goes up in high inflation periods, hence, as oil prices rise so does inflation and price of 

gold.   

 

                                                
1
 See Barisheff (2005). 
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The literature on oil and gold price relationship and their interaction with a specific 

emphasis on macroeconomic and financial issues is scant. Each economic crisis led to some 

studies into the issue, especially gold seen as a safe haven. One of the leading studies is that 

of Melvin and Sultan (1990) and Kim and Dilts (2011), in which they found out a high 

correlation between oil and gold in terms of export channel. Nevertheless, the literature hosts 

other studies with no evidence of the relationship between the rises in prices of oil and gold 

(e.g., Soytas et al. 2009; Liao and Chen, 2008; Sari et al. 2007; Hammoudeh and Yuan, 2008; 

Narayan et al. 2010; Simakova, 2011; Le and Chang, 2011a and Lee et al. 2012). Sari et al. 

(2007) examined the dynamic links among commodities such as the oil, gold, silver and 

copper and financial variables, exchange rate and the interest rate. Their result showed that 

gold and exchange rate have predictive power for the oil, but oil does not have significant 

explanatory power these commodities. Soytas et al. (2009) studied the dynamic relationships 

among the oil, commodities (gold and silver), and financial variables (dollar exchange rate 

and bond rate) in Turkey. They examined both the short- and long-run dynamic interactions 

and concluded that oil prices do not have significant explanatory power for the gold. 

 

Thus, the empirical evidence on the relationship between the oil and gold markets can 

be best described as mixed, if not confusing. The studies on oil-gold relationship center more 

on whether oil has predictive power for gold and given the mixed evidence further studies are 

needed. The mixed evidence on the relationship between the oil and gold gets even more 

complicated due the use of different sample periods, methods and countries under 

consideration. What is more important is that no comprehensive and insightful study exists to 

date to examine the relationship between oil and gold prices. A study that takes into account 

of nonlinearities, structural breaks, outliers and effects of extreme markets conditions in the 

analysis of the oil and gold market relationship will resolve some of the ambiguities relating 

to the empirical studies.  

 

Against this backdrop, the objective of the current study is to use the recently 

proposed nonparametric causality-in-quantiles test by of Balcilar et al. (2016a, b) to analyze 

the predictability of mean and variance of gold price by oil price. The weekly data for the spot 

and 1- to 12-month futures prices of oil and gold market have been employed. The sample 

period ends at 8/10/16 and the beginning of the sample varies from 4/6/83 to 1/8/86 due to the 

varying operation start-up times in the futures markets.  
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Our first contribution to the literature on oil and gold price is that, rather than focusing 

on specific episodes of market periods, we use a nonparametric quantile testing approach 

which is rich enough to consider all market conditions jointly (low volatility, high volatility, 

crises, crashes, or bubbles). Thus, we can examine the predictive content of the oil market for 

the gold market under different market conditions. This will allow us to see under what 

conditions oil does predict the gold or does not. Our second contribution to the literature is the 

consideration of the both spot and futures markets. To our knowledge Narayan et al. (2010) is 

the only study considering futures markets. However, our study considers dynamic 

nonparametric quantile Granger causality and, therefore, significantly differs from Narayan et 

al. (2010) which only considers contemporaneous relationship via a static regression. Our 

third contribution to the literature is the examination of causality not only in mean but also 

causality in variance (volatility). Previous literature only studied the predictive power of the 

oil for gold in mean. Oil market may have predictive power for the second moment (variance) 

even if it does not have predictive power for the first moment (mean). The predictive power 

of oil market for gold market volatility can even be more important for investors and portfolio 

manager in developing hedging strategies. Our last contribution to the literature on oil and 

gold price causal nexus is that we use a novel nonparametric causality-in-quantiles test 

recently proposed by Balcilar et al. (2016a, b) to study whether oil price causes gold price 

returns and volatility. Their test integrates the test for nonlinear causality of k-th order 

developed by Nishiyama et al. (2011) with the quantile-causality test advanced by Jeong et al. 

(2012) and, hence, can be considered to be a generalization of the former. The causality-in-

quantiles approach mainly has three novel aspects: first, this approach identifies the 

dependence structure of the time series under consideration using a nonparametric estimation 

and therefore misspecification errors are at minimum level or none. Next, it is viable to test 

both causality-in-mean and causality-in-variance; this being the case, it allows for higher-

order dependency investigation, considered an essential point since there might be no 

causality in the conditional-mean for some periods, but higher-order dependency might be 

exists in the same periods. Finally, to date, this paper is the first one to examine the 

predictability and volatility of gold returns with the nonparametric causality-in-quantiles 

method, to the best knowledge of the authors. Our results show that oil prices have a weak 

predictive power for gold markets, as suggested by the results of the nonparametric causality 

tests. Still, we obtain strong evidence for causality-in-variance tests as we strongly reject the 

null hypothesis that oil prices does not Granger cause gold price volatility for spot and the 

futures markets at all maturities. 
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The paper is organized as the following: Section-2 accommodates the literature 

review, Section-3 introduces the method and Section-4 presents the data and the results and 

lastly Section-5 presents the conclusion.  

