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Abstract

We study a dynamic model of attitude formation in which individuals

average others’ attitudes to develop their own. We assume that individu-

als exhibit homophily in sociodemographic exogenous attributes, that is,

the attention they pay to each other is based on whether they possess

similar attributes. We also assume that individuals exhibit homophily in

attitudes, at the group level. Specifically, attributes that are salient, that

is, that exhibit a substantial difference in attitudes between the groups of

individuals possessing and lacking them, deserve high attention. Since we

allow attention to evolve over time we prove that when there is, initially,

a unique most salient attribute, it deserves growing attention overtime in

detriment of the remaining ones. As a result, individuals eventually inter-

act only with others similar to them across this attribute and disagreement

persists. It materializes in two groups of thinking defined according to this

attribute.
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∗I am grateful to my advisor, Miguel Ángel Ballester. I thank Jorge Alcalde Unzu, Antonio Cabrales, Francesco

Cerigioni, Giacomo De Giorgi, Ben Golub, Matthew O. Jackson, Markus Kinateder, Konrad Mierendorff, Juan
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1 Introduction

Disagreement is an everyday life phenomenon. When in 1987 the American public

was confronted with the question of whether the government should guarantee every

citizen enough to eat and a place to sleep, 80% of black people agreed whereas only

55% of white people. For around 25 years these percentages have remained almost

constant. Disagreements tend to persist, most of the times, over non-factual issues.

In fact, differences in attitudes regarding a wide range of topics of ethical and ideo-

logical content have persisted among the American public during the aforementioned

period.1

Despite this evidence, existing models of communication and learning, regardless

of whether individuals behave as Bayesian or use rules of thumb, typically lead to

consensus results. This is the case in DeMarzo et al. (2003), Acemoglu et al. (2010),

Golub and Jackson (2010), Golub and Jackson (2012), Smith and Sørensen (2000),

Gale and Kariv (2003) and Banerjee and Fudenberg (2004).2 They are, thus, not

suitable for explaining the persistence of disagreement.

The purpose of this paper is to investigate intuitive processes allowing for persis-

tent disagreements. To do so we study the dynamics of attitude formation following

DeGroot (1974), a parsimonious and widely used framework in which individuals

use the rule of thumb of averaging others’ attitudes to develop their own over time.

As pointed out by Ellison and Fudenberg (1993), Acemoglu and Ozdaglar (2011)

and Golub and Jackson (2012), the computational requirements imposed on agents

that behave as Bayesian, updating their priors regarding the true state of the nature

according to all relevant information, have placed rules of thumb as a useful and

powerful alternative for the understanding of learning and communication processes.

This reason seems to be borne out by recent evidence supporting, in particular, av-

eraging models as a consistent description of individuals’ updating behavior. For

instance, experimental results in Chandrasekhar et al. (2012) and Grimm and Men-

gel (2014) favor a DeGroot procedure over a Bayesian one.3 Furthermore, we cap-

ture the natural idea that, in general, individuals form and update their attitudes

regarding a given issue through own experiences, by observing others’ actions and

by communicating with others about their attitudes and behavior. That is, learning

is social and takes place within the individuals’ social network.

But in the canonical DeGroot procedure, which considers a time independent av-

eraging rule, consensus is, almost always, the eventual outcome. Disagreement only

persists in the extreme situation in which there are groups of individuals completely

1Detailed information is available at http://www.people-press.org/2012/06/04/section-2-demographics-and-

american-values.
2We discuss notable exceptions at the end of this section.
3See also Corazzini et al. (2012) and Brandts et al. (2014).
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ignoring each other.4 In fact, communication models based on DeGroot procedure,

as Golub and Jackson (2010) and Golub and Jackson (2012), work with strongly

connected (and time independent) network structures in which individuals incorpo-

rate everyone else’s attitudes, thus always deriving consensus results. In particular,

Golub and Jackson (2012) discuss the effects of homophily, the robust tendency of

individuals to associate disproportionately with similar others, on the speed of con-

vergence to consensus, an eventual outcome that is never precluded no matter the

level of homophily.5 In contrast with these papers, we propose a version of DeGroot

procedure in which we incorporate the natural idea that the intensity of individual

interactions varies over time.6

We thus explore a particular mechanism allowing for the co-evolution of ho-

mophily in attributes and attitudes. In our approach the type of an individual

is defined as a subset of attributes that are assumed to be exogenous. We also

assume that individuals are homophilous with respect to them, that is, common

attributes between any pair of individuals, for instance being of the same gender,

guarantee that they relate to each other. Furthermore, the intensity of this relation

is governed by the salience of attributes. The salience of an attribute is given by

the difference in attitudes between individuals possessing and lacking it. The more

salient an attribute the higher the attention that, on the basis of it, individuals pay

among themselves, that is, the more homophilous towards this attribute individuals

are. As a consequence, the lower the attention that these individuals pay to others

not sharing this attribute with them. We allow differences in attitudes to feedback

the homophilous behavior overtime, promoting, as stated, the co-evolution between

homophily and attitudes.

There is a large literature in the context of consumer choice supporting the idea

that individuals focus in aspects in which their alternatives differ more, that is, in

aspects that are salient. For instance, in Bordalo et al. (2013) consumers’ purchas-

ing decisions are driven by either the price or the quality of products, depending on

which aspect is furthest from prices and qualities of an average bundle.7 There is

also evidence suggesting a negative relationship between differences in attitudes and

interactions among individuals. Specifically, Suanet and Van de Vijver (2009) study

the relationship between perceived cultural distance, that is, individual reports of

discrepancies in attitudes and values between the home and the host culture, and

the acculturation of foreign students in Russia. They find a positive (respectively

negative) relationship between perceived cultural distance and interactions of for-

4See Jackson (2008), chapter 8, for two characterizations of consensus.
5See McGuire et al. (1978) for a survey on homophily. In Golub and Jackson (2012) homophily is technically

defined in as the second largest eigenvalue of the matrix of linking densities among types.
6See Kossinets and Watts (2006).
7See also Kőszegi and Szeidl (2013) and the references therein.
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eign students with co-nationals (respectively host nationals). Support to the idea

that repulsion to others with dissimilar attitudes is the main mechanism shaping

homophily can be found in Rosenbaum (1986) and Singh and Ho (2000).

With this model at hand we answer the following questions:

Q1: Under which conditions does attributes’ salience preclude consensus, and

therefore, promote the persistence of disagreement?

Q2: How does eventual disagreement look like? In particular, which ones are the

types exhibiting different attitudes?

Q3: How does salience relate to the speed of convergence to the eventual situa-

tion in which disagreement persist?

Our results are as follows. We find that disagreement persists if and only if there

is, initially, a unique attribute for which the difference in average initial attitudes

is the highest, that is, a unique most salient attribute. When this is the case,

this attribute becomes increasingly salient, receiving growing attention over time in

detriment of the remaining attributes. In other words, the ties among individuals

sharing it, will progressively gain strength in detriment of the ties based on the

remaining shared attributes. As a result, the society appears eventually divided

in two groups of thinking, according to whether individuals possess or lack the

initially most salient attribute. Thus disagreement across this attribute, that is, the

difference in average eventual attitudes between the groups of individuals possessing

and lacking it, persists while the differences in average eventual attitudes associated

to the possession and lack of the remaining attributes vanish. This result however

corresponds to a situation in which the value of homophily, i.e: the attention that

individuals pay to others on the basis of shared attributes, is linked to differences in

opinions by a particular functional form. In the extensions we offer a more general

representation of homophily. Thus, as a more general statement, we conclude that

disagreement persists when the dynamic of segregation in attention is fast enough.

By fast enough we mean that the force that drives individuals to develop strong ties

with specific individuals dominates the one that pushes them to pay attention to

everyone else. Thus, the complete mixing of attitudes is precluded.

The process of segregation in attention can be understood as one by which in-

dividuals act (as if) they construct their identity. That is, initially confronted with

several attributes at which they may stick, they progressively focus in only one of

them, developing their relations and attitudes according to it. Our results can also
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be understood as a theory of polarization, since two groups of individuals are in

persistent disagreement.

With respect to the properties of disagreement, we find how the difference in

average eventual attitudes between the groups of individuals possessing and lacking

the initially most salient attribute is a proportion of the difference in average initial

attitudes between these two groups.

With respect to the speed of convergence we find that, everything else equal, the

higher the difference in average initial attitudes related to the initially most salient

attribute or the lower the difference in average initial attitudes related to any other

attribute, the higher the magnitude of disagreement and the quicker the convergence

to a situation in which it persists.

Our work is related to previous papers discussing disagreement. Specifically,

Krause (2000) and Hegselmann and Krause (2002) study disagreement in a model of

bounded confidence in which individuals only consider others’ attitudes when they

are sufficiently close to their own. There are, at least, two differences with their

approach. The first one is that while our primary source of attention are individual

types as well as their attitudes, they directly focus on similarity in attitudes and do

not explicitly model homophily in exogenous attributes. The second one is that they

assume that the attitudes of the peers finally considered by any individual, matter at

the same extent. This is not generally true in our case because homophily depends

precisely on types. In Acemoglu et al. (2013) disagreement persists because of the

presence of stubborn agents, interpreted as leaders or media sources, that never

change their attitudes. We do not model the presence of such agents.

The rest of the paper is organized as follows. Section 2 formally presents the

model. Section 3 derives the condition for disagreement to persist and provides its

properties. Section 4 deals with the speed of convergence. Section 5 concludes.

Section 6 discusses extensions. Section 7 contains the technical proofs.

2 Preliminaries

Let I = {1, 2, . . . , n} be a finite set of attributes. The type A of an individual is

defined by the attributes possessed by this individual, that is, A ⊆ I. Thus, there are

2n types. Given two types A and B, we say that they are i-similar whenever attribute

i is either present or absent in these two types. Otherwise, we say that they are i-

dissimilar. Let us denote by Ac the complementary set of A. We finally define I(AB)

as all the attributes for which A and B are similar, i.e., I(AB) = (A∩B)∪(Ac∩Bc).

Notice that attributes are dichotomous, that is, either a type possesses an attribute
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or lacks it.8

The (column) vector of attitudes at time t ∈ Z+ is denoted by at ∈ [−1, 1]2
n

,

where the component relative to type A is aAt . The average attitude across all

types is denoted at and the average attitude across all types possessing (respectively

lacking) attribute i is denoted at[i] (respectively at[−i]).9 Without loss of generality

let us normalize the average initial attitude to zero, that is, a0 = 0.

Attitudes evolve according to an average-based process similar to DeGroot (1974).

Namely, each of the components of at+1, that is, attitudes at t + 1 is a weighted

average of each of the components of at, that is, attitudes at t. Let Wt be the 2
n×2n

matrix of weights describing the updating of attitudes from time t to time t+1. We

have that:

at+1 = Wtat.
10 (1)

Notice that every entry of Wt is the weight that type A assigns to type B.

Let wA,B
t denote this weight. As in Golub and Jackson (2012), individuals are

homophilous, a behavior that can be captured as follows: every attribute i has a

non-negative value αi
t and the weight that type A assigns to type B, is the sum of

values of the attributes they share, that is, wA,B
t =

∑

i∈I(AB) α
i
t. For normalization

purposes we set
∑

i α
i
t = (2n−1)−1. That is the right normalization because a type A

is i-similar to exactly 2n−1 types. Then,
∑

B wA,B
t = 2n−1

∑

i α
i
t = 1. In this paper,

we study the case in which the value of homophily, namely, the magnitude of αi
t,

co-evolves with attitudes. In particular, it depends, at every t, on the difference in

average attitudes between individuals possessing attribute i and individuals lacking

it, that is, ∆t[i] = at[i] − at[−i] (the salience of attribute i at time t). We assume,

without loss of generality, that the differences in average initial attitudes are non-

negative and such that ∆0[1] ≥ ∆0[2] ≥ · · · ≥ ∆0[n] ≥ 0.11

We link homophily and salience by the well-known Luce form, that is:

αi
t =

1

2n−1

∆t[i]
∑

j

∆t[j]
. (2)

We endow this functional form with the following interpretation: the attention

that individuals pay to other when they share a given attribute, depends on how

big the differences in attitudes associated to this attribute are in relation to the

differences associated to the remaining attributes.

8See Schelling (1969) for a discussion of this assumption. Also, as McGuire et al. (1978) point out, the distinction

in terms of social distance appears to be of the type same versus different, and not on any more elaborated forms

of stratification.
9Formally, at = (2n)−1

∑
A aAt , at[i] = (2n−1)−1

∑
A:i∈A aAt and at[−i] = (2n−1)−1

∑
A:i/∈A aAt .

