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Abstract. In this paper we transfer the Elo rating system, which is widely

accepted in chess, sports and other disciplines, to rank scientific journals. The

advantage of the Elo system is the explicit consideration of the factor time and

the history of a journal’s ranking performance. Most other rankings that are

commonly applied neglect this fact. The Elo ranking methodology can easily

be applied to any metric, published on a regular basis, to rank journals. We

illustrate the approach using the SNIP indicator based on citation data from

Scopus. Our data set consists of more than 20 000 journals from many scientific

fields for the period from 1999 to 2015. We show that the Elo approach produces

similar but by no means identical rankings compared to other rankings based on

the SNIP alone or the Tournament Method. Especially the rank order for rather

’middle-class’ journals can tremendously change.
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1 Introduction

Measuring the ’quality’ of scientific publishing has always been an important aspect for re-

searchers, institutions, politics, and the public. Next to financial incentives for the publisher,

publications in high-quality journals are necessary prerequisites for future job market signals

of the scientists. What defines a journal as ’high-quality’ mainly depends on the classifica-

tion or ranking scheme that is applied. The question on how such a classification scheme

should look like has entailed a heated debate in general, which is especially pronounced in

several scientific disciplines such as economics. In this article we do not want to comment on

the ’right’ or the ’wrong’ of existing rankings, but rather adopt an alternative system that

was originally developed for chess: the Elo rating system.

One of the main criticisms which can be raised when it comes to rank journals is the

largely time invariance of the classification scheme. Generally, many journal metrics are

reported with respect to a given year. The prestige of a journal can be negatively affected

in a given year if the corresponding metric significantly drops, although in the years before

the performance was very good. This shortcoming becomes irrelevant with the Elo rating

system, since the Elo ranking for a given year explicitly incorporates the complete trajectory

of the journal’s ranking performance until this specific year.

The rationale of the Elo rating system is the following. Each journal has an Elo number

which is based on its impact. Every year, the journals compete with each other and earn Elo

points which are based on the expected values for a win or a loss. After this competition, the

Elo number is adjusted according to the result. In the upcoming years, the journals compete

with each other based on their last available Elo numbers and therefore on expected values

that change over time. The journals earn or lose Elo points that also vary over time, which

generates a more dynamic ranking approach that not only decides between ’better’ or ’worse’.

In the end, the complete time path of the journal’s ranking performance is relevant for the

latest competition and therefore the latest ranking. The aim of this article is by no means

an examination of the ranking’s properties, but rather to present a new approach that is

subsequently compared to rather standard rankings based on, for example, the latest SNIP

(source normalized impact per paper) indicator or the Tournament Method. In the end we

ask, whether the inclusion of the trajectory changes the current ranking of journals.

We base our analysis on a data set provided by Scopus for the period from 1999 to 2015,

which contains more than 20 000 journals per year. In a first step, we build a balanced

sample that only contains journals that have a SNIP available for the whole observation

period. From this balanced set, we can state that the time line of a journal’s ranking

performance is very important for the most recent ranking. Our Elo approach produces a

similar but by no means identical ranking compared to the Tournament Method, the average

SNIP between 1999 to 2015 or the latest SNIP in 2015. With our approach, the top journals

remain top-ranked. However, there are substantial differences observable for rather ’middle-
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class’ journals and not only for the top 30. We also show that a ’bad’ year in terms of the

SNIP does not necessarily lead to a large drop in the ranking position. In order to investigate

a more realistic setting in the second step, we allow for entries and exits of journals. It turns

out that the ranking of the journals from the balanced sample is preserved. Finally, we

discuss the ranking results for different scientific categories and investigate the sensitivity of

the latest ranking to a crucial parameter. The Elo rating system seems to be a promising

alternative to rank scientific journals compared to existing ones. A further advantage is the

possibility to apply the Elo ranking system to any journal metric, like the Journal Impact

Factor or citation counts, that is published on a regular basis.

The paper is organized as follows. In Section 2 we elaborate on the data and the Elo

ranking system. Section 3 presents and discusses the results. The last section offers some

conclusions.

2 Data and Methodology

2.1 Data

General remarks. One aim of this paper is to present a new ranking approach for a

wide range of journals from different scientific fields. Therefore, we need high quality

and notably comparable data. Such high-quality data are available from Scopus at http:

//www.journalmetrics.com. The data, as of June 2016, are available for the period ranging

from 1999 to 2015 and comprise 21 626 journals in 2015.