 

2. Literature Review 

 

There are some studies (e.g., Zhang and Wei, 2010) holding that oil and gold prices have high 

correlation, which is attributed to the phenomenon that high oil prices could have negative 

effect for economies and which in turn has an adverse effect that lowers the share prices 

(Kilian, 2009). Also, according to Melvin and Sultan (1990), export revenue channel may be 

used to explain the relationship between oil and gold prices. In an attempt to distribute the 

risks involved and to sustain the value of commodities and in order to possess more gold in 

their portfolio, major oil exporting countries invest the revenues obtained from oil in gold, 

paving the way for a rise in price of gold by increasing the demand. Finally, as stated by 

Narayan et al. (2010), Hooker (2002), Hunt (2006) and Beckmann and Czudaj (2013), 

inflation channel fits well in explaining the relation between oil and gold markets. On the 

other hand, there are studies, e.g., Le and Chang (2012), Bampinas and Panagiotidis (2015), 

claiming that oil and gold prices go hand in hand due to the correlation stemming from the 

volatility in US dollars and in international politics.  

 

From the empirical perspectives, there are studies using time series data for a given 

country (Abhyankar et al. 2013; Mollick and Assefa, 2013; Reboredo, 2013; Wang and 

Chueh, 2013; Tiwari and Sahadudheen, 2015; and Ghosh and Kanjilal, 2016) and studies with 

cross-national data (Cunado and Perez de Gracia, 2003; Cunado and Perez de Gracia, 2005; 

Cologni and Manera, 2008; Asteriou and Bashmakova, 2013; Wang et al. 2013; Degiannakis 

et al. 2014; and Cunado and de Gracia, 2014). Considering the energy sectors, studies with 

the theme of oil and stock markets are on the increase (e.g. Basher and Sadorsky, 2006; Park 

and Ratti, 2008; Kilian and Park, 2009; and Broadstock and Filis, 2014).  As suggested by 

Kilian and Park (2009), the reaction of real stock returns depends on the demand-driven 

increases or supply shock in the crude oil market.  

 

A position of a country in the global crude oil market is very much related to the 

impacts of oil price uncertainty, as shown by Wang et al. (2013). They reveal that, compared 

to oil-importing countries, the relation between demand uncertainties on stock market is 
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negative, much stronger and more persistent in oil exporting countries.  Furthermore, there are 

studies incorporating short-term interest rates in their models to determine the effect of oil 

price shock on stock markets (e.g., Cong et al. 2008 and Park and Ratti, 2008).  

 

 Exchange rate is another variable used in examining the stock market revenues 

(Mishra, 2004). However, the results obtained from studies using exchange rates could yield 

misleading results because they do not integrate oil prices as an important variable, a 

significant one in the relation between exchange rate and stock market (Abdelaziz et al. 

2008). 

 

What is more, the number of studies on the relations between gold prices and 

macroeconomic variables is fewer when compared with oil prices (Patel, 2013; Reboredo and 

Rivera-Castro 2014; Arouri et al. 2015; Beckmann et al. 2015; and Pierdzioch et al. 2015).  

The theoretical framework puts forward that the volatility in the exchange rate of dollar have 

an impact on gold prices, for gold price is quoted in US dollars. The price of gold is likely to 

go up in the event of dollar depreciation and the value of gold is sustained in this manner. For 

this reason, gold is seen as a safe asset against currency fluctuations, especially for investors 

with assets in dollars. Capie et al. (2005), Sjaastad (2008), Reboredo and Rivera-Castro 

(2014) and Beckmann et al. (2015) are among those who examined the relation between gold 

price and exchange rate empirically. Zhang and Wei (2010) examined the long-run 

relationship between oil and gold markets and concluded that these markets are cointegrated. 

They also found a one-way linear Granger causality from the oil market to the gold market 

and obtain evidence that causality in not nonlinear using Hiemstra and Jones (1994) nonlinear 

Granger causality test. Compared to Zhang and Wei (2010), our study finds nonlinear 

Granger causality evidence in the mid-quantile ranges (generally from 0.20th 0.70th 

quantiles). We also consider causality in variance (2nd moment) not only in the mean (1st 

moment). Tiwari and Sahadudheen (2015) used univariate GARCH in mean models to 

examine the impact of the oil prices on the gold. Their findings showed a positive significant 

effect of oil on the gold. Our study is quite different than Tiwari and Sahadudheen (2015) as 

they use a parametric GARCH in mean model with linear conditional mean specification. Our 

study performs a nonparametric causality-in-quantiles tests for 2nd order causality while 

Tiwari and Sahadudheen (2015) only considers a GARCH error specification and they do not 

test for causality in variance. In addition, the literature on the relation between such strategic 

commodities as oil and gold and macro-financial variables within a multivariate context is 
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limited, on the whole (see, Christiano et al. 1996; Awokuse and Yang, 2003; Sari et al. 2010; 

Bhunia, 2013; Chang et al. 2013; and Hussin et al. 2013). 

 

3. Methodology 

 

By building on the framework of Nishiyama et al. (2011) and Jeong et al. (2012) we use a 

novel methodology as advanced by Balcilar et al. (2016a, b), a method that is useful in 

detecting nonlinear causality through a hybrid approach. The returns on gold is designated as 

 while the oil return is designated as . Based on Jeong et al. (2012), we define the 

quantile-based causality as follow
2
:  does not cause  in the -quantile with regards to the 

lag-vector of 
 
if  

                             (1) 

 is presumably cause of  in the -th quantile with regards to  

if  

                                                (2) 

Here,     is the -th quantile of . The conditional quantiles of , ,  

depends on t and the quantiles are restricted between zero and one, i.e., . 

