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Abstract.  This paper shows that the notion of rate of return is best understood through the lens of 
the average-internal-rate-of-return (AIRR) model, first introduced in Magni (2010a). It is an NPV-
consistent approach based on a coherent definition of rate of return and on the notion of Chisini 

mean, it is capable of solving the conundrums originated by the rate-of-return notion and represents 
a unifying theoretical paradigm under which every existing measure of wealth creation can be 
subsumed. We show that a rate of return is underdetermined by the project’s cash-flow stream; in 
particular, a unique return function (not a unique rate of return) exists for every project which maps 
depreciation classes into rates of return. The various shapes a rate of return can take on (internal 
rate of return, average accounting rate of return, modified internal rate of return etc.) derive from 
the (implicit or explicit) selection of different depreciation patterns. To single out the appropriate 
rate of return for a project, auxiliary assumptions are needed regarding the project’s capital 
depreciation. This involves value judgment. On one side, this finding opens terrain for a capital 
valuation theory yet to be developed; on the other side, it triggers the creation of a toolkit of domain-
specific and purpose-specific metrics that can be used, jointly or in isolation, for analyzing the 
economic profitability of a given project. We also show that the AIRR perspective has a high 
explanatory power that enables connecting seemingly unrelated notions and linking various 
disciplines such as economics, finance, and accounting.  Some guidelines for practitioners are also 
provided. 
 

Keywords. Investment decision, project appraisal, rate of return, depreciation, capital, net present 

value, AIRR, mean. 

 

 

1 Introduction 

This paper shows that the notion of rate of return is unique but the rate of return of an economic 

transaction is not unique. In particular, the paper uses a coherence principle and the notion of Chisini 

mean to establish an underdetermination principle, according to which a rate of return cannot be 

singled out from a cash-flow stream as such. Rather, any cash-flow stream is associated with a unique 

return function which maps capital values into rates of return, so that infinitely many combinations 

of capital and rate generate the same net present value (NPV). A rate of return is singled out only if a 

well-defined statement upon capital depreciation is made by the analyst, implicitly or explicitly. The 

resulting approach is the so-called average internal rate of return (AIRR), which has been introduced 

in Magni (2010a) and developed in a vast array of subsequent papers (e.g., Magni 2011a, 2013a,b 

2014a,b, 2015a).  

The AIRR is a theoretical paradigm based on a mathematically simple and economically 

meaningful model, which coherently defines a rate of return as a growth rate of capital (and, 

therefore, as a ratio). The notion of Chisini mean enables fulfilling this ‘coherence’ for multiperiod 

projects as well as one-period projects, so a rate of return for a multiperiod project can be viewed as 

a generalized weighted mean of constituent one-period rates. This unique structure makes possible a 
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deeper analysis of economic profitability that the traditional NPV analysis cannot accomplish and is 

capable of subsuming every single profitability measure (NPV included) into a unifying framework.  

The AIRR paradigm completely solves individual problems related to specific metrics, for 

example, problems related to IRRs (see Magni 2013a for a list of 18 flaws) and problems related to 

the accounting rates (economic significance and relations with NPV and IRR). But, even more 

compellingly, it reinvents the notion of rate of return by turning the entire issue on its head: The 

rate-of-return notion can only make some sense if it is associated with the notion of capital, which is 

in turn connected with the actual economic transactions underlying the project undertaking and the 

economic milieu where the project is operated. This means that economically meaningful  auxiliary 

assumptions are needed  to supply a specific rate of return for the asset under consideration. 

Judgmental valuation is then necessary. Furthermore, as the traditional measures are indeed 

encompassed in the AIRR structure, this theoretical framework naturally legitimates the use of 

multiple measures for analyzing an economic transaction, so giving theoretical support to the widely 

reported empirical finding that practitioners and managers do jointly use different measures for 

evaluating a project. 

 This paper also illustrates the explanatory power of the AIRR approach and supplies some 

hints for investigating various issues such as the non-uniqueness of the cost of capital (COC); the 

definition of a stronger notion of NPV-consistency; the role of financing periods and investment 

periods in value creation; the relations between AIRR and Modigliani and Miller’s propositions and 

their generalization; the link between the AIRR notion and Keynes’s (1936) notion of user cost; the 

relations among the weighted average COC (wacc), the cost of equity, and the cost of debt. 

The remainder of the paper is structured as follows. Section 2 supplies some notational 

conventions. Section 3 selectively systematizes the literature on the rate of return. Section 4 presents 

the AIRR approach, which is based on the notion of coherence of a rate of return and the notion of 

Chisini mean. The section introduces the iso-value curve, proves the NPV-consistency of the 

approach and generalizes AIRR to time-variant COCs in both discrete and continuous time. Section 5 

presents AROI, a variant of AIRR, and discusses the relations with Keynes’s notion of user cost. 
Section 6 discusses the underdetermination of the rate of return by a cash-flow stream and the 

notion of depreciation class. Section 7 presents 12 different rates of return related to different 

depreciation classes, among which are the internal rate of return (IRR) the modified IRR (MIRR), and 

the average accounting rate, and briefly discusses the economic meaning and the piece of 

information supplied by each one. Section 8 provides some guidelines for practitioners for singling 

out the relevant rate of return and presents three numerical applications.  Sections 9-11 supply some 

insights for future research. In particular, section 9 presents a new, more stringent definition of NPV-

consistency based on sensitivity analysis and shows that three rates of return, associated with 

different depreciation classes, possess it in a strict sense; section 10 blends Modigliani and Miller’s 
well-known results (Modigliani and Miller 1958, 1963; Miller and Modigliani 1961) with the AIRR 

approach and shows how they can be reframed in terms of rate of return, allowing for time-variant 

rates of return and finite-lived firms; it also shows that the COC, as well as the project rate of return, 

is not unique, for it depends on capital depreciation; section 11 discusses the conflict existing 

between the quest for a capital valuation theory which should be capable of supplying an appropriate 

notion of capital value in any circumstance and the finding that different depreciation patterns 

supply different but not mutually exclusive pieces of information that may enrich the economic 

analysis. Some concluding remarks end the paper. 

 

2 Notational conventions 
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Consider an economic agent (investor, manager) and an economic transaction, 𝑃 , (e.g. project, firm, 

security) which is described by a sequence of a cash flows �⃗� = (𝑥0, 𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛+1\{0⃗⃗}. Let 𝑟 

represent the minimum attractive rate of return (if the asset is an investment) or the maximum 

attractive financing rate (if the asset is a financing). Assume an arbitrage-free, frictionless market 

(i.e., no transaction costs, no flotation costs, no taxes) exists where securities are traded. Let N𝑘ℎ = {ℎ, ℎ + 1,… , 𝑘}, ℎ, 𝑘 ∈ ℕ, ℎ < 𝑘 be the set of all natural numbers from ℎ to 𝑘. The cash flow 𝑥𝑡, 
available at time 𝑡 ∈ N𝑛0 can be interpreted either as a certainty-equivalent or as an expected value of 

a risky monetary amount. In the former case, 𝑟 is the equilibrium risk-free rate. In the latter case, 𝑟 

expresses the expected rate of return of an asset traded in the security market which is equivalent in 

risk to project 𝑃, so it is obtained as the sum of the risk-free rate and a risk premium;  thus, it 

represents the so-called (opportunity) cost of capital (COC). The economic (or market) value of 𝑃 at 

time 𝑡 is “the price the project would have if it were traded” (Mason and Merton 1985, pp. 38-39); in 

other terms, it is the price, v𝑡, of a replicating portfolio generating the same cash flows as the 

project’s from time 𝑡 + 1 to time 𝑛: v𝑡 = ∑ 𝑥𝑘𝑛𝑘=𝑡+1 (1 + 𝑟)𝑡−𝑘 for 𝑡 ∈ N𝑛0. We will also use the symbol 𝑑𝑘,ℎ = (1 + 𝑟)ℎ−𝑘 , ℎ, 𝑘 ∈ ℕ, ℎ ≤ 𝑘 for denoting the value at time ℎ of one monetary unit available at 

time 𝑘. If the term structure of interest rate is non-flat (or the risk premium is not constant), a vector 

of forward rates 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛) replaces 𝑟 and the discount factor  𝑑𝑘,ℎ is redefined as 𝑑𝑘,ℎ = ∏ (1 + 𝑟𝑗)−1𝑘𝑗=ℎ+1 . The net present value (NPV) is the difference between the current 

economic value and the investment cost, that is, 𝑁𝑃𝑉 = v0 − 𝑐0 = ∑ 𝑥𝑘𝑛𝑘=1 𝑑𝑘,0 − 𝑐0 where 𝑐0 = −𝑥0 

is the capital committed, so that 𝑁𝑃𝑉 = ∑ 𝑥𝑘𝑛𝑘=0 𝑑𝑘,0. It is widely known that maximization of a 

project NPV is equivalent to the maximization of the investors’ wealth: A firm’s managers should 
then undertake a project if and only if 𝑁𝑃𝑉 > 0 (McMinn 2005, Rubinstein 1973, Brealey et al. 2011, 

Berk and DeMarzo 2014). 
 

NPV acceptability criterion. A project 𝑃 is acceptable (creates value) if and only if 𝑁𝑃𝑉 > 0.  
 

An equilibrium asset is here defined as an asset whose NPV is zero (i.e., it is value-neutral). 

 

3 The rate-of-return notion in the literature. 

The literature on the rate-of-return notion is immense and offers a huge amount of frequently 

unrelated papers in different fields: Economic theory, engineering economics, finance, mathematics, 

accounting. In many cases no explicit link has been drawn between one contribution and another 

and, as soon as the amount of contributions on rate of return grew exponentially in the different 

disciplines, authors became less and less aware of the work of other authors working in other fields. 

This section reconstructs the story proposing a selective, systematic recount of events, by 

conceptually (and formally) chaining contributions that would be otherwise viewed as unrelated. 
 

The modern story of the notion of rate of return for multiperiod assets is strictly connected with the 

related notions of rate of return over cost (Fisher 1930), internal rate of return (IRR) (Boulding 1935) 

and marginal efficiency of capital (Keynes 1936). It was Boulding who appears to have first called an economic asset’s rate of return “internal”. Dealing with multi-period projects, he explicitly assumed that “there is some rate of return […] which is characteristic of the investment as a whole. This is of 
course a rate of interest, or a rate of discount. But it must be emphasized that it is a rate of interest 

which the enterprise itself produces […] That is to say, it is an internal rate” (p. 478). Let �⃗� be the firm’s or project’s cash-flow stream and let 𝑐𝑡 denote its capital at time 𝑡. Boulding (1935) observed 

that the increase in capital is equal to  

 𝑐𝑡 − 𝑐𝑡−1 = 𝜎 ⋅ 𝑐𝑡−1 − 𝑥𝑡 (1) 
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where 𝜎 here denotes an assumed constant (and exogenously fixed) remuneration rate (see Boulding 

1935, eqs. (3)-(5)). Note that 𝑐𝑡 is a function of 𝜎 and one can rewrite (1) as 

 𝑐𝑡(𝜎) = 𝑐𝑡−1(𝜎)(1 + 𝜎) − 𝑥𝑡 . (2) 

Solving for 𝑛 and considering the initial condition 𝑐0 = −𝑥0,1  one gets 𝑐𝑛(𝜎) = −∑ 𝑥𝑡(1 + 𝜎)𝑛−𝑡𝑛𝑡=0 . As the “total amount invested at the date of final liquidation is zero” (Boulding 1935, p. 481), one gets −∑ 𝑥𝑡(1 + 𝜎)𝑛−𝑡𝑛𝑡=0 = 0, whence, dividing by 𝜎, 

 ∑𝑥𝑡(1 + 𝜎)−𝑡𝑛
𝑡=0 = 0 

(3) 

(Boulding 1935, eq. (12)). While Boulding assumed 𝜎 to be known,  he realized that eq. (3) can also be used for ‘reverse engineering’, that is, used as “an equation from which we can calculate the 
internal rate of return of the enterprise itself, treating the net revenue series as given and [𝜎] as an unknown.” (p. 481)  Considering the NPV function 𝜑(𝑢) = ∑ 𝑥𝑡𝑛𝑡=0 (1 + 𝑢)−𝑡, eq. (3) can be written as 𝜑(𝜎) = 0, which is the standard IRR equation. The resulting IRR decision criterion can then be stated 

as follows. 
 

 

IRR acceptability criterion.  

Rule (I). An investment is acceptable if and only if 𝜎 > 𝑟.  

Rule (II). A financing is acceptable if and only if 𝜎 < 𝑟. 
 