A main challenge is the comparability of journals across different disciplines. To this end,

we use the SNIP (source normalized impact per publication) indicator (Moed, 2010; Waltman

et al., 2013). The strength of the SNIP lies in its normalization of citations in order to make

scientific fields comparable. It especially pays attention to different citation practices within

and between subjects. According to Moed (2010), the SNIP is basically the ratio of the so

called raw impact per paper (RIP) and the Relative Database Citation Potential (RDCP) in

the journal’s sub-field. Whereas the RIP is defined as the number of citations in year t for

papers published in the journal in the time span t − 3 to t − 1, the RDCP explicitly uses the

distribution of citations. For each journal in the list, one can calculate its database citation

potential (DCP). Repeating this step for each journal, results in a distribution of DCPs for

the whole data set. In order to gain the RDCP, each journal’s DCP is divided by the median

DCP of the whole distribution.

Scopus also provides information on the scientific journal classification. We use these so

called ’top levels’ to present, on the one hand, category-specific rankings. And on the other

hand, to investigate whether the category-specific journal order is independent from the size

of the data set. It is desirable that the rank order of two journals A and B which are

categorized as Social Sciences is identical for the whole data set as well as if we would apply
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our ranking only to the bunch of social science journals. Scopus distinguishes between five

top levels and a general category: Life Sciences, Social Sciences, Physical Sciences, Health

Sciences and General. In the results section, we discuss the ranking for the whole data set

as well as the rankings for each of the five categories.

Data preparations. We treat our data set in two different ways. First, we build our analysis

on a balanced set of journals. A couple of SNIP entries in the original data set are missing.

Since we want to have a ranking in this first step that is conducted for journals that have

an impact over the whole observation period, we only use these journals that have a SNIP

greater-than-or-equal to zero for all years from 1999 to 2015. This leaves us with 8 246

journals for the whole observation period. If we split up this balanced sample into our five

categories, we end up with the following number of observations: 2 106 journals categorized

as Life Sciences, 2 407 as Social Sciences, 3 173 as Physical Sciences, 2 513 as Health Sciences

and 29 as General. Please note that the sum of these five categories does not equal the total

number presented above since some journals are classified more than once.

Second, we repeat our calculations for an unbalanced data set. An unbalanced set of

journals has the advantage to better map real conditions. Since journals enter or exit the

data set, newcomers, for example, should be taken into account for the ranking. Thus, our

unbalanced data set varies in its number of journals over time. The ranking in 2015, which

we present later on, is based on 23 731 journals. Another advantage of taking an unbalanced

sample is to check whether our ranking reacts strongly to newcomers or journals that exit.

How we deal with these issues is described in the next section by introducing the Elo rating

system.

2.2 The Elo Rating System

Fundamentals. Originally developed to rate chess players, the Elo rating system is nowa-

days adopted by many other sports such as table tennis (see, for example, Glickman, 1995)

or used to, for example, rank evolutionary algorithms (Veček et al., 2014). The eponym for

this rating system is Arpad Emrick Elo, who was a Hungarian-born American physicist and

statistician. His main objective was to develop a rating system for the United States Chess

Federation (USCF) that has a statistical foundation. Later on, the rating system was also

adopted by the Fédération Internationale des Échecs (FIDE), the world chess federation.

The two main steps of the ranking comprise (i) calculating the expected score and (ii)

updating the player’s rating (see here and henceforth Glickman and Jones, 1999). Addition-

ally, we refer to Elo (1978) for a very detailed description. Since the inherent strength of

a player is unknown to outsiders, one has to approximate it by a rating. Thus, the match

outcome between two players A and B can be approximated with the following formula:
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EA =
1

1 + 10(RB−RA)/400
. (1)

EA is the expected score for player A to win the game, based on the unknown strengths

for both players (RA and RB). To illustrate the expected score for player A, we use the

example by Glickman and Jones (1999). Imagine a game between two players with strengths

RA = 1 500 and RB = 1 700, respectively. The expected long-run score of player A is

EA = 0.24. Thus, based on these hypothetical strengths, player A is expected to win the

game or gain a draw in 24 of 100 cases. The opposite is true for player B, since his expected

score is EB = 0.76. As mentioned, these figures are long-run scores. However, a game score

can only take three possible values: 1 for a victory of player A, 0.5 if the game ended in

a draw or 0 if player A loses the match. Since the strengths of both players are unknown,

they are replaced by their estimates, the so called Elo number or Elo rating (for player A it

is RA).