 

For a compact presentation of the causality-in-quantiles tests, we define the following 

vectors  , , and .  Let also define the 

conditional distribution functions   and , which signify the 

distribution functions of  conditioned on vectors  and , respectively. Moreover, the 

conditional distribution 
 
is presumed to be completely continuous in  for 

nearly all . By defining 
 
and , we can see 

that , which holds with a probability equal to one. As a result, the 

hypotheses to be evaluated for the causality-in-quantiles based on equations (1) and (2) can be 

represented as: 

   (3) 

  (4) 

 

                                                
2 The exposition in this section closely follows Nishiyama et al., (2011) and Jeong et al., (2012). 
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In order to define a measurable metric for the practical implementation of the 

causality-in-quantiles tests, Jeong et al. (2012) make use of the distance measure 

, where  denotes the regression error and  denotes the 

marginal density function of . Consequently, the causality-in-quantiles test is based on 

the regression error . The regression error  arises based on the null hypothesis specified in 

equation (3), which would be true, if and only if  . In order to 

make the regression error explicit, we rewrite this last statement as 

, where  is an indicator function. Now, following Jeong et al. 

(2012), based on the regression error, the distance metric can be defined as: 

   (5) 

In relation to equations (3) and (4), it is crucial to understand that . The statement will 

hold with an equality, i.e., , if and only if the null  in equation (3) is true, while  

holds under the alternative  in equation (4). The feasible counterpart of the distance 

measure  in equation (5) gives us a kernel-based causality-in-quantiles test statistics for the 

fixed quantile  and defined as:  

 

 (6) 

 

where   denotes a known kernel function,  is the bandwidth for the kernel estimation,  

denotes the sample size, and  represents the lag-order used for defining vector . Jeong et 

al. (2012) establish that the re-scaled statistics  is asymptotically distributed as 

standard normal, where . The 

most crucial element of the test statistics  is the regression error . In our particular case, 

the estimator of the unknown regression error is defined as: 

  (7) 

In equation (7), the quantile estimator  yields an estimate of the -th 

conditional quantile of  given . We estimate  by employing the nonparametric 

kernel approach as: 

   
(8) 

where  denote the Nadarya-Watson kernel estimator given by: 
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                    (9) 

with  denote a known kernel function and  is the bandwidth used in the kernel 

estimation.  

 

The causality in variance implies volatility transmission, which may exist even there is 

no causality in the mean (1st moment). Testing for Granger causality in the second or higher 

moments has some complications and the procedure for such tests should be carefully defined 

since rejection of causality in the moment  does not imply non-causality in the moment  

for . We begin by employing Nishiyama et al. (2011) nonparametric Granger quantile 

causality method. In order to demonstrate the causality in higher order moments, first we 

examine the process below for :  

        (10) 

where  denote an independently and identically distributed (iid) process; the unknown 

functions  and  satisfy some properties that are sufficient for the stationarity of . 

Although, this representation does not permit linear or non-linear causalities from 
 
to , it 

does allow 
 
to have predictive content for  when  is an established nonlinear 

function. The representation in equation (10) illustrates that squares for  does not 

necessarily enter into the nonlinear function . Thus, we re-specify equations (3) and (4) 

into a null and alternative  hypothesis for causality in variance as follows: 

       (11) 

       (12) 

In order to get a feasible test statistic for testing the null hypothesis  in equation (11), we 

substitute  in equations (6) to (9) with . A problem may arise with the causality test based 

on the definition given in equation (10), since there may be causality in the second moment 

(variance) along with the causality in the conditional first moment (mean). We can illustrate 

this with the following model: 

       (13) 

Therefore, the higher order causality-in-quantiles can be stated as:  

    for            (14) 

    for            (15) 
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Incorporating the whole concept, we specify that tx  Granger causes  in quantile  

up to -th moment using equation (14) to formulate the test statistic of equation (6) for each 

. Nishiyama et al. (2011) construct nonparametric Granger causality tests using the density-

weighted approach as in Jeong et al. (2011) and show that density-weighted nonparametric 

tests in higher moments have the same asymptotic normal distribution as the test for causality 

in first moment, although some stronger moment conditions might be necessary. 

Nevertheless, it is not an easy task to test for all  jointly, since the statistics are 

jointly correlated (Nishiyama et al. 2011). In order to systematically overcome this issue, we 

follow the sequential testing approach in Nishiyama et al. (2011) to test for causality in both 

models defined in equations (10) and (13). In this approach, we first test for nonparametric 

Granger causality in the first moment ( , but still continue for testing causality in 

variance even if the non-causality is not rejected. That is, if the null for  is not rejected, 

then there might still be causality in the second moment and, thus, we construct the tests for 

. This approach allows us to test the existence of causality only in variance as well as 

the causality in the mean and variance successively. Conclusively, we can investigate the 

existence of causality-in-mean and causality-in-variance sequentially. The empirical 

application of causality testing through quantiles require identifying three crucial choices: the 

lag order , the bandwidth , and the kernel type for  and  in equations (6) and (9), 

respectively. In this study, we make use of lag order of 7 based on the Schwarz Information 

Criterion (SIC) under a VAR involving oil returns and gold returns. Moreover, when it comes 

to choosing lags, the SIC is considered being parsimonious compared to other lag-length 

selection criteria. The SIC helps overcome the issue of over-parametrization usually arising 

with nonparametric frameworks.3 The bandwidth value is chosen by employing the least 

squares cross-validation techniques.
4
 Finally, for  and  Gaussian-type kernels was 

employed. 

