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Abstract

This paper examines the relation between diversity and long-term economic performance

in a dynamic general equilibrium model where consumers differ ex ante in time preference

and labour productivity. We show that changing the distribution of these characteristics will

affect the steady state by distorting the composition of aggregate labour supply. The exact

nature of this effect depends on the shape of the individual labour supply function. Changing

the distribution of time preference will also affect the distribution of marginal tax rates across

individuals. The aggregate outcome of this is determined by the concavity or convexity of the

marginal tax function.
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1 Introduction

Is a more heterogeneous population beneficial or harmful to long-term economic performance?

What role does redistributive policy, such as progressive taxation, plays in this matter? In this

paper, we address these questions in a dynamic general equilibrium model where consumers differ

ex ante in time preference and labour productivity.1 Our analysis focuses on how diversity in these

consumer characteristics will affect long-run economic outcomes.

The economic implications of diversity have long been a subject of empirical research.2 Several

recent studies have provided evidence on the positive effect of ethnic and cultural diversity on

productivity and economic growth (e.g., Ottaviano and Peri, 2006; Ager and Brückner, 2013; Trax

et al., 2015; Alesina et al., 2016).3 In contrast, there have been very few theoretical research on

this timely and important issue. This lack is somewhat surprising, given the widespread use of

heterogeneous-agent models in macroeconomics. The present study provides the first attempt to

apply this kind of model to analyse the economic effects of diversity. More specifically, we adopt

a similar deterministic framework as in Sarte (1997), Li and Sarte (2004), Carroll and Young

(2009, 2011) and Angyridis (2015). In this type of model, ex ante heterogeneity is the root of

income and wealth inequality.4 Progressive taxation comes into play by distorting prices and

incentives, which in turn influences how ex ante heterogeneity translates into ex post economic

inequality. The present study adds to this line of research in two ways: First, we examine how

changes in the distribution of consumer characteristics will affect the steady state of the model

economy. In particular, our model takes into account heterogeneity in both time preference and

labour productivity, and their effects are considered separately.5 This type of analysis has not been

previously undertaken. Second, unlike most of the existing studies, we do not confine ourselves to

specific parameterised form of the fundamentals (i.e., utility function, production technology and

progressive tax schedule). Instead, most of our results (except those in Section 4.3) are obtained

1We are agnostic about the origin of these differences, which can be due to racial, cultural, physiological or other
reasons. Throughout this paper, we will treat the terms “diversity” and “ex ante heterogeneity” as synonymous.

2For extensive survey of this literature, see Alesina and La Ferrara (2005) and Alesina et al. (2016).
3The analysis in Ottaviano and Peri (2006), Ager and Brückner (2013) and Trax et al. (2015) are based on

micro-level data from developed countries, such as Germany and the United States. Alesina et al. (2016), on the
other hand, conduct cross-country comparisons using aggregate level data from 195 countries. Other cross-country
studies, such as Easterly and Levine (1997) and Collier and Gunning (1999), focus on African countries and find a
negative relation between ethnic diversity and economic growth.

4The implicit assumption is that there is perfect consumption insurance so that individuals’ choices are not
affected by idiosyncratic risks. Keane and Wolpin (1997) and Huggett et al. (2011) argue that predetermined
differences in consumer characteristics are more important than idiosyncratic risks in explaining the dispersion in
lifetime wealth and lifetime utility.

5Time preference heterogeneity has been previously considered in Sarte (1997), Li and Sarte (2001), Carroll and
Young (2011), Suen (2014) and Angyridis (2015) among others. The empirical evidence on this type of heterogeneity
is reviewed in Frederick et al. (2002).
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based on some generic properties of these fundamentals.

Our main findings can be summarised as follows: In terms of labour productivity heterogeneity,

the effects of greater diversity are rather straightforward. When prices are held constant, changing

the distribution of labour productivity will only affect the composition of aggregate labour supply.

Individuals’ choices, including their labour supply decisions, are affected only indirectly through the

general equilibrium effect on wage rate and interest rate. Within this model, we are able to derive

a necessary and sufficient condition under which an increase in labour productivity heterogeneity

will lead to an expansion in aggregate labour supply in the steady state. In such a scenario, greater

diversity will benefit the consumers by raising their income and consumption.

The effects of time preference heterogeneity, by contrast, are more intricate due to the presence

of two often conflicting forces. First, changing the distribution of time preference will affect

aggregate economic outcomes by distorting the distribution of marginal tax rates across individuals.

In the context of representative-agent models, the negative relation between marginal tax rate and

capital accumulation is well understood: a decrease in marginal tax rate raises the return of savings

which in turn promotes capital accumulation.6 One novelty of the present study is to show that

in a heterogeneous-agent economy, changing the composition of the underlying population can

influence the effective marginal tax rate, even when there is no change in the tax schedule per se.

Interestingly, the outcome of this mechanism is determined by the concavity and convexity of the

marginal tax function, which is an often overlooked feature of the tax schedule.7 If the marginal

tax function is concave, then a more heterogeneous population will have a lower average marginal

tax rate and a higher level of capital accumulation. The opposite is true when it is convex. The

intuition of this can be seen by considering the following example: Start with a homogeneous

economy in which all consumers are ex ante identical, receive the same amount of before-tax

income and face the same progressive tax schedule. Suppose now a mean-preserving dispersion in

consumer characteristics is introduced. Such dispersion will lead to a non-degenerate distribution

in before-tax income and marginal tax rate. In particular, the relatively poor consumers in the

6Empirical evidence on this is scant, however, mainly because of the difficulty in measuring marginal tax rate.
For this reason, many studies focus on the relation between average tax rate and economic growth. One exception is
Padovano and Galli (2001) which construct country-wide point estimates of effective marginal tax rate for 23 OECD
countries over the period 1951-1990 and show that this measure is negatively correlated with economic growth.
The question of how the distribution or dispersion of marginal tax rates would affect aggregate economic outcomes,
however, remains unexplored.

7 If a tax function τ (·) is thrice differentiable, then the corresponding marginal tax function is concave (or convex)
if and only if the third-order derivative τ ′′′ (·) is negative (or positive). It is important to note that almost all the
existing quantitative studies on progressive taxation have adopted a specification which implies a concave marginal
tax function (see Section 4.1 for details). But the relation between this and the distribution of marginal tax rates
has not been fully explained until now.
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heterogeneous economy will pay a lower marginal tax rate than in the homogeneous world, and the

relatively rich will pay a higher rate. The shape of the marginal tax function matters when it comes

to aggregation. If the marginal tax function is concave, then the decrease in marginal tax rate

among the poor will outweigh the increase among the rich. As a result, the heterogeneous economy

will have a lower average marginal tax rate than the homogeneous economy.8 Our main results

in Section 4.1 generalise this comparison to any two heterogeneous economies which are otherwise

identical except for the distribution of time preference. Second, changing this distribution will also

affect the formation of aggregate labour supply, as in the case of labour productivity heterogeneity.

When there is no income effect on labour supply, the relation between time preference heterogeneity

and aggregate labour depends crucially on the curvature of the marginal rate of substitution

between consumption and labour. It remains a challenge to verify whether this type of results will

hold when the income effect is operational. In Section 4.3, we provide some numerical examples

that can offer some insights on this issue.

The rest of the paper is organised as follows: Section 2 describes the baseline model. Section 3

presents the results regarding an increase in labour productivity heterogeneity. Section 4 analyses

the effects of greater time preference heterogeneity. Section 5 concludes.

2 The Baseline Model

2.1 Consumers

Time is discrete and denoted by t ∈ {0, 1, 2, ...} . The economy under study is inhabited by a con-

tinuum of infinitely-lived consumers with different rate of time preference and labour productivity.

The size of population is constant over time and normalised to one. Let ρi > 0 be the rate of time

preference of the ith consumer, i ∈ [0, 1] , and εi > 0 his labour productivity. Both are predeter-

mined and constant over time. These characteristics are cross-sectionally distributed according to

the function H (ρ, ε) , which is defined over the support
[
ρ, ρ
]
× [ε, ε] with ρ > ρ > 0 and ε > ε > 0.

This distribution can be either discrete or continuous (or mixed). The marginal distribution of

time preference and labour productivity are denoted by H1 (ρ) and H2 (ε) , respectively.

In each time period, each consumer is endowed with one unit of time which can be divided

between work and leisure. Let ni,t and li,t denote, respectively, the fraction of time spent on work

8The effects under a convex marginal tax function are similar but in opposite directions.
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and leisure by the ith consumer at time t. These variables are subject to the following constraints:

ni,t ∈ [0, 1] , li,t ∈ [0, 1] , and ni,t + li,t = 1. (1)

There is a single commodity in this economy which can be used for consumption and investment.

Let ci,t be the consumption of the ith consumer at time t. All consumers have preferences over

sequences of consumption and labour hours which can be represented by

∞∑

t=0

βtiU (ci,t, ni,t) , (2)

where βi ≡ (1 + ρi)
−1 is the subjective discount factor of the ith consumer and U (·) is the (per-

period) utility function. The latter is identical for all consumers and has the following properties.

Assumption A1 The utility function U : R+ × [0, 1] → R is twice continuously differentiable,

strictly increasing in c, strictly decreasing in n and jointly strictly concave in (c, n) . It also satisfies

the conditions: lim
c→0

Uc (c, n) =∞ for all n ∈ [0, 1] and lim
n→0

Un (c, n) = 0 for all c ≥ 0.

Assumption A2 The marginal rate of substitution between consumption and labour, denoted

by Ψ(c, n) ≡ −Un (c, n) /Uc (c, n) , is non-decreasing in c and strictly increasing in n.