As 𝑟 is the equilibrium rate, rule (I) means that an investment is acceptable if the project’s rate of 
return is greater than the rate of return that might be earned by investing the same amount in the 

security market. Rule (II) means that a financing is acceptable if the project’s financing rate is  
smaller than the financing rate that might be paid by borrowing the same amount in the security 

market. Unfortunately, while the NPV criterion is applicable with no need of distinguishing 

investments from financings, the IRR acceptability criterion needs such a distinction, and it is not 

always easy to understand, at a first sight, whether a project is an investment or a financing. 
 

If the function 𝜑(𝑢) , 𝑢 ∈ (−1,+∞) is monotonically decreasing or increasing, IRR exists and is 

unique. Problems of existence and uniqueness of IRR related to nonmonotonicity were soon 

recognized (Boulding 1936, Wright 1936, Samuelson 1937). However, only two decades later the 

problem started to attract scholars’ attention (e.g., Lorie and Savage 1955, Solomon 1956): Existence 
and uniqueness of 𝜎 in eq. (3) is a necessary condition for the IRR criterion to be employed,2 which is 

the reason why a growing amount of contributions started to appear in the literature in order to cope 

with the issue of multiple solutions or no solution. Many scholars focused on conditions for an IRR to 

exist and be unique and strived to provide more and more general conditions under which an IRR 

exists and is unique. For example, Pitchford and Hagger (1958) identified a class of projects with a 

unique IRR in the interval (−1,+∞). 
 

Proposition 1 (Pitchford and Hagger 1958) If the cash-flow stream �⃗� possesses one and only one  

change of sign, then the IRR, 𝜎, exists and is unique in the interval (−1,+∞). 
 

                                                           
1 Boulding (1935) assumed 𝑥0 = 0, so his cash-flow stream begins with 𝑥1. 
2 The condition is not sufficient: For example, if �⃗� = (−6.4, 16, −10), then 𝜎 = 25% is unique. However, 𝜑(𝑢) = −6.4 + 16(1 + 𝑢)−1 − 10(1 + 𝑢)−2 ≤ 0 for any 𝑢 and 𝜕𝜑(𝑢)/𝜕𝑢 > 0 if and only if 𝑢 > 0.25. This makes 
it unclear whether the project is an investment or a financing, and, therefore, whether the IRR is an investment 
rate or a financing rate. As a result, the traditional IRR criterion is inapplicable.  
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Soper (1959) extended the class of projects with unique IRRs, and his results were later generalized 

by  Gronchi (1986) as follows.3 
 

Proposition 2 (Soper 1959, Gronchi 1986) Assume 𝑥0 < 0. If 𝜎 is an IRR of �⃗�, and ∑ 𝑥𝑗𝑡𝑗=0 (1 +𝜎)𝑡−𝑗 ≤ 0 for 𝑡 ∈ N𝑛−10 , then an IRR, 𝜎, exists and is unique in the interval (−1,+∞). 
 

Owing to (2), the Soper-Gronchi condition can be reframed in terms of nonnegative capital:  −∑ 𝑥𝑗𝑡𝑗=0 (1 + 𝜎)𝑡−𝑗 = 𝑐𝑡(𝜎) ≥ 0 for all 𝑡 ∈ N𝑛−10 , which implies that the firm injects capital in the 

project in every period. This in turn implies that, if multiple IRRs exist, 𝑐𝜏(𝜎) < 0 for some 𝜏 ∈ N𝑛−10 , 

which means that the firm finds itself in a financing position, that is, it borrows from the project.  
 

A further extension of the class of projects with unique IRR in (−1,+∞) was later accomplished by 

Kaplan (1965, 1967) by making use of the Sturm’s sequence. See also Gronchi (1987, p. 44). 
 

 Other scholars focused on the interval (0, +∞). For example, Jean (1968) proved the following 

proposition.  
 

Proposition 3 (Jean 1968, Gronchi 1987) Assume 𝑥0 < 0. If ∑ 𝑥𝑡𝑛𝑡=0 > 0 and the cash-flow stream �⃗� 

possesses one or two changes of sign, then the IRR, 𝜎, exists and is unique in the interval (0,+∞). 
 

The class of projects described by Jean was then extended by Norstrøm (1972) as follows. 
 

Proposition 4 (Norstrøm 1972) Let 𝑋𝑡 = ∑ 𝑥𝑗𝑡𝑗=0  be the cumulative cash flow. If the sequence �⃗� = (𝑋0, 𝑋1, … , 𝑋𝑛) possesses one and only one change of sign, and 𝑋𝑛 ≠ 0, then an IRR, 𝜎, exists and is 

unique in (0, +∞). 
 

The class of projects described by Norstrøm was in turn extended in the following years by several 

scholars, including the following result provided by Bernhard (1979, 1980). 
 

Proposition 5 (Bernhard 1979, 1980, Gronchi 1987) Consider 𝑚𝑡 = ∑ (𝑛 − 𝑗𝑡 − 𝑗) 𝑥𝑗,𝑡𝑗=0  𝑗 ∈ N𝑛0 .  If the 

sequence �⃗⃗⃗� = (𝑚0, 𝑚1, … ,𝑚𝑛) possesses one and only one change of sign, then an IRR, 𝜎, exists and is 

unique in the interval (0, +∞). 
 

(See also Aucamp and Eckardt 1976, De Faro 1978, Pratt and Hammond 1977, 1979). 
 

Notwithstanding the efforts made by many economists to search for wider and wider classes of 

multiperiod projects having a unique IRR, the picture was not encouraging from a practical 

perspective. Managers, professionals, and other practitioners need a reliable rate of return for any 

single project, regardless of whether it belongs or not to the above mentioned classes of projects. A 

first attempt to provide a resolution to this problem was proposed in the 1950s by several authors, 

including Solomon (1956), Baldwin (1959), Kirshenbaum (1965), Lin (1976) and Athanasopoulos 

(1978). The underlying idea of their contributions is to assume that the interim cash flows are 

reinvested (or financed, if negative) at a given rate, 𝑦, up to the terminal date 𝑛. A modified cash-flow 

stream �⃗�𝑀 = (𝑥0, 0, … ,0, ∑ 𝑥𝑡(1 + 𝑦)𝑛−𝑡𝑛𝑡=1 ) is obtained. Assuming 𝑥0 ⋅ ∑ 𝑥𝑡(1 + 𝑦)𝑛−𝑡𝑛𝑡=1 < 0 and 

applying Proposition 1, a unique IRR exists which is the solution 𝜎𝑀 of  

 𝑥0(1 + 𝑦)𝑛 +∑𝑥𝑡(1 + 𝑦)𝑛−𝑡𝑛
𝑡=1 = 0 

(4) 

The solution, 𝜎𝑀, is widely known as modified internal rate of return (MIRR).4 If 𝑥0 < 0 (>), the 

project is interpreted as an investment  (financing). Hence,  

                                                           
3 Prof. Gronchi generalized several results. His monograph (Gronchi 1984/1987) is an excellent recount of the 
first decades of the economic literature on the IRR notion. 
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MIRR acceptability criterion. If 𝑥0 < 0 (𝑥0 > 0 ), the project is worth undertaking if and only if 𝜎𝑀 > 𝑟  (𝜎𝑀 < 𝑟). 
 

The MIRR is included in popular financial spreadsheet packages and is well appreciated by 

practitioners and academics (e.g., Ryan and Ryan 2002, Kierulff 2008, Lefley 2015); it is mentioned in 

many textbooks of corporate finance (e.g., Brealey et al., 2011; Ross et al., 2011; Pike et al. 2012, Berk 

and DeMarzo, 2014) and engineering economics (e.g., Herbst, 2002; Hartman 2007; Newnan et al, 

2009; Blank and Tarquin, 2012, 2014). However, the MIRR approach has an important drawback: 

The MIRR is not the rate of return of the project; rather, it is the IRR of a modified project, which is a 

portfolio of (i) the project and (ii) the reinvestments of the interim cash flows; also, if the 

reinvestment rate is not equal to the COC, 𝑟, the MIRR acceptability criterion is not logically 

equivalent to the NPV acceptability criterion (see also section 7.2). In addition, it is often highlighted 

by scholars that there are many ways to modify a cash-flow stream in such a way that its IRR exists 

and is unique. Ross et al. (2011) illustrate three methods (the discounting approach, the 

reinvestment approach, the combination approach) and state that “there is no clear reason to say one 
of our three methods is better than any other" (Ross et al. 2011, p. 250. See also Magni 2015a,b).  

 Around the same time, another well-known solution was provided by Karmel (1959) and Arrow 

and Levhari (1969). Karmel (1959) made the assumption that a project can be truncated at any time 

in order to find a unique IRR for any project. He considered the truncated projects  𝑃𝑡 = (𝑥0, 𝑥1, … , 𝑥𝑡),  𝑡 ∈ N𝑛0 and considered the IRR of any truncated project 𝑃𝑡. Then, he suggested the “maximum” IRR should be identified in the following way: 

(i) exclude all truncated project 𝑃𝑡 that have no IRR 

(ii) if at least one project has multiple IRRs, then pick the greatest one 

(iii) pick the IRRs selected in steps (i)-(ii) and choose the greatest one. Let 𝜎max be such an IRR. 

Proposition 6 (Karmel 1959) Let 𝑃𝑗 be the truncated project associated with 𝜎max. If the investor 

truncates the projects at time 𝑗, then the truncated project belongs to the class of Soper projects (see 

Proposition 2) and, therefore, the IRR, 𝜎max, is unique. 
 

With hindsight, it is now evident that the economic content of this proposal is limited. Besides the 

fact that the three rules (i)-(iii) have no economic rationale, the assumption of truncation is itself 

economically dubious and essentially irrelevant. However, the result was sufficiently interesting 

mathematically to convince a substantial number of scholars to use such an assumption in several 

works (e.g., Hicks 1970, Flemming and Wright 1971, Nuti 1973, Burmeister 1974, Sen 1975, Eatwell 

1975; Ross et al. 1980). Within this strand of literature, particularly important is the contribution of 

Arrow and Levhari  (1969), who wrote a well-known paper which used the assumption of truncation 

in a new way. Consider the truncated projects  𝑃𝑡 = (𝑥0, 𝑥1, … , 𝑥𝑡),  𝑡 ∈ N𝑛0 , 𝑥0 < 0, and consider the 

present value of the truncated projects, here denoted as 𝜑(𝑃𝑡 , 𝑢): = ∑ 𝑥𝑗(1 + 𝑢)−𝑗,𝑡𝑗=0  𝑡 ∈ N𝑛0 . Let 𝜑(𝑃, 𝑢) ≔ max{𝜑(𝑃𝑡, 𝑢): 𝑡 ∈ N𝑛0} denote the maximum present value.  
 

Proposition 7 (Arrow and Levhari 1969) The function 𝜑(𝑃, 𝑢) is such that lim 𝑢→−1+ 𝜑(𝑃, 𝑢) = +∞ 

and lim 𝑢→+∞𝜑(𝑃, 𝑢) = 𝑥0 < 0; further, it is strictly decreasing. Therefore, the solution of 𝜑(𝑃, 𝜎) = 0 

exists and is unique in the interval (−1,+∞). 
 While the authors correctly stated that “we prove that if, with a given constant rate of discount, we 

choose the truncation period so as to maximize the present value of the project, then the internal rate of return of the truncated project is unique” (Arrow and Levhari 1969, p. 560), this is not what one 

                                                                                                                                                                                              
4 It is worth noting that the MIRR approach was anticipated, some two centuries earlier, by the French actuary 
Duvillard (1755-1832) (see Biondi 2006). 
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expects from a definition of rate of return of a project, as noted above. Norstrøm (1970) and Gronchi 

(1987) showed, in different ways, that the IRR associated with Karmel’s criterion is equal to the IRR associated with Arrow and Levhari’s criterion. Unfortunately, this equivalence, while mathematically 
important, did not make the two proposals more reliable economically and was finally abandoned 

(but see Promislow and Spring 1996 , Theorem 5.1).  