 

4. Data and E mpirical Findings 

4.1 Data 

We employ weekly US dollar closing prices of crude oil spot and futures contracts traded on 

the New York Mercantile Exchange as well as weekly US dollar prices of gold spot and 

                                                
3
 Hurvich and Tsai (1989) examine the Akaike Information Criterion (AIC) and show that it is biased towards 

selecting an over-parameterized model, while the SIC is asymptotically consistent. 
4
 For each quantile, we determine the bandwidth  using the leave-one-out least-squares cross validation method 

of Racine and Li (2004) and Li and Racine (2004). 
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futures contract on London Bullion Market (LBMA). All data is sourced from Datastream. 

The data used for futures prices of oil and gold is for 1-month to 12-month maturities. The 

data span used in this paper differs for both markets, for gold and oil markets started due to 

their operations starting on different dates. The oil and gold series in the sample is presented 

in the first column of Table 1. The data span is until 08/10/2016 and beginning of the sample 

is given in the last column of Table 1. Figure 1 displays the time series plots all series. 

 

Degrees of sensitivity of gold markets to oil prices tend to change in different markets, 

as shown by the empirical evidence. To illustrate, while oil price rises are to the benefit of oil 

exporting countries, it is not the same for oil importing countries. Market price (such as Gold) 

would usually have an averaging affect across market and might not uncover the causal links 

in oil and gold prices. Since it is our objective to describe a dependence structure, we found it 

to be more appropriate to use weekly data in this paper. The use of daily data could mask the 

dependence structure we wished to examine due to the probable effects of drifts, noise, non-

stationary variances, long memory or sudden jumps which could disrupt the modelling of 

marginal distributions. In addition, due to the highly volatile structure of oil and gold markets, 

it would be nearly impossible to grasp the relation between oil and gold prices, which is why 

we use weekly data. As indicated by standard unit root tests, oil and gold series are non-

stationary in log-levels
5
. The nonparametric causality-in-quantile test requires stationary data 

and for this reason, we use the first-differences of the natural logarithmic values of the oil and 

gold price in percentage. 

 

# Insert Figure 1 in Here # 

 

Key points of the data series under consideration are presented in Table 1, which 

reports the mean, standard deviation, Kurtosis, Skewness, the Jarque-Bera normality test (JB), 

the Ljung-Box first [Q(1)] and the fifth [Q(5)] autocorrelation tests, and the first [ARCH(1)] 

and the fifth [ARCH(5)] order Lagrange multiplier (LM) tests for the autoregressive 

conditional heteroskedasticity (ARCH) for oil and gold spot and futures contracts. The mean 

of oil market returns is at its lowest for futures price but as for the spot prices there is a 

gradual increase with the longest maturity of 12-month contracts with highest average price of 

0.32. On the other hand, as for the mean of gold market returns, it is at its lowest with 

                                                
5
 Complete details of the unit root tests are available upon request from the authors. 
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maturity of 12-month contract for futures price but there is a gradual increase for spot prices, 

with the lowest maturity of 1-months contract with the highest average price of 0.68. In terms 

of volatility, oil market returns exhibit a more volatile structure than gold market returns. 

Based on the negative values of the skewness, there is a higher possibility of large decreases 

in returns, with one exception. The exception is that, considering oil market returns, the 12-

month contract returns has a positive skewness estimate around 0.89. Based on the kurtosis 

statistic, we observe fat-tailed distribution for all return series. As a more important finding, 

the variables under consideration are skewed to left, with positive excess kurtosis, leading to 

non-normal distributions, as shown by the strong rejection of Jarque-Bera statistic at 1% 

significance level. The use of the causality-in-quantiles test is first justified by the fat-tailed 

distributions of both returns. We observe significant serial correlation for oil market returns, 

while significant serial correlation is not found for gold market returns, as suggested by 

Ljung-Box statistic. There are ARCH (autoregressive conditional heteroscedasticity) effects 

in all the return series, as shown by the autoregressive conditional heteroskedasticity-

Lagrange multiplier (ARCH-LM) statistic.  

 

# Insert Table 1 in Here # 

 

As well as examining the causality-in-quantiles from oil to gold, for completeness and 

comparability, we also conducted the standard linear Granger causality test based on a linear 

vector autoregression (VAR) model. Table 2 reports the results of linear Granger causality 

tests. All of the F-statistics reported in Table 2 for the null hypothesis that oil returns does not 

Granger cause gold returns are less than 1.8. Hence, we can conclude that even at significance 

levels greater than 10%, there is no support of predictability running from oil to gold in a 

linear VAR framework. 