Assumption A2 implies that both consumption and leisure are normal goods.9 This assumption

can be equivalently stated as

Ucn (c, n) ≤
Un (c, n)

Uc (c, n)
Ucc (c, n) and Unn (c, n) ≤

Un (c, n)

Uc (c, n)
Ucn (c, n) ,

for all (c, n) . Assumptions A1 and A2 are satisfied by most of the commonly used utility func-

tions in quantitative studies. Two examples are the class of additively separable utility func-

tions, i.e., U (c, n) = u (c) − v (n) , and the so-called “no-income-effect” utility function, i.e.,

U (c, n) ≡ u (c− v (n)) .10 In both cases, u (·) is strictly increasing and strictly concave, while

v (·) is strictly increasing and strictly convex. For the “no-income-effect” utility, the marginal rate

of substitution between consumption and labour is given by Ψ(c, n) = v′ (n), which is independent

of c.

9This means, holding other things constant, an increase in non-wage income in the current period will lead to an
increase in current consumption and a decrease in current labour supply. This normality assumption is commonly
used in existing studies. See for instance, Nourry (2001) and Datta et al. (2002).
10The latter is also often referred to as GHH preferences, named after the study by Greenwood et al. (1988).
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Next, we turn to the budget constraint for an individual consumer. Let wt be the wage rate for

an effective unit of labour at time t. Then consumer i’s labour income at time t is given by wtεini,t.

Consumers can save and borrow through a single risk-free asset. Let ai,t denote consumer i’s asset

holdings at the beginning of time t. The consumer is in debt if this variable takes a negative value.

The interest income (or interest payment) associated with these assets is rtai,t, where rt is the

interest rate. The sum of labour income and interest income, denoted by yi,t ≡ wtεini,t + rtai,t, is

subject to a progressive tax schedule.11 This is represented by a function τ (·) which satisfies the

following properties.

Assumption A3 The tax function τ : R+ → R+ is continuously differentiable and strictly

increasing with τ (0) ≤ 0. The marginal tax rate is zero at the origin, i.e., τ ′ (0) = 0, strictly

increasing for all y ≥ 0 and satisfies lim
y→∞

τ ′ (y) = τ ≤ 1.

The assumption of an increasing marginal tax rate is often referred to as marginal rate pro-

gressivity. This, together with τ (0) ≤ 0, is equivalent to average rate progressivity, i.e., average

tax rate τ (y) /y is increasing in y. A negative value of τ (0) can be interpreted as a fixed lump-sum

transfer from the government. In this case, τ (y) is the net tax payment for a consumer with

taxable income y.

Consumer i’s budget constraint at time t is then given by

ci,t + ai,t+1 − ai,t = yi,t − τ (yi,t) . (3)

Taking prices and tax schedule as given, each consumer’s problem is to choose a sequence of

consumption, leisure, labour and asset holdings so as to maximise his lifetime utility in (2), subject

to the time-use constraints in (1), the sequential budget constraint in (3) and the initial amount of

assets a0 > 0.
12 There is no other restriction on borrowing except the no-Ponzi-scheme condition,

which is implied by the transversality condition stated below. The solution of the consumer’s

problem is completely characterised by the sequential budget constraint in (3); the Euler equation

11This setup, which is commonly used in the existing studies, implicitly assumes that interests paid on loans are
tax deductible. This assumption is adopted mainly for analytical convenience. In most countries, interests paid on
personal loans are in general not deductible from taxes. In the United States, for instance, taxpayers can claim
deductions on interests paid on student loans and residential mortgages but not on other types of loans (such as
credit card debts).
12The current framework can be easily extended to allow for heterogeneity in initial wealth. But since we focus

on steady-state analysis, this type of heterogeneity is irrelevant for our results.
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for consumption

Uc (ci,t, ni,t) = βiUc (ci,t+1, ni,t+1)
{
1 +

[
1− τ ′ (yi,t+1)

]
rt+1

}
; (4)

the optimality condition for labour supply

Ψ(ci,t, ni,t) ≡ −
Un (ci,t, ni,t)

Uc (ci,t, ni,t)
≤ wtεi

[
1− τ ′ (yi,t)

]
, (5)

which holds with equality if ni,t ∈ (0, 1); and the transversality condition

lim
T→∞





[
T∏

t=1

(
1 + ϕi,t

)
]−1

ai,T+1



 = 0,

where ϕi,t ≡ [1− τ
′ (yi,t)] rt is the after-tax return from asset holdings. The condition in (5) takes

into account the possibility that a consumer may choose to have zero leisure hours in certain

time period, i.e., ni,t = 1 for some t.13 This happens when the relative price of leisure, i.e.,

wtεi [1− τ
′ (yi,t)] , is greater than or equal to the marginal rate of substitution at ni,t = 1, i.e.,

Ψ(ci,t, 1) .

2.2 Production and Government

On the supply side of the economy, there is a large number of identical firms. In each period, each

firm hires labour and rents physical capital from the competitive factor markets, and produces

output using a neoclassical production function: Yt = F (Kt, Nt) , where Yt denotes output at time

t, Kt and Nt denote capital input and labour input, respectively. The properties of the production

function are summarised below.

Assumption A4 The production function F : R2+ → R+ is twice continuously differentiable,

strictly increasing and strictly concave in (K,N) . It also exhibits constant returns to scale (CRTS)

in the two inputs and satisfies the Inada conditions.

Since the production function exhibits CRTS in its inputs, we can focus on the profit-maximisation

problem of a single representative firm. Let Rt be the rental price of physical capital at time t.

13The other corner solution ni,t = 0 can be ruled out by the condition lim
n→0

Un (c, n) = 0, for all c ≥ 0, stated in

Assumption A1.
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Then the representative firm’s problem is

max
Kt,Nt

{F (Kt, Nt)− wtNt −RtKt} ,

and the first-order conditions are Rt = FK (kt, 1) and wt = FN (kt, 1) , where kt ≡ Kt/Nt is the

capital-labour ratio at time t.

Tax revenues collected by the government are entirely spent on “unproductive” government

purchases (Gt) . This spending is called unproductive because it has no direct effect on consumers’

utility and firms’ production. The government’s budget constraint in every period t is given by

∫ 1

0
τ (yi,t) di = Gt, for all t ≥ 0. (6)

2.3 Competitive Equilibrium

Given a progressive tax schedule, a competitive equilibrium consists of sequences of allocations

{ci,t, li,t, ni,t, ai,t}
∞
t=0 for each i ∈ [0, 1] , aggregate inputs {Kt, Nt}

∞
t=0 , prices {wt, rt, Rt}

∞
t=0 and

government spending {Gt}
∞
t=0 such that

(i) Given prices and the tax function, {ci,t, li,t, ni,t, ai,t}
∞
t=0 solves consumer i’s problem.

(ii) Given prices, {Kt, Nt}
∞
t=0 solves the representative firm’s problem in every period.

(iii) The government’s budget is balanced in every period.

(iv) All markets clear in every period, so that

Kt =

∫ 1

0
ai,tdi, and Nt =

∫ 1

0
εini,tdi, for all t ≥ 0.

We confine our attention to the stationary equilibria or steady states of this economy, which

can be characterised as follows: For any non-trivial steady state with capital-labour ratio k > 0,

let w (k) and r (k) be the corresponding wage rate and interest rate. To highlight the dependence

of individual choices on (ρ, ε) , we use y (k, ρ, ε) , c (k, ρ, ε) , a (k, ρ, ε) and n (k, ρ, ε) to denote,

respectively, the level of before-tax income, consumption, asset holdings and labour of a type-

(ρ, ε) consumer in this steady state (the subscript i will be omitted from this point on). These

individual-level variables are determined by

ρ = r (k)
{
1− τ ′ [y (k, ρ, ε)]

}
, (7)
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c (k, ρ, ε) ≡ y (k, ρ, ε)− τ [y (k, ρ, ε)] , (8)

a (k, ρ, ε) =
y (k, ρ, ε)− w (k) εn (k, ρ, ε)

r (k)
, (9)

1 ≥ n (k, ρ, ε) , Ψ [c (k, ρ, ε) , n (k, ρ, ε)] ≤
w (k)

r (k)
ερ, (10)

[1− n (k, ρ, ε)]

{
w (k)

r (k)
ερ−Ψ [c (k, ρ, ε) , n (k, ρ, ε)]

}
= 0. (11)

Equation (7) is obtained by setting Uc (ci,t, ni,t) = Uc (ci,t+1, ni,t+1) in the Euler equation of

consumption.14 The intuition of this equation is as follows: In any stationary equilibrium, each

consumer has a tendency to perfectly smooth their marginal utility of consumption over time.

To achieve this, the after-tax return from asset holdings must be equated to the consumer’s rate

of time preference. This has two important implications. Firstly, consumers with the same rate

of time preference will face the same marginal tax rate and have the same level of before-tax

income, regardless of their labour productivity. In other words, y (k, ρ, ε) is independent of ε.

Secondly, for any given ρ in
[
ρ, ρ
]
, y (k, ρ) is a strictly decreasing function in k. This is due to the

following mechanism: Holding other things constant, an increase in k will encourage the consumer

to substitute future consumption for current consumption by lowering the before-tax return from

asset holdings. In order to maintain a constant marginal utility of consumption, it is necessary

for the marginal tax rate to fall so that the after-tax return is again equal to ρ. Since τ ′ (·) is

strictly increasing, this means before-tax income y (k, ρ) will have to fall after an increase in k. In

subsequent discussions, we will refer to this as the intertemporal smoothing effect. Note that this

effect arises only when the income tax schedule is nonlinear.15 Equation (8) is obtained by setting

ai,t+1 = ai,t in the sequential budget constraint. This, together with (7), implies that c (k, ρ, ε) is

also independent of ε. Equation (9) follows from the definition of before-tax income. Equations

(10) and (11) are the complementary slackness conditions for labour. In particular, the second

inequality in (10) is obtained by substituting (7) into (5).