 Notwithstanding the massive contributions focused on (existence and) uniqueness of a rate of 

return, some scholars began to realize that the attention drawn to the uniqueness of a real root in the 

traditional IRR equation was excessive, for uniqueness does not guarantee the IRR to be 

economically meaningful: Even if the project has a unique IRR, its financial nature is not clear 

whenever the Soper-Gronchi condition does not hold (i.e.,  𝑐𝑡(𝜎) < 0 for some 𝑡). The notion of a 

mixed project was then introduced (Teichroew, Robichek and Montalbano 1965a,b): In a mixed 

project, the firm invests funds in the project in some periods (lending position) and absorbs funds 

from the project in some other periods (financing position). For example, consider �⃗� = (−100, 160,−115, 106,−64, 22). The IRR is unique in the interval (−1,+∞) and is equal to 𝜎 = 0.1. Despite the fact that 𝜑(𝑢) is monotonically decreasing in (−1,+∞), the vector of the IRR-

implied capital amounts is 𝑐(0.1) = (100,−50, 60,−40, 20), which means that in the first, third and 

fifth periods the IRR acts as an investment rate, whereas in the second and fourth periods the IRR 

acts as a financing rate. Therefore, the financial nature of (a project and) an IRR may be ambiguous  ̶ 
and the IRR criterion inapplicable  ̶ even in those cases where the IRR is unique and the NPV function 

is monotonic. So, a problem of meaningfulness adds to the problems of existence and uniqueness: 

The IRR “is not a proper measure of return on investment. This is a crucial criticism of the IRR—even 

though it may be unique, and real in the mathematical sense, this in itself is not a sufficient condition for 

it to be a correct measure of return on investment” (Herbst 1978, p. 367, italics in original) and “a 
unique, real IRR is no assurance that the rate obtained is a proper measure of return on investment (or cost of financing)” (Herbst 1978, p. 369). Teichroew, Robichek and Montalbano (1965a,b) 
(henceforth, TRM) tried to solve the problem by explicitly recognizing that there may be periods 

where the entrepreneur injects capital in the project (investment) and some other periods where the 

entrepreneur subtracts capital from the project (financing). To this end, TRM allowed for a dual 

evolution of the capital such that, in case of investment (𝑐𝑡 > 0), the growth rate for capital is a 

project investment rate (PIR, here denoted as 𝜎𝐼), whereas, in case of financing (𝑐𝑡 < 0), the growth 

rate for capital is a project financing rate (PFR, here denoted as 𝜎𝐹). Denoting as 𝑖𝑡 the growth rate, 

 𝑖𝑡 = {𝜎𝐹 if  𝑐𝑡−1 ≤ 0𝜎𝐼 if  𝑐𝑡−1 > 0. (5) 

As a result, the capital evolves according to the following recurrence equation: 

 𝑐𝑡 = 𝑐𝑡−1(1 + 𝑖𝑡) − 𝑥𝑡 = {𝑐𝑡−1(1 + 𝜎𝐹) − 𝑥𝑡 if  𝑐𝑡−1 ≤ 0𝑐𝑡−1(1 + 𝜎𝐼) − 𝑥𝑡 if  𝑐𝑡−1 > 0 (6) 

which evidently generalizes eq. (2). The pair �⃗� = (𝜎𝐹 , 𝜎𝐼) represents a generalization of the constant 

IRR and the terminal condition 𝑐𝑛 = 𝑐𝑛(𝜎𝐹, 𝜎𝐼) = 0    generalizes the condition 𝑐𝑛(𝜎) = 0. TRM 

showed that 𝑐𝑛(𝜎𝐹 , 𝜎𝐼) = 0 implicitly defines two strictly increasing functions: An investment-rate 

function 𝜎𝐼 = 𝑓(𝜎𝐹) and a financing-rate function 𝜎𝐹 = 𝑔(𝜎𝐼), which is the inverse function of the 

former: 𝑔(𝑓(𝑢)) = 𝑢.  They proved a fundamental result. 
 

Proposition 8  For any acceptable interest rate (i.e., belonging to the domain of the implicit functions)  

(i) 𝜑(𝑢) > 0 if and only if 𝑓(𝑢) > 𝑢 or, equivalently, 
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(ii) 𝜑(𝑢) > 0 if and only if 𝑢 > 𝑔(𝑢).5 
 

(TRM 1965a, Theorem V; TRM 1965b, p.176.).  Armed which such a result, they could state two 

symmetric acceptability criteria, which are equivalent to the NPV criterion. 
 

Proposition 9 (TRM criteria)  

 (A) If 𝜎𝐹 = 𝑟, then accept the project if and only if  𝜎𝐼 = 𝑓(𝑟) > 𝑟.  

 (B) If 𝜎𝐼 = 𝑟, then accept the project if and only if 𝜎𝐹 = 𝑔(𝑟) < 𝑟. 
 

Rule (A) means that, if one assumes that, in the financing periods, the project lends to the firm at a 

financing rate equal to the market financing rate (𝜎𝐹 = 𝑟), then the project is acceptable if the PIR 

earned in the investment periods is greater than the market investment rate holding in the security 

market (𝜎𝐼 > 𝑟). Rule (B) means that, if one assumes that, in the investment periods, the firm lends to 

the project at an investment rate equal to the market rate of return (𝜎𝐼 = 𝑟),6 then the project is 

acceptable if and only if the PFR in the financing periods is smaller than the market financing rate  

(𝜎𝐹 < 𝑟). This model has found favor in the literature, especially among engineering economists (e.g., 

Mao 1967, Oakford et al. 1977, Gronchi 1984/1987, Ward 1994, Herbst 2002, Blank and Tarquin 

2012, Chiu and Garza Escalante 2012, Park 2013, Magni 2014a. See also Broverman 2008, p. 274, 

Kellison 2009, pp. 289-291), sometimes represented with different labels (e.g., Kulakov and 

Kulakova 2013),7 used for choosing one IRR among multiple IRRs (Weber 2014) or for measuring 

performance of financial investments (Becker 2013). However, it is evident that this model is 

restrictive for several reasons. First, it only works if either 𝜎𝐹 = 𝑟 or 𝜎𝐼 = 𝑟. In all other cases, the 

inequations 𝑓(𝑟) > 𝑟 or 𝑔(𝑟) < 𝑟, while logically equivalent to 𝑁𝑃𝑉 = 𝜑(𝑟) > 0, are economically 

non-significant, for 𝑟 is not the actual PFR and, therefore, 𝑓(𝑟) is not the actual PIR (analogously, 𝑟 is 

not the actual PIR and 𝑔(𝑟) is not the actual PFR). Second, both PIR and PFR are assumed to be time-

invariant, whereas, in general, a firm’s or project’s capital (either positive or negative) grows at a 

time-varying rate. Third, the COC, 𝑟, is assumed to be time-invariant as well. This is a reasonable 

assumption in many situations, but a more general framework should account for time-varying 

equilibrium rates (i.e. for a non-flat structure 𝑟 of interest rates).8   

 In addition, the TRM model is incomplete because neither 𝜎𝐼 nor 𝜎𝐹 represent the project rate of 

return. Rather, they represent, respectively, the investment rate in the lending periods and the 

financing rate in the borrowing periods. In order to provide the overall project’s rate of return, the 

rates 𝜎𝐹 , 𝜎𝐼 need to be somehow aggregated, something that TRM did not address. Notwithstanding 

these drawbacks, TRM had the merit of showing that the quest for uniqueness was ill-placed and that 

the IRR concept cannot be considered a reliable one in general.  

In recent times, the idea of distinguishing between investment rates and financing rates, which 

was at the forefront of the TRM approach, was resurrected within the very realm of the IRR approach 

in an innovative way by Hazen (2003). His main result can be stated in the following way. 
 

                                                           
5 That (i) and (ii) are equivalent follows from the fact that 𝑓(⋅) and 𝑔(⋅) are strictly increasing and 𝑓(𝑔(𝑢)) =𝑢 = 𝑔(𝑓(𝑢)). 
6 It may be helpful to recall that 𝑟 (in this paper as well as in TRM 1965a,b) is assumed to be both a lending rate 
and a financing rate.  
7 Kulakov and Kulakova’s (2013) Generalized Internal Rate of Return is equal to TRM’s PIR and the Generalized External Rate of Return is equal to TRM’s PFR. 
8 Recently, Chiu and Garza Escalante (2012) extended Rule (A) allowing for time-variant COCs, 𝑟𝑡 . In particular, 
they assumed 𝜎𝑡,𝐹 = 𝑟𝑡  if 𝑐𝑡−1 < 0 and 𝜎𝑡,𝐼 = 𝑟𝑡 + 𝑎𝐼(1 + 𝑟𝑡) if 𝑐𝑡−1 ≥ 0. Their result was further generalized by 

Magni (2014, Theorems 6-7), who assumed: 𝜎𝑡,𝐹 = 𝑟𝑡 + 𝑎𝐹(1 + 𝑟𝑡) if 𝑐𝑡−1 < 0 and 𝜎𝑡,𝐼 = 𝑟𝑡 + 𝑎𝐼(1 + 𝑟𝑡) if 𝑐𝑡−1 ≥ 0 (see section 7.3, Remark 7.2, for the more general case of time-varying COCs and unconstrained 𝜎𝑡,𝐹  

and 𝜎𝑡,𝐼).  
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Proposition 10 Suppose at least one IRR exists in (−1,+∞) and let 𝜎1, … , 𝜎𝑚 be the sequence of IRRs of 

a project. Then, 

 𝑁𝑃𝑉 = 𝜎𝑗 − 𝑟1 + 𝑟 ⋅∑𝑐𝑡−1𝑛
𝑡=1 (𝜎𝑗) ⋅ 𝑑𝑡−1,0                ∀𝑗 ∈ N𝑚1  

(7) 

(recall that 𝑑𝑡−1,0 = (1 + 𝑟)−(𝑡−1)  is the discount factor). This result enabled the author to generalize 

the distinction between overall investment and financing status of a project, whereas TRM originally 

only referred to single periods, and to provide mixed projects with a well-defined financial nature: A 

project is a net investment if lending positions exceed financing positions, i.e.,  ∑ 𝑐𝑡−1𝑛𝑡=1 (𝜎𝑗)𝑑𝑡,0 > 0; 

otherwise,  if ∑ 𝑐𝑡−1𝑛𝑡=1 (𝜎𝑗)𝑑𝑡,0 < 0, it is a net financing. In case of net investment (financing), the IRR 

is, overall, an investment (financing) rate at which the net capital ∑ 𝑐𝑡−1𝑛𝑡=1 (𝜎𝑗)𝑑𝑡,0 is invested 

(borrowed). The resulting decision criterion is as follows. 

Hazen’s (2003) criterion. Let 𝜎𝑗 be any IRR. If a project is a net investment, it should be accepted if 

and only if  𝜎𝑗 > 𝑟. If the project is a net financing, it should be accepted if and only if 𝜎𝑗 < 𝑟. 
 

(See Hazen 2003, Theorem 4). The author’s result reconciled the IRR and the NPV for accept-reject 

decisions. His finding implies that any one IRR can be used for assessing a project’s economic 
profitability and making accept-reject decisions, as long as it is identified as an investment rate or as 

a financing rate. A project possessing multiple IRRs may be viewed as an investment project or as a financing project at the evaluator’s discretion, depending on the choice of the IRR. So, on one hand, Hazen’s (2003) proposal technically solved the multiple-IRR problem related to mixed projects;9 on 

the other hand, it triggered a new problem: If any IRR captures economic profitability, which is the 

true or, at least, relevant rate of return (if there is any)? While Hazen (2003) left the analyst free to 

make the preferred choice, an answer to this question was proposed, one year later, by Hartman and 

Schafrick (2004). The authors used the economic distinction between investment and financing to 

identify the relevant IRR among a bundle of multiple ones. In particular, for any project having 

multiple IRRs, they identified the financial nature of the project on the basis of the monotonicity of 

the present-value function, 𝜑(𝑢) = ∑ 𝑥𝑡(1 + 𝑢)−𝑡𝑛𝑡=0 : The authors partitioned the graph of 𝜑(𝑢) into 

investment and financing regions: An investment region (𝑎, 𝑏) is such that ∂𝜑(𝑢)/𝜕𝑢 < 0 for every 𝑢 ∈ (𝑎, 𝑏); a financing region (𝑎, 𝑏) is such that ∂𝜑(𝑢)/𝜕𝑢 > 0 for every 𝑢 ∈ (𝑎, 𝑏). They locate the 

region in which the cost of capital, 𝑟, resides; the IRR that resides in the same partition as the cost of 

capital is the ‘relevant’ IRR. Consequently, the associated criterion for accept-reject decision, 

recommended by Hartman and Schafrick (2004), is the following one. 
 