 

# Insert Table 2 in Here # 

 

Subsequently, using the nonparametric quantile-in-causality approach, a 

nonparametric (i.e., data-driven) approach, we examine the possibility of nonlinear 

dependence between the oil returns and gold returns. In order to serve this purpose, Brock et 

al. (1996, BDS) test is implemented on the residuals of an VAR(1) model for both returns. 

We apply the BDS test to the residuals of oil returns and gold returns equation in the VAR(1) 

model. As Table 3 shows, we reject the null of i.i.d. residuals at various embedding 
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dimensions (m), since there is strong evidence at the highest level of significance against 

linearity. Based on this result, we conclude that there is strong evidence of nonlinearity in oil 

returns and gold returns. This means that Granger causality tests in a linear framework might 

lead to unreliable results due to misspecification errors. Because of the strong evidence of 

nonlinearity, we implement the causality-in-quantiles test, which is deemed robust against, 

jumps, outliers, structural breaks, and nonlinear dependence. 

 

# Insert Table 3 in Here # 

 

Given the strong evidence of nonlinearity obtained from the BDS tests, we further 

investigate whether nonlinear Granger causality running from oil markets to gold markets 

exists. In order to test for full sample nonlinear Granger causality, we use the nonlinear 

Granger causality test of Diks and Panchenko (2006).
6
 Diks and Panchenko (2006) nonlinear 

Granger causality test results are presented in Table 4. We perform the tests for embedding 

dimension m = 2, 3, 4 in order be robust against the lag order used in the test. The tests results 

reported in Table 4 show that null hypothesis of no full sample nonlinear Granger causality 

running from the oil to gold is rejected for none of the spot and futures markets. This results 

holds unanimously for all embedding dimensions considered. Given the nonexistence of any 

evidence on the full sample nonlinear Granger causality, we next turn to nonparametric 

causality-in-quantiles tests, which considers all quantiles of the distribution not only the 

center of the distribution.  

 

# Insert Table 4 in Here # 

 

The results of the quantile causality in mean and variance from the oil market series to 

the gold market series are presented in Figure 2. The horizontal axis shows the quantiles and 

the vertical axis shows the nonparametric causality test statistics corresponding to the quantile 

in the horizontal axis. While 5% critical value is 1.96, 10 percent critical value is 1.64.  

Horizontal thin solid lines show the critical value of 5% and thin two-dashed lines represent 

10% critical values. There is clear difference between the quantile causality in mean and 

quantile causality in variance analysis, as shown by the results in Figure 2. According to the 

quantile causality test in mean the null hypothesis that oil does not Granger cause gold is not 

                                                
6
 Diks and Panchenko (2006) test corrects the over-rejection problem observed in  Hiemstra and Jones (1994) 

test. 
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rejected (p > 0.05) with a critical value of 1.96 over the quantile range of 0.25 to 0.60. The 

only exception occurs at the quantile of 0.55. Except for one or two quantiles, the causality-

in-quantile test does reject the null hypothesis (p > 0.05) within the quantile range of 0.10 to 

0.90 for future markets with differing maturities (1-month, 2-month, 3-month, 4-month, 6-

month, 9-month). On the other hand, the null hypothesis that oil does not Granger cause gold 

is rejected (p < 0.05) over the quantile range of 0.45 to 0.70 for futures market at 5-month 

maturity as well as the quantile range of 0.25 to 0.65 for futures markets at 10-month and 11-

month maturities, and the quantile range of 0.25 to 0.75 for futures market at 12-month 

maturity. The quantile causality test in mean for the spot and futures markets at 5-month, 10-

month, 11-month, and 12-month maturities exhibits that oil returns has predictive power on 

gold returns. Yet, as for maturities of 1-month, 2-month, 3-month, 4-month, 6-month, 9-

month, there is week evidence that oil returns have predictive power for gold returns for the 

futures markets. For these maturities, oil has predictive power for gold only around the 

quantiles from 0.40 to 0.60 and the null is rejected only at 10% level for the 3-month 

maturity. In sum, oil returns have no predictive power for gold returns in bearish (lower 

quantiles) and bullish (upper quantiles) market conditions.  

 

According to the quantile causality in variance test results shown in Figure 2, the null 

hypothesis that oil does not Granger cause gold in variance (2
nd

 moment) is rejected (p < 

0.05) over the quantile range of about from 0.15 to 0.75 for all spot and all futures markets. 

This result shows that oil spot and all oil futures have strong predictive content for spot and 

all future price volatility (variance) of gold market. Hence, there is no evidence supporting the 

predictive power of oil for gold returns in the linear model. However, because of the 

nonlinearity, the result of linear Granger causality is misleading. This in mind, nonparametric 

causality-in-quantiles test results indicate that spot and future prices of oil have predictive 

content for spot and future gold price volatility. This, in part, suggests that contrary to 

equities, oil market moves in connection with gold market volatility during the periods of 

stress.  

 

The reason for this could be can be explained by the fact that crude oil is an essential 

raw material in industrial manufacturing. Thus, global economic growth is much more linked 

with crude oil than gold. For this reason, investors consider price changes in crude oil an 

important phenomenon. With respect to global industrialization and globalization of markets, 

crude oil futures impact other futures available, for it is the largest commodity futures in the 
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world. The rapid development in alternative energy resources made it possible for the USA to 

incorporate corn and white sugar in bioethanol in order to produce biodiesel fuel and this is an 

example of the close link between crude oil prices and grease products, soybean and corns. In 

summary, due to the extensive use of crude oil in the world global markets, the commodity 

prices in world markets on the whole rest with the fluctuations of crude oil prices.  