10With this updating rule, a0 = 0 implies that at every time t, at = 0. See section 6.
11In fact, they preserve this order and remain non-negative over time.
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The following example illustrates the notation above:

Example 1. Consider the case in which types come from the combination of

two attributes. Thus, there are four types, namely, {1, 2} {1}, {2} and {∅}. The

structure of the 4× 4 matrix of weights at an arbitrary time t is:

Wt =

{1, 2} {1} {2} {∅}
















α1
t + α2

t α1
t α2

t 0 {1, 2}

α1
t α1

t + α2
t 0 α2

t {1}

α2
t 0 α1

t + α2
t α1

t {2}

0 α2
t α1

t α1
t + α2

t {∅}

To make clear how homophily in exogenous attributes determines the structure

of attention, let us consider type {2}. It is 1-similar to type {∅} and 2-similar to

type {1, 2}. Thus, it pays a non-negative amount of attention to both types. Also,

it pays more attention to these types than to type {1}, with whom it does not share

any attribute. Consider also type {1, 2}. It is 1-similar to type {1} and 2-similar to

type {2}. Thus, it pays a non-negative amount of attention attention to them. It

also pays zero attention to type {∅}, with whom it does not share any attribute.

Suppose that initial attitudes are: a
{1,2}
0 = 0.8, a

{1}
0 = 0.2, a

{2}
0 = −0.05

and a
{∅}
0 = −0.95. Thus, the differences in average initial attitudes associated

to attribute 1 and 2 are ∆0[1] = 0.5(0.8 + 0.2) − 0.5(−0.05 − 0.95) = 1 and

∆0[2] = 0.5(0.8 − 0.05) − 0.5(0.2 − 0.95) = 0.75, respectively. The initial value

of homophily, according to expression (2), is α1
0 = 0.29 and α2

0 = 0.21, for attributes

1 and 2, respectively. The interaction matrix above thus becomes:

W0 =

{1, 2} {1} {2} {∅}
















0.5 0.29 0.21 0 {1, 2}

0.29 0.5 0 0.21 {1}

0.21 0 0.5 0.29 {2}

0 0.21 0.29 0.5 {∅}

In the following figure we depict this interaction structure. For this purpose, let

us color types as follows: types possessing attribute 1 are blue and those lacking

it are green. Types possessing attribute 2 are white while types lacking it are red.

Thus, {1, 2} is a mixture of blue and white, {2} is a mixture of green and white,

{∅} is a mixture of green and red and {1} is a mixture of blue and red. Interpret

every row of the matrix above as individuals having one unit of time to devote to

others. Thick lines then represent more intense relations than dashed lines:
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Figure 1. Depicting initial interactions

1,2

1

∅

2

0.21

0.29

0.5

0.29

0.5

0.21

0.21

0.29

0.5

0.29

0.5

0.21

We use this structure as a running example in subsequent sections.

3 The persistence and properties of disagreement

To analyze under which conditions disagreement persists, notice that expression (1)

can be solved recursively to get at+1 = W Ta0 where W T =
∏T

t=0WT−t. Thus one

can express attitudes at an arbitrary point in time t as a function of initial ones.

Notice that if the matrix describing point-wise interactions, as the one in example

1, was constant over time, consensus will eventually emerge. The reason is that

individuals would then be able to incorporate, directly or indirectly, everyone else’s

attitudes at every point in time. Formally, the (constant) matrix of interactions

is strongly connected and aperiodic and thus consensus is guaranteed.12 In our

framework, this is equivalent to establish that all eventual attitudes will be equal to

zero, that is, a∞ = limt−→∞ at+1 = 0.

Allowing for the intensity of the attention that individuals pay to each other

to vary over time, opens the possibility of persistent disagreement. Clearly, the

existence and properties of eventual attitudes can be understood by investigating

the existence and properties of the limiting product of time dependent interactions

matrices. We denote this limit by W∞, where, W∞ = limT−→∞W T .

In order to state our main result, let us discuss the concept of Dobrushin coeffi-

cient of ergodicity. Ergodicity coefficients provide information about the extent to
12See Jackson (2008), chapter 8.
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which all the rows of a matrix are equal.13 The Dobrushin coefficient of ergodicity

of a matrix M is defined as:

τ(M) =
1

2
max
ij

∑

k

|mik −mjk|. (3)

It lies between zero and one and is different from zero if and only if the rows of

M are not the same. Now, we present our main result, that describes the form and

extent of disagreement in eventual attitudes. It is as follows:

Theorem 1. For every configuration of initial attitudes, eventual ones always exist.

They exhibit disagreement if and only if attribute 1 is, initially, the unique most

salient (that is, if and only if ∆0[1] > ∆0[2]). In this case, eventual attitudes are

such that, for every type A:

|aA∞| =
1

2
τ(W∞)∆0[1] (4)

where τ(W∞) ∈ (0, 1]. Furthermore, aA∞ > 0 if and only if 1 ∈ A.

Several aspects merit further attention. First, disagreement is almost the unique

outcome of this process.14 When there is, initially, a unique most salient attribute,

it gains increasing attention in detriment of the attention paid to the remaining

attributes. Thus, eventual homophily is based upon one, and only one, dimension.

Consensus would emerge if and only if there were, at least, two initially most salient

attributes. In the extreme case in which all differences in average initial attitudes

were equal, all attributes will deserve the same initial homophily, which will be also

constant over time. Specifically, every attribute i will be receiving always same

amount of attention, αi
t = (2n−1n)−1.15

Second, disagreement persists between two groups. Specifically, types possessing

attribute 1 have the same eventual attitudes and the same happens for types lacking

attribute 1. The eventual attitudes between these two groups are different.

Third, eventual disagreement, measured as the difference in average eventual atti-

tudes between the groups of types possessing and lacking attribute 1, is a proportion

of the difference in average initial attitudes between the groups of types possessing

and lacking attribute 1. This proportion is exactly given by the ergodicity coefficient

of the infinite product of the point-wise matrices of weights.16 The ergodicity coef-
13See Stachurski (2009) for a reference on the Dobrushin coefficient in the study of economic models with a

Markovian structure. See also Ipsen and Selee (2011) and Chatterjee and Seneta (1977) for the study of convergence

properties of inhomogeneous Markov chains by means of ergodicity coefficients.
14Since differences in average attitudes are real numbers, they are generally different. Also the results remain the

same if we consider that initial attitudes are defined over the entire real line instead of belonging to [−1, 1].
15When all differences in average initial attitudes are equal to zero, expression (2) is not defined. We set αi

t =

(2n−1n)−1 in this case.
16Let a∞[i] = limt−→∞ at[i] and a∞[−i] = limt−→∞ at[−i]. Since there are 2n−1 types possessing (respectively

lacking) attribute 1, a∞[1]− a∞[−1] = 2−1(τ(W∞)∆0[1] + τ(W∞)∆0[1])=τ(W∞)∆0[1].
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ficient then characterizes the distance to consensus in the long-run. It is important

to highlight that this coefficient is fully determined by the initial configurations of

attitudes.17 Also, the difference in average eventual attitudes of types possessing

and lacking any attribute different from 1, is zero.18

The case with two attributes is pretty informative. In it, the deviation from

consensus in the long-run is given by the ratio of the differences in average initial

attitudes between attributes 2 and 1. Specifically, τ(W∞) = 1 −∆0[2]/∆0[1]. The

following example illustrates the results:

Example 2. Consider that ∆0[1] = 1 and ∆0[2] = 0.75, as in example 1. The

entries in the interaction matrices evolve as follows:

W0 =











0.5 0.29 0.21 0

0.29 0.5 0 0.21

0.21 0 0.5 0.29

0 0.21 0.29 0.5











, W1 =











0.5 0.32 0.18 0

0.32 0.5 0 0.18

0.18 0 0.5 0.32

0 0.18 0.32 0.5











, ..., lim
t→∞

Wt =











0.5 0.5 0 0

0.5 0.5 0 0

0 0 0.5 0.5

0 0 0.5 0.5











.

Also, W∞ =











0.313 0.313 0.187 0.187

0.313 0.313 0.187 0.187

0.187 0.187 0.312 0.312

0.187 0.187 0.312 0.312











andW∞ times a0 =











0.8

0.2

−0.05

−0.95











is a∞ =











0.126

0.126

−0.126

−0.126











.

Notice how on one hand, types {1, 2} and {1} and on the other hand, types {2}

and {∅} hold the same eventual attitudes, which are different between these two

groups. In this case τ(W∞) = 0.25.

Fourth, it follows that Theorem 1 goes through for the the general Luce form,

γit =
∆t[i]

δ

∑

j ∆t[j]δ
where δ ∈ (0,∞).19 The literature, for instance Chen et al. (1997),

interprets δ as a rationality parameter. In our case δ reflects the extent to which the

difference in attitudes across attribute 1 is exacerbated. For δ ∈ (0, 1), this difference

becomes less important than before, when δ = 1, but disagreement still persists,

being its magnitude also smaller. When exactly δ = 0, the difference in attitudes

associated to attribute 1 is as important as the difference associated to any other

attribute, regardless of their magnitude. Notice that in this case γit = n−1 for any

attribute i and at every time t, thus individuals always pay attention αi
t = (2n−1n)−1

to every attribute and consensus eventually emerges. Finally, when δ ∈ (1,∞) the

difference in attitudes associated to attribute 1 is exacerbated with respect to the

17See step 8 in the proof of Theorem 1.
18That is so because within the 2n−1 types possessing (respectively lacking) attribute 1, there are 2n−2 possessing

(respectively lacking) any other attribute i > 1, thus the average eventual attitudes of i-similar types are the same

and the difference between them cancels out.
19In this case αi

t = (2n−1)−1γi
t .
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case in which δ = 1, thus disagreement is the eventual outcome and its magnitude

increases.

3.1 Segregation in interactions and disagreement

As stated, 1-similar types eventually interact exclusively among themselves. They

reach this situation by weakening their interactions with 1-dissimilar types.

To summarize this interaction information, we derive here the Spectral Segre-

gation Index proposed by Echenique and Fryer (2007), for attribute i at time t,

henceforth SSI it .
20 Being based on the nature of individual interactions, it is par-

ticularly suitable in our framework. Other indexes measuring segregation, as the

Dissimilarity or the Isolation Index, are based on partitions (census) of a physical

unit (a city). In our case individuals are not partitioned into physical units, thus,

we do not interpret our interaction process in their terms.21

Before stating the result let us stress the fact that interactions within the groups

of types possessing and lacking any attribute i, follow the same pattern at every time

t, that is, these groups of individuals divide their time in the same way. This can

be seen using the symmetric interaction matrix in example 1. Interactions among

types possessing attribute 1, collapsed in the submatrix composed by {1, 2} and

{1}, take the same form as those of types lacking it, collapsed in the submatrix

composed by {2} and {∅}. The same is true for attribute 2. Thus, the SSI it

describes interactions within both groups. Before the result let λit =
∆t[i]

∑

j ∆t[j]
. We

now present the properties of the index:

Proposition 1. At every time t and for every attribute i, SSI it =
1 + λit

2
. Further-

more:

(i) SSI10 >
n+ 1

2n
, SSI1t+1 > SSI1t and lim

t−→∞
SSI1t = 1.

(ii) SSI i0 ≤
n+ 1

2n
, SSI1t+1 < SSI it and lim

t−→∞
SSI it = 0.5 for every i > 1.22

Due to our assumptions, the groups of 1-similar types have more intense overall

relations than the groups of i-similar types for attributes i > 1. That comes from the

fact that attribute 1 is always the most salient. Also, interactions among 1-similar

types are gradually intensified on the basis of this attribute. We eventually observe

the extreme situation in which individuals only interact with others if they are

20The Spectral Segregation Index has a static nature, we just repeat its computation at every t.
21See Echenique and Fryer (2007) for a discussion.
22The Spectral Index of Segregation at time t is computed by looking only at interactions among i-similar types

at that time. It is the largest eigenvalue of the matrix describing these interactions. Also, this result refers to the

case in which λi
t > 0 for every attribute i. The results are the same when λi

t = 0 for some/all attributes i > 1. We

address this case in the proof of this proposition.
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1-similar. Thus, two disconnected groups, the one composed by types possessing

attribute 1 and the one composed by types lacking it, emerge. In this case the

segregation of 1-similar types ends up being maximal. In others words, the limiting

value of the Spectral Segregation Index is equal to 1.

Attributes i > 1 become gradually irrelevant in shaping interactions and thus

segregation according to them decreases over time. Thus, eventually individuals

evenly split their time between others that are similar to them in these attributes

and those that are different to them, that is why the limiting value of the index for

attributes i > 1 is exactly ones half.