14Note that equation (7) remains valid even if (i) we allow for ex ante heterogeneity in the utility function, i.e.,
U i (c, n) 6= U j (c, n) for some i 6= j in [0, 1] , and (ii) there is no disutility from labour, i.e., U (c, n1) = U (c, n2) for
all n1 6= n2 in [0, 1] and for all c ≥ 0.
15 If the income tax function is linear, i.e., τ ′ (y) = τ̂ for all y ≥ 0, then the steady-state value of k is uniquely

determined by (1− τ̂) r (k) = ρ. In this case, only those consumers with the lowest rate of time preference (i.e.,
the most patient consumers) will hold a strictly positive amount of assets. All other consumers will either have
zero wealth (if they are not allowed to borrow) or exhaust the borrowing limit (if an ad hoc borrowing constraint
is in place) as in the model of Becker (1980). Sarte (1997) shows that equation (7) plays a key role in obtaining a
nondegenerate steady-state wealth distribution in the presence of time preference heterogeneity. The implications of
the intertemporal smoothing effect, however, is less mentioned in the existing literature.
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The next step is to derive a single equation that can help determine the value of k. Define

φ : [0, τ ]→ R+ ∪{+∞} as the inverse of the marginal tax function, i.e., φ [τ
′ (y)] = y for all y ≥ 0.

Since τ ′ (·) is continuous and strictly increasing, its inverse is a single-valued, continuous, strictly

increasing function. Using (7) and the definition of before-tax income, we can write

y (k, ρ) ≡ φ

[
1−

ρ

r (k)

]
= w (k) εn (k, ρ, ε) + r (k) a (k, ρ, ε) . (12)

Integrating both sides of (12) across all types of consumers yields

Y (k) ≡

∫ ρ

ρ
φ

[
1−

ρ

r (k)

]
dH1 (ρ) = [f (k)− δk]N (k) , (13)

whereH1 (ρ) is the marginal distribution of ρ; N (k) is the aggregate labour supply function defined

by

N (k) ≡

∫ ρ

ρ

∫ ε

ε
εn (k, ρ, ε) dH (ρ, ε) ,

and f (k) ≡ F (k, 1) is the reduced-form production function. Equation (13) is essentially an

accounting identity which states that the sum of all individuals’ income equals national income

(defined as aggregate output minus depreciation of capital). In the sequel, we will refer to Y (·) as

the national income function. A unique, non-trivial steady state exists if (13) has a single, strictly

positive solution. The rest of this section is devoted to establishing the existence of a unique,

non-trivial steady state.

We begin by specifying the range of plausible values of k. Since φ (·) is only defined on [0, τ ] ,

equations (12) and (13) are satisfied only if

1− τ ≥ 1−
ρ

r (k)
≥ 0,

for all ρ ∈
[
ρ, ρ
]
. In other words, any k that solves (13) must satisfy

ρ

1− τ
≥ r (k) ≥ ρ. (14)

To ensure that this range is nonempty, it is necessary to impose the condition ρ > (1− τ) ρ. By

the strict concavity of f (·) and the Inada conditions on the production function, there exists a

10



Y(k)

kmax

k

kmin

Γ(k) N(k)

k*

Figure 1a

Y(k)

kmax

k

kmin

Γ(k) Ñ(k)

Γ(k) N(k)

Figure 1b

unique pair of values kmax > kmin > 0 such that

r (kmax) ≡ f ′ (kmax)− δ = ρ and r (kmin) =
ρ

1− τ
.

It follows that any solution of (13) must be contained within the interval [kmin, kmax] . Lemma 1

provides a set of necessary and sufficient conditions for the existence of a unique steady state.

The proof of this lemma and other theoretical results can be found in the Appendix. A graphical

illustration of the unique steady state is provided in Figure 1a.16

Lemma 1 Suppose Assumptions A1-A4 and ρ > (1− τ) ρ are satisfied. Then a unique steady

state with capital-labour ratio k∗ ∈ (kmin, kmax) exists if and only if

N (kmax) [f (kmax)− δkmax] >

∫ ρ

ρ
φ

(
1−

ρ

ρ

)
dH1 (ρ) , (15)

and

N (kmin) [f (kmin)− δkmin] <

∫ ρ

ρ
φ

[
1−

ρ

ρ
(1− τ)

]
dH1 (ρ) . (16)

16Conditions (15) and (16) are some technical conditions which ensure that the two curves in Figure 1a will cross
at least once within the range (kmin, kmax) . The function Γ (·) in these diagrams is defined as Γ (k) ≡ f (k) − δk,
which also appears in the proof of Lemma 1.
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3 Heterogeneity in Labour Productivity

In this section we examine how greater heterogeneity in labour productivity will affect the steady

state of the baseline model. Our results are based on a comparison between two economies which

are otherwise identical except for the marginal distribution of ε. To facilitate this comparison, we

assume that the two characteristics, ρ and ε, are statistically independent in the population so

that H (ρ, ε) = H1 (ρ)H2 (ε) for all (ρ, ε) .

Consider two economies which have the same size of population, utility function u (·) , produc-

tion technology F (·), progressive tax schedule τ (·) and marginal distribution of time preference

H1 (·) defined over
[
ρ, ρ
]
.17 The only difference between them lies in the distribution of labour

productivity, which are denoted by H2 (ε) and H̃2 (ε) . Both are defined over [ε, ε] and satisfy the

assumption below.

Assumption A5 (i) The average value of ε is identical under H2 (·) and H̃2 (·). (ii) Conditions

(15) and (16) are satisfied in both economies.

The second part of Assumption A5 ensures that both economies have a unique steady state.

Notice that when k is held constant, changing the distribution of labour productivity will have

no effect on the individual-level variables defined by (7)-(11). From (13), it is evident that the

distribution of ε will affect the steady-state capital-labour ratio only through the aggregate labour

supply function. Intuitively, what this means is that when prices are kept constant, changing

the distribution of ε will only affect the composition of aggregate labour supply. Individual-level

variables are affected only indirectly through the general equilibrium effect on w (k) and r (k) .

Let N (·) be the aggregate labour supply function defined under H2 (·) , i.e.,

N (k) ≡

∫ ρ

ρ

∫ ε

ε
εn (k, ρ, ε) dH2 (ε) dH1 (ρ) ,

and similarly define Ñ (k) using H̃2 (·) . From Figure 1b, it is evident that if Ñ (k) ≥ N (k)

for all k ∈ [kmin, kmax] , then the economy with H2 (·) will have a higher steady-state capital-

labour ratio than the one with H̃2 (·) . The opposite is true if the ordering of N (·) and Ñ (·) is

reversed. Proposition 3 provides a necessary and sufficient condition under which Ñ (k) ≥ N (k)

for all k ∈ [kmin, kmax]. The implications of this on other variables of interest are summarised in

Proposition 4. Before presenting these results, we first establish a basic property of individual

17This implies that both economies have the same range of plausible values of steady-state capital-labour ratio,
[kmin, kmax] , as defined in (14).
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labour supply function which plays a key role in the analysis.

Lemma 2 Suppose Assumptions A1-A4 and ρ > (1− τ) ρ are satisfied. Then for any k ∈

[kmin, kmax] and ρ ∈
[
ρ, ρ
]
, n (k, ρ, ε) is a non-decreasing function in ε. If, in addition, n (k, ρ, ε)

is an interior solution, then it is strictly increasing in ε.

The intuition of this result is clear: since more productive workers have a higher opportunity

cost of leisure, they tend to work more than less productive ones. This result holds in general

when (i) the marginal tax rate on labour income and interest income are identical, and (ii) the

marginal rate of substitution between consumption and labour is strictly increasing in labour.

Both assumptions are satisfied in most of the existing studies.

Lemma 2 also has the implication that a one-percent increase in ε can, in some cases, lead

to a greater percentage increase in effective unit of labour, i.e., εn (k, ρ, ε) . Specifically, let ε2 =

(1 + Θ) ε1, for some Θ > 0, and suppose n (k, ρ, ε1) and n (k, ρ, ε2) are both interior solutions.

Then we have ε2n (k, ρ, ε2) > (1 + Θ) ε1n (k, ρ, ε1) . Thus, in the current setting an endogenous

labour supply has the effect of amplifying the variations in labour productivity across consumers.

We now present the main results of this section.

Proposition 3 Suppose Assumptions A1-A4 and ρ > (1− τ) ρ are satisfied. Then N (k) ≤ Ñ (k)

for all k ∈ [kmin, kmax] if and only if

∫ ε

x
εdH2 (ε) ≤

∫ ε

x
εdH̃2 (ε) , for all x ∈ [ε, ε] . (17)

To explain the main ideas behind this proposition, first rewrite N (k) and Ñ (k) as

N (k) ≡

∫ ε

ε
εN (k, ε) dH2 (ε) and Ñ (k) ≡

∫ ε

ε
εN (k, ε) dH̃2 (ε) , (18)

where N (k, ε) is the average labour supply across all consumers with the same level of ε, i.e.,

N (k, ε) ≡

∫ ρ

ρ
n (k, ρ, ε) dH1 (ρ) .