Hartman and Schafrick’s (2004) criterion.  Let 𝜎𝑅 be the relevant IRR. If the partition where 𝜎𝑅 lies 

is an investment region, then the project should be accepted if and only if  𝜎𝑅 > 𝑟. If the partition where 𝜎𝑅 lies is a financing region, then the project should be accepted if and only if  𝜎𝑅 < 𝑟. 10 

                                                           
9 Hazen (2003) proposed a method for coping with no real-valued IRR as well (see also Pierru 2010 and 
Osborne 2010, 2014 on complex-valued rates of return). 
10 In the span of 80 years, a large number of scholars advanced (sometimes conflicting) proposals for choosing 
the relevant IRR among a bundle of multiple ones. For example, Dorfman (1981) recommended the use of the 
largest root; Cantor and Lippman (1983, 1995) endorsed the use of the smallest nonnegative IRR; Cannaday et 
al. (1986) and Colwell (1995), dealing with a dual rate problem, suggested to choose the one which is increased 
by a marginal increase in a cash flow; Bidard (1999) suggested the use of the maximal IRR; Zhang (2005) 
recommended a technique which is based on the number of even or odd IRRs which are greater than the COC; 
Shestopaloff and Shestopaloff (2013) recommended the use of the largest root; Weber (2014) recommended 
the use of the smallest (or greatest) IRR among the ones which are greater (or smaller) than the COC if 𝜎𝐼(𝑟) ≥ 𝑟 (<). However, these contributions did not challenge the IRR notion itself, which, as we will see later, 
is the real problem (see also Ramsey 1970, Howe 1991, Bosch et al,. 2007  for solutions not involving the use of 
IRR). (It should be noted that the economic rationale of the proposed solution is not always clear. For example, 
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 Some decades earlier, other scholars, such as Hirshleifer (1958) and Bailey (1959) had provided a 

substantive criticism of the IRR, over and beyond the problems posed by the existence/multiplicity 

issue and by investment/financing conundrum: The IRR is an erroneous concept in itself, even if the 

IRR exists and is unique, and even if the project is a pure investment (i.e., 𝑐𝑡(𝜎) > 0 for all 𝑡 ∈ N𝑛−11 ). In 

particular, Bailey (1959) was the first one to acknowledge that the assumption of time-invariant rates of return is unwarranted. In general, a firm’s or a project’s capital rate of growth 𝑖𝑡, is time-

variant, so a sequence 𝑖 = (𝑖1, 𝑖2, … , 𝑖𝑛) of time-variant period rates better describes the path of 

growth rates.  The IRR sequence (𝜎, 𝜎, … , 𝜎) is only a particular case, having no special economic 

significance: “recognition of the correct general solution of the investment problem has been 
hindered by the habit of thinking in terms of a single, long-term rate of interest” (Bailey 1959, p. 477); “This is an example of the ‘paradox’ that has attracted so much attention 
in connection with investment decision criteria. It should be evident, however, that this 
paradox is merely an accident of the simplifying device of dealing with a single long-term rate of interest, and that it has no special importance.” (Bailey 1959, pp. 478–479) 

The equilibrium forward rates are time-variant as well, a case that the IRR cannot cope with:  “Martin J. Bailey has emphasized this to me that it is precisely when this occurs (when 
there exists a known pattern of future variations of [𝑟]) that the internal-rate-of-return 
rule fails most fundamentally…With a known pattern of varying future [𝑟], shifts in the 
relative desirability of income in different periods are brought about. In the usual 
formulation the internal rate of return can take no account of this. In such a case, one 
might have an investment for which [the IRR] was well defined and unique and still not be able to determine the desirability of the investment opportunity” (Hirshleifer 1958, 
p. 350).  

In other words, two fundamental problems arise even if the project has a unique IRR and is not a 

mixed project: 

(1) the assumption of constant growth, 𝑖𝑡 = 𝜎 , for all 𝑡 ∈ N𝑛1   is very limiting (and generally 

unrealistic), and so the IRR-implied capital 𝑐𝑡(𝜎) is fictitious, being automatically generated 

by the very mathematical procedure used for defining the IRR (see eq. (1)-(3))  

(2) the IRR cannot capture an asset’s economic profitability if the term structure of interest rate 
is non-flat, for a rate cannot be compared with a sequence of time-variant COCs . 
 

Therefore, these two authors considered the problem of existence and uniqueness only as the signs 

of a general inadequacy of the IRR to capture the notion of rate of return: “the fact that the use of [the 
IRR] leads to the correct decision in a particular case or a particular class of cases does not mean that it is correct in principle … These instances of failure of the multi-period internal-rate-of return rule … 
are, of course, merely the symptom of an underlying erroneous conception” (Hirshleifer 1958, p. 
346-7). 
 

Hirshleifer (1958) stated that the conundrum of the rate-of-return notion should be somehow solved 

reminding that a rate of return must be coherent with the piece of information it is supposed to 

supply, that is, it must be a ratio, for it represents “a rate of growth of capital funds invested in a 

project [and] the idea of a rate of growth involves a ratio” (Hirshleifer, 1958, p. 346-7, italics added). 

And Bailey (1959) made it clear that a comparison method should be developed, which enables a 

whole sequence of time-variant period rates 𝑖 = (𝑖1, 𝑖2, … , 𝑖𝑛) to be compared with a whole sequence 

of time-variant COCs  𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛). As a possible route, he suggested  that “the criterion for 

                                                                                                                                                                                              

the choice of the relevant IRR in Weber 2014, named selective IRR, is associated with a mathematical, 
ratcheting, procedure which is not supported by any substantive economic argument.) 
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multiperiod investments can center on a short-term rate when all other short-term rates are assumed to be equal to the equilibrium rates” (p. 479). (See also section 7 below). 
 

More recently, other unsuspected flaws of the IRR were unearthed (see Magni 2013a for a 

compendium of 18 flaws) and a complete solution to the conceptual and mathematical problems of 

the rate-of-return notion has been advanced in Magni (2010a) and then developed in a subsequent 

series of papers (e.g., Magni, 2013a,b, 2014a,b, 2015a). The author turns the issue on its head by 

getting rid of the IRR equation and of the assumption that the growth rate for capital is constant. A 

new theoretical perspective is introduced, named Average Internal Rate of Return (AIRR), a unifying 

framework which encompasses all the traditional capital budgeting metrics and, at the same time, is 

capable of  systematically taking account of the insights by (i) Hirshleifer (1958) (a return rate is a 

ratio), (ii) Bailey (1959) (capital growth is time-variant), (iii) TRM (1965a,b) (a project can be a 

financing in some periods), and (iv) Hazen (2003) (a distinction is needed between investment 

projects and financing projects). In addition, it is free from the flaws and paradoxes that mar the IRR 

(see Magni 2013 a). 
 

The starting point of the AIRR approach is that the analysis should not be based on a relevant IRR 

that automatically generates a capital stream 𝑐(𝜎) which is unrelated with the actual economic 

transactions, but, rather, on a relevant capital stream  𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1), representing the 

underlying actual economic transactions, that generates a rate of return which fulfills points (i)-(iv) 

above. 
 

In the following section we show that the notion of Chisini mean originates a coherent rate of return 

that changes the way the rate-of-return notion is usually cognized. 

4 The AIRR paradigm 

This section summarizes the AIRR approach, introduced in Magni (2010a) and developed in many 

subsequent papers (see references), and shows that it can be viewed as a most general framework 

stemming from the notion of coherent rate of return and the notion of Chisini mean. 
  

4.1 The AIRR notion 

We first consider a basic notion of coherent rate of return, based on a given capital 𝐶 and a given 

return ℐ. Then, we introduce the notion of Chisini mean and apply it to a portfolio of 𝑛 assets with 

given capital amounts 𝐶1, 𝐶2, … , 𝐶𝑛 and returns  ℐ1, ℐ2, … , ℐ𝑛, respectively, showing that the Chisini mean of the constituent assets’ rates of return is a coherent return rate for the portfolio. Finally, we 
apply this result to an 𝑛-period project with cash-flow stream �⃗� = (𝑥0, 𝑥1, … , 𝑥𝑛) associated with a 

vector of beginning-of-period capital values 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1), using the fact that any project can 

always be interpreted as portfolio of 𝑛 (one-period) assets and making use of a fundamental 

economic relation linking capital, income/return and cash flow. 
 

Definition 1 (Coherence) A rate of return 𝒾 is coherent if it can be expressed as an amount of return ℐ  

per unit of invested capital 𝒞, that is, 𝒾 = ℐ/𝒞 . In other words, a coherent rate of return is a rate of 

growth for capital enjoying the following product structure: 

 𝒾 ⋅ 𝒞 = ℐ. (8) 

Definition 1 simply formalizes Hirshleifer’s (1958) idea that a rate of return should be a ratio if it is 

to be coherent with its purpose.  
 

Proposition 11 Let 𝐼 be the income earned by investing capital 𝐶 at the coherent rate 𝑖 and let 𝑅 be the 

return that could be earned by investing the same amount at the coherent rate 𝑟. Then  

 𝑖 = 𝑖(𝐶) = 𝑟 + Δ𝐼𝐶  (9) 
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where Δ𝐼 = 𝐼 − 𝑅. 

Proof. By Definition 1, (8) holds with 𝒞 = 𝐶 and 𝒾 = 𝑖 or 𝒾 = 𝑟, respectively. Therefore, 𝐼 = 𝑖 ⋅ 𝐶,  𝑅 = 𝑟 ⋅ 𝐶, so that Δ𝑖 = 𝑖 − 𝑟 is a coherent rate of return as well, for 

 Δ𝑖 ⋅ 𝐶 = Δ𝐼 (10) 

which is a special case of (8). Hence, the thesis follows.∎ 
 

The proposition says that, given a coherent COC, and an excess return, Δ𝐼, a rate of return depends on 

capital; more precisely, it is a homographic function of the capital put into play (see Figure 2). Note 

that, given any combination of (𝐶, 𝑖), the product (10) is invariant under changes in 𝐶 (the area of the 

rectangle with base |𝐶| and height |Δ𝑖| does not change) and that, if no capital 𝐶 is fixed, the rate of 

return is not determined. 
 

Definition 2 (Chisini mean) Given a real-valued function 𝑓 of 𝑛 variables 𝑢1, 𝑢2, … , 𝑢𝑛, the Chisini 

mean of 𝑛 values 𝑢1, 𝑢2, … , 𝑢𝑛 associated with 𝑓 is the number  𝑢 (if it exists) such that 

 𝑓(𝑢, 𝑢, … , 𝑢) = 𝑓(𝑢1, 𝑢2, … , 𝑢𝑛). (11) 
 

Essentially, the Chisini mean is the number 𝑢 that, substituted to 𝑢1, 𝑢2, … , 𝑢𝑛, leaves invariant the 

value of 𝑓. For this reason, eq. (11) may be interpreted as an invariance requirement. The choice of 

the function 𝑓 depends on the object of the analysis: Different choices of 𝑓 lead to different kinds of 

mean. Eq. (11) may have no solution or multiple solutions (see Chisini 1929, de Finetti 1931. See also 

Graziani and Veronese 2009 for details and applications). Definition 2 says that if one replaces the 

various data 𝑢1, 𝑢2, … , 𝑢𝑛 with a unique value �̅�, then the value taken on by the function does not 

change. So, �̅� indeed represents an overall measure (a mean) that gathers information from the 

individual data 𝑢1, 𝑢2, … , 𝑢𝑛. 
 

Consider now a portfolio of 𝑛 assets and let 𝐼𝑡, 𝐶𝑡 be, respectively, the return and the capital of the 𝑡-
th asset. The following result holds. 
 

Proposition 12 (Portfolio rate of return) The rate of return of a portfolio is a weighted arithmetic 

mean of the holding period rates: 

 𝑖̅ = 𝑤1𝑖1 +𝑤2𝑖2 +⋯+𝑤𝑛𝑖𝑛 (12) 

where 𝑤𝑡 = 𝐶𝑡/∑ 𝐶𝑡𝑛𝑡=1  and 𝑖𝑡 = 𝐼𝑡/𝐶𝑡. 
 