Finally, it is worth mentioning the relationship between the segregation of a group

of i-similar types and the segregation of its members. By definition, the Spectral

Segregation Index is the average of individual segregation indexes. Individual segre-

gation indexes are computed by distributing the overall Spectral Segregation Index

among the members of the group. Following Echenique and Fryer (2007), this dis-

tribution is done according to the entries of the eigenvector associated to the largest

eigenvalue of the matrix describing interactions of i-similar types. In our case this

eigenvector is composed by ones. It is then the case that, at every point in time

t and for every attribute i, the level of segregation of every type is the same, and

equal to the overall Spectral Segregation Index. Intuitively, every type pays the

same total amount of attention to i-similar types. As a consequence, it also pays

the same total amount of attention to i-dissimilar types. In a nutshell, every type

segregates its interactions at the same extent and thus equally contributes to the

segregation of its group.

Another measure for the intensity of interactions is the so called Network Co-

hesion, proposed by Cavalcanti et al. (2012). Given a network, represented by a

matrix of interactions, Network Cohesion measures how uneven relations are. In

other words, how uniform or fragmented a network is. At every time t, Network

Cohesion, henceforth Ct, can be computed as one minus the largest eigenvalue of

the matrix of interactions Wt. It lies between zero and one, where zero and one

represent the lowest and the largest cohesion, respectively. In our framework, λ1t ,

is indeed the largest eigenvalue of the matrix of interactions Wt, thus we have that

Ct = 1 − λ1t . Network Cohesion decreases overtime and becomes eventually zero,

reflecting the eventual emergence of two disconnected groups of individuals. For

instance, in example 2 above we have that λ10 = 0.58, λ11 = 0.64 and limt→∞ λ1t = 1,

thus C0 = 0.42, C1 = 0.36 and limt→∞Ct = 0.

In the following figure we illustrate the evolution of interactions as time goes by

and compute the Spectral Segregation Index. Observe how 1-similar types eventually

interact exclusively among themselves. Observe also how types possessing (respec-

12



tively lacking) attribute 2, equally split their unit of attention between themselves

and others lacking (respectively possessing) attribute 2.

Figure 2. Segregation in interactions
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4 Speed of convergence

We focus here on the role of salience in determining the speed of convergence to

the eventual disagreement. One reason as to why is relevant to study the speed of

convergence is because disagreements might indeed have pernicious consequences.

In the presence of a policy intervention aiming to recover consensus, it might be

then important to know the timing for its implementation.

As Alesina and Tabellini (1990) point out, discrepancies between policymakers in

ideological views about social welfare, specifically regarding the desired composition

of government spending in public goods, might cause the accumulation of inefficient

levels of public debt. Also, Voss et al. (2006) show how the organizational success of

non-profit professional theatres was affected by the divergent views of their leaders

regarding the values that should drive the organizations’ behavior and Andreoni

and Mylovanov (2012) discuss how, among other consequences, disagreement might

create inefficient delays in bargaining. In a broad sense, Friedkin and Johnsen (1999)

state that there might be difficulties in arriving at agreed decisions when individuals

have fixed discrepant preferences.

The speed of convergence to the eventual disagreement is determined by the re-

lation between the difference in average initial attitudes associated to attribute 1

and the ones associated to the remaining attributes. In other words, the initial

relative salience of attribute 1 determines how long it takes for individuals to be-

come sufficiently homophilous with respect to it. Recall that the expression that

links homophily based on attribute 1 and the salience of this attribute is given by

λ1t =
∆t[1]

∑

i∆t[i]
. As previously discussed, eventually 1-similar individuals interact

exclusively among themselves which formally means that limt−→∞ λ1t = 1. Thus,

when we are sufficiently close to this interaction pattern, we can state that we are

sufficiently close to the equilibrium in which disagreement persists. It turns out that

every time t, λ1t is the second largest eigenvalue of the point-wise matrix of interac-

tions Wt. As deeply discussed in Golub and Jackson (2010) and Golub and Jackson

(2012), the second largest eigenvalue of a stochastic matrix plays an important role

in the analysis of the speed of convergence.

Our aim in this section is precisely to characterize the time it takes for individuals

to become homophilous exclusively with respect to attribute 1, that is, the minimum

time it takes for λ1t to be above an ǫ > 0 distance of its limit. For this purpose we

formally define this minimum time as:

Tǫ = min{t : λ1t ≥ 1− ǫ}. (5)
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In what follows we describe the properties of Tǫ, specifically we define its bounds

and analyze how it behaves in response to changes in the initial relative salience

of attribute 1, that is, to changes in the relation between the difference in average

initial attitudes associated to attribute 1 and the ones associated to the remaining

attributes. For this purpose, we focus on the case in which all differences in average

initial attitudes are strictly positive. We also consider the case in which the rela-

tive salience of attribute 1 is modified by altering the differences in average initial

attitudes, for just one attribute at a time.23

Before stating the result let ri0 = ∆0[i]/∆0[1] for every attribute i > 1. This ratio

captures the initial relative salience of attribute 1 with respect to any other attribute

i > 1. The smaller this ratio the more salient attribute 1 is with respect to any other

attribute i > 1. Let us specifically set r0 = ∆0[n]/∆0[1] and r0 = ∆0[2]/∆0[1].

These two ratios represent extreme cases. Specifically, r0 considers the difference

in average initial attitudes associated to attribute n, which is the smallest one.

In contrast, r0 considers the difference in average initial attitudes associated to

attribute 2, which is the second highest one. Let us set λ
1
t = [1+(n−1)(r0)

2t ]−1 and

define Tmin
ǫ = min{t : λ

1
t ≥ 1−ǫ} accordingly. Similarly, let λ1t = [1+(n−1)(r0)

2t ]−1

and Tmax
ǫ = min{t : λ1t ≥ 1− ǫ}. Notice that both, λ

1
t and λ1t , are constructed from

the expression λ1t = [1 +
∑

i>1(r
i
0)

2t ]−1, by substituting all differences in average

initial attitudes, by the smallest and second highest difference, respectively.24 We

now present the result:

Proposition 2. For every configuration of initial attitudes such that disagreement

persists, Tǫ is non-increasing in the initial relative salience of attribute 1. Further-

more, Tǫ ∈ [Tmin
ǫ , Tmax

ǫ ].

It directly follows that, everything else equal, the higher the difference in average

initial attitudes associated to attribute 1, the higher the overall attention within the

groups of 1-similar types. It is also the case that the lower the difference in average

initial attitudes associated to an attribute i > 1, the higher the overall attention

within the groups of 1-similar types. In particular, attribute 1 becomes relatively

more salient than this other attribute i > 1, which is now a weaker competitor for

attention. In general when attribute 1 is fairly salient, individuals exhibit high ho-

mophily with respect to 1-similar others and form completely inward-looking groups

relatively fast.
23That is, for one attribute i, we alter ∆0[i] such that ∆0[1] > ∆0[2] ≥ · · · ≥ ∆0[n] ≥ 0 is preserved in order, and

in magnitude for differences associated to the remaining attributes j 6= i. In fact, when we can decrease or increase

any ∆0[i] by decreasing or increasing, in the same magnitude, initial attitudes of both, the type that possesses all

attributes and the type that only possesses the considered attribute i, differences associated to attributes j 6= i,

keep unaltered. The decrease or increase has to be such that the order above is preserved.
24Given the order of initial differences, when ∆0[i] = 0 for some attribute i ≤ n then, λ

1

t = 1. In this case

Tmin
ǫ = 0. Similarly, when ∆0[2] = 0 then λ1

t = 1. In this case Tmax
ǫ = 0. In this last case λ1

0
= 1 and the

equilibrium is reached at t = 1.
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Not only the speed of convergence but the magnitude of disagreement is also

sensitive to the aforementioned changes in differences in attitudes. To see this

consider the eventual attitudes in expression (4) and notice that we can rewrite the

ergodicity coefficient as τ(W∞) = limT→∞

∏T
t=0[1+r2

t

0 +...+r2
t

0 ]
−1. It is immediate

that the proposed changes in the differences in attitudes decrease the ratios in the

denominator of the expression above, making the elements of this product (and

hence its limit) higher than before.

It is also worth mentioning how it is enough to focus on the evolution of the

homophily value associated to attribute 1 to describe the minimum time of conver-

gence for the system as a whole. The reason is that this homophily value is always

further away from 1, its limiting value, than any of the homophily values associated

to the remaining attributes is from 0, its limiting value. Then, the time it takes for

it to be sufficiently close to one, is at least the same as the time it takes for the

remaining homophily values to be sufficiently close to zero.25

We finally discuss how the configuration of initial attitudes matters in determin-

ing the speed of convergence. Consider the extreme case in which the difference in

average initial attitudes associated to attribute 1 is fairly similar to the differences

associated to the remaining attributes, for instance, ∆0[1] ≃ ∆0[2] = · · · = ∆0[n].

In this case the initial relative salience of attribute 1 is fairly small and it would

take a while for individuals to gradually redirect their homophilous behavior to-

wards attribute 1. The time to reach the equilibrium would be considerably high

in this case. The other extreme situation is such that the difference in average

initial attitudes associated to attribute 1 is, by far, the highest one, for instance,

∆0[1] >> ∆0[2] = · · · = ∆0[n] ≃ 0. Being the relative salience of attribute 1

fairly high, individuals would quickly conclude that the possession or lack of this

attribute clearly defines two groups in society, or in other words, that this attribute

is explanatory for social differences. Thus, it would not take much time for them to

become homophilous exclusively with respect to it. The equilibrium will be reached

much more faster than before. When the differences in attitudes associated to all

attributes i > 1 are zero, the equilibrium is reached at t = 1.

5 Conclusions

On the basis of the observation that disagreement in attitudes is a common phe-

nomenon, we propose a model of attitude evolution able to capture its persistence.

In our approach individuals exhibit homophily and the attention they pay to similar

others varies over time. Specifically, homophily co-evolves with attitudes governed

by how determinant attributes are in shaping social differences.
25See the proof of Proposition 2.
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We find that disagreement is the long-run outcome of this process if and only if

there is a unique attribute that becomes increasingly salient as time goes by. This

attribute is precisely the initially most salient one. Thus, eventual homophily is

such that individuals only pay attention to others if they are similar to them in that

particular attribute. As a product of this behavior, two groups of thinking emerge

in the long-run. The time to convergence to this scenario is non-increasing in the

initial relative salience of this attribute.

We consider our findings to be related to the phenomenon of unidimensionality

in attitudes, a widely discussed topic in political economy. As DeMarzo et al. (2003)

point out, there is a strong debate on whether voting records of Congress and Senate

members can be explained by a unidimensional liberal-conservative model. There

is, in fact, evidence strongly supporting this model. For instance, Poole and Daniels

(1985) find that the voting behavior in the U.S. Congress can be mainly explained by

a single liberal-conservative dimension. We also consider that our model has a direct

application related to the persistence of the gender pay gap. It is sometimes argued

that the reason as to why females consistently self-report to be happier at work

than males, relies on the fact that they have traditionally held lower labor reward

aspirations than males. This phenomenon is known as The Paradox of Female

Happiness. Two references discussing this paradox and related aspects are Bertrand

(2011) and Clark (1997). Divergent aspirations between males and females might

be able to explain that part of the gender gap that remains unexplained even after

controlling for relevant aspects such as skill levels. Our intuition is that a model of

wage setting in which individuals are of both sexes and are endowed with gender

biased aspirations, will deliver as a result a gender pay gap, provided that the

updating of aspirations takes place with our mechanism. Specifically, females might

end up self-selected into low payment jobs, even without discriminatory behavior

from the part of employers.

Finally we would like to mention two aspects of the model that we left for future

research: first, our model follows a representative agent approach in which there is

one individual by type. We do not deal with the case in which individuals appear in

society in different frequencies. Second, we have assumed that, in determining the

intensity of relations individuals sum up the homophily values associated to shared

attributes. It will be interesting to investigate the case in which when any pair of

individuals share two (or more) attributes i and j, the attention they pay to each

other at time t is given by a more general function (than the sum) of αi
t and αj

t .
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6 Appendix. Extensions

In this section we explore how previous findings react to natural modifications in the

assumptions regarding individual behavior. To start with, it might be the case that

individuals do not exhibit certain attitudes with respect to a given issue, but that

these attitudes are subject to shocks, or are random. In contexts in which individuals

aim to learn the true state of the world, randomness might be interpreted as lack of

information (noise) regarding the issue at hand, as in Golub and Jackson (2010), as

the degree of attitudes’ precision, as in DeMarzo et al. (2003), or as experts having

subjective probability distributions about the true state, as in DeGroot (1974). In

situations in which individuals deal with ideological issues we might interpret at-

titudes’ randomness as flexibility or lack of stubbornness. Regarding this point we

consider, for the case in which types are defined by two attributes, that initial atti-

tudes of every type are randomly drawn from symmetric continuous distributions. In

the context of two attributes, we find that the persistence of disagreement is robust

to randomness. In particular, disagreement may now persist across either attribute,

being more likely to persist across the one for which the mean of the distribution of

the initial difference in attitudes is the highest.