We can now interpret N (k) ≤ Ñ (k) as comparing the expected value of εN (k, ε) under H2 (·)

and H̃2 (·).
18 By Lemma 2, εN (k, ε) is a bounded, continuous, starshaped function in ε and (17)

18 If εN (k, ε) is convex in ε for any given k ∈ [kmin, kmax] , then N (k) ≤ Ñ (k) if and only if H̃2 (·) is more unequal
than H2 (·) under the Lorenz dominance criterion. The function εN (k, ε) , however, is not convex in general. The
details of this point are available from the authors upon request. This is the main reason why we opt for a stronger
stochastic ordering, namely the starshaped ordering (defined below).
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is a necessary and sufficient condition for ranking the expected value of this type of functions.19

In the statistics literature, this type of ordering is known as the starshaped ordering of probability

distributions. A detailed discussion of this type of ordering can be found in Shaked and Shan-

thikumar (2007, Section 4.A.6). If two distributions H2 (·) and H̃2 (·) have the same mean and

satisfy (17), then H̃2 (·) is also more unequal than H2 (·) under the standard Lorenz dominance

criterion [or equivalently, H̃2 (·) is a mean-preserving spread of H2 (·)]. Thus, Lorenz ordering is

implied by starshaped ordering. When applied to the current context, this means H̃2 (·) is more

dispersed than H2 (·) , and thus represents a more heterogeneous population.

Equipped with the result in Proposition 3, we can now compare the steady states under H2 (·)

and H̃2 (·) . Let k
∗ and k̃∗ be the unique solution of (13) under H2 (·) and H̃2 (·) , respectively.

In terms of aggregate variables, a more dispersed distribution of labour productivity is associated

with a lower value of capital-labour ratio but a higher value of aggregate labour and national

income. At the individual level, greater heterogeneity will benefit the consumers by raising their

before-tax income and consumption. These results are summarised in Proposition 4.

Proposition 4 Suppose Assumptions A1-A5 and ρ > (1− τ) ρ are satisfied. Suppose H̃2 (·) is

more heterogeneous than H2 (·) according to (17). Then we have

(i) k∗ ≥ k̃∗, N (k∗) ≤ Ñ
(
k̃∗
)
and Y (k∗) ≤ Y

(
k̃∗
)
.

(ii) y (k∗, ρ) ≤ y
(
k̃∗, ρ

)
and c (k∗, ρ) ≤ c

(
k̃∗, ρ

)
for all ρ ∈

[
ρ, ρ
]
.

These results can be explained as follows: Holding other factors (especially k) constant, an

increase in labour productivity heterogeneity will lead to an expansion in aggregate labour supply.

This lowers the capital-labour ratio which then triggers the aforementioned intertemporal smooth-

ing effect. In particular, before-tax income will increase across all types of consumers, followed by

national income and individual consumption.20

4 Heterogeneity in Time Preference

We now examine the steady-state outcomes of greater time preference heterogeneity. Following

the same approach as in Section 3, we compare two economies which are otherwise identical except

19Recall that a real-valued function ξ (·) defined on [0,∞) is called starshaped if ξ (0) ≤ 0 and ξ (x) /x is nonde-
creasing.
20The effects on aggregate capital K ≡ kN (k) and aggregate output N (k) f (k) , however, are ambiguous, due to

the opposing effects on k and N (k) .
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for the marginal distribution of ρ. Throughout this analysis, we will maintain the assumption that

ρ and ε are statistically independent across the population.

Comparing to the previous section, the task we face here is more complicated due to the

following reasons: Firstly, since national income is formed by summing individual’s before-tax

income y (k, ρ) over the distribution of ρ, changing this distribution will have a direct effect on the

function Y (·) . This effect is not present in the case of labour productivity heterogeneity as y (k, ρ)

is independent of ε. Secondly, it is now more difficult to characterise the shape of n (k, ρ, ε) in ρ

due to the presence of an income effect on labour supply. More specifically, changes in ρ will affect

individual labour supply in two ways: (i) by changing the after-tax wage rate through the variable

y (k, ρ) , and (ii) by distorting the marginal rate of substitution between consumption and labour

through the variable c (k, ρ) . The latter is what we refer to as the income effect.

Because of these added complexities, the theoretical analysis in this section is based on two

simplified versions of the baseline model. First, in Section 4.1 we assume that individual labour

supply is an exogenous constant. As a result, aggregate labour input is independent of the dis-

tribution of ρ and other parts of the economy. This abstraction allows us to focus on the effects

of time preference heterogeneity on Y (k) alone. As we will see below, these effects are entirely

determined by the shape of the marginal tax function τ ′ (·). This part of the analysis thus high-

lights the role of the progressive tax schedule in determining the impact of greater time preference

heterogeneity. Next, in Section 4.2 we reintroduce a flexible labour supply but abstract away from

the aforementioned income effect. This is achieved by adopting the so-called “no-income-effect”

preferences. In this case, the effects of greater time preference heterogeneity are jointly determined

by the shape of the marginal tax function and that of the marginal rate of substitution between

consumption and labour. Finally, in Section 4.3 we provide some simple numerical examples to

illustrate the workings of the baseline model where the income effect is operational.

4.1 Exogenous Labour Model

The baseline model can be significantly simplified once we remove the assumption of flexible labour

supply. Instead of imposing Assumptions A1 and A2, we now set U (c, n) ≡ u (c) for all c ≥ 0

and n ∈ [0, 1] , where u : R+ → R is a twice continuously differentiable, strictly increasing and

strictly concave function that satisfies lim
c→0

u′ (c) =∞. Individual and aggregate labour supply are

then given by ni,t = 1 for all i and Nt = ε̂ > 0, where ε̂ is the average labour productivity across

consumers. The rest of the economy is the same as in the baseline model.
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In any stationary equilibrium, y (k, ρ) and c (k, ρ) are again determined by (7) and (8) but the

Kuhn-Tucker conditions in (10)-(11) are now superseded by n (k, ρ, ε) = 1, for all (k, ρ, ε) . The

steady-state value of k is then determined by

∫ ρ

ρ
φ

[
1−

ρ

r (k)

]
dH1 (ρ) = [f (k)− δk] ε̂. (19)

Note that any solution of (19) depends only on the mean value of ε but not any other moment.

Thus, there is no loss of generality in assuming that H2 (ε) is a degenerate distribution at ε̂. Using

the same line of argument as in the proof of Lemma 1, one can show that a unique solution of (19)

exists if and only if (15) and (16) are satisfied [with N (kmax) and N (kmin) replaced by ε̂].

We now compare two economies which are otherwise identical except for the distribution of ρ,

which are denoted by H1 (·) and H̃1 (·) . Both are defined over
[
ρ, ρ
]
and satisfy the assumption

below.

Assumption A6 (i) H̃1 (·) is a mean-preserving spread of H1 (·) . (ii) A unique steady state

exists in both economies.

The first part of Assumption A6 implies that H̃1 (·) is more dispersed than H1 (·) , and thus

represents a more heterogeneous population. Let Y (·) and Ỹ (·) be the national income function

defined using H1 (·) and H̃1 (·) , respectively. Similarly, let k
∗ and k̃∗ be the unique solution of

(19) under H1 (·) and H̃1 (·) . Then a more heterogeneous population is said to be beneficial (or

harmful) to long-term capital accumulation if k̃∗ ≥ k∗ (or k̃∗ ≤ k∗).21 The main results of this

subsection are summarised below.

Proposition 5 Suppose Assumptions A3, A4, A6 and ρ > (1− τ) ρ are satisfied.

(i) If the marginal tax function is concave, then Y (k) ≤ Ỹ (k) for all k ∈ (kmin, kmax) and a

more heterogeneous population is beneficial to long-term capital accumulation.

(ii) If the marginal tax function is convex, then Y (k) ≥ Ỹ (k) for all k ∈ (kmin, kmax) and a more

heterogeneous population is harmful to long-term capital accumulation.

One interesting special case is when H1 (·) is also a degenerate distribution, say at some point ρ̂

in
[
ρ, ρ
]
. In this case, we are comparing an identical-agent (IA) economy, in which all consumers are

21Since aggregate labour is an exogenous constant, aggregate capital, aggregate output and national income are
all increasing in k. Thus, Proposition 5 is equivalent to saying that a more heterogeneous population is beneficial
(or harmful) to aggregate output and national income if the marginal tax function is concave (or convex).
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identical, to a heterogeneous-agent (HA) economy, where consumers have different time preference.

Proposition 5 then implies that the HA economy will have a higher (or lower) level of long-run

capital accumulation than the IA economy if the marginal tax function is concave (or convex).

The intuition of these results can be understood by comparing the distribution of marginal tax

rates in these two economies.

In the IA economy, all consumers have the same before-tax income y (k∗, ρ̂) and face the same

marginal tax rate τ ′ [y (k∗, ρ̂)] . A mean-preserving spread in the rate of time preference will lead

to a dispersion in both of these variables. In particular, it will lower the marginal tax rate for

those with ρ greater than ρ̂ and raise the marginal tax rate for the others.22 If the marginal tax

function is concave, then the average marginal tax rate will be lowered as a result. Specifically, if

τ ′ (·) is concave, then we have

τ ′ [y (k∗, ρ̂)] ≥
1

1− H̃1 (x)

∫ ρ

x
τ ′
[
y
(
k̃∗, ρ

)]
dH̃1 (ρ) ,

for all x ∈
[
ρ, ρ
]
. The expression on the right side is the average marginal tax rate faced by those

with ρ ≥ x in the HA economy. The lower average marginal tax rate then contributes to a higher

level of capital accumulation in the HA economy. On the contrary, if τ ′ (·) is concave, then we

have

τ ′ [y (k∗, ρ̂)] ≤
1

H̃1 (x)

∫ x

ρ
τ ′
[
y
(
k̃∗, ρ

)]
dH̃1 (ρ) ,

for all x ∈
[
ρ, ρ
]
. In this case, consumers in the HA economy will in general face a higher marginal

tax rate, which is detrimental to capital accumulation.