The second step comprises the update of a player’s strength. This is done by the following

equation, again from player A’s perspective:

RA,t+1 = RA,t + k(SA − EA) . (2)

The new Elo rating of player A (RA,t+1) is based on his or her old rating (RA,t) plus the

difference from the game score SA and the expected long-run score EA, which is weighted

by the factor k to allow how fast a rating can evolve. In chess, this factor is either based

on the number of games played, the age of the player or the strength. Suppose that the Elo

ratings of two players are RA,t = 1 500 and RB,t = 1 700 before they play a match. We set

the adjustment parameter k = 32, which is mainly used in chess for weaker players. Three

possible match outcomes can emerge and thus resulting ratings:

• A wins: RA,t = 1 500, SA,t = 1, EA,t = 0.24, RA,t+1 = 1 524, RB,t+1 = 1 676,

• Draw: RA,t = 1 500, SA,t = 0.5, EA,t = 0.24, RA,t+1 = 1 508, RB,t+1 = 1 692,

• A loses: RA,t = 1 500, SA,t = 0, EA,t = 0.24, RA,t+1 = 1 492, RB,t+1 = 1 708.

As one can see, player A’s rating either increases by winning the game or by gaining a draw

since the expected long-run score of player A lies below the score for a draw (0.24 < 0.50).

In the next match, the expected score is calculated based on the new Elo ratings. For the

mathematics of such pairwise comparisons, for which the Elo rating system is a special case,

we refer to Joe (1991).

Application to rank journals. After the discussion of the fundamentals, it is the aim in

the following to present how we apply the Elo rating system to rank journals. Therefore, we

need to introduce parameter values: RA,0, SA and k. Each journal A is treated as a single
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’player’ at any point t in time. As for each sports or any other competition, the score SA

can take three values: 1 if journal A has a higher SNIP in year t compared to journal B, 0.5

if they are not statistically different from each other and 0 in the case of SNIPA,t < SNIPB,t.

The SNIP indicator is provided as three-digit number, which makes a perfect draw rather

unlikely. Furthermore, it suggests an accuracy and clear-cut journal ranking that might not

reflect the reality. Leydesdorff and Opthof (2010), Moed et al. (2012), and Vanclay (2012)

called for confidence intervals to be provided for journal metrics. Such uncertainty measures

can be found, for instance, in Schubert and Glänzel (1983), Nieuwenhuysen and Rousseau

(1988), Opthof (1997), Greenwood (2007), Stern (2013), and Chen et al. (2014). Therefore,

we decided to base our decision for a draw on official stability intervals, provided by CWTS

Journal Indicators.1 Basically, these stability intervals are based on bootstrapping and can

be interpreted as 95% confidence bands, representing a range the SNIP fluctuates in. Thus,

we can observe a lower bound for the SNIP of journal A at time t (LBA,t), the SNIP itself

and an upper bound (UBA,t). Figure 1 presents our decision on a win or a loss of journal A

against its competitor B.

Figure 1: Schematic representation to the decision of a win or a loss

(a) A wins against B (b) A loses against Bܵܰܫ ܲ,௧ ܫܰܵ ܲ,௧ ܫܰܵ ܲ,௧
ܫܰܵ ܲ,௧ ܫܰܵ ܲ,௧ ܫܰܵ ܲ,௧ ܫܰܵ ܲ,௧

ܫܰܵ ܲ,௧

Journal A wins (loses) against journal B in a given year t if LBA,t > UBB,t (UBA,t <

LBB,t) holds. This is displayed in panel (a) in Figure 1 (or in panel (b) in case of a loss).

If the stability intervals of two journals overlap, the match ends up in a draw. Additionally,

we have to decide on two extreme events that can emerge by evaluating on a win or a loss.

First, if the condition SNIPA,t = SNIPB,t = 0 is met, then no game is played between the

two journals. And second, if the condition LBA,t = SNIPB,t = 0 holds, then also no game

is played between the two journals. By including journals with a SNIP equaling zero would

result in an inflationary effect of draws between these journal that have no impact at all. If

a bulk of journals with no impact exist, all these journals would gain Elo points from draws

by competing against each other. However, they should get no points since they have no

impact at all.