We also explore the more general question of what are the conditions that the

evolution of homophily has to satisfy for disagreement to persist. Previously we

used Luce as a particular rule for the evolution of homophily and discussed how

this evolution gave raise to persistent disagreement. That was the case because

homophily with respect to the initially most salient attribute increased over time in

such a way that the convergence of attitudes to a common value was precluded. In

contrast, the constant homophily feature in Golub and Jackson (2012), a somewhat

different model, only affects the speed of convergence to consensus, an outcome

that always emerges. We thus find relevant to go beyond in reconciling these two

views and in the understanding of what are the homophily patterns that give raise

to either persistent disagreement or consensus. We find that under a more general

representation of homophily, disagreement persists if and only if the process by which

individuals intensify their relations with others with whom they share the initially

most salient attribute, is fast enough. More specifically, there are two forces playing

a role: on the one hand individuals pay increasing attention to others on the basis

of this attribute but on the other hand, they also always pay a positive amount of

(possibly indirect) attention to everyone else. For disagreement to persist it has to

be that the first force dominates the second.
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6.1 Random Attitudes

In this section we consider random instead of certain attitudes in a context in

which individuals are composed by two attributes, namely, 1 and 2. Specifically,

let ãA0 be the initial attitude of a type A. Let it follow a symmetric continuous

distribution, with mean aA0 and variance σ2A. Initial attitudes of all types are

assumed to be independent although not necessarily identically distributed. Let

∆̃0[1] = 2−1(ã
{1,2}
0 −ã

{∅}
0 +(ã

{1}
0 −ã

{2}
0 )) and ∆̃0[2] = 2−1(ã

{1,2}
0 −ã

{∅}
0 +(ã

{2}
0 −ã

{1}
0 ))

be the distributions of the initial differences in attitudes associated to attribute 1

and 2, respectively. They have means ∆0[1] = 2−1(a
{1,2}
0 − a

{∅}
0 + (a

{1}
0 − a

{2}
0 ))

and ∆0[2] = 2−1(a
{1,2}
0 − a

{∅}
0 + (a

{2}
0 − a

{1}
0 )), respectively, and the same variance,

∑

A σ2A/4. Let us assume without loss of generality that ∆0[1] ≥ ∆0[2] ≥ 0. In

linking homophily and salience we discuss the Luce form, as in the main body.

Thus:

λ̃1t =
|∆̃t[1]|

|∆̃t[1]|+ |∆̃t[2]|
and λ̃2t =

|∆̃t[2]|

|∆̃t[1]|+ |∆̃t[2]|
.

Notice that the homophily values could, in principle, be positive or negative,

depending on the realization of the random variables ∆̃t[1] and ∆̃t[2]. As we assume

that the only aspect that matters is the magnitude of the differences in attitudes

and not their sign, we work with its absolute value.

As a preview of the results, we find that the persistence of disagreement is robust

to randomness. In contrast with the deterministic case, in general disagreement

persists across either attribute with positive probability. Disagreement will per-

sist across attribute 1 with probability equal to one when the minimum among all

possible realizations of |∆̃0[1]| is higher than the maximum among all possible real-

izations of |∆̃0[2]|. In what follows we discuss how the likelihood that disagreement

persists across either attribute depends on the features of the distributions of initial

differences in attitudes associated to these attributes. The results are as follows:

Proposition 3. In general disagreement persists across either attribute 1 or 2 with

positive probability. Also, disagreement across attribute 1 is at least as likely as

disagreement across attribute 2. The (non-negative) expression accounting for the

difference in probabilities is:

(2P (ã
{1,2}
0 − ã

{∅}
0 ≥ 0)− 1)(2P (ã

{1}
0 − ã

{2}
0 ≥ 0)− 1). (6)

Thus, both events are equally likely if and only if the initial expected differences in

attitudes are equal (that is, if and only if ∆0[1] = ∆0[2], or equivalently, a
{1}
0 −a

{2}
0 =

0) whereas disagreement across attribute 1 is the most likely event if and only if the

initial expected difference is the highest across this attribute (that is, if and only if,

∆0[1] > ∆0[2], or equivalently, a
{1}
0 − a

{2}
0 > 0).
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Expression (6) is non-negative because the (symmetric) distributions of ã
{1,2}
0 −

ã
{∅}
0 and ã

{1}
0 − ã

{2}
0 have non-negative means.26 Notice also that fixing the variance

of the aforementioned distributions, the probability that they take non-negative

values, increases with their mean, so does the likelihood of disagreement across

attribute 1.

It is also worth mentioning that since we focus on perturbations in initial atti-

tudes, once they are realized, eventual attitudes acquire the same form as the ones

in Theorem 1 in the main body. The following remark formally states the point.

For this purpose let ãA∞ denote the eventual attitude of a type A:

Remark. Suppose that disagreement persists across attribute i = {1, 2}. Then:

ãA∞ = a0 + 2−1
(

1− |∆̃0[j]|/|∆̃0[i]|
)

∆̃0[i] if i ∈ A

and

ãA∞ = a0 − 2−1
(

1− |∆̃0[j]|/|∆̃0[i]|
)

∆̃0[i] if i /∈ A

.

The following examples illustrate previous findings and related aspects. In exam-

ple 1 we pin down the probability that disagreement persists across either attribute

when initial attitudes are uniformly distributed. In example 2, initial attitudes are

normally distributed. We illustrate how the probability that disagreement persists

across either attribute is not only sensitive to the mean, as previously stated, but

we offer insights on how the variance of these distributions may play a role:

Example 3. First, let initial attitudes be such that a
{1,2}
0 ∼ U [0, 1], ã

{1}
0 ∼

U [−1, 1], ã
{2}
0 ∼ U [−1, 1] and ã

{∅}
0 ∼ U [−1, 1]. Thus, ∆̃0[1] and ∆̃0[2] have means

∆0[1] = ∆0[2] = 0.25. Thus, from Proposition 3, disagreement across either at-

tribute is equally likely. To see this recall that the probability that disagreement

persists across attribute 1 minus the probability that it does across attribute 2 de-

pends on ã
{1,2}
0 −ã

{∅}
0 and ã

{1}
0 −ã

{2}
0 . As ã

{1}
0 −ã

{2}
0 follows a (symmetric) triangular

distribution with mean zero, this difference in probabilities is zero. Second, let ini-

tial attitudes be such that a
{1,2}
0 ∼ U [0, 1], ã

{1}
0 ∼ U [0, 1], ã

{2}
0 ∼ U [−1, 1] and

ã
{∅}
0 ∼ U [−1, 1]. Thus, ∆̃0[1] and ∆̃0[2] have means ∆0[1] = 0.5 and ∆0[2] = 0,

respectively. From Proposition 3, disagreement across attribute 1 is the most likely

event. As above we focus on the distributions of ã
{1,2}
0 − ã

{∅}
0 and ã

{1}
0 − ã

{2}
0 . Let

y ≡ ã
{1,2}
0 − ã

{∅}
0 . It follows a triangular distribution with density:

26See the Proof of Proposition 3.
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f(y) =



















1 + y

2
if −1 < y < 0

0.5 if 0 ≤ y ≤ 1

1−
y

2
if 1 < y < 2

.

Thus, P (y ≥ 0) = 1−
y=0
∫

y=−1

1 + y

2
= 0.75. Also, let z ≡ ã

{1}
0 − ã

{2}
0 . Notice that

it follows the same distribution as y. Thus, P (z ≥ 0) = 0.75 as well. In this case

expression (6) equals 0.25. Thus disagreement persists across attribute 1 and 2 with

probabilities 0.625 and 0.375, respectively.

Example 4. Let initial attitudes be normally distributed with means such that

∆0[1] ≥ ∆0[2] > 0 and variances equal to one.27 In the first figure we depict the

probability that disagreement persist across attribute 1, as a function of the mean of

the distribution of difference in attitudes associated it. In particular we keep ∆0[2]

constant and increase ∆0[1]. On the x-axis we depict the difference x = ∆0[1]−∆0[2]

and on the y-axis, the probability of disagreement across attribute 1. We observe a

positive relation.

Figure 3. Probability that disagreement persists across attribute 1
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Probability of Disagreement across attribute 1 as a function of x

27As stated in the main body the results go through when initial attitudes are defined over the entire real line.
28Specifically, we simulate the model 2000 times for every configuration of the initial differences in attitudes,

starting from the case in which ∆0[1] = 0 and ∆0[2] = 0 and thus x = 0 and ending in the case in which ∆0[1] = 10

and ∆0[2] = 0 thus, x = 10. The Matlab code is available upon request.
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Within this example, it is also worth illustrating how the variances of the dis-

tributions of initial attitudes may play a role in determining the likelihood of dis-

agreement. Let us consider that initial attitudes are normally distributed with the

same means as above, for the cases in which ∆0[1] > ∆0[2] ≥ 0. In contrast,

let the variances of these random variables, instead of being all equal to one, be

such that ã
{1}′

0 − ã
{2}′

0 and/or ã
{1,2}′

0 − ã
{∅}′

0 have higher variances than (mean pre-

serving spreads of) ã
{1}
0 − ã

{2}
0 and/or ã

{1,2}
0 − ã

{∅}
0 , respectively. Then in this case,

0.5 < P (ã
{1}′

0 − ã
{2}′

0 ≥ 0) < P (ã
{1}
0 − ã

{2}
0 ≥ 0) and/or 0.5 < P (ã

{1,2}′

0 − ã
{∅}′

0 ≥ 0) <

P (ã
{1,2}
0 − ã

{∅}
0 ≥ 0).29 Notice that expression (6) in Proposition 3 has now lower

value than before, meaning that disagreements across either attribute are closer to

being equally likely.

To conclude, it is also the case that disagreement manifests as two groups holding

different eventual attitudes. Specifically, the difference in average eventual attitudes

associated to attribute 1 (respectively 2) persists whereas the one associated to

attribute 2 (respectively 1) is zero.30

6.2 A general representation of homophily

In this section we relate the persistence of disagreement to the properties and evo-

lution of homophily. For this purpose we define homophily values in broader terms.

Specifically, let γit be the homophily value associated to attribute i at time t. Let

this value depend on the differences in average attitudes associated to (possibly) all

attributes. As in the main body we assume that at every time t, γit is non-negative

and we normalize to one the total amount of attention that every individual devotes

to others. It then has to be the case that at every time t the sum of these homophily

values is one, that is,
∑

i γ
i
t = 1.31 We finally assume that the homophily values

satisfy two properties dealing with the monotonicity aspects of attention with re-

spect to the differences in attitudes. The first one states that the attention that

every attribute enjoys is positive if and only if the difference in attitudes across it,

is positive. The second one states that if attribute i exhibits a higher difference in

attitudes than attribute j then the former enjoys higher attention than the latter:

29Notice that ∆0[1] = ∆0[2] ≥ 0 holds when a
{1}
0

−a
{2}
0

= 0. In this case, regardless of the variances, disagreement

across either attribute is equally likely. See the proof of Proposition 3.
30When disagreement persists across attribute 1, the difference in average eventual attitudes associated to attribute

1 is ∆̃∞[1] = (2n−1)−1(
∑

A:i∈A ãA∞ −
∑

A:1/∈A ãA∞) = (2n−1)−12n−1(ãA∞ : 1 ∈ A− ãA∞ : 1 /∈ A) = |∆̃0[1]| − |∆̃0[2]|

(respectively |∆̃0[2]| − |∆̃0[1]|) when ∆̃0[1] ≥ 0 (respectively ∆̃0[1] < 0). Since disagreement across attribute 1

persists when |∆̃0[1]| > |∆̃0[2]|, ∆̃∞[1] has either positive or negative support. Furthermore, the distribution of the

difference in average eventual attitudes associated to attribute 2 is degenerated at zero. To see this notice that within

the 2n−1 types possessing attribute 1 there are 2n−2 types possessing and lacking attribute 2, respectively. The

same happens within the 2n−1 types lacking attribute 1, hence, ∆̃∞[2] = (2n−1)−1(
∑

A:2∈A ãA∞ −
∑

A:2/∈A ãA∞) =

2−1(2n−2)−12n−2(ãA∞ : 1 ∈ A, 2 ∈ A + ãA∞ : 1 /∈ A, 2 ∈ A) − ãA∞ : 1 ∈ A, 2 /∈ A + ãA∞ : 1 /∈ A, 2 /∈ A) =

2−12(a0 − a0) = 0. The analysis is the same when disagreement persists across attribute 2.
31See Section 2.
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Within differences monotonicity (WDM). ∆t[i] = 0 implies that γit = 0

and ∆t[i] > 0 implies that γit > 0.32

Across differences monotonicity (ADM). ∆t[1] ≥ ∆t[2] ≥ · · · ≥ ∆t[n] ≥ 0

implies that γ1t ≥ γ2t ≥ · · · ≥ γnt ≥ 0.