Our next proposition generalises this comparison to any two HA economies that satisfy Assump-

tion A6. For any q ∈ [0, 1] , define σ (q) as the qth quantile ofH1 (·) , i.e., σ (q) ≡ sup {ρ : H1 (ρ) ≤ q} .

Similarly, define σ̃ (q) as the qth quantile of H̃1 (·) .

Proposition 6 Suppose Assumptions A3, A4, A6 and ρ > (1− τ) ρ are satisfied.

(i) If the marginal tax function is concave, then for any q ∈ [0, 1]

∫ ρ

σ(q)
τ ′ [y (k∗, ρ)] dH1 (ρ) ≥

∫ ρ

σ̃(q)
τ ′
[
y
(
k̃∗, ρ

)]
dH̃1 (ρ) .

22This is because y (k, ρ) is a strictly decreasing function in ρ under any given value of k. This property can be
easily shown using the first part of (12).
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(ii) If the marginal tax function is convex, then for any q ∈ [0, 1]

∫ σ(q)

ρ
τ ′ [y (k∗, ρ)] dH1 (ρ) ≤

∫ σ̃(q)

ρ
τ ′
[
y
(
k̃∗, ρ

)]
dH̃1 (ρ) .

We conclude this subsection by pointing out the prevalence of concave marginal tax function in

the existing literature. Two parametric forms of τ (·) are commonly used in quantitative studies.

The first one is the isoelastic form adopted by Guo and Lansing (1998), Li and Sarte (2004) and

Angyridis (2015). This can be expressed as τ (y) = ζy1+χ, with ζ > 0 and χ > 0. The parameter

χ is often interpreted as a measure of tax progressivity. It is straightforward to show that the

marginal tax function is concave (or convex) when χ ≤ 1 (or χ ≥ 1). Using U.S. tax returns data,

Li and Sarte (2004) estimate that the value of χ was 0.88 in 1985 and 0.75 in 1991. Both imply a

strictly concave marginal tax function. Another commonly used tax function is the one proposed

and estimated by Gouveia and Strauss (1994),

τ (y) = a0

[
y −

(
y−a1 + a2

)− 1
a1

]
. (20)

This functional form was adopted by Sarte (1997), Conesa and Krueger (2006), Erosa and Kore-

shkova (2007), Carroll and Young (2011) among others. The second and third-order derivatives of

this function are given by

τ ′′ (y) = a0a2 (1 + a1) (1 + a2y
a1)

−
(
2+ 1

a1

)

ya1−1,

τ ′′′ (y) =
τ ′′ (y)

y

[
a1 − 1− (2a1 + 1)

(
a2y

a1

1 + a2ya1

)]
. (21)

In all existing applications, the parameters a0, a1 and a2 are taken to be strictly positive which

ensure that τ ′′ (y) > 0. Gouveia and Strauss (1994) report estimates of a1 ranging from 0.726 to

0.938 based on U.S. data. From (21), it is obvious that these values of a1 imply τ
′′′ (·) < 0, i.e., a

strictly concave marginal tax function.

4.2 Endogenous Labour Without Income Effect

Suppose now the utility function is given by U (c, n) = u [c− v (n)] , where u : R+ → R and

v : [0, 1] → R+ are both twice continuously differentiable and strictly increasing. The former is

also strictly concave and satisfies lim
x→0

u′ (x) = ∞, while the latter is strictly convex and satisfies

lim
n→0

v′ (n) = 0. The rest of the economy is the same as in Section 2.
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In any stationary equilibrium, equations (7)-(9) will remain valid while the optimality condition

for labour supply can be simplified to become

v′ [n (k, ρ, ε)] ≤
w (k)

r (k)
ερ, (22)

with equality holds if n (k, ρ, ε) < 1. It is now straightforward to specify the conditions under which

n (k, ρ, ε) is an interior solution for all types of consumers.

Lemma 7 Suppose Assumption A4 is satisfied. If v′ (1) > w (kmax) ε, then n (k, ρ, ε) < 1 for all

k ∈ [kmin, kmax] and for all (ρ, ε) ∈
[
ρ, ρ
]
× [ε, ε] .

Let H1 (·) and H̃1 (·) be two distinct distributions of ρ defined over
[
ρ, ρ
]
. As in Section 4.1, we

assume that H̃1 (·) is a mean-preserving spread of H1 (·) , and a unique steady state exists under

both distributions. When labour supply is flexible, an increase in time preference heterogeneity will

not only affect the national income function Y (·) , but also the aggregate labour supply function

N (·) . The effects on Y (·) are the same as in Proposition 5.23 The effects on N (·) are examined

below.

Proposition 8 Suppose Assumptions A3, A4, A6, ρ > (1− τ) ρ and v′ (1) > w (kmax) ε are

satisfied. Then the following results hold for any k ∈ [kmin, kmax] and for any ε ∈ [ε, ε] .

(i) If v′ (·) is a concave function, then n (k, ρ, ε) is convex in ρ and N (k) ≤ Ñ (k) .

(ii) If v′ (·) is a convex function, then n (k, ρ, ε) is concave in ρ and N (k) ≥ Ñ (k) .

To understand these results, first consider the labour supply decision of a single consumer.

Suppose the condition for interior solution is satisfied. Then optimality is attained when the mar-

ginal rate of substitution between consumption and labour, i.e., v′ (n) , equals the after-tax wage

rate. The latter is determined by the steady-state capital-labour ratio, as well as the consumer’s

own characteristics. For the sake of this discussion, we will denote the after-tax wage rate simply

as $ and individual labour supply as n ($) . Since v′ (n) is increasing, individual labour supply is

increasing in $, i.e., n ($2) ≥ n ($1) whenever $2 ≥ $1. The curvature of v
′ (n) then determines

whether a high-wage earner will respond more to the same increase in $ than a low-wage earner.

Specifically, if v′ (n) is concave, then a high-wage earner will have a larger response to the same

23 In particular, for any k ∈ (kmin, kmax) , Y (k) is less (or greater) than Ỹ (k) if the marginal tax function is concave
(or convex). This result is independent of the assumptions on labour supply.
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Table 1: Main Results of Section 4.2

τ ′ (·) v′ (·) Y (k∗) k∗

concave concave ↑ Ambiguous

convex convex ↓ Ambiguous

convex concave Ambiguous ↓

concave convex Ambiguous ↑

increase in after-tax wage rate, i.e.,

n ($2 +∆)− n ($2) ≥ n ($1 +∆)− n ($1) .

This is equivalent to saying that individual labour supply is a convex function in $. When com-

paring across consumers with different rate of time preference, first note that the after-tax wage

rate in (22) is linearly increasing in ρ. Thus, consumers with a higher value of ρ will have a higher

after-tax wage rate, and by the above reasoning, individual labour supply is a convex function in ρ

when v′ (·) is concave.24 A mean-preserving spread in ρ will then lead to an increase in the average

value of εn (k, ρ, ε) across all types of consumers, hence N (k) ≤ Ñ (k) for any given k.25

Based on the results in Propositions 5 and 8, we can identify four possible scenarios depending

on the shape of τ ′ (·) and v′ (·) . Table 1 summarises the overall effects of greater time preference

heterogeneity in each of these cases. These effects can be easily seen with the aid of Figure 1a,

hence the proof is omitted. For instance, when both τ ′ (·) and v′ (·) are concave, an increase in

time preference heterogeneity will shift both the national income function and the aggregate labour

supply function up, according to Propositions 5 and 8. This will lead to an unambiguous increase

in national income, but an ambiguous effect on the capital-labour ratio. The latter is due to the

presence of two opposing forces: on one hand, an increase in time preference heterogeneity will

lower the average marginal tax rate on asset return which is beneficial to capital accumulation; on

the other hand, such an increase will induce an expansion in aggregate labour supply and suppress

24 It is possible to establish a partial converse of this result. Specifically, if n (k, ρ, ε) is convex (or concave) in ρ over
the interval

[
ρ, ρ

]
, then v′ (·) is concave (or convex) between n

(
k, ρ, ε

)
and n (k, ρ, ε) [see the proof of Proposition

8 for further details]. This suggests that the condition of a concave (or convex) v′ (·) is rather tight.
25Studies that use the “no-income-effect” preferences typically assume that v (·) has an isoelastic form, e.g.,

v (n) ≡ An1+θ, with A > 0 and θ > 0. The first derivative of this function is strictly concave (or strictly convex) if
and only if θ < 1 (or θ > 1). A less-than-unity value of θ seems to be more common in the existing literature. For
instance, Greenwood et al. (1988), Jaimovich and Rebelo (2009) and Correia (2010) have used values ranging from
0.4 to 0.8.
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the capital-labour ratio. Which effect will prevail is a quantitative question. The other three cases

in Table 1 can be interpreted in a similar way.

4.3 Numerical Examples

In Sections 4.1 and 4.2, we have identified two mechanisms through which greater heterogeneity in

time preference can affect the macroeconomy. The first one manifests itself by affecting the cross-

sectional distribution of marginal tax rates and the national income function, while the second

one operates through the aggregate labour supply function. In this subsection, we will use some

numerical examples to illustrate the working of these forces in the full version of the baseline model.