 

 

# Insert Figure 2 in Here # 

 

The results in Figure 2 shows that the strength of the evidence of causality from oil 

market to gold market, both in mean and variance, exhibits a hump-shaped pattern across 

quantiles. Similar observations can be made across all the spot and 1- to 12-month maturities. 

The hump-shaped pattern of causality is a new finding in this study and illustrates an 

advantage of using our nonparametric causality-in-quantiles tests: A researcher who only 

studies the median of the conditional distribution of gold returns and/or gold volatility would 

likely to find strong evidence of predictive power from the oil to the gold, but, at the same 

time, would completely miss that this evidence substantially weakens when the quantiles that 

are farther away from the median are considered. We further point out that hump-shaped 

curves in Figure 2 are asymmetric, where noncausality part is longer on the right tail and the 

curves decline smoother on the right half of the figures. This implies that evidence of 

noncausality is weaker on the right tail (extreme gold price increases) compared to the left tail 

(extreme gold price decreases).  

 

5. Conclusion 

 

The extant literature so far has examined the oil market with respect to its predictive power 

for gold markets. This paper adds to this literature by means of examining the predictability of 

gold markets for the mean and volatility by the oil market. To serve this purpose, using 

weekly data, standard linear Granger causality test is implemented but no evidence has been 

found about causality running from oil market to gold market. Following the nonlinearity 

tests, we find oil returns relationship with gold returns have nonlinear characteristics, which 

suggests that the linear causality tests suffer from misspecification, thus yielding unreliable 

results. In order to overcome this problem, we employ a nonparametric causality-in-quantiles 

test, incorporating the test for nonlinear causality of k-th order developed by Nishiyama et al. 

(2011) with the causality-in-quantiles test developed by Jeong et al. (2012). This approach, 
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the causality-in-quantiles, enables us to examine causality-in-mean as well as the causality in 

variance. In this way, even when there might be no causality in mean, we can still examine 

the causality-in-variance (volatility). The nonparametric causality tests in mean indicate that 

oil prices have a weak predictive content for gold market. Yet, the null hypothesis that oil 

prices does not Granger cause gold price volatility for spot and the futures markets at all 

maturities is strongly rejected for both spot and futures markets. The results on the nexus 

between oil market and gold market, on the whole, underline the significance of detecting and 

modeling nonlinearity when examining predictability via causal relationships. 

 

The hump-shaped pattern in causality-in-quantiles tests we have found for causality 

running from oil markets to gold markets, both for causality in mean and variance, highlights 

the strong causal effects at the center of the conditional distribution of gold-price fluctuations. 

In other words, the strongest effects of oil returns on gold returns and gold volatility may 

occur on average, especially at higher data-frequencies (weekly data), in times of normal 

rather than in times of exceptional movements of the gold price. However, this finding does 

not rule out that singular events like the outbreak of a financial crisis or geopolitical 

turbulences that trigger significant movements of the gold price, but it rather highlights that 

investors and policymakers should study the entire conditional distribution of gold-price 

movements when looking for causal effects of oil that operate, for example, in normal times 

and in times of gold market turmoil. Similarly, an asymmetric hump-shaped pattern of 

causality highlights that the strength of causality effects differs across the upper and lower 

parts of the conditional distribution of gold-price movements. 

 

As we pointed out, events such  as important financial crisis or geopolitical events that 

trigger significant gold price fluctuations are not ruled out by the strong causality evidence on 

the center of the gold returns distribution, but it rather highlights that investors and 

policymakers when looking for causal effects from oil to gold markets should consider the 

entire conditional distribution of gold-price movements, not only the center of the distribution 

which corresponds to low return periods. The asymmetric hump-shaped pattern of causality 

running from oil to gold markets found in our study highlights that the strength of causality 

effects differs across the upper and lower parts of the conditional distribution of gold price 

movements. These results imply that investors should be aware that predictive power of oil 

prices for the gold prices observed in normal times weakens during extreme market 

conditions (low and high gold price periods). In terms of hedging strategies for portfolio 
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managers, our results show that gold is a safe haven against extreme oil price movements, but 

it not an effective hedge instrument against oil price during the normal market periods. 

Investors should also know that oil precise would only indicate direction of gold price 

movements during normal market periods, oil prices do fail to predict the extreme gold price 

movements, particularly the extreme price increases. 
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Table 1. Descriptive statistics for returns (%) 

n Mean S.D. Min Max Skewness Kurtosis JB Q(1) Q(5) ARCH(1) ARCH(4) 

Starting 

Period 

    Panel A: Oil market returns    

              Spot 1596 0.030 5.200 -29.255 30.305 -0.153 2.942 584.547*** 6.104** 23.318*** 83.207*** 149.479*** 1/8/86 

1-month 1741 0.020 4.881 -37.288 24.390 -0.310 4.309 1379.907*** 5.189** 23.360*** 58.484*** 114.767*** 4/6/83 

2-month 1741 0.021 4.482 -36.534 23.980 -0.370 4.814 1726.989*** 3.493* 21.033*** 52.602*** 82.984*** 4/6/83 