We also set the technical condition that limt−→∞ γit exists for every attribute i

and that limt−→∞
∑

i γ
i
t =

∑

i limt−→∞ γit = 1.

We now state the condition for the persistence of disagreement and provide its

form:

Theorem 2. For every configuration of initial attitudes, eventual ones always exist.

They exhibit disagreement if and only if homophily based on attribute 1, approaches

value 1 sufficiently fast (that is, if and only if
∑∞

t=0 logγ
1
t exists). In this case,

eventual attitudes are such that, for every type A:

|aA∞| =
1

2
τ(W∞)∆0[1]

where τ(W∞) ∈ (0, 1]. Furthermore, aA∞ > 0 if and only if 1 ∈ A.

Disagreement persists whenever the process by which individuals progressively

intensify their relations with others similar to them in attribute 1 is fast enough.

Intuitively there are two forces playing a role: on the one hand individuals pay in-

creasing attention to others on the basis of attribute 1 but on the other hand, they

also pay a positive amount of (possibly indirect) attention to everyone else. For dis-

agreement to persist, it has to be that the first force dominates the second. Needless

to say that when the value of homophily is linked to differences in attitudes by the

Luce form, as in the main body, the updating process satisfies these requirements. As

an illustration, for the case with two attributes
∑∞

t=0 logγ
1
t = log(1−∆0[2]/∆0[1])

and τ(W∞) = 1−∆0[2]/∆0[1], with ∆0[1] > ∆0[2] ≥ 0.

Disagreement materializes in two groups of thinking, defined according to whether

individuals possess or lack attribute 1. We cannot specify the closed form ex-

pression for the ergodicity coefficient τ(W∞) in this case, since it depends on the

particular functional form for the homophily values. We just say that τ(W∞) =

limT→∞

∏T
t=0 γ

1
t ∈ (0, 1].

The following examples illustrate the requirement in the Theorem above. For this

purpose, we consider updating rules that are mainly based on modifications of the

Luce form in expression (2), with the exception of example 8. Example 5 deals with

a scenario in which consensus is achieved whereas in examples 6 to 8 disagreement

persists.

Example 5. Eventual consensus. Consider the following updating rule:
32When ∆t[i] = 0 for every attribute i, we set γi

t = 1/n.
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γ1t =











∆t[1]

∆t[1] + ∆t[2]
if γ1t−1 < H ∈ [0, 1)

γ1t−1 if γ1t−1 ≥ H ∈ [0, 1)

.

Let γ2t = 1−γ1t at every time t. Under this rule individuals use Luce to determine

the attention they pay to others, but whenever a level H of homophily has been

reached, they are no longer sensitive to changes in differences in attitudes. In this

case interactions become static from some point in time on, and thus, individuals do

not become homophilous exclusively with respect to attribute 1. The requirements

in the proposition above are therefore not satisfied and consensus will eventually

emerge.

Example 6. The persistence of disagreement. Let initial attitudes be a′0 =

[0.8 0.2 −0.05 −0.95]. Thus, the difference in average initial attitudes associated to

attribute 1 is ∆0[1] = 0.5(0.8 + 0.2)− 0.5(−0.05− 0.95) = 1 and the one associated

to attribute 2 is ∆0[2] = 0.5(0.8 − 0.05) − 0.5(0.2 − 0.95) = 0.75. Consider the

generalized Luce form, γ1t =
∆t[1]

δ

∆t[1]δ +∆t[2]δ
and γ2t =

∆t[2]
δ

∆t[1]δ +∆t[2]δ
. When

δ = 1.2 we have that γ10 = 0.58 and γ20 = 0.42. The entries in the interaction

matrices evolve as follows:

W0 =











0.5 0.3 0.2 0

0.3 0.5 0 0.2

0.3 0 0.5 0.3

0 0.2 0.3 0.5











, W1 =











0.5 0.34 0.16 0

0.34 0.5 0 0.16

0.16 0 0.5 0.34

0 0.16 0.34 0.5











, ..., lim
t→∞

Wt =











0.5 0.5 0 0

0.5 0.5 0 0

0 0 0.5 0.5

0 0 0.5 0.5











.

Also, W∞ =











0.33 0.33 0.17 0.17

0.33 0.33 0.17 0.17

0.17 0.17 0.33 0.33

0.17 0.17 0.33 0.33











andW∞ times a0 =











0.8

0.2

−0.05

−0.95











is a∞ =











0.16

0.16

−0.16

−0.16











.

In this case τ(W∞) = 0.32.33 Notice that in the relation between attributes 1 and

2, summarized in (∆0[2]/∆0[1])
1.2, the difference in attitudes associated to attribute

1 exacerbates with respect to the case in which δ = 1.

Example 7. The persistence of disagreement. Consider the case in which

γ1t =
β∆t[1]

β∆t[1] + δ∆t[2]
and γ2t =

δ∆t[2]

β∆t[1] + δ∆t[2]
, with β > δ > 0. Notice that the

relation between attributes 1 and 2, that is, δ∆0[2]/β∆0[1], exacerbates with respect

to the case in which β = δ. This process leads to disagreement for any configuration

33The entries of W∞ are a function of τ(W∞), thus we can recover its value from the expression of W∞. See

the proof of Theorem 1.
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of initial attitudes, that is, even in the case in which ∆0[1] = ∆0[2]. The reason is

that γ10 > γ20 and ∆1[1] = γ10∆0[1] > ∆1[2] = γ20∆0[2], thus form t = 1 Theorem 1

in the main body applies.

Example 8. The persistence of disagreement. Let initial attitudes be a′0 =

[0.8 0.2 − 0.05 − 0.95]. Thus, the difference in average initial attitudes associated

to attribute 1 is ∆0[1] = 1 and the one associated to attribute 2 is ∆0[2] = 0.75, as

in example 6. Consider the following updating rule:

γ1t =











































0.5 if ∆t[1] = ∆t[2] ≥ 0

1 if ∆t[1] > ∆t[2] = 0

0 if ∆t[2] > ∆t[1] = 0
(

∆t[1]

∆t[2]

)α

if ∆t[2] > ∆t[1] > 0

1−

(

∆t[2]

∆t[1]

)β

if ∆t[1] > ∆t[2] > 0

.

We set α and β such that (∆t[1]/∆t[2])
α and (∆t[2]/∆t[1])

β are smaller than one

half. Let γ2t = 1 − γ1t , at every time t. Let us set, for instance, β = 2.5.34 The

entries in the interaction matrix evolve as follows:

W0 =











0.5 0.26 0.24 0

0.26 0.5 0 0.24

0.24 0 0.5 0.26

0 0.24 0.26 0.5











, W1 =











0.5 0.28 0.22 0

0.28 0.5 0 0.22

0.22 0 0.5 0.28

0 0.22 0.28 0.5











, ..., lim
t→∞

Wt =











0.5 0.5 0 0

0.5 0.5 0 0

0 0 0.5 0.5

0 0 0.5 0.5











.

Also, W∞ =











0.31 0.31 0.19 0.19

0.31 0.31 0.19 0.19

0.19 0.19 0.31 0.31

0.19 0.19 0.31 0.31











andW∞ times a0 =











0.8

0.2

−0.05

−0.95











is a∞ =











0.12

0.12

−0.12

−0.12











.

In this case τ(W∞) = 0.24.

7 Appendix. Proofs

First of all let λit = ∆t[i]/
∑

j ∆t[j] for every attribute i and at every time t.

Proof of Theorem 1. The proof is composed by several steps. In step 1 we show how,

at every time t, λi0 > 0 and λi0 = 0 imply that λit > 0 and λit = 0, respectively. Steps

2-8 analyze disagreement when λi0 > 0 for every attribute i. In particular, Steps 2-5

34Since at every time t it is the case that ∆t[1] > ∆t[2] > 0, we do not specify any value for α. Also, since

∆t[1]/∆t[2] (respectively ∆t[2]/∆t[1]) is decreasing over time whenever ∆t[2] > ∆t[1] (respectively ∆t[2] < ∆t[1])

we set α and β to be constant. See steps 1 and 7 in the proof of Theorem 1.
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identify the eigenvalues and eigenvectors of Wt and diagonalize it. Step 6 deals with

the existence of the limiting product of point-wise stochastic matrices, that is, W∞.

Step 7 provides its form. Step 8 establishes the necessary and sufficient condition

for disagreement to persist, qualifying it. Finally, step 9 elaborates on the case in

which λi0 = 0 for some/all attributes i > 1.

Step 1. We prove that λi0 > 0 implies that λit > 0 and λi0 = 0 implies that λit = 0,

at every t. We proceed by decomposing ∆t[i] = (2n−1)−1
[
∑

A:i∈A aAt −
∑

A:i/∈A aAt
]

.

Consider a type A such that i ∈ A. By (1), aAt =
∑

B wA,B
t−1 a

B
t−1. Since wA,B

t−1 =

(2n−1)−1
∑

i∈I(AB) λ
i
t−1, then:

aAt =
∑

B

wA,B
t−1 a

B
t−1 =

1

2n−1

∑

B:i∈B

λit−1a
B
t−1 +

1

2n−1

∑

j 6=i

λjt−1

∑

B:j∈I(AB)

aBt−1.

Since there are 2n−1 types A possessing attribute i,
∑

A:i∈A aAt =
∑

B:i∈B λit−1a
B
t−1+

∑

j 6=i λ
j
t−1

∑

B:j∈I(AB) a
B
t−1. By a similar reasoning, for types A such that i /∈ A,

∑

A:i/∈A aAt =
∑

B:i/∈B λit−1a
B
t−1 +

∑

j 6=i λ
j
t−1

∑

B:j∈I(AB) a
B
t−1. Therefore:

1

2n−1

∑

A:i∈A

aAt −
1

2n−1

∑

A:i/∈A

aAt =
1

2n−1

∑

B:i∈B

λit−1a
B
t−1 −

1

2n−1

∑

B:i/∈B

λit−1a
B
t−1

or equivalently, ∆t[i] = λit−1∆t−1[i].
35 From the definition of λit, it follows that at

every t, ∆t[i] ≥ 0 implies that λit ≥ 0. Also, ∆t[i] ≥ 0 if and only if λit−1 ≥ 0 and

∆t−1[i] ≥ 0. With these two observations we conclude that ∆0[i] > 0 and λi0 > 0

imply that at every time t, ∆t[i] > 0 and λit > 0, respectively. Also ∆0[i] = 0 and

λi0 = 0 imply that at every time t, ∆t[i] = 0 and λi0 = 0, respectively.36

Step 2. At every time t, 1 is an eigenvalue of Wt, with right-eigenvector u of

size 2n × 1, where u has all components equal to 1. This directly follows from the

stochasticity of Wt. Notice that u is time independent. We thus omit the time

subscript.

Step 3. At every time t and for every attribute i, λit is an eigenvalue of Wt, with

right-eigenvector ui of size 2n × 1, where ui has the following form: the component

of ui associated to type A is equal to 1 if i ∈ A and equal to −1 otherwise. We prove

that by showing that the pair (λit, u
i) satisfies the eigenvalue equation, Wtu

i = λitu
i.

Consider an attribute i and an arbitrary type A. Suppose first that i ∈ A. Notice

that there are exactly 2n−1 types B possessing attribute i. Also, notice that for

every j 6= i, there are exactly 2n−2 types B possessing attribute i that are j-similar

to A and 2n−2 types B lacking attribute i that are j-similar to A. Therefore, the

35As this expression holds at every t, we recursively write ∆t[i] =
∏t−1

s=0
λi
s∆0[i].