There are two specific reasons why we resort to quantitative analysis here. First, the presence of

income effect poses a serious challenge in characterising the shape of n (k, ρ, ε) as a function in

ρ. Without knowing this, we cannot ascertain qualitatively the effect of greater time preference

heterogeneity on N (·) as in Proposition 8. Second, as the results in Table 1 indicate, the overall

effects of greater heterogeneity in ρ are often ambiguous due to simultaneous changes in Y (·) and

N (·) . The use of numerical calculations can help shed some light on these issues.

Consider a parameterised version of the baseline model with the following specifics: One period

in the model is a year. The consumer’s period utility function is given by

U (c, n) = ln c−A
n1+1/ψ

1 + 1/ψ
,

where A is a positive-valued parameter and ψ is the Frisch elasticity of labour supply. The value

of A is calibrated so that, on average, consumers spend about one-third of their time on work

in the steady state. The resulting value of A is 54.30. The Frisch elasticity of labour supply

is set to 0.40, which is consistent with the estimates obtained by MaCurdy (1981) and Altonji

(1986). The production function is assumed to take the Cobb-Douglas form, i.e., F (K,L) =

KαL1−α, with α = 0.40. We choose the value of δ so that the steady-state capital-output ratio

matches its empirical counterpart in the United States over the period 1953-2009, which is 2.427.26

This requires δ = 8.74%. The progressive tax function is assumed to take the form in (20), with

a1 = 0.768 and a2 = 0.031. These values are taken from Gouveia and Strauss (1994). The

value of a0 is calibrated so that the average tax rate, defined as the ratio between total tax

revenues and total taxable income, is 14.18%. This matches the average tax rate in the United

26To calculate this value, we use the sum of private fixed assets and the end-of-year stock of private inventories as
our measure of aggregate capital. Data on private fixed assets and private inventories are obtained from the Bureau
of Economic Analysis website.
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States over the period 1986-2014.27 The required value of a0 is 0.323.
28 Under this choice of

(a0, a1, a2) , the implied marginal tax function is strictly concave, i.e., τ
′′′ (·) < 0. In terms of

consumer characteristics, we assume that both ρ and ε are uniformly distributed across consumers

with ρ = 0.0571, ρ = 0.0753, ε = 1 and ε = 100. The implied maximum and minimum value of β

are 0.946 and 0.930, respectively. Similar range of values of (β, ε) have also appeared in Carroll

and Young (2011).29 The benchmark parameter values are summarised in Table 2. The resulting

value of five key variables, namely the capital-output ratio k∗, aggregate labour N (k∗) , national

income Y (k∗) , aggregate capital k∗N (k∗) and aggregate output (k∗)α · N (k∗) , are reported in

Table 3.30

The next step is to construct some alternative distributions of ρ with different degrees of

time preference heterogeneity. Intuitively, a mean-preserving spread of the benchmark uniform

distribution can be obtained by “hollowing out” the middle section and relocating the mass to

the upper and lower ends. To put this in practice, first define ∆ ≡
(
ρ− ρ

)
, ρ1 ≡ ρ + ∆/3 and

ρ2 ≡ ρ + 2∆/3. Using ρ1 and ρ2 we can partition the distribution of ρ into three groups of equal

mass. In the examples presented below, we focus on distributions of ρ with density

h̃1 (ρ) =





χ1/∆ for ρ ∈
[
ρ, ρ1

)
,

θ/∆ for ρ ∈ [ρ1, ρ2) ,

χ2/∆ for ρ ∈ [ρ2, ρ] ,

for some positive-valued parameters θ, χ1 and χ2. The benchmark uniform distribution corresponds

to the case when θ = χ1 = χ2 = 1. A mean-preserving spread can be obtained by lowering θ and

solving (χ1, χ2) from

∫ ρ

ρ
h̃1 (ρ) dρ = 1 and

∫ ρ

ρ
ρh̃1 (ρ) dρ =

ρ+ ρ

2
.

We then solve the baseline model under four alternative distributions with θ ∈ {0, 0.5, 0.95, 1.5} ,

27Data on this measure of average tax rate are readily available from Figure A on page 31 of Statistics of Income
– 2014 Individual Income Tax Returns, Internal Revenue Service, Washington, D.C.
28The marginal tax function associated with (20) is given by τ ′ (y) = a0

[
1− (1 + a2y

a1)−(1+1/a1)
]
. As y tends to

infinity, the marginal tax rate becomes a0 in the limit. Hence, we have τ = a0 = 0.323.
29Unlike Carroll and Young (2011), we do not calibrate the distribution of consumer characteristics to match the

empirical distribution of income and wealth. The main purpose of the numerical examples is to demonstrate how
changes in the distribution of ρ will affect the functions Y (·) and N (·) in the baseline model, rather than to mimic
the observed patterns of inequality. For this reason, we opt for the most parsimonious distribution, which is the
uniform distribution. One important consideration behind the choice of

{
ρ, ρ, ε, ε

}
is the existence of steady state,

i.e., to ensure that the conditions in (15) and (16) are satisfied.
30The MATLAB codes for generating the reported results are available on the authors’ personal website.
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Table 2 Benchmark Parameter Values

A Preference parameter 54.30

ψ Frisch elasticity of labour supply 0.400

α Share of capital income in total output 0.400

δ Depreciation rate of capital 0.0874

a0 Parameter in the progressive tax function 0.323

a1 Parameter in the progressive tax function 0.768

a2 Parameter in the progressive tax function 0.031

ρ Minimum value of rate of time preference 0.0571

ρ Maximum value of rate of time preference 0.0753

ε Minimum value of labour productivity 1.0

ε Maximum value of labour productivity 100.0

Table 3 Results of Numerical Examples

Benchmark % Changes from Benchmark

θ = 1.0 θ = 0 θ = 0.5 θ = 0.95 θ = 1.5

k∗ 4.384 0.27% 0.15% 0.02% -0.17%

N (k∗) 19.478 9.72% 4.83% 0.48% -4.74%

Y (k∗) 27.719 9.79% 4.86% 0.48% -4.78%

k∗N (k∗) 85.397 10.02% 4.98% 0.49% -4.90%

(k∗)α ·N (k∗) 35.180 9.84% 4.89% 0.49% -4.80%
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while keeping all other parameters and the distribution of ε unchanged. In general, a lower value

of θ indicates a higher level of heterogeneity. Thus, the distribution with θ = 1.50 is actually less

diverse than the benchmark uniform distribution.

Figure 2 shows the national income function Y (·) and the aggregate labour supply function

N (·) obtained under various values of θ, including the benchmark case.31 Two results are imme-

diate from these diagrams. First, increasing the cross-sectional dispersion of ρ will shift up the

national income function over the entire range of [kmin, kmax]. This pattern is consistent with the

theoretical predictions in Proposition 5. Second, an increase in time preference heterogeneity will

also shift up the aggregate labour supply function. In a robustness check, we find the same pattern

under different values of ψ within the range of [0, 1] .32 Thus, at least in this regard, the baseline

model considered in these numerical examples is similar to the “no-income-effect” model with a

concave v′ (·) . The value of k∗ and other aggregate variables under these alternative distributions

are reported in Table 3. Although these results are only suggestive in nature, they do show some

interesting patterns. For instance, increasing the dispersion of time preference tends to have a

31The curves for θ = 0.95 are almost indiscernible from those obtained from the baseline case, hence they are
omitted from these diagrams.
32These results are not shown here due to space constraint, but they are reported in the working paper version

available on the authors’ personal website.
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very mild positive effect on k∗. This suggests that the effect captured by Proposition 5 is slightly

stronger than the one described in Proposition 8. The changes in other aggregate variables then

largely reflect the changes in N (k∗) . In particular, a more dispersed distribution of ρ is associated

with a higher level of aggregate labour input. These results also point to an important difference

between an exogenous-labour model and a flexible-labour model. In the former, an increase in

time preference heterogeneity will have no effect on aggregate labour supply but a significantly

positive effect on k∗ [due to the upward shift in Y (·)]. In the latter, such an increase will only

have a negligible effect on k∗ but a significant positive effect on aggregate labour supply.

5 Conclusion

In this paper we analyse the long-run economic effects of diversity in a neoclassical model with

ex ante heterogeneous consumers, flexible labour supply and progressive taxation. Our results

highlight two important channels through which consumer heterogeneity can affect the steady

state. First, changing either the distribution of labour productivity or time preference will affect

the formation of aggregate labour supply. The exact nature of this effect is determined by the

shape of the individual labour supply function, which is often difficult to determine qualitatively.