3-month 1741 0.022 4.210 -32.128 23.298 -0.365 4.416 1458.796*** 3.350* 20.126*** 49.219*** 86.112*** 4/6/83 

4-month 1741 0.024 4.000 -28.831 22.478 -0.344 4.165 1297.596*** 3.624* 20.126*** 52.244*** 95.926*** 4/6/83 

5-month 1741 0.025 3.865 -25.995 21.700 -0.255 4.222 1317.403*** 5.213** 21.647*** 65.326*** 113.488*** 4/6/83 

6-month 1741 0.026 3.696 -23.377 21.120 -0.298 3.843 1101.367*** 4.278** 21.304*** 62.175*** 117.932*** 4/6/83 

7-month 1741 0.027 3.579 -20.875 20.675 -0.247 3.649 987.705*** 4.600** 20.206*** 70.764*** 129.160*** 4/6/83 

8-month 1709 0.026 3.509 -18.685 20.227 -0.210 3.450 863.902*** 5.191** 20.030*** 75.138*** 135.043*** 11/9/83 

9-month 1709 0.026 3.416 -17.105 19.625 -0.212 3.404 841.748*** 4.919** 19.307*** 80.148*** 140.802*** 11/9/83 

10-month 1709 0.026 3.339 -15.603 19.088 -0.168 3.353 812.311*** 4.627** 18.345*** 80.426*** 145.541*** 11/9/83 

11-month 1709 0.027 3.275 -15.425 18.801 -0.061 3.842 1056.723*** 4.149** 16.648*** 65.898*** 125.291*** 11/9/83 

12-month 1703 0.032 3.349 -22.521 41.310 0.895 17.313 21554.673*** 4.295** 14.558** 3.141* 6.403 12/21/83 

    Panel B: Gold market returns    

              Spot 1741 0.067 2.190 -12.383 13.703 -0.196 3.759 1040.451*** 0.550 5.346 20.171*** 82.174*** 4/6/83 

1-month 1741 0.068 2.232 -13.048 12.945 -0.247 4.202 1303.903*** 0.203 3.540 19.944*** 70.376*** 4/6/83 

2-month 1741 0.067 2.235 -13.106 13.102 -0.237 4.240 1325.564*** 0.193 3.595 19.755*** 69.620*** 4/6/83 

3-month 1741 0.067 2.240 -13.207 13.107 -0.239 4.218 1312.369
***

 0.178 3.899 19.823
***

 68.761
***

 4/6/83 

4-month 1741 0.066 2.249 -13.351 12.981 -0.234 4.109 1245.738*** 0.087 3.818 19.550*** 64.583*** 4/6/83 

5-month 1741 0.066 2.263 -13.416 12.803 -0.338 4.523 1523.146*** 0.188 3.305 16.442*** 50.707*** 4/6/83 

6-month 1741 0.065 2.247 -13.480 12.580 -0.259 4.066 1223.397*** 0.127 3.277 20.531*** 64.907*** 4/6/83 

7-month 1741 0.064 2.245 -13.515 12.317 -0.270 4.043 1211.819*** 0.128 3.238 21.032*** 65.733*** 4/6/83 

8-month 1741 0.063 2.244 -13.590 12.090 -0.281 4.021 1200.538*** 0.149 3.222 21.183*** 66.023*** 4/6/83 

9-month 1741 0.063 2.242 -13.662 11.827 -0.291 3.992 1185.132*** 0.145 3.243 21.531*** 66.493*** 4/6/83 

10-month 1741 0.062 2.241 -13.756 11.632 -0.300 3.978 1178.518*** 0.162 3.184 21.994*** 67.299*** 4/6/83 

11-month 1741 0.061 2.239 -13.876 11.471 -0.310 3.975 1178.872*** 0.175 3.099 22.546*** 68.063*** 4/6/83 

12-month 1741 0.060 2.238 -14.015 11.240 -0.321 3.973 1179.443*** 0.184 3.003 22.670*** 68.555*** 4/6/83 

Note: Table reports the descriptive statistics for the spot and futures (1- to 12-monh) returns (in percent) for the oil (Panel A) and gold (Panel B) markets. Sample period starts at the period given 
in the last column of the table and ends at 8/10/16 at weekly frequency with n observations for each series. In addition to the mean, the standard deviation (S.D.), minimum (min), maximum 

(max), skewness, and kurtosis statistics, the table reports the Jarque-Bera normality test (JB), the Ljung-Box first [Q(1)] and the fifth [Q(5)] autocorrelation tests, and the first [ARCH(1)] and the 

fifth [ARCH(5)] order Lagrange multiplier (LM) tests for the autoregressive conditional heteroskedasticity (ARCH). The asterisks 
***

, 
**

 and 
*
 represent significance at the 1%, 5%, and 10% 

levels, respectively. 
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Table 2. Linear Granger causality tests 

H0: Oil returns dos not 

Granger cause gold returns Order of the VAR (p) 

Spot 0.3515 1 

1-month 0.4495 1 

2-month 0.6243 1 

3-month 0.4665 1 

4-month 0.8578 1 

5-month 0.9711 1 

6-month 1.1388 1 

7-month 1.3820 1 

8-month 1.6680 1 

9-month 1.7744 1 

10-month 1.3677 1 

11-month 0.6819 1 

12-month 1.0793 1 
Note:  The table reports the F-statistic for the no Granger causality restrictions imposed on a linear 

vector autoregressive (VAR) model under the null hypotheses H0. The order (p) of the VAR is 
selected by the Bayesian Information Criterion (BIC).  