We set the adjustment parameter to k = 1 in order to apply the same ’catch-up speed’ for

each journal from each scientific category. The main reason for this parameter value is the

usage of the SNIP. Since this indicator is comparable between scientific categories as well as

sub-categories of a single profession, we do not need to control for different citation patterns

1For a description of these stability intervals see http://www.journalindicators.com/methodology.
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or anything similar that makes categories not comparable. We, however, will elaborate more

on this point in Section 3.

The next parameter value we have to choose is the initial Elo number of each journal (RA,0).

It becomes immediately obvious that this number cannot be estimated from the data, thus,

we decided to attribute each journal the same initial number in the case of a balanced panel:

RA,0 = 10 000. Our resulting ranking is, however, independent from this initial value as

we treat the time before 1999 as non-existing and let the journals be established in this

year. Afterwards, the Elo numbers develop from this constant starting value. Choosing a

different initial value that is also identical for all journals does not influence the ranking that

results at the end of our data set. However, it should be a sufficiently large number to avoid

negative Elo ratings. In the case of the unbalanced panel, we proceed in a different way. If a

journal enters the competition as a newcomer, we cannot simply attribute a fixed value to it.

Thus, we rather place it in the distribution of Elo numbers in the following way. Imagine a

journal enters the competition in year t. It then plays a ’pre-tournament’ against all journals

that competed against each other in year t − 1 in a first step, based on all rules mentioned

before. Afterwards, we count the journal’s fictive wins and draws and relate this value to

the total number of matches played. We use this fictive share of wins and draws of the new

competitor to calculate its position in the distribution of existing Elo numbers in t − 1. The

resulting number than serves as the Elo score of the new competitor in year t. In the case of

observing a missing in the SNIP time series of a journal, the lastly observed Elo number of

that journal is put forward. Thus, this journal is excluded from the competition in year t,

but competes in t + 1 with its Elo number of t − 1. It holds: SNIPA,t = . → RA,t = RA,t−1.

Applying our notation to Equation (1) and (2), the expected long-run score of journal A

to beat journal B and the corresponding update of journal A’s Elo number transform into:

EA,t =
1

1 + 10(RB,t−RA,t)/400
, (3)

RA,t = RA,t−1 + (SA,t − EA,t) . (4)

Since our balanced data set comprises 8 246 journals, we have to calculate 8 245 pairwise

comparisons for each journal and each year. As the number of journals varies over time

in the case of the unbalanced data set, also does the number of pairwise comparisons. So

the natural question to raise is: How does the Elo number develop between these pairwise

comparisons? The answer can also be found in the chess system. The Elo rating is adjusted

only once a year, after a journal has ’played’ against all the other journals. Thus, the final Elo

rating of a journal at the end of year t is: RA,t = RA,t−1 +
∑

B 6=A (SA,t − EA,t). Each pairwise

result is summed up and added to the previous Elo number at the end of all comparisons.

Another important point which we have to take care of is to set a maximum for the rating

difference between two journals (RB,t −RA,t). If this difference is not restricted, the resulting
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ranking becomes very volatile over time. We follow the official procedure by FIDE and allow

the absolute value of this difference to be maximal 400, so as to hold: |RB,t − RA,t| ≤ 400.2

Based on the Elo ratings in 2015 (RA,2015), we calculate the overall ranking of all journals.

At this point, our main contribution of the paper sets in: the Elo rating in 2015 incorporates

the complete trajectory or history of the journal’s ranking performance and thus produces

a more realistic ranking. The Elo ranking is also unique since it is based on the continuous

defined SNIP indicator. Thus, in the case of a win, the following must hold for a given year

t: if SNIPA,t > SNIPB,t > SNIPC,t, then ’A wins against B, C’ ∧ ’B wins against C’.3 This

is one main difference compared to sports, where it is also possible that ’C wins against A’.

2.3 An Alternative: the Tournament Method

An alternative approach using pairwise comparisons is the so called Tournament Method,

which has been applied to rank economics journals by Kóczy and Strobel (2010). In the

’tournament’, the journals compete in ’citation games’ against each other. Thus, the ranking

is based on cross-comparisons of citations between the journals.