36Also from the definition of λi
t it follows that at every t, ∆t[1] ≥ ∆t[2] ≥ · · · ≥ ∆t[n] ≥ 0 implies that

λ1
t ≥ λ2

t ≥ · · · ≥ λn
t ≥ 0. Additionally, ∆t[1] ≥ ∆t[2] ≥ · · · ≥ ∆t[n] ≥ 0 if and only if λ1

t−1
∆t−1[1] ≥ λ2

t−1
∆t−1[2] ≥

· · · ≥ λn
t−1

∆t−1[n] ≥ 0. Since by assumption ∆0[1] ≥ ∆0[2] ≥ · · · ≥ ∆0[n] ≥ 0 then, at every t, ∆t[1] ≥ ∆t[2] ≥

· · · ≥ ∆t[n] ≥ 0 and λ1
t ≥ λ2

t ≥ · · · ≥ λn
t ≥ 0 hold. This also implies that

∏T
t=0

λ1
t >

∏T
t=0

λ2
t ≥ · · · ≥

∏T
t=0

λn
t ≥ 0.
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row in Wt corresponding to type A, multiplied by ui, is equal to:

∑

B:i∈B

wA,B
t −

∑

B:i/∈B

wA,B
t =

2n−1λit + 2n−2
n
∑

j 6=i

λjt − 2n−2
n
∑

j 6=i

λjt

2n−1
= λit.

Since every type A is such that i ∈ A, the RHS of the eigenvalue equation also equals

λit. Thus, we conclude that (λit, u
i) is a pair of eigenvalue and right-eigenvector of

Wt. The proof for the case in which A is such that i /∈ A is analogous and hence

omitted. As in step 2, the eigenvectors ui corresponding to every λit are also time

independent.

Step 4. At every time t, the remaining eigenvalues of Wt are zero. Consider any

type B such that |B| ≥ 2. We start by proving that for every type A, wA,B
t =

∑

i∈B w
A,{i}
t − [|B| − 1]wA,∅

t . By doing so, we are proving that the column vector

of weights associated to type B is a linear combination of the column vectors of

weights associated to types containing at most one attribute and hence, there are at

most n+1 independent columns in Wt. Notice that getting rid of the normalization

1/2n−1, we are left with:

∑

i∈B

w
A,{i}
t =

∑

i∈B∩A

(λit +
∑

j∈Ac

λjt ) +
∑

i∈B∩Ac

∑

j∈Ac,j 6=i

λjt

and that this is equivalent to:

∑

i∈B∩A

(λit+
∑

j∈Ac

λjt )+
∑

i∈B∩Ac

(
∑

j∈Ac

λjt −λit) =
∑

i∈B∩A

λit+
∑

i∈B

∑

j∈Ac

λjt −
∑

i∈B∩Ac

λit. (7)

Second, notice that:

(|B| − 1)wA,∅
t = (|B| − 1)

∑

j∈Ac

λjt . (8)

Thus, (7) minus (8) is equal to
∑

i∈B∩A λit+
∑

j∈Ac λ
j
t−

∑

i∈B∩Ac λit. This expres-

sion can be rewritten as
∑

i∈B∩A λit+
∑

j∈I∩Ac λ
j
t−

∑

i∈(I\Bc)∩Ac λit =
∑

i∈B∩A λit+
∑

i∈Bc∩Ac λit. This is equivalent to wA,B
t =

∑

i∈I(AB) λ
i
t where I(AB) = (B ∩ A) ∪

(Bc ∩ Ac) as defined in section 2. Thus, rank(Wt) ≤ n+ 1.

Recall that the rank of a matrix is equal to the number of non-zero eigenvalues.

Since steps 2 and 3 already identified n+1 of them, indeed rank(Wt) = n+1. Thus,

the rest of the 2n − (n+ 1) eigenvalues are zero.

Step 5. We prove here that Wt is always diagonalizable and provide its form.

From symmetry of Wt there is an orthogonal diagonalization Wt = UΛtU
′, where U
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is an orthonormal basis. Orthonormal eigenvectors have unitary euclidean norm and

are orthogonal to each other. Therefore, for the zero eigenvalues, there exist eigen-

vectors u0 with ‖u0‖ = 1, orthogonal to each other and to both, u/‖u‖ and every

ui/‖ui‖, where ‖u‖ = 2n/2 and ‖ui‖ = 2n/2, for every i. Since by steps 2 and 3 u and

every ui are time independent, every u0 is also time independent. Now, fix the follow-

ing order of eigenvalues: first eigenvalue 1, afterwards eigenvalues λit, by type, and

finally the zero eigenvalues in a fixed order. Then U =

[

u

‖u‖

ui

‖u1‖
...

un

‖un‖
u0 . . . u0

]

,

and the diagonal matrix of eigenvalues at time t is:

Λt =





















1 0 0 0 · · · 0 0 · · · 0

0 λ1t · · · · · · · · · 0 0 · · · 0

0 0 · · · · · · · · · 0 0 · · · 0

0 0 0 0 · · · λnt 0 · · · 0
...

...
...

...
...

...
... 0 0

0 0 0 0 0 0 0 0 0





















Since at every time t the matrix Wt is diagonalizable over the same eigenspace,

hence W T = UΛTU ′ where ΛT =
∏T

t=0 Λt with diagonal entries: 1,
∏T

t=0 λ
i
t for

every attribute i and zeros.

Step 6. Here we deal with the existence of W∞ and a∞. By step 5, W∞ =

U limT−→∞ ΛTU ′, provided that the RHS of this expression exists. We confirm here

that this is, in fact, the case. In computing limT−→∞ ΛT we focus on the non-zero

diagonal entries of ΛT . Eigenvalue 1 is constant over time, thus its limiting product

is 1. Since at every time t, λit ∈ (0, 1) for every i then
∏∞

t=0 λ
i
t exists in [0, 1). Thus,

U limT−→∞ ΛTU ′ exists and defines both, W∞ and a∞ = W∞a0, for every a0.

Step 7. We provide here the specific form of W∞. Suppose that ∆0[1] > ∆0[2].

Consider attribute 1 first. Let rit = ∆t[i]/∆t[1] for every attribute i and at every

time t. We then rewrite λ1t = ∆t[1](∆t[1] +
∑

i>1∆t[i])
−1 = [1 +

∑

i>1 r
i
t]
−1. By

step 1, rit = λit−1∆t−1[i]/λ
1
t−1∆t−1[1]. From the expression of λit it follows that

λit−1/λ
1
t−1 = ∆t−1[i]/∆t−1[1] = rit−1. Thus, rit = (rit−1)

2 and recursively we get

that rit = (ri0)
2t . Thus, λ1t = [1 +

∑

i>1(r
i
0)

2t ]−1. It is important to notice that,

0 < ri0 < 1 for attributes i > 1. It then follows that limt−→∞ λ1t = 1. This opens the

possibility for
∏∞

t=0 λ
1
t 6= 0. We prove that this is indeed the case by equivalently

stating that
∑∞

t=0 log(λ
1
t ) exists.

In order to do it, we consider r20, the highest ratio smaller than one, and con-

struct a new homophily value as follows: we replace ri0, for attributes i > 1, with

r20 in λ1t . Specifically, we have that λ1t = [1 + (n − 1)(r20)
2t ]−1. Since r20 ≥ ri0

for every i > 1, then λ1t ≥ λ1t at every time t. We prove that
∑∞

t=0 log(λ
1
t ) ex-

ists, so does
∑∞

t=0 log(λ
1
t ), by comparison. We proceed by testing the absolute
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convergence (and hence the convergence) of
∑∞

t=0 log(λ
1
t ), using the ratio test. It

is well known that an adaptation of the L’Hopital rule can be used to find limits

of sequences. We thus define f(x) and g(x) as functions of a real variable x and

{st} such that at every t, st = f(t)/g(t). Then, we evaluate limx→∞ f(x)/g(x) =

limx→∞
log(1 + (n− 1)(r20)

2x+1

)

log(1 + (n− 1)(r20)
2x)

. Since 0 < r20 < 1, this limit is indeterminate. By

L’Hopital limx→∞ f(x)/g(x) = limx→∞ f ′(x)/g′(x) =
2(r20)

2x(1 + (n− 1)(r20)
2x)

(1 + (n− 1)(r20)
2x+1

)
=

0. Thus, limt−→∞ st = limx→∞ f(x)/g(x) = 0. This implies that
∑∞

t=0 |log(λ
1
t )|

exists. Since at every t, λ1t ≥ λ1t , then |log(λ1t )| ≤ |log(λ1t )|. Thus, by comparison
∑∞

t=0 |log(λ
1
t )| exists, so does

∑∞
t=0 log(λ

1
t ).

Consider now attributes i > 1. For a given i > 1, let j denote attributes other

than it and let rjt = ∆t[j]/∆t[i]. Then λit = [1+
∑

j 6=i(r
j
0)

2t ]−1. Notice that r10 > 1.

Then limt−→∞ λit = 0 and
∏∞

t=0 λ
i
t = 0 for attributes i > 1. Summing up we have

that
∏∞

t=0 λ
1
t = µ1 ∈ (0, 1) and

∏∞
t=0 λ

i
t = 0 for i > 1. Under this scenario:

lim
T−→∞

ΛT =





















1 0 0 0 · · · 0 0 · · · 0

0 µ1
...

... · · · 0 0 · · · 0

0 0
...

... · · · 0 0 · · · 0

0 0 0 0 · · · 0 0 · · · 0
...

...
...

... · · ·
...

... · · · 0

0 0 0 0 0 0 0 0 0





















, U lim
T−→∞

ΛT =
1

2n/2





















1 µ1 0 0 · · · 0 0 · · · 0
...

...
...

... · · ·
...

... · · · 0

1 µ1 0 0 · · · 0 0 · · · 0

1 −µ1 0 0 · · · 0 0 · · · 0
...

...
...

... · · ·
...

... · · · 0

1 −µ1 0 0 0 0 0 0 0





















and thus,

W∞ = U lim
T−→∞

ΛTU ′ =
1

2n







































1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

... · · ·
...

... · · ·
...

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

... · · ·
...

... · · ·
...

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1







































.

Since the eigenvectors u0, associated to the zero eigenvalues, occupy the last

columns (respectively rows) of U (respectively U ′), they do not play any role in the

products above.

Suppose now that ∆0[1] = ∆0[i] for some attributes i > 1. Let e be the number

of attributes i > 1 such that ∆0[1] = ∆0[i]. Then limt−→∞ λ1t = [e + 1]−1 < 1,
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implying that
∏∞

t=0 λ
1
t = 0. By the same reasoning this is also the case for attributes

i > 1 such that ∆0[1] = ∆0[i]. For attributes i > 1 such that ∆0[1] > ∆0[i], then

limt−→∞ λit = 0 by similar arguments as above, thus
∏∞

t=0 λ
i
t = 0. Under this

scenario, every entry in W∞ is (2n)−1.

Before concluding let us consider the general case in which γit = ∆t[i]
δ/
∑

j ∆t[j]
δ

with δ ∈ (0,∞). We can rewrite γ1t = [1 +
∑

i>1(r
i
0)

δ(δ+1)t ]−1 in this case. Notice

that limt→∞ γ1t = 1 and thus, limt→∞ γit = 0 for i > 1. We study the convergence

of
∑∞

t=0 log(γ
1
t ) using the same reasoning as before, where now γ1

t
= [1 + (n −

1)(r20)
δ(δ+1)t ]−1. Using similar algebra and reasoning as above we conclude that

limx→∞ f ′(x)/g′(x) =
2(r20)

δ2(δ+1)x(1 + (n− 1)(r20)
δ2(δ+1)x)

(1 + (n− 1)(r20)
δ2(δ+1)x+1

)
= 0 for δ 6= 0. It is

then the case that
∑∞

t=0 log(γ
1
t ) converges, meaning that disagreement persists.

When ∆0[1] = ∆0[i] for some attribute(s) i > 1 consensus emerges as above.

Step 8. We establish here the necessary and sufficient condition for disagreement

to persist. We also qualify disagreement. Recall that a0 = 0. The eventual attitude

of a type A is the result of multiplying its corresponding row inW∞ times the column

vector of initial attitudes. Consider first that ∆0[1] > ∆0[2]. Then W∞ is the one

derived in step 7. For the first 2n−1 rows of W∞, corresponding to types A such

that 1 ∈ A, we thus have that aA∞ = 2−1µ1
[

1

2n−1

∑

A:i∈A aA0 −
1

2n−1

∑

A:i/∈A aA0

]

=

2−1µ1∆0[1]. For the subsequent 2n−1 rows corresponding to types A such that

1 /∈ A, aA∞ = −
1

2
µ1∆0[1]. Thus, in general, for every type A, |aA∞| = 2−1µ1∆0[1]

and eventual attitudes are positive if and only if A is such that 1 ∈ A. That is,

disagreement persists.

We are left to prove that τ(W∞) = µ1. Consider expression (3). Fixing any

column in W∞, the maximum distance between any two rows is µ1/2n−1 , which

summing across the 2n columns and dividing by 2 yields µ1. Finally, since µ1 =
∏∞

t=0 λ
i
t = limT→∞

∏T
t=0

[

1 +
∑

i>1

(

∆0[i](∆0[1])
−1
)2t

]−1

, we have that, |aA∞| =

2−1τ(W∞)∆0[1].