Second, changing the distribution of time preference will have an effect on the distribution of

marginal tax rates across individuals. It is shown that the concavity or convexity of the marginal

tax function holds the key in determining these effects. In this analysis, we assume that time

preference and labour productivity are independent of each other. This assumption is adopted

mainly for analytical convenience. As pointed out by Carroll and Young (2009), such a model

may fail to capture the observed patterns of correlation between different types of income. One

possible direction of future research is to analyse the effects of diversity without imposing the

independence assumption. The model considered here also does not take into account the political

institutions that contribute to the progressive tax system or other redistributive policies. As

discussed in Alesina and La Ferrara (2005), these institutions play a crucial role in resolving the

conflicting interests within a diverse population, and this will in turn determine the economic

effects of diversity. One exciting and important direction of future research is to introduce some

political elements (such as a voting mechanism) into our baseline model and analyse the effects of

diversity in a politico-economic equilibrium.
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Appendix

Proof of Lemma 1

Define Γ (k) ≡ f (k) − δk over the interval [kmin, kmax] . Then the steady-state condition in (13)

can be more succinctly expressed as Y (k) = Γ (k)N (k) . We will establish some basic properties

of each of these functions, starting with Γ (·) . Since f (·) is strictly increasing and strictly concave,

there exists a unique value kGR > 0 such that Γ
′ (k) ≷ 0 if and only if k ≶ kGR. Since Γ

′ (kmax) =

f ′ (kmax)− δ = ρ > 0, we have kmax < kGR which means Γ (·) is strictly increasing over [kmin, kmax]

with Γ (kmin) > 0. Next, we turn to the national income function Y (·) . Since φ (·) is strictly

increasing, Y (·) is strictly decreasing on (kmin, kmax) with

Y (kmax) =

∫ ρ

ρ
φ

(
1−

ρ

ρ

)
dH1 (ρ) > 0,

lim
k→kmin

Y (k) =

∫ ρ

ρ
φ

[
1−

ρ

ρ
(1− τ)

]
dH1 (ρ) . (23)

Equation (23) follows from the fact that r (k) approaches ρ/ (1− τ) as k tends to kmin. Note that

the limiting condition lim
y→∞

τ ′ (y) = τ implies

lim
ρ→ρ

φ

[
1−

ρ

ρ
(1− τ)

]
= +∞.

Thus, the integral in (23) is potentially divergent. For instance, if H1 (·) has a positive mass at ρ,

then Y (kmin) is infinitely large and the condition in (16) is automatically satisfied.

Finally, we will show that the aggregate labour supply function N (·) is non-decreasing. It

suffice to show that n (k, ρ, ε) is a non-decreasing function in k, for any (ρ, ε) . Fix (ρ, ε) and

suppose the contrary that 1 ≥ n (k2, ρ, ε) > n (k1, ρ, ε) > 0 for some k1 > k2 in [kmin, kmax] .

Since c (k, ρ) is strictly decreasing in k, we have c (k1, ρ) < c (k2, ρ) . By Assumption A2, Ψ(c, n)

is non-decreasing in c and strictly increasing in n. Hence, we have

Ψ [c (k1, ρ) , n (k1, ρ, ε)] ≤ Ψ [c (k2, ρ) , n (k1, ρ, ε)]

< Ψ [c (k2, ρ) , n (k2, ρ, ε)]

≤
w (k2)

r (k2)
ερ <

w (k1)

r (k1)
ερ.

The third inequality follows from (10) and the last one uses the facts that w (·) is strictly increasing
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and r (·) is strictly decreasing. The above condition implies that n (k1, ρ, ε) = 1 which contradicts

1 ≥ n (k2, ρ, ε) > n (k1, ρ, ε) > 0. Hence, n (k, ρ, ε) is a non-decreasing function in k for all possible

values of (ρ, ε) .

In sum, we have shown that [Y (k)− Γ (k)N (k)] is strictly decreasing over the interval (kmin, kmax) .

If (15) and (16) are satisfied, then there exists a unique value k∗ within this range that solves (13).

Conversely, if this equation has a unique interior solution, then the two curves in Figure 1a must

cross once over the interval (kmin, kmax), which implies (15) and (16). This completes the proof of

Lemma 1.

Proof of Lemma 2

Fix k ∈ [kmin, kmax] and ρ ∈
[
ρ, ρ
]
. Suppose the contrary that 1 ≥ n (k, ρ, ε2) > n (k, ρ, ε1) > 0 for

some ε1 > ε2 in [ε, ε] . Since Ψ(c, n) is strictly increasing in n, we have

Ψ [c (k, ρ) , n (k, ρ, ε1)] < Ψ [c (k, ρ) , n (k, ρ, ε2)] ≤
w (k)

r (k)
ρε2 <

w (k)

r (k)
ρε1,

where the second inequality follows from (10). The above condition implies n (k, ρ, ε1) = 1, which

contradicts the hypothesis of 1 ≥ n (k, ρ, ε2) > n (k, ρ, ε1) > 0. Hence, n (k, ρ, ε) is a non-decreasing

function in ε for all k ∈ [kmin, kmax] and for all ρ ∈
[
ρ, ρ
]
.

If n (k, ρ, ε) is an interior solution, then it is completely characterised

Ψ [c (k, ρ) , n (k, ρ, ε)] =
w (k)

r (k)
ρε.

By Assumptions A1-A2 and the implicit function theorem, n (k, ρ, ε) is continuously differentiable

in ε. Straightforward differentiation then yields

∂Ψ

∂n

∂n (k, ρ, ε)

∂ε
=
w (k)

r (k)
ρ > 0.

Since ∂Ψ/∂n > 0, the desired result follows. This completes the proof of Lemma 2.

Proof of Proposition 3

We first establish an intermediate result.33

33The proof of Lemma A1 has been outlined in Shaked and Shanthikumar (2007, p.204-205). We include a more
detailed proof here for the sake of clarity and completeness.
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Lemma A1 For any bounded, non-decreasing function g (·) defined on [ε, ε] ,

∫ ε

ε
εg (ε) dH2 (ε) ≤

∫ ε

ε
εg (ε) dH̃2 (ε) , (24)

if and only if (17) holds.

Proof of Lemma A1 The proof of the “only if” part is obvious. Suppose (24) is valid for all

bounded, non-decreasing functions defined on [ε, ε] . For any x ∈ [ε, ε], define the indicator function

I (ε;x) which equals one if ε ≥ x and zero otherwise. Since I (ε;x) is bounded and non-decreasing,

it follows from (24) that

∫ ε

ε
εI (ε;x) dH2 (ε) =

∫ ε

x
εdH2 (ε) ≤

∫ ε

ε
εI (ε;x) dH̃2 (ε) =

∫ ε

x
εdH̃2 (ε) ,

for any x ∈ [ε, ε] . Next, consider the “if” part. Let g (·) be an arbitrary bounded, non-decreasing

function defined on [ε, ε] . Without loss of generality, we can assume g (ε) = 0. For any positive

integer m ≥ 1, partition the interval [ε, ε] into 2m subintervals of equal length. Specifically, define

a set of end-points {ε̃i,m} according to

ε̃i,m = ε+
i− 1

2m
(ε− ε) , for i = 1, ..., 2m + 1.

Define a function ηm (·) as follows

ηm (ε) =





g (ε̃i,m) if ε ∈ [̃εi,m, ε̃i+1,m) ,

g (ε) if ε = ε.

This function can be expressed as a linear combination of simple functions, i.e.,

ηm (ε) =
m2m∑

i=1

λi,mI (ε; ε̃i,m) , (25)

where I (ε; ε̃i,m) = 1 if ε ≥ ε̃i,m and zero otherwise. The coefficient λi,m is given by

λi,m =





g (ε) for i = 1,

g (ε̃i+1,m)− g (ε̃i,m) for i = 2, ..., 2m.
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Since g (·) is non-decreasing and non-negative, we have λi,m ≥ 0 for all i. Hence, ηm (ε) ≥ 0 for all

ε ∈ [ε, ε] .

By repeating the above procedure, we can construct a sequence of non-negative functions

{ηm (·)} that converges pointwise to g (·) .We now show that {ηm (·)} is a monotonically increasing

sequence of functions, i.e., ηm (ε) ≤ ηm+1 (ε) for any ε ∈ [ε, ε] . Fix ε ∈ [ε, ε] . Then there are

only two possible scenarios: either ε < (ε̃i,m + ε̃i+1,m) /2 or ε ≥ (ε̃i,m + ε̃i+1,m) /2 for some i ∈

{1, ..., 2m} . In the first scenario, we have ηm+1 (ε) = ηm (ε) . In the second scenario,

ηm+1 (ε) = ηm

(
ε̃i,m + ε̃i+1,m

2

)
≥ g (ε̃i,m) = ηm (ε) .

Hence, {ηm (·)} is a monotonically increasing sequence of non-negative functions. By the monotone

convergence theorem, we have

lim
m→∞

∫ ε

ε
εηm (ε) dH2 (ε) =

∫ ε

ε
εg (ε) dH2 (ε) , (26)

lim
m→∞

∫ ε

ε
εηm (ε) dH̃2 (ε) =

∫ ε

ε
εg (ε) dH̃2 (ε) . (27)

Note that for each m, we have

∫ ε

ε
εηm (ε) dH2 (ε) =

m2m∑

i=1

λi,m

∫ ε

ε
εI (ε; ε̃i,m) dH2 (ε) =

m2m∑

i=1

λi,m

∫ ε

ε̃i,m

εdH2 (ε) ,

where the first equality follows from (25). Suppose (17) is true for all x ∈ [ε, ε] . Since λi,m ≥ 0 for

all i, we have ∫ ε

ε
εηm (ε) dH2 (ε) ≤

∫ ε

ε
εηm (ε) dH̃2 (ε) .

Equation (24) then follows from (26) and (27). This completes the proof of Lemma A1.

Fix k ∈ [kmin, kmax] . By Lemma 2, n (k, ρ, ε) is non-decreasing in ε for all ρ ∈
[
ρ, ρ
]
. Thus,

after integrating it over the distribution of ρ, the resulting function

N (k, ε) ≡

∫ ρ

ρ
n (k, ρ, ε) dH1 (ρ)

is bounded and non-decreasing in ε. Then by Lemma A1,

N (k) ≡

∫ ε

ε
εN (k, ε) dH2 (ε) ≤ Ñ (k) ≡

∫ ε

ε
εN (k, ε) dH̃2 (ε)
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if and only if (17) holds. This completes the proof of Proposition 3.