In terms of our notation, the score σA,t of journal A for a given year t is simply the share

of games it wins against competitors or matches that end in a draw:

σA,t =
|{SNIPA,t > SNIPB,t}| + 1

2
|{SNIPA,t = SNIPB,t > 0}|

|{SNIPA,t + SNIPB,t > 0}|
. (5)

A victory of journal A is defined as SNIPA,t > SNIPB,t. However, many different pos-

sibilities exist to identify the winner of a tournament in general (see Laslier, 1997). The

main difference to the Elo rating system is that the relative position of a journal does not

matter. In the tournament, a win of a ’bad’ journal against a ’good’ gives the same score

as a win against a ’less good’ journal. This issue is varied in the Elo system by introducing

the expected value EA,t, which is a continuous value between 0 and 1.

Kóczy and Strobel (2010) propose to account for the ranking’s time line by applying a

geometric decay function to calculate the total score of journal A:

SA,T =
1 − δ

1 − δT

T∑

t=1

δT −tσA,t . (6)

To be in line with Kóczy and Strobel (2010), we choose δ = 0.5 in our application.

2The official statement can be found in the handbook on FIDE Rating Regulations effective from 1 July
2014 at: https://www.fide.com/fide/handbook.html?id=172&view=article.

3This statements holds if we abstract from draws and confidence bounds on journal metrics.
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3 Results

3.1 Balanced Panel

In the following, we present our results for the balanced panel in two steps. First, we show

and discuss the top 30 ranked journals based on the Elo numbers in 2015. And second, we

close this section with some statements on how the different rankings for 2015 (based on

either the Elo numbers, the Tournament Method or simply the SNIP) are correlated.

Let us start with the presentation of the top journals. Table 1 shows the top 30 ranked

journals in ascending order, based on the Elo rating system as of 2015.4 For reasons of

comparison, we also include the ranks resulting from the Tournament Method in 2015, a

ranking based on the average SNIP for the years 1999 to 2015 and the ranking of the

latest available SNIP for 2015. The top 3 journals are: New England Journal of Medicine,

Reviews of Modern Physics and Chemical Reviews. Only the Reviews of Modern Physics is

among the top 3 by calculating rankings that are based on other indicators than the Elo

number. Especially Chemical Reviews is only ranked sixth, if we base our decision on the

latest SNIP indicator. However, the time dependency of the journal ranking performance

and therefore the recent available ranking become much clearer by investigating much more

volatile journals in Table 1: The Lancet, CA – A Cancer Journal for Clinicians and Annals

of Internal Medicine. The Lancet is ranked third or fourth by either applying the SNIP of

2015 or the Tournament Method. If we, however, take the whole performance of the journal

between the years 1999 to 2015 into account, The Lancet is only ranked on 12th place, based

on its latest Elo number. More impressive are the differences between the rankings for the

journal CA – A Cancer Journal for Clinicians. Whereas this journal is always top 3 ranked

based on the Tournament Method or the SNIP indicator, it only reaches 24th place based

on the Elo number of 2015. This result can be described by one fact: the allowance of draws

in the competition. Since the SNIP of the CA – A Cancer Journal for Clinicians has very

large stability intervals, it gains a lot of draws against other top journals, thus, its pure

SNIP of 2015 would suggest the journal ranks on first place, but the Elo system more or

less ’downgrades’ its performance. The last example is Annals of Internal Medicine. This

journal is ranked top 30 based on the Elo rating system. It, however, is not ranked that

high by looking at the rankings that are based on the other three indicators. The SNIP

2015 would suggest to rank this journal on 67th place; the average SNIP between 1999 and

2015 would suggest 41st place. So here we can see what the Elo system does. Since the Elo

2015 ranking is based on the latest Elo number, which is by definition a function of the Elo

numbers between 1999 to 2015, our ranking incorporates the whole trajectory of the journal’s

ranking performance over time. For most of the top journals, the position across different

rankings show rather similar results. However, the different methodologies produce results

4The full ranking is available from the authors upon request.
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Table 1: Top 30 ranked journals in 2015 for the balanced data set

Journal Elo 2015
Tournament

Method

Average
SNIP

(1999-2015)
SNIP 2015

New England Journal of Medicine 1 2 2 4
Reviews of Modern Physics 2 1 3 2
Chemical Reviews 3 5 4 6
Physiological Reviews 4 11 6 14
Annual Review of Immunology 5 14 5 16
JAMA – Journal of the American
Medical Association