Consider now that ∆0[1] = ∆0[i] for some attributes i > 1. By step 7, every

entry of W∞ is (2n)−1. In this case aA∞ = 0 for every type A. That is, consensus

eventually emerges.

We then conclude that disagreement persists if and only if attribute 1 is, initially,

the unique most salient attribute.

Step 9. We consider the case in which λi0 = 0 for some/all attributes i > 1. Step

1 relies on the linearity of the updating process. Thus, it still holds. Since at every

t, Wt remains stochastic, step 2 holds. For the attributes i such that λit > 0, the

statement in step 3 holds as well. Step 4 holds with the difference that now there

are 2n − (n + 1 − N) zero eigenvalues, where N is the number of attributes i such
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that λit = 0. In the extreme case in which λit = 0 for every attribute i > 1, the

column corresponding to the empty type and the n − 1 columns corresponding to

the singleton types with attributes different from 1, are the same. In such a case

N = n − 1 and there are 2 independent columns. The eigenvalues different from

zero at every t are 1 because of stochasticity and λ1t = 1. Since at every t, Wt

remains symmetric, step 5 holds. Step 6 deals with the existence of W∞, which is

based on the existence of the limiting product of non-zero eigenvalues. It also goes

through. Since the form of W∞ depends only on whether ∆0[1] > ∆0[2], despite of

λit being 0 for some/all attributes i > 1, step 7 holds. Finally step 8, that establishes

the necessary and sufficient condition for disagreement to persist, qualifying it, also

holds. Notice that when λi0 = 0 for all attributes i > 1 then W∞ = W0. Also,

µ1 = 1 and the equilibrium is reached at t = 1.

�

Proof of Proposition 1. We compute here the Spectral Index of Segregation at every

time t. For this purpose we directly follow Echenique and Fryer (2007). Before

proceeding recall that by step 1 in the proof of Theorem 1, positive (respectively

zero) homophily values remain positive (respectively zero) all along the process.

Recall also that
∑

i λ
i
t = 1 at every time t. Consider first the case in which for every

attribute i, λit > 0.

Consider only types possessing attribute 1. Denote the matrix of their interac-

tions by 1t. Since all types have attribute 1 in common, they pay a positive amount

of attention to each other, thus 1t has only one connected component composed by

all individuals in 1t. We now compute the largest eigenvalue of 1t. Our claim is

that λt = λ1t + 2−1
∑n

j 6=i λ
j
t , with associated time independent right-eigenvector u

of size 2n−1 × 1, where u is composed by ones, is the largest eigenvalue of 1t. We

first prove that (λt, u) is a pair of eigenvalue and right-eigenvector of 1t. Second,

we argue that λt is the largest eigenvalue of 1t.

First, notice that every type A shares attribute 1 with 2n−1 types. It also shares

the rest of attributes with 2n−2 types. Thus, any row of 1t by u reads (2n−1λ1t +

2n−2
∑n

j 6=i λ
j
t )(2

n−1)−1. This is equivalent to λt × 1. Therefore, the eigenvalue

equation is satisfied and (λt, u) is a pair of eigenvalue and (column) eigenvector of

1t. Second, by Perron-Froebenius Theorem, being 1t a positive matrix, it has a

unique largest eigenvalue, which is strictly positive (that is, the spectral radius of

1t). It is bounded above by the maximum sum of the entries of a row in 1t (see Meyer

(2000), chapter 8). Notice that every row of 1t sums up to the same value, which is

precisely λt. Suppose that there is other positive real eigenvalue, different than λt,

which is the largest. Then it has to be also larger than the maximum sum of the

entries of a row in 1t, contradicting the Perron-Froebenius Theorem. Then, λt has
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to be the largest eigenvalue. We rewrite it as λt = λ1t + 2−1(1− λ1t ) = 2−1(1 + λ1t ).

Let us denote SSI1t = λt. Finally, it directly follows that λt increases with λ1t .

Since limt−→∞ λ1t = 1 then limt−→∞ SSI1t = 1 as well. Also, if every attribute i was

initially equally salient, then λi0 = 1/n for each of them. Since attribute 1 is the

initially most salient, it has to be that λi0 > 1/n. Thus, SSI10 > (n+1)(2n)−1. Notice

that the analysis is exactly the same when we consider interactions of types lacking

attribute 1. In fact, the matrix of interactions is exactly 1t. Also, in computing the

SSI it for attributes i > 1, we follow similar arguments. Thus, we omit the proofs.

Consider now the case in which for attribute 1, λ1t > 0 and for some/all attributes

i > 1, λit = 0.37 We prove here that when for an attribute i, λit = 0 then the SSI it
is, at every t, equal to one half.38 Given the evolution of the homophily values, as

described in the proof of Theorem 1, this is also its limiting value. Recall that, by

step 1 in the proof of Theorem 1, when for an attribute i such that 2 ≤ i ≤ n, λit = 0,

this implies that λjt = 0 for all attributes j > i. Let us focus on types possessing

attribute i. The analysis is exactly the same when we consider interactions of types

lacking attribute i. Two cases arise:

C.1. Suppose that for every attribute j such that 1 < j < i, then λjt = 0,

then interactions among types possessing attribute i are defined by two connected

components, based on the lack or possession of attribute 1. The matrices defining

these two connected components are the same and have all their entries positive.

One of the matrices has 2n−2 types possessing attribute 1 and the other has 2n−2

types lacking it. The analysis within each matrix is exactly the same as before. In

each of them, the sum of every row is 2n−2(2n−1)−1λ1t = 0.5. Thus, within each

component, SSI it equals to one half at every time t. Thus, the average of the SSI it
of each component is also equal to one half.

C.2. Suppose that for some/all attributes j such that 1 < j < i then λjt > 0. In

this case there is only one connected component. The reason is that types possessing

(respectively lacking) attribute 1 are always connected among themselves and these

two groups are connected between them since both contain types that are similar in

attributes j < i, with λjt > 0. The sum of the entries of every row of the matrix of

interactions is 2n−2(λ1t +
∑

j 6=i λ
j
t )(2

n−1)−1 = 0.5. Thus, the index is equal to one

half at every time t.39 �

Proof of Proposition 2. Consider the case in which all differences in average initial

37Recall that when all differences in average initial attitudes are equal, either positive or zero, then λi
t = 1/n for

every i and at every t. Then, SSIit = (n+ 1)(2n)−1 for every attribute i and at every t. See the proof of Theorem

1.
38When computing the SSIit for an attribute i such that λi

t > 0 in the presence of attributes j 6= i such that

λj
t = 0, the interaction matrix for i-similar types has all its entries positive. Thus, the analysis is the same as before.
39In this case the matrix of interactions is just non-negative. Since it is irreducible, the Perron-Froebenius

eigenvalue is equal to the sum of entries of any row in the interaction matrix, which is here always the same. The

associated time independent eigenvector is u of size 2n−1 × 1 with unitary entries.

32



attitudes are positive. In section 4 we comment on the case in which some/all

differences associated to attributes i > 1 are zero.

To start with, we set the bounds for Tǫ in expression (5). For this purpose

recall that Tmin
ǫ = min{t : λ

1
t ≥ 1 − ǫ} and Tmax

ǫ = min{t : λ1t ≥ 1 − ǫ}. First,

let r0 = ∆0[n]/∆0[1]. Now, consider λ1t = [1 +
∑

i>1(r
i
0)

2t ]−1 and replace every

rit = ∆t[i]/∆t[1] for attributes i > 1, with r0 to obtain λ
1
t = [1 + (n − 1)(r0)

2t ]−1.

Notice that λ
1
t ≥ λ1t at every t. Solving λ

1
t ≥ 1 − ǫ for t, we get the expression

for Tmin
ǫ , that is, t = log

(

log

(

ǫ

(1− ǫ)(n− 1)

)

log(r0)
−1

)

1

log(2)
. At every t′ <

t it follows that λ
1
t ≤ 1 − ǫ, implying that λ1t ≤ 1 − ǫ. Therefore, Tmin

ǫ is a

lower bound for Tǫ. Second, let r0 = ∆0[2]/∆0[1]. Replace every ri0, for attributes

i > 1, with r0 in λ1t . We get λ1t = [1 + (n − 1)(r0)
2t ]−1. Notice that λ1t ≤ λ1t

at every t. Solving λ1t ≥ 1 − ǫ for t, we get the expression for Tmax
ǫ , that is,

t = log

(

log

(

ǫ

(1− ǫ)(n− 1)

)

log(r0)
−1

)

1

log(2)
. At every t′ > t it follows that

λ1t ≥ λ1t ≥ 1 − ǫ. Thus, Tmax
ǫ is an upper bound for Tǫ. Notice that making Tmin

ǫ

and Tmax
ǫ positive is always possible, for small enough ǫ > 0.

We now focus on how Tǫ behaves with respect to changes in the the initial relative

salience of attribute 1. Specifically, we do so by proving that λ1t is decreasing in ri0.

Recall that we consider that the variation in ri0 comes from varying ∆0[i], for one

attribute i at a time. This is done in such a way that ∆0[1] > ∆0[2] ≥ ... ≥ ∆0[n] ≥ 0

is preserved in order, as well as in magnitude for differences associated to attributes

j 6= i. Consider the expression of λ1t above. We have that ∂λ1t /∂r
i
0 = −2t(ri0)

2t−1[1+
∑

i>1(r
i
0)

2t ]−2 < 0. Thus, when ri0 decreases, at every time t it turns out that λ1t is

higher than before. Therefore, the time it takes for it to be sufficiently close to its

limit has to be smaller than before the change. Being Tǫ an integer, we thus state

that the time it takes for λ1t to be sufficiently close to its limit cannot be higher than

before. Finally, notice that λ1t determines the minimum time of convergence for the

system as a whole. The reason is that at every time t, λ1t is further away from 1, its

limiting value, than any of the remaining homophily values is from 0, its limiting

value. To see this notice that at every time t,
∑

i λ
i
t = 1, then λ1t ≥ 1 − ǫ implies

that
∑

i>1 λ
i
t ≤ ǫ. When only λ1t and λ2t are different from zero, then λ1t ≥ 1 − ǫ

implies that λ2t ≤ ǫ. When λit is also different from zero for some attributes i > 2,

then λ1t ≥ 1 − ǫ implies that ǫ/(n − 1) ≤ λ2t < ǫ, with λ2t ≥ λit for any attribute

i > 2.

�

Proof of footnote 10. We show that a0 = 0 implies that at = 0, at every t. By step 5

in the proof of Theorem 1, at every t, Wt is diagonalizable over the same eigenspace.

33



Let G be the projection onto the eigenspace of Wt corresponding to eigenvalue 1.

Let Gi be the projection onto the eigenspace of Wt corresponding to eigenvalue λit.

By the Spectral Theorem, W Ta0 = Ga0 +
∑n

i=1(
∏T

t=0 λ
i
t)G

ia0 (see Meyer (2000),

pages 517-520). We proceed by describing how row j of Gi looks like. Denote by

Gi
jk the jk entry of Gi. It is constructed using eigenvectors in U , in step 5 in the

proof of Theorem 1, as follows: Gi
jk = Uj(i+1)U

′
(i+1)k. In constructing row j of Gi,

we fix column i+ 1 in U , i.e., the eigenvector corresponding to λit, and consider its

j entry. Entry j takes value 1/2n/2 if i ∈ A and −1/2n/2 otherwise. Entry j is

multiplied, by the k entries corresponding to row i+ 1 in U ′, one in a turn. Notice

that row i+1 of U ′ is the (transposed) eigenvector associated to λit. Thus, row j of

Gi is just the eigenvector associated to λit, divided by 1/2n/2, whenever i ∈ A and

its negative otherwise. Matrix G is constructed in the same way and is composed

by ones. Thus, aAs = a0+2−1
∑n

i=1(−1)1+1i∆0[i]
∏s

t=0 λ
i
t, where 1i is the indicator

of type A possessing attribute i. Since there are 2n−1 types possessing and lacking

every attribute i, respectively, when summing aAs for all types, the second term in

the previous expression cancels out. Specifically,
∑

A aAs =
∑

A a0 = 2nas. Since

a0 = 0 then at every time s, as = 0. �

Proof of Proposition 3. We compute here the probability that disagreement persists

across attribute 1 and across attribute 2. For this purpose, let us first focus on the

case in which ∆0[1] > ∆0[2] ≥ 0, or equivalently, a
{1,2}
0 −a

{∅}
0 +a

{1}
0 −a

{2}
0 > a

{1,2}
0 −

a
{∅}
0 +a

{2}
0 −a

{1}
0 . Notice that ∆0[1]−∆0[2] = a

{1}
0 −a

{2}
0 . Thus, a

{1}
0 −a

{2}
0 > 0 has

to hold. Since ∆0[2] ≥ 0 and a
{2}
0 − a

{1}
0 < 0, then a

{1,2}
0 − a

{∅}
0 ≥ a

{1}
0 − a

{2}
0 > 0

has to hold as well.