Proof.  The sum of the assets’ returns, 𝐼 = ∑ 𝐼𝑡𝑛𝑡=1 , expresses the overall return generated by the 

portfolio and can be framed as a function of the return rates: 𝐼 = 𝐼(𝑖1, 𝑖2, … , 𝑖𝑛) = ∑ 𝑖𝑡 ⋅ 𝐶𝑡𝑛𝑡=1 . Imposing the Chisini’s invariance requirement on 𝐼 one finds 𝐼(𝑖,̅ 𝑖,̅ … , 𝑖)̅ = 𝐼(𝑖1, 𝑖2, … , 𝑖𝑛). This 

equation has a unique solution: 𝑖̅ = ∑ 𝐶𝑡𝑖𝑡𝑛𝑡=1 /∑ 𝐶𝑡𝑛𝑡=1 . ∎ 
 

 Consider a multiperiod project 𝑃 whose cash-flow stream is �⃗� = (𝑥0, 𝑥1, … , 𝑥𝑛) and let 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) be a vector of values expressing the beginning-of-period capital amounts 

invested in 𝑃. We call 𝑐 the capital stream or investment stream; let 𝑖𝑡 be the growth rate of the capital 

in the interval [𝑡 − 1, 𝑡]. The capital invested in the project grows at the rate 𝑖𝑡 and jumps down by 𝑥𝑡 
(or jumps up by 𝑥𝑡 if the latter is negative) at the end of the period. Therefore, at the beginning of the 

interval [𝑡, 𝑡 + 1], the capital is 𝑐𝑡 = 𝑐𝑡−1(1 + 𝑖𝑡) − 𝑥𝑡. More generally, the following relation holds: 

 𝑐𝑡 = 𝑐𝑡−1 + 𝐼𝑡 − 𝑥𝑡 (13) 

where 𝐼𝑡 is redefined as the project income (return) at time 𝑡. The above recursive equation is a 

fundamental relation in economics, finance, and accounting (see Magni 2009a,b, 2010b) which holds 

for 𝑐𝑡−1 = 0 as well (if 𝑐𝑡−1 ≠ 0, then 𝑖𝑡 = 𝐼𝑡/𝑐𝑡−1). The boundary conditions are 𝑐0 = −𝑥0 and 𝑐𝑛 =0.  The terminal condition implies ∑ 𝑥𝑡∏ (1 + 𝑖𝑘)𝑡𝑘=1𝑛𝑡=0 −1 = 0; the vector 𝑖 = (𝑖1, … , 𝑖𝑛) can then be 

referred to as an internal vector (Weingartner 1966). We now show that, by interpreting the 𝑛-
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period project as a portfolio of 𝑛 one-period assets, we may apply Proposition 12 and get the project’s rate of return.  In this framework, the invested capital 𝐶𝑡 of the 𝑡-th constituent asset is 

equal to the discounted value of the project’s capital 𝑐𝑡−1.  
 

Proposition 13 (AIRR) Let �⃗� = (𝑥0, 𝑥1, … , 𝑥𝑛) be the cash-flow stream of a multi-period project 𝑃 and 

let 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) be the associated capital stream. Then, 𝑖 = 𝑖,̅ with 𝐶𝑡 = 𝑐𝑡−1𝑑𝑡,0 and 𝐶 =∑ 𝐶𝑡𝑛𝑡=1 . More precisely, 

 𝑖̅ = ∑ 𝑐𝑡−1𝑖𝑡𝑛𝑡=1 𝑑𝑡,0∑ 𝑐𝑡−1𝑑𝑡,0𝑛𝑡=1  (14) 

Proof. An 𝑛-period project 𝑃 can be viewed as a portfolio of 𝑛 one-period projects 𝑃(𝑡), whose cash-

flow stream is �⃗�(𝑡) = −𝑐𝑡−11⃗⃗𝑡 + (𝑐𝑡 + 𝑥𝑡)1⃗⃗𝑡+1 where 𝑐𝑡 is the capital invested at time 𝑡 and 1⃗⃗𝑡 ∈ ℝ𝑛+1, 𝑡 ∈ N𝑛1  is a vector of zeros except the 𝑡-th component which is equal to 1. Therefore, �⃗� = ∑ �⃗�(𝑡)𝑛𝑡=1 . The return of each one-period project is 𝐼𝑡 = 𝑐𝑡 + 𝑓𝑡 − 𝑐𝑡−1 and 𝑖𝑡 = (𝑐𝑡 + 𝑥𝑡 −𝑐𝑡−1)/𝑐𝑡−1 is the associated rate of return.  The (present value of the) excess return is Δ𝐼𝑡 =𝑐𝑡−1(𝑖𝑡 − 𝑟)𝑑𝑡,0, which implies, 𝑖𝑡𝑐𝑡−1 = 𝑟𝑐𝑡−1 + Δ𝐼𝑡/𝑑𝑡,0. The (present value of the) overall project 

return is ∑ 𝑖𝑡𝑐𝑡−1𝑑𝑡,0𝑛𝑡=1 = ∑ (𝑟𝑐𝑡−1𝑑𝑡,0  + Δ𝐼𝑡)𝑛𝑡=1 , whence ∑ 𝑖𝑡𝐶𝑡𝑛𝑡=1 = 𝑟𝐶 + Δ𝐼 where Δ𝐼 = ∑ Δ𝐼𝑡𝑛𝑡=1  is 

the (discounted value of) the portfolio’s excess return. Dividing by 𝐶, 𝑖̅ = ∑ 𝑖𝑡𝐶𝑡𝑛𝑡=1 /𝐶 = 𝑟 + Δ𝐼/𝐶 = 𝑖. ∎ 
 

Remark 4.1 Note that 𝑖̅ = 𝐼/𝐶 = ∑ 𝑐𝑡−1𝑖𝑡𝑛𝑡=1 𝑑𝑡,0/∑ 𝑐𝑡−1𝑑𝑡,0𝑛𝑡=1  can be rewritten as 

 𝑖̅ = ∑ 𝑐𝑡−1𝑖𝑡𝑛𝑡=1 𝑑𝑡−1,0∑ 𝑐𝑡−1𝑑𝑡−1,0𝑛𝑡=1  (15) 

 

so that the denominator is the present value of the capital amounts. In general, 𝑖̅ = ∑ 𝑖𝑡𝑐𝑡−1𝑛𝑡=1 (𝑑𝑡,0/𝑑𝑘,0)/∑ 𝑐𝑡−1(𝑑𝑡,0/𝑑𝑘,0)𝑛𝑡=1  for any 𝑘 ∈ ℕ. In any case, the value of interest and the value of capital 

differ by one period.  
 

The rate 𝑖 = 𝑖 ̅  is called Average Internal Rate of Return (AIRR), being a weighted mean of the one-

period (internal) rates 𝑖𝑡.11 Note that there is no need to assume 𝑐𝑡 > 0. The case 𝑐𝑡 < 0 signals a 

financing position in a period, and the AIRR is well-defined as long as 𝐶 ≠ 0, so one may interpret it 

as a generalized weighted arithmetic mean. If 𝐶 = 0 the AIRR is not defined, as should be expected: A 

coherent rate is a quantity, amount, or degree of something measured per unit of something else, so it 

is a ratio. Thus, it is not defined if the base is zero. For example, suppose an investor borrows $100 at 

10% and invests it at 15%. The net invested capital is 𝐶 =  0, the return is I = 5. In this example, the 

investor gets something for nothing. In principle, one might define the project rate of return as being 

infinite, as is done by some economists and practitioners (e.g. Krugman 1979, p. 320,  Shemin 2004, 

p. 15, Nosal and Wang 2004, pp. 2-3, Smithers 2013, p. 66). In particular, 𝑖 = +∞ (−∞) if 𝐼 > 0 (<). 

However, this is not necessary, not useful, and not even relevant, as it will become apparent later. 
 

It is worth noting that Proposition 13 does not depend on the choice of the interim capital values: It 

holds for any vector 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) such that 𝑐0 = −𝑥0. As 𝑖 ̅does depend on the choice of 𝑐, the 

proposition identifies a class of rates of return associated with a cash-flow stream. This class of 

metrics exists and is unique for any project and each metric 𝑖 is a coherent rate of return associated 

with a given capital stream 𝑐. The AIRR notion naturally triggers a new definition of investment and 

financing, which generalizes Hazen’s (2003) definition. 
 

                                                           
11 We will henceforth use the symbols 𝑖 and 𝑖 ̅interchangeably. 
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Definition 3 (investment/financing) If 𝐶 > 0, the project is a (net) investment; if 𝐶 < 0, the project is 

a (net) financing. 
 

Whether or not a project is a net investment or a net financing depends on whether, overall, the 

lending positions (𝐶𝑡 > 0) exceed the financing positions (𝐶𝑡 < 0). In the former case, 𝑖 ̅represents an 

investment rate, in the latter case it represents a financing rate. For example, if an investor invests 

$100 at 5% and then borrows $60 at 4%, one might say that the investor invests a net $40 and the 

overall investment rate is 6.5%. Symmetrically, if an investor invests $60 at 4% and then borrows 

$100 at 5%, one might say that the investor borrows a net $40 and the overall financing rate is6. 5%.  
 

4.2 NPV-consistency and value additivity 

For a relative measure of worth to be economically acceptable, it must be NPV-consistent. This 

important notion is well-established in the literature: Essentially, a metric/criterion is NPV-

consistent or NPV-compatible if, applying the criterion, the decision maker makes the same decisions 

that he or she would make if he applied the NPV criterion (i.e., accepting positive-NPV projects). NPV-consistent metrics are then “numbers that lead to the same investment decisions as the npv-rule.” (Pfeiffer 2004, p. 915). Accounting scholars use the expression “goal congruence” as a synonymous 

expression:  “Goal congruence requires that the managers have an incentive to accept all positive NPV projects” (Gow and Reichelstein 2007, p. 115).12 This standard notion is unanimously accepted 

in the (accounting, financial, engineering, managerial) literature and can be formally summarized as 

follows.  
 

Definition 4 (NPV-consistency) Consider a metric 𝜙 ∈ ℝ expressing a relative measure of worth and a 

market-dependent benchmark 𝜓 = 𝜓(𝑟) ∈ ℝ: 

i. let P be an investment: then, 𝜙 is said to be NPV-consistent if 𝜙 > 𝜓 whenever 𝑁𝑃𝑉 > 0; 

ii. let P be a financing: then, 𝜙 is said to be NPV-consistent if 𝜙 < 𝜓 whenever 𝑁𝑃𝑉 > 0.   
 

Note that, to fulfill the standard notion of NPV-consistency, it is necessary to distinguish investment 

projects from financing projects, given that, in case of an investment project, NPV is positive if the 

return rate is greater than the cost of capital whereas, in a financing project, the NPV is positive if the 

borrowing rate is smaller than the COC. Definition 3 just accounts for such a distinction.13  
 

AIRR acceptability criterion. Let 𝑃 be an investment (financing). Then, the project is economically 

profitable if and only if  𝑖 > 𝑟 (𝑖 < 𝑟).  
 

(See Table 1). 
 

Proposition 14 The AIRR approach is NPV-consistent. 
 

Proof. As 𝑥𝑡 = 𝐼𝑡 − (𝑐𝑡 − 𝑐𝑡−1) for every 𝑡 ∈ N𝑛1  and for any 𝑐, one can write 𝑁𝑃𝑉 = ∑ 𝑥𝑡𝑑𝑡,0𝑛𝑡=0 =−𝑐0 + ∑ (𝐼𝑡 − 𝑐𝑡 + 𝑐𝑡−1)𝑑𝑡,0𝑛𝑡=1  , whence 

𝑁𝑃𝑉 =∑(𝐼𝑡 − 𝑟𝑐𝑡−1𝑛
𝑡=1 )𝑑𝑡,0 =∑(𝑖𝑡𝐶𝑡 − 𝑟𝐶𝑡) = 𝐼 − 𝑅 = Δ𝐼𝑛

𝑡=1 . 
Dividing by 𝐶, 𝑖 = 𝑟 + Δ𝐼/𝐶 = 𝑟 + 𝑁𝑃𝑉/𝐶, which implies 𝑁𝑃𝑉 = 𝐶 ⋅ (𝑖 − 𝑟). Then,  Definition 4 is 

fulfilled, with 𝜙 = 𝑖 and 𝜓 = 𝑟. ∎ 14 

                                                           
12 See also Pasqual et al. (2013), Magni (2009a) and references therein. 
13 It is evident, from (7), that Hazen’s (2003) approach is NPV-consistent, by picking 𝜙 = 𝜎𝑗  for some 𝑗 and 𝐶 = ∑ 𝑐𝑡−1𝑛𝑡=1 (𝜎𝑗)𝑑𝑡 . Likewise, Hartman and Schafrick’s (2004) criterion is, by construction, NPV-consistent. 