6 10 8 15

Nature 7 9 11 19
Science 8 13 13 25
Journal of Economic Literature 9 21 7 22
Annual Review of Biochemistry 10 26 9 33
Clinical Microbiology Reviews 11 18 12 24
The Lancet 12 4 19 3
IEEE Transactions on Pattern
Analysis and Machine Intelligence

13 15 16 18

Endocrine Reviews 14 40 15 41
Annual Review of Plant Biology 15 24 17 38
Psychological Bulletin 16 22 22 29
Nature Genetics 17 19 28 31
Quarterly Journal of Economics 18 23 20 27
Cell 19 29 27 50
Progress in Energy and Combustion
Science

20 8 10 12

Pharmacological Reviews 21 35 18 44
Physics Reports 22 12 23 11
Nature Medicine 23 31 30 43
CA – A Cancer Journal for Clinicians 24 3 1 1
Progress in Polymer Science 25 7 24 17
Advances in Physics 26 20 14 10
Annals of Internal Medicine 27 42 41 67
Accounts of Chemical Research 28 36 42 64
Chemical Society Reviews 29 17 37 23
Proceedings of the IEEE 30 39 33 69

Note: The journals are ordered according to the Elo ranking for 2015. Source: Data are taken from Scopus and are

available at http://www.journalmetrics.com.

that are by no means identical. Our main criticism deals with the missing consideration of

the time line or the history of a journal in most of the common rankings. The evidence from

Table 1 strengthens our hypothesis that timely variation is very important for the ranking

outcome. Even for the top 30 journals in our data set, we observe a certain degree of ranking

heterogeneity.

The top 10 are dominated by journals from Physical Sciences, with the very general interest

journals Nature and Science among those. The first journal from Social Sciences, the Journal

of Economic Literature, is ranked 9, followed by the Psychological Bulletin on 16th place.

From Table 1 we can also state that many different (sub)disciplines are part of the top 30.

For instance, astronomy, economics, health sciences and physics are on the list. We will
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elaborate more on the rankings of different scientific categories in the next section.

The last step we want to undertake is a formal statement on the relation between the

different rankings. Therefore, we first calculate Spearman rank correlations for ranking-

pairs. The outcome is shown in Table 2. We find the highest rank correlation of 0.996

between our Elo ranking and the Average SNIP 1999 to 2015. This is straightforward and

underpins our idea of including the time path of a journal’s performance. By comparing our

ranking to the latest available SNIP, the correlation drops to 0.869, which is also the lowest

rank correlation in Table 2. Thus, the rankings are by no means identical. This finding also

supports our main criticism that the complete history of a journal has to taken into account

for the latest ranking, which is underpinned by a low rank correlation for the pair ’Average

SNIP - SNIP 2015’.

Table 2: Spearman rank correlation between different rankings

Elo 2015
Tournament

Method

Average
SNIP

(1999-2015)
SNIP 2015

Elo 2015 1.000
Tournament
Method

0.879 1.000

Average SNIP
1999-2015

0.996 0.888 1.000

SNIP 2015 0.869 0.872 0.872 1.000

Note: All rankings are based on the balanced sample. Source: Data are taken from Scopus and

are available at http://www.journalmetrics.com.

Figure 2 shows the relationships between the rankings in a graphical way. As suggested by

the correlations, the rankings show a distinct linear relationship. However, we also observe a

large mass of journals, and here especially in the middle, for which the methodologies deliver

different ranking signals. Next to the introduction of draws that influence the journal’s rank,

also the performance of a journal over time that is incorporated in our Elo number heavily

influences the latest calculable journal ranking.

3.2 Discussion

In this section we discuss the findings from the previous one. The discussion comprises three

steps. First, we present the rankings for the five categories introduced in Section 2 and

discuss differences and similarities in the results compared to the whole balanced data set.

Second, we describe what happens to the ranking after allowing for entries and exits, thus,

ranking the journals in an unbalanced data set. And third, we discuss a potential parameter

sensitivity of our ranking.

Different scientific categories. As described previously, it is a preferable property that the

journal’s relative position in a ranking is not influenced by the size of the underlying data set.
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Figure 2: Ranking cross-plots for 2015 between different rankings

Note: All rankings are based on the balanced sample.

We thus repeat our Elo competition for the five different categories separately: Life Sciences,

Social Sciences, Physical Sciences, Health Sciences, and General. The methodology of the

Elo rating is equivalent to the total balanced data set. We just take subsets and calculate

Elo numbers. For example, the ranking for the journals classified as Social Sciences is just

based on a competition between the journals of this category. In order to compare the ranks

between the subsamples and the total data set, we rescale the ranks for the category-specific

journals in the latter one. Table 3 shows the category-specific rank of the journal in the first

column and the respective ranking in the total sample (last column).