Proof of Proposition 4

Let k∗ and k̃∗ be the unique solution of (13) under H2 (·) and H̃2 (·) , respectively. As shown in

the proof of Lemma 1, n (k, ρ, ε) is non-decreasing in k for all (ρ, ε) . Hence, N (·) and Ñ (·) are

both non-decreasing functions. Suppose the contrary that k∗ < k̃∗. Then we have

Y
(
k̃∗
)
< Y (k∗) = Γ (k∗)N (k∗) < Γ

(
k̃∗
)
N
(
k̃∗
)
≤ Γ

(
k̃∗
)
Ñ
(
k̃∗
)
. (28)

The first inequality uses the fact that Y (·) is a strictly decreasing function as shown in the proof

of Lemma 1. The second inequality uses the fact that Γ (·) and N (·) are both increasing func-

tions. The last inequality uses the result in Proposition 3. Condition (28), however, contradicts

the hypothesis that Y
(
k̃∗
)
= Γ

(
k̃∗
)
Ñ
(
k̃∗
)
. Hence, it must be the case that k∗ ≥ k̃∗. Since

y (k, ρ) and c (k, ρ) are strictly decreasing in k for all ρ ∈
[
ρ, ρ
]
, we have y (k∗, ρ) ≤ y

(
k̃∗, ρ

)
and

c (k∗, ρ) ≤ c
(
k̃∗, ρ

)
. Similarly, we have Y (k∗) ≤ Y

(
k̃∗
)
as Y (·) is strictly decreasing. Finally,

the implications on aggregate labour input can be seen as follows:

N (k∗) =
Y (k∗)

Γ (k∗)
≤
Y
(
k̃∗
)

Γ
(
k̃∗
) = Ñ

(
k̃∗
)
.

This completes the proof of Proposition 4.

Proof of Proposition 5

The proof is built upon the following intermediate result:

Lemma A2 Suppose Assumption A3 is satisfied. Then φ (·) is a convex (or concave) function

if and only if τ ′ (·) is concave (or convex).

Proof of Lemma A2 Pick any two positive real numbers y1 and y2, and any α ∈ (0, 1) . Then

τ ′ (αy1 + (1− α) y2) ≷ ατ ′ (y1) + (1− α) τ
′ (y2)

⇔ φ
[
τ ′ (αy1 + (1− α) y2)

]
≷ φ

[
ατ ′ (y1) + (1− α) τ

′ (y2)
]

⇔ αy1 + (1− α) y2 ≷ φ
[
ατ ′ (y1) + (1− α) τ

′ (y2)
]
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⇔ αφ
[
τ ′ (y1)

]
+ (1− α)φ

[
τ ′ (y2)

]
≷ φ

[
ατ ′ (y1) + (1− α) τ

′ (y2)
]
.

The second line uses the fact that φ (·) is strictly increasing. The third and fourth lines follow

from the identity φ [τ ′ (y)] = y. Hence, φ (·) is a convex (or concave) function if and only if τ ′ (·) is

concave (or convex). This completes the proof of Lemma A2.

Suppose H̃1 (·) is a mean-preserving spread of H1 (·) and τ
′ (·) is convex so that φ (·) is concave.

Then we can write

Y (k) ≡

∫ ρ

ρ
φ

[
1−

ρ

r (k)

]
dH1 (ρ) ≥ Ỹ (k) ≡

∫ ρ

ρ
φ

[
1−

ρ

r (k)

]
dH̃1 (ρ) ,

for any k ∈ (kmin, kmax) . In other words, changing the distribution of time preference from H1 (·)

to H̃1 (·) will shift the Y (k) curve in Figure 1a to the left. Thus, we have k̃
∗ ≤ k∗. A similar

argument can be used to establish the results in part (ii).

Proof of Proposition 6

For any q ∈ [0, 1] , define σ (q) ≡ sup {ρ : H1 (ρ) ≤ q} and σ̃ (q) ≡ sup
{
ρ : H̃1 (ρ) ≤ q

}
. According

to (3.A.41) and (3.A.42) in Shaked and Shanthikumar (2007, p.118), H̃1 (·) is a mean-preserving

spread of H1 (·) if and only if

∫ ρ
σ(q) ρdH1 (ρ)∫ ρ
σ(q) dH1 (ρ)

≤

∫ ρ
σ̃(q) ρdH̃1 (ρ)∫ ρ
σ̃(q) dH̃1 (ρ)

, for any q ∈ [0, 1] ;

∫ σ(q)
ρ ρdH1 (ρ)
∫ σ(q)
ρ dH1 (ρ)

≥

∫ σ̃(q)
ρ ρdH̃1 (ρ)
∫ σ̃(q)
ρ dH̃1 (ρ)

, for any q ∈ [0, 1] .

Since
∫ ρ
θ(q) dH1 (ρ) =

∫ ρ
θ̃(q)

dH̃1 (ρ) = 1 − q and
∫ σ(q)
ρ dH1 (ρ) =

∫ σ̃(q)
ρ dH̃1 (ρ) = q, these conditions

can be more succinctly expressed as

∫ ρ

σ(q)
ρdH1 (ρ) ≤

∫ ρ

σ̃(q)
ρdH̃1 (ρ) , (29)

∫ σ(q)

ρ
ρdH1 (ρ) ≥

∫ σ̃(q)

ρ
ρdH̃1 (ρ) , (30)

for all q ∈ [0, 1] .
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Using (7) and (29), we can write

∫ ρ

σ(q)
τ ′ [y (k, ρ)] dH1 (ρ) =

∫ ρ

σ(q)
dH1 (ρ)−

1

r (k)

∫ ρ

σ(q)
ρdH1 (ρ)

≥

∫ ρ

σ̃(q)
dH̃1 (ρ)−

1

r (k)

∫ ρ

σ̃(q)
ρdH̃1 (ρ) =

∫ ρ

σ̃(q)
τ ′ [y (k, ρ)] dH̃1 (ρ) ,

for any k ∈ (kmin, kmax) . If the marginal tax function is concave so that k̃
∗ ≥ k∗, then we have

∫ ρ

σ(q)
τ ′ [y (k∗, ρ)] dH1 (ρ) ≥

∫ ρ

σ̃(q)
τ ′ [y (k∗, ρ)] dH̃1 (ρ)

≥

∫ ρ

σ̃(q)
τ ′
[
y
(
k̃∗, ρ

)]
dH̃1 (ρ) .

The second inequality uses the fact that τ ′ (·) is strictly increasing and y (k, ρ) is strictly decreasing

in k. The results in part (ii) can be similarly obtained by using (7) and (30).

Proof of Lemma 7

Suppose the contrary that n (k, ρ, ε) = 1 for some k ∈ [kmin, kmax] and for some (ρ, ε) ∈
[
ρ, ρ
]
×

[ε, ε] . Then using (22), we can write

w (kmax) ε < v′ (1) ≤
w (k)

r (k)
ερ.

By Assumption A4, w (·) is strictly increasing and r (·) is strictly decreasing. Thus, for any

k ∈ [kmin, kmax] and (ρ, ε) ∈
[
ρ, ρ
]
× [ε, ε] ,

w (k)

r (k)
ερ <

w (kmax)

r (kmax)
ρ · ε = w (kmax) ε.

The last equality follows from the fact that r (kmax) = ρ. Note that these two expressions are

contradictory. Hence, we have n (k, ρ, ε) < 1 for all k ∈ (kmin, kmax) and for all (ρ, ε) ∈
[
ρ, ρ
]
×[ε, ε] .

This completes the proof of Lemma 7.

Proof of Proposition 8

Fix k ∈ [kmin, kmax] and ε ∈ [ε, ε] . Suppose v
′ (1) > w (kmax) ε is satisfied. Then by Lemma 7, we

have

v′ [n (k, ρ, ε)] =
w (k)

r (k)
ερ,
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for all ρ ∈
[
ρ, ρ
]
. Pick any ρ1 and ρ2 in

[
ρ, ρ
]
and define ρα = αρ1 + (1− α) ρ2 for any α ∈ (0, 1) .

Suppose v′ (·) is concave, then we have

v′ [n (k, ρα, ε)] =
w (k)

r (k)
ερα = αv′ [n (k, ρ1, ε)] + (1− α) v

′ [n (k, ρ2, ε)]

≤ v′ [αn (k, ρ1, ε) + (1− α)n (k, ρ2, ε)] .

Since v′ (·) is strictly increasing, the last inequality implies n (k, ρ, ε) is convex in ρ, i.e.,

n (k, ρα, ε) ≤ αn (k, ρ1, ε) + (1− α)n (k, ρ2, ε) .

A “partial” converse can be obtained by reversing these steps, i.e., if n (k, ρ, ε) is convex in ρ

over the entire interval
[
ρ, ρ
]
, then v′ (n) is concave between n

(
k, ρ, ε

)
and n (k, ρ, ε) . This is just

a partial converse because the range between n
(
k, ρ, ε

)
and n (k, ρ, ε) may not cover the entire

domain of v′ (·).

Since convexity is preserved by integration, this means
∫ ε
ε εn (k, ρ, ε) dH2 (ε) is also a convex

function in ρ. Finally, since H̃1 (·) is a mean-preserving spread of H1 (·) , we have

N (k) ≡

∫ ρ

ρ

[∫ ε

ε
εn (k, ρ, ε) dH2 (ε)

]
dH1 (ρ) ≤

∫ ρ

ρ

[∫ ε

ε
εn (k, ρ, ε) dH2 (ε)

]
dH̃1 (ρ) ≡ Ñ (k) ,

for all k ∈ [kmin, kmax] . The results in part (ii) can be established by using the same line of

argument. This completes the proof of Proposition 8.
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