From Propositions 8-9, it is also evident that TRM approach is NPV-consistent as well. 
14 It is worth warning the reader that the Appendix of Weber’s (2014) paper misrepresents the AIRR approach 
and, in addition, the author makes the erroneous (and very naïve) claim that any existing approach in the 
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Table 1. Financial nature of 𝑖 and 𝑟 

 𝑖 𝑟 
AIRR acceptability 

criterion 

Net investment 
(𝐶 > 0) 

Rate of return 
Minimum attractive 
rate of return 

𝑖 > 𝑟 

Net financing 
(𝐶 < 0) 

Financing rate 
Maximum attractive 
financing rate 

𝑖 < 𝑟 

 

 Let 𝑃 = 𝑃1 + 𝑃2 +⋯+ 𝑃𝑚 be a portfolio of  𝑚 multiperiod assets. Magni (2013b, p. 752) defines 

the capital of a portfolio of assets as the sum of the capital amounts of the constituent assets: 𝑐𝑡(𝑃) = ∑ 𝑐𝑡(𝑃𝑗)𝑚𝑗=1   which implies ∑ 𝐶(𝑃𝑗)𝑚𝑗=1 = 𝐶(∑ 𝑃𝑗𝑚𝑗=1 ). Therefore, the AIRR preserves value 

additivity. This also implies that the AIRR of a portfolio is the mean of the AIRRs of the constituent 

assets weighted by their capital amounts: 𝑖(𝑃, 𝐶(𝑃)) = ∑ 𝐶(𝑃𝑗)𝑖(𝑃𝑗)/𝐶(𝑃)𝑚𝑗=1  where 𝑖(𝑃𝑗) and 𝐶(𝑃𝑗) denote, respectively, the AIRR and the committed capital of project 𝑗. From the proof of 

Proposition 14, the computational shortcut 𝑖 = 𝑟 + 𝑁𝑃𝑉/𝐶 is derived. Applying it to a portfolio of 

assets, one finds that the Hotelling AIRR can be written as 𝑖(𝑃, 𝐶(𝑃)) = 𝑟 + 𝑁𝑃𝑉/𝐶(𝑃). 
 

4.3 Time-variant COCs, continuous-time AIRR and NPV Bailey’s (1959) quest for a measure capable of taking into account a vector 𝑖 of time-variant rates is 

fulfilled. There still remains the issue of how to cope with a vector 𝑟 of time-variant COCs. This long-

standing problem is easily solved with a suitable AIRR of the equilibrium rates. 

Proposition 15 (AIRR generalized) Let 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛) be the vector of COCs (equilibrium rates). 

Then, for any capital stream 𝑐, the project AIRR and the project COC are generalized as 

 𝑖̅ = 𝑖1𝑐0𝑑1,0 +⋯+ 𝑖𝑛𝑐𝑛−1𝑑𝑛,0𝑐0𝑑1,0 + 𝑐1𝑑2,0 +⋯+ 𝑐𝑛−1𝑑𝑛,0                  �̅� = 𝑟1𝑐0𝑑1,0 +⋯+ 𝑟𝑛𝑐𝑛−1𝑑𝑛,0𝑐0𝑑1,0 + 𝑐2𝑑1,0 +⋯+ 𝑐𝑛−1𝑑𝑛,0. (16) 

 

The product structure is then generalized as 𝑁𝑃𝑉 = 𝐶(𝑖̅ − �̅�), so the AIRR acceptability criterion is 

unvaried, with 𝜙 = 𝑖,̅ 𝜓 = �̅�. 
 

Proof. The proof is straightforward, considering that the market return can be written as 𝑅 = 𝑅(𝑟1, 𝑟2, … , 𝑟𝑛) = ∑ 𝑟𝑡 ⋅ 𝐶𝑡𝑛𝑡=1 . Imposing Chisini’s invariance requirement on 𝑅 one finds 𝑅(�̅�, �̅�, … , �̅�) = 𝑅(𝑟1, 𝑟2, … , 𝑟𝑛), whence (16). Therefore, 𝑁𝑃𝑉 = 𝐼 − 𝑅 = 𝐶(𝑖̅ − �̅�) whence the 

acceptability criterion. ∎ 
 

It is worth noting that eq. (16) may be conveniently replaced by 

 𝑖̅ = 𝑖1′𝑐0 + 𝑖2′ 𝑐1𝑑1,0 +⋯𝑖𝑛′ 𝑐𝑛−1𝑑𝑛−1,0𝑐0 + 𝑐1𝑑1,0 +⋯𝑐𝑛−1𝑑𝑛−1,0                 �̅� = 𝑟1′𝑐0 + 𝑟2′𝑐1𝑑1,0 +⋯𝑟𝑛′𝑐𝑛−1𝑑𝑛−1,0𝑐0 + 𝑐1𝑑1,0 +⋯𝑐𝑛−1𝑑𝑛−1,0  (17) 

where 𝑖𝑡′ = 𝑖𝑡/(1 + 𝑟𝑡) is the beginning-of-period value of 𝑖𝑡.15 In such a way, the AIRR is the mean of 

time-adjusted holding period rates and both numerator and denominator refer to time 0. In essence, 𝑖̅ = 𝐼/𝐶 is the ratio of overall return to overall capital 𝐶 where 𝐶 is redefined as 𝐶 = 𝑐0 + 𝑐1𝑑1,0 +
                                                                                                                                                                                              

literature barring the author’s is NPV-inconsistent (the author seems to be uninformed of all the scholarly 
research conducted on NPV-consistency of relative or absolute metrics in the economic, accounting, financial, 
and managerial literature). 
15 Eq. (17) can also be viewed as a linear combination of the holding period rates:  𝑖̅ = 𝛼1𝑖1 + 𝛼2𝑖2 +⋯+ 𝛼𝑛𝑖𝑛 

where 𝛼𝑡 = 𝑐𝑡−1𝑑𝑡,0𝑐0+𝑐1𝑑1,0+⋯𝑐𝑛−1𝑑𝑛−1,0 (analogously for �̅�). 
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⋯+ 𝑐𝑛−1𝑑𝑛−1,0, which implies that 𝑖 ̅and �̅� are interpreted as instantaneous rates. While the results 

hold no matter which one is used, eq. (17) might be considered more economically significant and 

more appealing than (16) for both scholars and practitioners, for the capital base 𝐶 (the 

denominator) in (17) represents the present value of the overall capital committed. Owing to NPV-

consistency, one can also write 𝑖̅ = �̅� + 𝑁𝑃𝑉/𝐶.  
 

Remark 4.2 Note that both 𝑖 ̅ and �̅� depend on  𝑐, which means that the COC itself is not uniquely 

associated with a given cash-flow stream �⃗�. The comparison of 𝑖 ̅and �̅� is a comparison between the 

mean rates of return of two assets: 𝑖 ̅ is the mean rate of return of a disequilibrium project 𝑃 with 

cash-flow stream �⃗� = (𝑥0, 𝑥1, … , 𝑥𝑛) and capital stream 𝑐, while �̅� is the mean rate of return of an 

equilibrium asset 𝑃∘ with cash-flow stream �⃗�∘ = (𝑥0, 𝑥1∘, … , 𝑥𝑛∘ ), where 𝑥𝑡∘ = 𝑐𝑡−1∘ (1 + 𝑟𝑡) − 𝑐𝑡∘, and 

capital stream 𝑐∘ = 𝑐 (i.e., 𝑃∘ replicates the interim values of 𝑃). 
 

Remark 4.3 It is also worth noting that asset 𝑃v0 with cash-flow stream �⃗�v0 = (−v0, 𝑥1, 𝑥2, … , 𝑥𝑛) is 

itself an equilibrium asset, just like 𝑃∘ (they share the same internal vector 𝑟), but their mean rates of 

return are different. Respectively, 

 �̅� = 𝑟1′ 𝑐0 + 𝑟2′𝑐1𝑑1,0…+ 𝑟𝑛′𝑐𝑛−1𝑑𝑛−1,0𝑐0 + 𝑐1𝑑1,0 +⋯+ 𝑐𝑛−1𝑑𝑛−1,0            �̅� = 𝑟1′v0 + 𝑟2′v1𝑑1,0 +⋯+ 𝑟𝑛′v𝑛−1𝑑𝑛−1,0v0 + v1𝑑1,0 + ⋯+ v𝑛−1𝑑𝑛−1,0  
(18) 

The rate �̅� is the project COC, whereas �̅�  is a generalization of Modigliani and Miller’s weighted 

average cost of capital (wacc) (see section 10). 
 

 A fuzzy approach  of the AIRR paradigm has also been advanced in Guerra et al. (2012, 2014) 

in discrete time, and a generalization of the AIRR approach to a continuous-time setting has been 

sketched in Magni (2013b, Remark 3.2). For the latter, it suffices to consider a continuous stream of 

cash flows 𝑥(𝑡) and a continuous investment stream 𝑐(𝑡), 𝑡 ∈ ℝ. Letting 𝑐′(𝑡) be the derivative of 𝑐(𝑡), the instantaneous return is 𝐼(𝑡) = 𝑥(𝑡) − 𝑐′(𝑡) while 𝑖(𝑡) = 𝐼(𝑡)/𝑐(𝑡) is the instantaneous rate 

of return. Therefore, the overall return is expressed as ∫ 𝑖(𝑡)𝑐(𝑡)𝑛0 𝑒−∫ 𝑟(𝑠)𝑡0 d𝑠d𝑡, where 𝑟(𝑠) denotes 

the instantaneous forward rate.  Hence, the continuous AIRR and the continuous COC are defined as  

 𝑖̅ = ∫ 𝑖(𝑡)𝑐(𝑡)𝑛0 𝑒−∫ 𝑟(𝑠)𝑡0 d𝑠d𝑡∫ 𝑐(𝑡)𝑛0 𝑒−∫ 𝑟(𝑠)𝑡0 d𝑠d𝑡 ,    �̅� = ∫ 𝑟(𝑡)𝑐(𝑡)𝑛0 𝑒−∫ 𝑟(𝑠)𝑡0 d𝑠d𝑡∫ 𝑐(𝑡)𝑛0 𝑒−∫ 𝑟(𝑠)𝑡0 d𝑠d𝑡  (19) 

which generalizes (17). Likewise, 𝑁𝑃𝑉 = 𝐼 − 𝑅 = ∫ 𝑖(𝑡)𝑐(𝑡)𝑛0 𝑒−∫ 𝑟(𝑠)𝑡0 d𝑠𝑑𝑡 − ∫ 𝑟(𝑡)𝑐(𝑡)𝑛0 𝑒−∫ 𝑟(𝑠)𝑡0 d𝑠𝑑𝑡 
so that 𝑁𝑃𝑉 = 𝐶(𝑖̅ − �̅�) where 𝐶 = ∫ 𝑐(𝑡)𝑛0 𝑒−∫ 𝑟(𝑠)𝑡0 d𝑠d𝑡 is the overall capital invested (or borrowed). 

 The notion of residual income is widely known in finance and accounting as a measure of value 

creation and fulfills the product structure period by period: 𝑐𝑡−1(𝑖𝑡 − 𝑟𝑡). (see also Peasnell 1981, 

1982, Peccati 1989, Brief and Peasnell 1996, O’Hanlon and Peasnell 2002; see Magni 2009a, 2010b 

on the relations among NPV, accounting magnitudes and the notion of residual income). The AIRR 

approach preserves the product structure of residual incomes in overall terms for any investment 

stream 𝑐, which means that NPV can be viewed as an overall residual income: 𝑁𝑃𝑉 = 𝐼 − 𝑅 = 𝐶(𝑖̅ −�̅�). In other words, NPV is incorporated in the AIRR approach as a size-scaled excess AIRR. The size-

scaling turns a relative measure of worth into an absolute one. However, the AIRR approach captures 

additional information that the traditional formula 𝑁𝑃𝑉 = ∑ 𝑥𝑡𝑑𝑡,0𝑛𝑡=0  cannot provide. In particular, 

the product structure enables decomposing the economic value created into investment scale (𝐶) 
and economic efficiency (𝑖̅ − �̅�).  The former gathers information on the net amount of capital 

committed, the latter measures the incremental return rate. The same NPV can be generated by 

different combinations of investment scale and economic efficiency, so the AIRR product structure 

supplies information on whether and how much of the value created depends on the investment size 

or the project’s economic efficiency. Also, as opposed to the traditional NPV approach, the AIRR 
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approach clarifies whether value has been created because funds are invested at an average  rate of 

return which is greater than the average lending rate available in the market (𝐶 > 0, 𝑖̅ > �̅� ) or, vice 

versa, because funds are borrowed at an average financing rate which is smaller than the average 

financing rate available in the market (𝐶 < 0, 𝑖̅ < �̅�). Moreover, it quantifies the contribution of the 

investment periods, where the project creates value owing to efficient investments, and the 

contribution of the financing periods, where the project creates value owing to efficient financings 

(see eq. (30) in section 7.3). Finally, it makes it possible to isolate the NPV generated by the 

equityholders and the NPV generated by the debtholders (see Magni 2015a for details).  