The top 5 journals of a specific category are also, with few exceptions, ranked top 5 in the

total sample. Taking Life Sciences as the example, the order of the first two journals changes

between the total sample and the subsample. Whereas Physiological Reviews is the top Life

Sciences journal in the total sample, it is replaced by the Annual Review of Immunology in

the subsample. However, the Spearman rank correlation coefficients between the categorical

rankings and the one for the total sample are all larger than 0.970. Thus, the rankings are

de facto identical.

Unbalanced panel. Relying on a balanced sample may not be the best way to describe

reality, since journals enter or exit the data set. So we explicitly have to take care of

newcomers or leavers. To visualize the relationship between the 2015 ranking resulting

either from the balanced or unbalanced sample, we again draw a cross-plot that is displayed
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Table 3: Top 5 journals in 2015 for the five categories

Rank
category

Journal
Rank total

sample

Life Sciences

1 Annual Review of Immunology 2
2 Physiological Reviews 1
3 Nature 3
4 Annual Review of Biochemistry 4
5 Clinical Microbiology Reviews 5

Social Sciences

1 Nature 1
2 Journal of Economic Literature 2
3 Psychological Bulletin 3
4 Quarterly Journal of Economics 4
5 Academy of Management Review 6

Physical Sciences

1 Reviews of Modern Physics 1
2 Chemical Reviews 2
3 Nature 3

4
IEEE Transactions on Pattern Analysis and

Machine Intelligence
4

5 Progress in Energy and Combustion Science 5

Health Sciences

1 New England Journal of Medicine 1
2 Annual Review of Immunology 3
3 Physiological Reviews 2

4
JAMA – Journal of the American Medical

Association
4

5 Nature 5

General

1 Nature 1
2 Science 2

3
Proceedings of the National Academy of
Sciences of the United States of America

3

4
International Journal of Bifurcation and

Chaos in Applied Sciences and Engineering
4

5 Current Science 6

Note: The journals are ordered according to the Elo ranking for 2015 of the respective cate-

gory. Source: Data are taken from Scopus and are available at http://www.journalmetrics.

com.

in Figure 3. The x-axis contains the rescaled journal ranks from the unbalanced sample;

the y-axis shows the ranks from the balanced sample. Both rankings are highly positively

correlated (Spearman rank correlation: 0.996), thus, the difference between both is rather

small. For the top 10 journals, the ranks are identical. The largest variation can be found for

rather ’middle-class’ journals, a result that confirms the findings from the previous section.
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Figure 3: Ranking cross-plot for 2015 between the balanced and the unbalanced sample
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Changing parameter k. One crucial parameter that could affect the ranking is k, which

regulates the ’catch-up speed’ between the journals. Our basic ranking for the balanced

sample was derived by setting k = 1. Here, we want to show how the variation of this

parameter influences the final Elo ranking in 2015. Therefore, we let k take values in the

following range: k ∈ {2, 3, · · · , 100, 10 000}. It turns out that the Spearman rank correlation

between the pairwise-compared rankings is close to one, thus, they are almost identical. So

in our case, setting k = 1 is no problem at all. We hypothesize that the ’catch-up effect’ of k

is treated towards zero by introducing the stability intervals and therefore the draws. Since

such questions are beyond the scope of this paper, we leave such issues for future research.

4 Conclusion

Most of the commonly applied rankings for scientific journals mainly neglect the time line

of a journal’s ranking performance. This paper explicitly accounts for this shortcoming by

transferring a concept that is widely accepted in chess, sports and other disciplines to the field

of publishing: the Elo rating system. The data set on which we base our analysis comprises

more than 20 000 journals from all possible scientific categories for the period from 1999 to

2015. In order to make the journals comparable, we use the source normalized impact per

publication (SNIP) index. It turns out that the time line is very important for the latest

ranking since the Elo rating system produces similar but by no means identical rankings

14



compared to outcomes based on either the Tournament Method, the average SNIP for 1999

to 2015 or the latest SNIP from 2015. Since the Elo ranking is very easy to compute and

widely accepted in other fields, it seems a promising alternative to already existing ranking

approaches.
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