Now, consensus emerges whenever |∆̃0[1]| = |∆̃0[2]| and disagreement persists

across attribute 1 (respectively attribute 2) whenever |∆̃0[1]| > |∆̃0[2]| (respectively

|∆̃0[1]| < |∆̃0[2]|). To see this notice that once initial attitudes are realized, the pro-

cess exactly mimics the one presented in the main body. In what follows we describe

the probability that either consensus emerges or disagreement persists. The proba-

bility that |∆̃0[1]| = |ã
{1,2}
0 −ã

{∅}
0 +ã

{1}
0 −ã

{2}
0 | = |ã

{1,2}
0 −ã

{∅}
0 +ã

{2}
0 −ã

{1}
0 | = |∆̃0[2]|

is zero. That is so because this expression holds when exactly ã
{1}
0 − ã

{2}
0 = 0

and/or ã
{1,2}
0 − ã

{∅}
0 = 0. Since these differences follow continuous distributions,

this event has zero probability.40 Disagreement persists across attribute 1 whenever

|∆̃0[1]| = |ã
{1,2}
0 − ã

{∅}
0 + ã

{1}
0 − ã

{2}
0 | > |ã

{1,2}
0 − ã

{∅}
0 + ã

{2}
0 − ã

{1}
0 | = |∆̃0[2]|. This ex-

pression is satisfied when ã
{1,2}
0 −ã

{∅}
0 ≥ 0 and ã

{1}
0 −ã

{2}
0 ≥ 0, or ã

{1,2}
0 −ã

{∅}
0 < 0 and

ã
{1}
0 − ã

{2}
0 < 0 hold. Thus, P (|∆̃t[1]| > |∆̃t[2]|) = P (ã

{1,2}
0 − ã

{∅}
0 ≥ 0∩ ã

{1}
0 − ã

{2}
0 ≥

0) +P (ã
{1,2}
0 − ã

{∅}
0 < 0∩ ã

{1}
0 − ã

{2}
0 < 0). Since ãA0 are independent to each other,

this is equivalent to:

40Notice that as ã
{2}
0

is continuous, so is −ã
{2}
0

as well as ã
{1}
0

+ (−ã
{2}
0

). See Sheldon et al. (2002).
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P (ã
{1,2}
0 − ã

{∅}
0 ≥ 0)P (ã

{1}
0 − ã

{2}
0 ≥ 0) + P (ã

{1,2}
0 − ã

{∅}
0 < 0)P (ã

{1}
0 − ã

{2}
0 < 0).

On the contrary, disagreement persists across attribute 2 whenever |∆̃0[1]| =

|ã
{1,2}
0 − ã

{∅}
0 + ã

{1}
0 − ã

{2}
0 | < |ã

{1,2}
0 − ã

{∅}
0 + ã

{2}
0 − ã

{1}
0 | = |∆̃0[2]|. This expression

is satisfied when ã
{1,2}
0 − ã

{∅}
0 < 0 and ã

{1}
0 − ã

{2}
0 ≥ 0 , or ã

{1,2}
0 − ã

{∅}
0 ≥ 0 and

ã
{1}
0 − ã

{2}
0 < 0 hold. Then P (|∆̃0[1]| < |∆̃0[2]|) is:

P (ã
{1,2}
0 − ã

{∅}
0 ≥ 0)P (ã

{1}
0 − ã

{2}
0 < 0) + P (ã

{1,2}
0 − ã

{∅}
0 < 0)P (ã

{1}
0 − ã

{2}
0 ≥ 0).

We can thus rewrite, P (|∆̃0[1]| > |∆̃0[2]|) − P (|∆̃0[1]| < |∆̃0[2]|) = P (ã
{1,2}
0 −

ã
{∅}
0 ≥ 0)(P (ã

{1}
0 − ã

{2}
0 ≥ 0)− P (ã

{1}
0 − ã

{2}
0 < 0)) + P (ã

{1,2}
0 − ã

{∅}
0 < 0)(P (ã

{1}
0 −

ã
{2}
0 < 0)− P (ã

{1}
0 − ã

{2}
0 ≥ 0)). This expression is equivalent to (2P(

{1,2}
0 − ã

{∅}
0 ≥

0)− 1)(2P (ã
{1}
0 − ã

{2
0 ≥ 0)− 1). Since ã

{1}
0 − ã

{2}
0 follows a symmetric distribution

with positive mean (recall that a
{1}
0 − a

{2}
0 > 0), then P (ã

{1}
0 − ã

{2}
0 ≥ 0) > 0.5.41

A parallel argument applies in stating that P (ã
{1,2}
0 − ã

{∅}
0 ≥ 0) > 0.5. This implies

that the expression above is positive. Since P (|∆̃0[1]| > |∆̃0[2]|) = 1− P (|∆̃0[1]| <

|∆̃0[2]|), disagreement across attribute 1 is the most likely. In the extreme case

in which P (ã
{1,2}
0 − ã

{∅}
0 ≥ 0) = P (ã

{1}
0 − ã

{2}
0 ≥ 0) = 1 the, probability that

disagreement takes place across attribute 1 is exactly one.

Let us consider now the case in which ∆0[1] = ∆0[2] ≥ 0. We have that ∆0[1]−

∆0[2] = a
{1}
0 −a

{2}
0 = 0. Also, since differences are non-negative, a

{1,2}
0 −a

{∅}
0 ≥ 0 has

to hold. This implies, again by symmetry, that P (|∆̃0[1]| > |∆̃0[2]|) − P (|∆̃0[1]| <

|∆̃0[2]|) = 0. In this case, disagreement across either attribute is equally likely.

�

Proof of the Remark. Suppose that disagreement persists across attribute 1. The

expression for eventual attitudes mimics the one of deterministic ones for every

realization of initial attitudes. That is, aA∞ = 2−1τ(W∞)∆0[1] if 1 ∈ A and aA∞ =

−2−1τ(W∞)∆0[1] if 1 /∈ A, with τ(W∞) = 1 − ∆0[2]/∆0[1]. That is so because

both, the homophily values and the differences in attitudes, preserve their properties

when these differences enter in absolute value in the Luce form. Specifically, ∆t[i] =

λit−1∆t−1[i] holds by linearity of the process. Thus, ∆t[i] 6= 0 if and only if λit−1 6= 0

and ∆t−1[i] 6= 0. Also, given the Luce form, λit 6= 0 if and only if ∆t[i] 6= 0.

Furthermore, ∆0[i] > (<) 0 implies that at every time t, ∆t[i] > (<) 0 and λi0 > 0

implies that at every time t, λit > 0. Also, ∆0[i] = 0 and λi0 = 0, imply that

at every time t, ∆t[i] = 0 and λit = 0, respectively.42 For every realization of

41The difference of independent symmetric random variables is symmetric. See Stroock (2010).
42For more details, see steps 1 and 7 in the proof of Theorem 1.
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initial attitudes the ergodicity coefficient, τ(W∞), now becomes 1− |∆0[2]|/|∆0[1]|.

We thus have that ãA∞ = ã0 + 2−1(1 − |∆̃0[2]|/|∆̃0[1]|)∆̃0[1] if 1 ∈ A and ãA∞ =

ã0 − 2−1(1− |∆̃0[2]|/|∆̃0[1]|)∆̃0[1] if 1 /∈ A.43

Proof of Theorem 2. It follows the same steps as the one of Theorem 1. We proceed

to explain, one in a row, which of these steps still hold here. Step 1 describes a

property that relies on both, the linearity of the updating process and on the Luce

form. Specifically, Luce guarantees that at every t, ∆t[i] ≥ 0 implies that λit ≥ 0.

By (WDM), this step holds. Steps 2-5, dealing with the diagonalization of Wt, do

not depend on the Luce form, we thus, they apply here. Step 6 only relies on non-

negativity of homophily values and on the fact that
∑

i γ
i
t = 1, not on their specific

form, thus it also holds. Step 7 absolutely relies on the Luce form and requires a

slightly different elaboration. It is as follows:

Step 7. We first consider the case in which the limiting product of the homophily

values is different from zero for one attribute i. Notice that this limiting product

cannot be different from zero for more than one attribute. The reason is that in

this case
∑

i limt−→∞ γit > 1 contradicting the properties of γit . We prove that
∏∞

t=0 γ
i
t = µi with µi ∈ (0, 1) for attribute i implies that

∏∞
t=0 γ

j
t = 0 for attributes

j 6= i. We also show that if there is such an attribute, it has to be attribute 1.

Second, we consider the case in which the limiting product of homophily values is

zero for all attributes. Before proceeding, recall that limt−→∞ γit exists for every

attribute i and limt−→∞
∑

i γ
i
t =

∑

i limt−→∞ γit = 1.

First, suppose that
∏∞

t=0 γ
i
t = µi with µi ∈ (0, 1), or equivalently, that

∑∞
t=0 log(γ

i
t)

exists. This implies that limt−→∞ γit = 1. Thus, limt−→∞ γjt = 0 for every attribute

j, implying that for non of them,
∏∞

t=0 γ
j
t = µj with µj ∈ (0, 1), but

∏∞
t=0 γ

j
t = 0.

Now, recall that by (ADM) and step 1 in the proof of Theorem 1, at every t,

∆t[1] ≥ ∆t[2] ≥ · · · ≥ ∆t[n] ≥ 0 and γ1t ≥ γ2t ≥ · · · ≥ γnt ≥ 0 hold. Suppose,

that there is an attribute i > 1 for which
∏∞

t=0 γ
i
t = µi with µi ∈ (0, 1) holds. This

implies that limt−→∞ γit = 1 and limt−→∞ γ1t = 0. Thus, for high enough t, γit would

be arbitrarily close to 1 while γ1t would be arbitrarily close to 0. Given that, at every

t, γ1t ≥ γ2t ≥ · · · ≥ γnt ≥ 0 holds, the former statement cannot be true. We therefore

conclude that
∏∞

t=0 γ
1
t = µ1 with µ1 ∈ (0, 1) and

∏∞
t=0 γ

i
t = 0 for attributes i > 1.

Under this scenario we have that:
43We do not impose here that for every realization of initial attitudes their average is equal to zero.
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W∞ =
1

2n







































1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

... · · ·
...

... · · ·
...

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1 + µ1 · · · 1 + µ1 1− µ1 · · · 1− µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

... · · ·
...

... · · ·
...

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1

1− µ1 · · · 1− µ1 1 + µ1 · · · 1 + µ1







































,

where µ1 =
∏∞

t=0 γ
1
t .

Second, suppose that
∏∞

t=0 γ
1
t = 0 and limt−→∞ γ1t = 1. It implies that limt−→∞ γjt =

0 for every attribute i > 1. Thus, no attribute i > 1 is such that
∏∞

t=0 γ
i
t = µi with

µi ∈ (0, 1). Suppose now that
∏∞

t=0 γ
1
t = 0 and limt−→∞ γ1t = α with α ∈ (0, 1).

Then,
∑

i>1 limt−→∞ γit = 1 − α with 1 − α ∈ (0, 1). Thus, no attribute i is

such that
∏∞

t=0 γ
i
t = µi with µi ∈ (0, 1). Finally, suppose that

∏∞
t=0 γ

1
t = 0 and

limt−→∞ γ1t = 0. Then, either for exactly one attribute i > 1, limt−→∞ γit = 1, or for

some (possibly all) attributes i > 1,
∑

i>1 limt−→∞ γit = 1. None of these cases can

hold. The reason is that for high enough t, some γit would be arbitrarily close to a

positive number (which is 1 when for exactly one attribute i > 1, limt−→∞ γit = 1)

while γ1t would be arbitrarily close to 0. Since, at every t, γ1t ≥ γ2t ≥ · · · ≥ γnt ≥ 0

holds, this cannot be true. We therefore conclude that in all these cases
∏∞

t=0 γ
i
t = 0

for all attributes. Under this scenario all entries of W∞ are (2n)−1.

Step 8. By step 7, the necessary and sufficient condition for disagreement to

persist is that
∑∞

t=0 logγ
1
t exists. When this is the case, eventual attitudes take the

same form as in Theorem 1, where now τ(W∞) = limT→∞

∏T
t=0 γ

1
t ∈ (0, 1).

Step 9. It depends partially on Luce since it guarantees that, at every time t,

∆t[i] ≥ 0 implies that λt[i] ≥ 0. We use (WDM) to cover this aspect, thus this

step holds. �
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