 

5. AIRR, AROI and Keynes’s notion of user cost 

One might ask whether using undiscounted values in the mean leads to some economically 

significant rate of return for any given 𝑟.  The answer is positive. Consider  

 𝑖(̅0) = 𝑖1𝑐0 + 𝑖2𝑐1 +⋯+ 𝑖𝑛𝑐𝑛−1𝑐0 + 𝑐1 +⋯+ 𝑐𝑛−1 . (20) 

This is a variant of the AIRR notion, which is called Aggregate Return on Investment (AROI) (see 

Magni 2009b, 2011c, 2015b, 2016). It can be justified economically as follows. Consider the 

alternative course of action consisting of a replicating portfolio 𝑃∗ whose contributions and distributions exactly match the project’s cash flows from time 0 to time 𝑛 − 1. At time 𝑛, the terminal 

distribution includes the last cash flow and the liquidation value 𝑐𝑛∗  . The cash-flow stream is then �⃗�∗ = (𝑥0, 𝑥1, … , 𝑥𝑛−1, 𝑥𝑛 + 𝑐𝑛∗).  The market value of the replicating asset is 𝑐𝑡∗ = 𝑐𝑡−1∗ (1 + 𝑟) −𝑥𝑡 , 𝑐0∗ = 𝑐0, so that 𝑐𝑛∗ = −∑ 𝑥𝑡𝑛𝑡=0 (1 + 𝑟)𝑛−𝑡 = −𝑁𝑃𝑉(1 + 𝑟)𝑛. While the period return from the 

project is 𝐼𝑡 = 𝑖𝑡𝑐𝑡−1, the period return from the replicating portfolio is 𝑟𝑐𝑡−1∗ . The difference, 𝜉𝑡(𝑐) = 𝑖𝑡𝑐𝑡−1 − 𝑟𝑐𝑡−1∗ , is an excess return informing about the period above-normal profit. Summing 

through 1 to 𝑛, one gets ∑ 𝜉𝑡(𝑐)𝑛𝑡=1 = ∑ (𝑥𝑡 − 𝑐𝑡−1 + 𝑐𝑡)𝑛𝑡=1 − ∑ (𝑥𝑡 − 𝑐𝑡−1∗ − 𝑐𝑡∗)𝑛𝑡=1 = −𝑐𝑛∗ =𝑁𝑃𝑉(1 + 𝑟)𝑛 (see also Magni 2009a, 2010b, 2012). Let 𝑔(𝑖1, 𝑖2, … , 𝑖𝑛) = ∑ (𝑖𝑡𝑐𝑡−1 − 𝑟𝑐𝑡−1∗ )𝑛𝑡=1 . 

Imposing Chisini’s invariance requirement, 𝑔(𝑖1, 𝑖2, … , 𝑖𝑛) = 𝑔(𝑗,̅ 𝑗,̅ … , 𝑗)̅, one gets 

 𝑁𝑃𝑉(1 + 𝑟)𝑛 = Κ ⋅ (𝑗̅ − �̅�) (21) 

where Κ = ∑ 𝑐𝑡−1𝑛𝑡=1 , 𝑗̅ = 𝑖(̅0) and �̅� = 𝑟 ⋅ ∑ 𝑐𝑡−1𝑛𝑡=1 /∑ 𝑐𝑡−1∗𝑛𝑡=1 . The latter is a modified COC that 

takes account of the different scale of the two courses of action. Note that, owing to the product 

structure in (21), the AROI, 𝑗,̅ and the modified COC, �̅�, are coherent rates of return which, multiplied 

by the overall (undiscounted) capital Κ, supply, respectively, the project (undiscounted) return and the replicating portfolio’s (undiscounted) return. It is worth stressing the fact that the equality ∑ 𝜉𝑡𝑛𝑡=1 (𝑐) = 𝑁𝑃𝑉(1 + 𝑟)𝑛 holds for any sequence 𝑐 of capital values. Therefore, it follows from (20) 

that AROI is a class of  (infinitely many) NPV-consistent rates 𝑗,̅ the appropriate COC being 𝜓 = �̅�. The 

class of AROIs can be used for both capital budgeting purposes and investment performance 

measurement (Magni 2011c, 2015b, 2016, Altshuler and Magni 2015, Jiang 2017) and has the nice 

property that one can reframe it using cash flows: 𝑗̅ = ∑ 𝑥𝑡𝑛𝑡=0 /∑ 𝑐𝑡𝑛−1𝑡=0  (Magni 2011c, Proposition 

4.1). 

 The AROI notion is strictly connected with the notion of user cost, introduced in Keynes’ (1936, 

1967) General Theory of Employment, Interest and Money, also called prime depreciation by Lerner 

(1943). (See also Torr 1992). We show that this notion triggers an interesting rate of return whose 

associated capital stream is the same as that associated with the economic AIRR, presented later in 

section 7. Referring to an entrepreneur, Keynes defines user cost as the difference between ‘‘the 
value of his capital equipment at the end of the period . . . and . . . the value it might have had at the end of the period if he had refrained from using it” (Keynes, 1967, p. 66) or, equivalently, as the 

difference between ‘‘the value of the entrepreneurial stock and equipment had they not been used and… their value after use” (Scott, 1953, p. 370); thus, it compares two different choices: ‘‘The choice 
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between . . . using a machine for a purpose and using it for another” (Coase, 1968, p. 123); it then 

represents the ‘‘opportunity cost of putting goods and resources to a certain use” (Scott, 1953, p. 369), an economic measure of ‘‘the opportunity lost when another decision is carried through” 
(Scott, 1953, p. 375). Coase (1968) relabeled it depreciation through use as opposed to depreciation 

through time. In our context, the entrepreneur makes the choice of either putting its capital resources 

in project 𝑃 or investing them at the rate 𝑟. In other words, the alternative course of action consists of 𝑃∗. As seen, the capital evolves according to 𝑐𝑡∗ = 𝑐𝑡−1∗ (1 + 𝑟) − 𝑥𝑡 , 𝑡 ∈ N𝑛−11 , 𝑐0∗ = 𝑐0. The replicating asset’s cash-flow vector is �⃗�∗ = (𝑥0, 𝑥1, … , 𝑥𝑛 + 𝑐𝑛∗) where, in general,  𝑐𝑛∗ ≠ 0. The user cost, 𝑈𝑡 , at a 

given date 𝑡, is formally computed as ‘‘the discounted value of the additional prospective yield which would be obtained at some later date” (Keynes, 1967, p. 70). It is then the difference between the 
market value of P and the market value of 𝑃∗: 𝑈𝑡 = v𝑡 − 𝑐𝑡∗, where vt = ∑ 𝑥𝑘𝑑𝑘,𝑡𝑛𝑘=𝑡+1 , 𝑐𝑡∗ =∑ 𝑥𝑘𝑑𝑘,𝑡𝑛𝑘=𝑡+1 + 𝑐𝑛∗𝑑𝑛,0 , 𝑡 ∈ N𝑛−11 . The depreciation through time of user cost is  𝑈𝑡−1 − 𝑈𝑡 = (vt−1 − 𝑐𝑡−1∗ ) − (vt − 𝑐𝑡∗). 
Note that (vt−1 − vt) − (𝑐𝑡−1∗ − 𝑐𝑡∗) = 𝑟v𝑡−1 − 𝑟𝑐𝑡−1∗ = 𝜉𝑡(v⃗⃗) where v⃗⃗ = (v0, v1, … , v𝑛−1) is the vector 

of 𝑃’s economic values. (The depreciation of) user cost is then a special case of 𝜉𝑡(𝑐) generated by 

picking 𝑐𝑡 = v𝑡 for all 𝑡. Summing 1 through 𝑛, one gets ∑ (𝑈𝑡−1 − 𝑈𝑡)𝑛𝑡=1 = v0 − 𝑐0 + 𝑐𝑛∗ = 𝑁𝑃𝑉 −∑ 𝑥𝑡(1 + 𝑟)𝑛−𝑡𝑛𝑡=0 = 𝑁𝑃𝑉 − 𝑁𝑃𝑉(1 + 𝑟)𝑛. Now, consider the capital stream  v⃗⃗𝑐0 = (−𝑐0, v1, v2, … , v𝑛−1). Picking 𝑐 = v⃗⃗𝑐0  , the associated excess return is 𝜉𝑡(v⃗⃗𝑐0) = 𝑗𝑡𝑐𝑡−1 − 𝑟𝑐𝑡−1∗   

where 𝑗1 = (v1 + 𝑥1 − 𝑐0)/𝑐0 and 𝑗𝑡 = 𝑟 for 𝑡 > 1, with 𝑐𝑡 = v𝑡 for 𝑡 > 1. As ∑ 𝜉𝑡𝑛𝑡=1 (𝑐) =𝑁𝑃𝑉(1 + 𝑟)𝑛  holds for any  𝑐 such that 𝑐0 = −𝑥0, it holds for v⃗⃗𝑐0  as well. Therefore, recalling that 𝑟𝑐𝑡−1∗ = 𝑥𝑡 − (𝑐𝑡−1∗ − 𝑐𝑡∗), one finds ∑(𝑈𝑡−1 − 𝑈𝑡)𝑛
𝑡=1 = 𝑁𝑃𝑉 −∑𝜉𝑡(v⃗⃗𝑐0 )𝑛

𝑡=1 = v0 − 𝑐0 +∑(𝑥𝑡 − (𝑐𝑡−1∗ − 𝑐𝑡∗))𝑛
𝑡=1 − (𝑗1 𝑐0 +∑𝑟v𝑡−1𝑛

𝑡=2 ). 
We can view the above expression as a function of the rates  𝑗1 and 𝑟 appearing in the last summand:  ∑ (𝑈𝑡−1 − 𝑈𝑡)𝑛𝑡=1 = 𝑔(𝑗1, 𝑟) . Imposing Chisini’s invariance requirement 𝑔(𝑗1, 𝑟) = 𝑔(𝑘, 𝑘), one gets 

the project rate of return associated with v⃗⃗𝑐0:  

 𝑘 = 𝑗1𝑐0 + 𝑟v1 + 𝑟v2 +⋯𝑟v𝑛−1𝑐0 + v1 + v2 +⋯+ v𝑛−1 . (22) 

This equation is a special case of (20) with 𝑖 = (𝑗1, 𝑟, 𝑟, … , 𝑟) and 𝑐 = 𝑐v0 , that is, 𝑘 = 𝑗(̅v⃗⃗c0). We call 𝑘 

the Keynesian rate of return. It is worth noting that 𝑘 is an AROI derived from imposing a Chisini’s 
invariance requirement upon the sum of 𝑈𝑡−1 − 𝑈𝑡; but the latter expresses the depreciation through 

time of user cost, which is in turn a depreciation through use. So, while it was believed that ‘‘economists cannot afford to lump together, as ‘depreciation’, changes in present value caused by the passage of time, and by use” (Scott, 1953, p. 371), the AROI, a variant of the AIRR, does enable one to 

lump together depreciation through time and depreciation through use and convert it into an 

economically significant rate of return (see also Magni 2009a, 2010b on user cost), such that (𝑐0 + ∑ v𝑡𝑛−1𝑡=1 ) ⋅  (𝑘 − �̅�) = 𝑁𝑃𝑉 with �̅� = 𝑟 ⋅ (𝑐0 + ∑ v𝑡𝑛−1𝑡=1 )/∑ 𝑐𝑡−1∗𝑛𝑡=1  (see Magni 2011c, pp. 163-

164, for the AROI with time-variant COCs, 𝑟𝑡).16 

 

6. Underdetermination of the rate of return by cash flows 

                                                           
16 As a simple numerical example, consider �⃗� = (−100, 60, 50, −10,40), 𝑟 = 40%. The market values are v1 = 45.19, v2 = 13.26, v3 =  28.57 and 𝑗1 = (45.2 + 60 − 100)/100 = 5.19%. Therefore, 𝑘 is a weighted 
average of 5.19% (weighted by 100) and 40% (weighted by 87), which results in 𝑘 = 21.39%. Alternatively, 
using cash flows: 𝑘 = (−100 + 60 + 50 − 10 + 40)/(100 + 87) = 21.39%. 
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Assuming an exogenously given COC, 𝑟, a cash-flow stream �⃗� = (𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛) unambiguously 

determines the NPV and the initial capital (𝑐0 = −𝑥0); it does not unambiguously determine the 

interim values 𝑐1, … , 𝑐𝑛−1, and, therefore, cannot unambiguously determine the rate of return. 

 The so-called underdetermination of theory by data is a well-known issue in science (see Duhem, 

1914; Schlick, 1931; Quine, 1951). Underdetermination is a relation between evidence and theory. 