***
, 

**
, and 

*
 indicates rejection of the null 

of no Granger causality at 1%, 5%, and 10% level of significance respectively.   
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Table 3. [Brock et al. (1996)] BDS Test 

m=2 m=3 m=4 m=5 m=6 

Oil equation residuals 

      
Spot 4.3366

***
 6.3979

***
 8.7684

***
 12.0488

***
 16.0429

***
 

1-month 2.8986
***

 4.6127
***

 6.4604
***

 8.9956
***

 12.0025
***

 

2-month 2.7707
***

 4.5157
***

 6.5014
***

 9.0343
***

 12.3810
***

 

3-month 2.8410
***

 4.5077
***

 6.5455
***

 9.0949
***

 12.4291
***

 

4-month 2.7309
***

 4.4384
***

 6.2019
***

 8.4082
***

 11.2339
***

 

5-month 3.0060
***

 4.7500
***

 6.5533
***

 8.9485
***

 12.0510
***

 

6-month 2.6507
***

 4.4563
***

 6.4262
***

 9.0234
***

 12.1425
***

 

7-month 2.6189
***

 4.5234
***

 6.6230
***

 9.2676
***

 12.3733
***

 

8-month 3.0602
***

 5.1484
***

 7.3224
***

 10.2580
***

 13.7494
***

 

9-month 3.1748
***

 5.3310
***

 7.5371
***

 10.4716
***

 14.1007
***

 

10-month 3.2983
***

 5.4987
***

 7.9570
***

 11.0193
***

 14.8379
***

 

11-month 3.3594
***

 5.5370
***

 7.9182
***

 10.8389
***

 14.5746
***

 

12-month 3.6148
***

 5.5830
***

 7.8992
***

 10.8845
***

 14.5896
***

 

Gold returns equation residuals 

      Spot 4.3366*** 6.3979*** 8.7684*** 12.0488*** 16.0429*** 

1-month 2.8986*** 4.6127*** 6.4604*** 8.9956*** 12.0025*** 

2-month 2.7707*** 4.5157*** 6.5014*** 9.0343*** 12.3810*** 

3-month 2.8410*** 4.5077*** 6.5455*** 9.0949*** 12.4291*** 

4-month 2.7309*** 4.4384*** 6.2019*** 8.4082*** 11.2339*** 

5-month 3.0060*** 4.7500*** 6.5533*** 8.9485*** 12.0510*** 

6-month 2.6507*** 4.4563*** 6.4262*** 9.0234*** 12.1425*** 

7-month 2.6189*** 4.5234*** 6.6230*** 9.2676*** 12.3733*** 

8-month 3.0602*** 5.1484*** 7.3224*** 10.2580*** 13.7494*** 

9-month 3.1748*** 5.3310*** 7.5371*** 10.4716*** 14.1007*** 

10-month 3.2983*** 5.4987*** 7.9570*** 11.0193*** 14.8379*** 

11-month 3.3594*** 5.5370*** 7.9182*** 10.8389*** 14.5746*** 

12-month 3.6148*** 5.5830*** 7.8992*** 10.8845*** 14.5896*** 
Note: The entries indicate the BDS test based on the residuals of oil series returns and gold series returns in a 

VAR for various sectors. m denotes the embedding dimension of the BDS test. 
***

, 
**

 and 
*
 indicate rejection of 

the null of residuals being iid at 1%, 5%, and 10% levels of significance, respectively.  
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Table 4. [Diks and Panchenko (2006)] Nonlinear Granger Causality Test 

 

m=2 m=3 m=4 

Test statistic p-value Test statistic p-value Test statistic p-value 

1.255 0.105 0.640 0.261 0.041 0.484 

0.762 0.223 -0.032 0.513 -1.231 0.891 

0.579 0.281 0.249 0.402 -0.424 0.664 

0.592 0.277 0.262 0.397 -0.583 0.720 

0.537 0.296 -0.208 0.582 -0.156 0.562 

-0.089 0.535 -0.246 0.597 0.008 0.497 

0.436 0.331 0.060 0.476 0.273 0.393 

0.552 0.291 0.028 0.489 0.564 0.286 

0.730 0.233 -0.269 0.606 0.830 0.203 

0.716 0.237 0.105 0.458 1.248 0.106 

0.445 0.328 0.071 0.472 1.161 0.123 

-0.132 0.553 -0.446 0.672 0.905 0.183 

-0.828 0.796 -1.335 0.909 0.440 0.330 
Note: m denotes the embedding dimension. 
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Figure 1. Time series plots of the spot and futures prices for the oil and gold markets 

 
Note: Figure plots the natural logarithms of the price series. 
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Figure 2. Causality in mean and variance from the oil market series to the gold market 

series 

 
 
Note: Figure plots the estimates of the nonparametric causality tests at various quantiles. Horizontal thin solid 

and thin two-dashed lines represent the 5% and 10% critical values, respectively. 