Evidence underdetermines theory in the sense that the evidence cannot determine, i.e.,  prove, the 

theory. Given a sequence of empirically observed data, and a graph which plots those data in an 𝑥𝑦-

plane, there are many infinite functions that exactly pass through those points (Schlick, 1931). In our 

context, this means that we may only observe two data points: At time 0, the capital invested 

is 𝑐0 and, at time 𝑛, after liquidation, the capital is 𝑐𝑛 = 0. Given two points (0, 𝑐0) and (𝑛, 𝑐𝑛) on the (𝑡, 𝑐𝑡)-plane, any sequence of interim values represents a depreciation function that passes through 

those two points. In other words, different investment streams generate different rates of return: 𝑖: 𝑐 ↦ 𝑖(𝑐) . Therefore, a cash-flow stream underdetermines the investment stream and, hence, the 

rate of return: The link between cash flows and rate of return is not deductive.   
 

Figure 1 illustrates five different capital streams for a 5-period project whose cash-flow stream is �⃗� = (−100,  40,  50,  20,  − 10,  30). In principle, all of the five capital streams are feasible. Any 

sequence of capital values generates, in general, a different rate of return 𝑖 (Table 2).  

  

Figure  1. Different investment streams for the cash-flow stream �⃗� = (−100,  40,  50,  20,−10,  30) 

  

  Table 2. Different investment streams and different rates of return for the  

  cash-flow stream �⃗� = (−100,  40,  50,  20,−10,  30) (𝑟 = 3%). 

time 𝑥 𝑐(1) 𝑐(2) 𝑐(3) 𝑐(4) 𝑐(5) 
0 -100.00 100.00 100.00 100.00 100.00 100.00 

1 40.00 80.00 84.90 63.00 120.00 0.00 

2 50.00 60.00 37.45 14.89 130.00 0.00 

3 20.00 40.00 18.57 -4.66 -60.00 0.00 

4 -10.00 20.00 29.13 5.20 55.00 10.00 

5 30.00 0.00 0.00 0.00 0.00 0.00 

NPV 21.26      𝐶  280.20 253.00 170.44 323.30 105.71 

AIRR  10.59% 11.40% 15.47% 9.58% 23.11% 
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The notion of equivalence class or 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠 in the context of rates of return and NPV has 

been introduced and developed in Magni (2009b, 2010a,c, 2011b,c). An equivalence class of 

investment streams is a set of investment streams that share the same overall invested (or 

borrowed) capital. More precisely, let 𝑆𝑐 = {𝑐 ∈ ℝ𝑛: 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1), 𝑐0 = −𝑥0}  be the set of all 

possible depreciation patterns for project 𝑃 and consider the subset of all vectors 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1)  
such that 𝑐0 = −𝑥0 and 𝐶 = ∑ 𝑐𝑡−1𝑑𝑡,0𝑛𝑡=1 . For two vectors �⃗�, �⃗⃗� ∈ 𝑆𝑐, define �⃗�~�⃗⃗� if 𝐴 = 𝐵. Such a 

relation induces a partition of 𝑆𝑐 in equivalence classes of capital streams. For a given �⃗�, an 

equivalence class [𝐶] unambiguously determines the overall capital 𝐶 and the rate 𝑖;̅ that is, 𝑖: 𝑐 ↦ 𝐶(𝑐) ↦ 𝑖(𝐶). Therefore, a rate of return depends  on the depreciation class [𝐶]. This result is 

but a corollary of Propositions 11-13. 
 

Corollary 1 Given a cash-flow stream �⃗�, there is a biunivocal relation between a depreciation class  [𝐶] ⊂ 𝑆𝑐 and a rate of return 𝑖.̅  Therefore, for any project, a rate of return is singled out if and only if a 

depreciation class [𝐶] is selected, implicitly or explicitly. 
 

In other words, the AIRR perspective shows that a cash-flow stream is uniquely associated (not with 

a return rate but) with a return function, 𝑖(𝐶) = 𝑟 + 𝑁𝑃𝑉/𝐶, which is graphically represented by an 

iso-value curve consisting of the set of pairs (𝐶, 𝑖) that lead to the same NPV (see Figure 2). 
 

Multiple (indeed, infinite) rates exist for any cash-flow stream, each of which is associated with its 

own depreciation class [𝐶]. The traditional quest for uniqueness of a project rate of return, long 

sought for, was then ill-formulated: Multiple rates of return exist conveying different pieces of 

information.  
 

 Note that, if the COC is time-varying, the degree of underdetermination is even higher, since 𝑖̅ = 𝑖(̅𝑐) is a function of 𝑐, not 𝐶, so, in general, different capital streams 𝑐 supply different AIRRs, even 

if the overall capital 𝐶 (and, therefore, the depreciation class) is the same.  

7 Depreciation classes and rates of return  

This section presents some economically significant metrics that can be generated from the AIRR 

approach by changing the depreciation pattern 𝑐. This sheds light on the analogies and differences 

that known (and unknown) measures bear to one another: They are all AIRRs associated with 

different depreciation patterns. We assume that the COC is constant, unless otherwise stated, so 

these metrics are all AIRRs associated with different depreciation classes (Table 3 collects the metrics 

presented in the section). 

 
Table 3. Different capital depreciation classes  
lead to different points on the iso-value curve 
 (𝑪, 𝒊(𝑪)) AIRR depreciation (𝐶𝜎 , 𝜎), IRR Hotelling (𝐶𝑎, 𝑖(𝐶𝑎)) DA-AIRR mark-up (𝐶𝑀, 𝜎𝑀) MIRR modified 

Hotelling (𝐶𝐼,𝐹, 𝑖(𝐶𝐼,𝐹)) dual AIRR dual Hotelling (𝐶1, 𝑖(𝐶1)) IC-AIRR=SRR cash-flow (𝑋−, 𝑖(𝑋−)) TC-AIRR cash-flow (𝑉𝑐0 , 𝑖(𝑉𝑐0)) EAIRR economic  (𝐶∗, 𝑖(𝐶∗)) RP-AIRR replicating 

(discrete) (𝐶𝑇𝑆, 𝑖(𝐶𝑇𝑆)) TS-AIRR replicating 

 



22 

 

(continuous) (𝐵, 𝑖(𝐵)) AROA book value  (𝐶𝑆𝐿 , 𝑖(𝐶𝑆𝐿)) SL-AIRR straight-line  (𝑀, 𝑖(𝑀)) MV-AIRR market  
 

 

Figure 2. The iso-value curve of a value-creating project 
(𝑁𝑃𝑉 > 0), assuming time-invariant COC. Different pairs (𝐶, 𝑖) generate the same NPV, which is the area of the 
rectangle with base |𝐶| and height |𝑖 − 𝑟| (excess AIRR). If 𝐶 > 0, the project is interpreted as a net investment, if 𝐶 < 0 the project is interpreted as a net financing. Each 
pair (𝐶, 𝑖(𝐶)) is a point lying on the iso-value curve. 
 

7.1 The Hotelling class, the IRR, and the Direct Alpha. 

Let 𝑐(𝜎) = (𝑐0(𝜎), 𝑐1(𝜎),… , 𝑐𝑛−1(𝜎)), 𝑐0(𝜎) = 𝑐0, be the capital stream under (Boulding’s) 

assumption of constant rate of return: 𝑐𝑡(𝜎 ) = 𝑐𝑡−1(𝜎)(1 + 𝜎) − 𝑥𝑡. We henceforth refer to it as the project’s Hotelling value (Hotelling 1925). Let 𝐶𝜎 = ∑ 𝐶𝑡(𝜎)𝑛𝑡=1 . Consider the Hotelling class, denoted 

as [𝐶𝜎] = {𝑐 ∈ 𝑆𝑐  such that 𝑐 ≃ 𝑐(𝜎)}.  Thus, 𝐶𝜎 is the total capital associated with the Hotelling class 

and 𝑖(𝐶𝜎) = 𝑟 + 𝑁𝑃𝑉/𝐶𝜎 is the Hotelling AIRR. However, from (2) and (3), we know that 𝜎 is a 

project IRR. This implies that an IRR is a Hotelling AIRR: 𝑖(𝐶𝜎) = 𝑟 + (𝜎𝐶𝜎 − 𝑟𝐶𝜎)/𝐶𝜎 = 𝜎. This in 

turn implies that the IRR does not unambiguously identify the capital stream: The equation ∑ 𝑐𝑡−1𝑑𝑡,0𝑛𝑡=1 = 𝐶𝜎  has infinitely many solutions of the type (𝑐0, 𝑐1, … , 𝑐𝑛−1) with 𝑐0 = −𝑥0. In other 

words, the Hotelling class contains infinitely many investment streams with time-variant period 

rates 𝑖𝑡 that generate 𝐶𝜎 as the invested capital; picking one of those streams, the weighted average 

of the corresponding period rates is just the IRR. Therefore, unlike the usual interpretation, an IRR is 

uniquely associated with a class [𝐶𝜎] of depreciation schedules, not with the Hotelling stream 𝑐(𝜎), 
which is only one of infinitely many streams belonging to [𝐶𝜎] (see Magni 2010a, Theorem 3): For 

any 𝑐 ∈ [𝐶𝜎],  𝑖(𝐶𝜎) = 𝜎. As a result, “a (real-valued) IRR is a particular case of AIRR generated by a 

Hotelling class of investment streams. The class contains infinite elements, so there exist infinite 

investment streams which give rise to that IRR as the AIRR of the class.” (Magni  2010a, p. 163).  
 

Proposition 16 A project IRR is the AIRR associated with the Hotelling class. Therefore, an IRR is a 

generalized arithmetic mean of  (generally time-variant) holding period rates 𝑖𝑡 . 
 

Graphically, the IRR and its associated capital determine a point (𝐶𝜎 , 𝜎) = (𝐶𝜎 , 𝑖(𝐶𝜎)) on the iso-

value curve. Multiple IRRs, 𝜎𝑗, 𝑗 ∈ N𝑚1 , imply multiple Hotelling classes, [𝐶𝜎𝑗] and multiple points on 

the iso-value curve. As a result, Proposition 10 is a particular case of Proposition 15, so Hazen’s 
criterion can be viewed as a particular case of the AIRR criterion. 
 

Considering that 𝑐𝑡(𝜎) can be framed as 𝑐𝑡(𝜎) = ∑ 𝑥𝑘(1 + 𝜎)𝑡−𝑘𝑛𝑘=𝑡+1 ,  one can introduce a new 

alternative definition of IRR. 
 

Definition 5 (IRR) Given an exogenously fixed COC, 𝑟, an IRR is a solution of the following equation: 

𝜎 = 𝑟 + ∑ 𝑥𝑡(1 + 𝑟)−𝑡 𝑛𝑡=0∑ ∑ 𝑥𝑘(1 + 𝜎)𝑡−𝑘𝑛𝑘=𝑡+1𝑛𝑡=0 (1 + 𝑟)−𝑡. 
(The relation is circular, but a simple spreadsheet can easily find the solutions, if any exist).  
 

Remark 7.1 The IRR belongs to the AIRR class, but its depreciation class is implicitly derived from the IRR equation (see Boulding’s derivation above). This “automatism” prevents IRR from preserving 

value additivity. Let 𝑥𝑡(𝑃𝑗) be the time-𝑡 cash flow of a project 𝑃𝑗, 𝑗 ∈ N𝑝1 . The Hotelling value of 

portfolio 𝑃 = ∑ 𝑃𝑗𝑝𝑗=1  differs in general from the sum of the Hotelling values of the constituent assets 𝑃𝑗: 𝑐𝑡(∑ 𝑃𝑗𝑝𝑗=1 ) ≠ ∑ 𝑐𝑡(𝑃𝑗)𝑝𝑗=1 . As an example, consider a portfolio of three assets whose cash-flow 

streams are �⃗�1 = (−150,30.5,0,120, 15), �⃗�2 = (−50, 0,120, 0, 17), �⃗�3 = (90,−15,−20,−25,−30) so 

that 𝑃’s cash-flow stream is �⃗� = �⃗�1 + �⃗�2 + �⃗�3 = (−110,15.5, 99,5,95, 2). The (unique) IRRs of the 
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assets are 𝜎1 = 3.69%,𝜎2 = 59.19%,𝜎3 = 0.2%. The Hotelling streams are 𝑐(𝑃1) = (150, 125, 129.7, 14.5), 𝑐(𝑃2) = (50, 79.6, 6.7,10.7) , 𝑐(𝑃3) = (−90,−75,−55,−30). 
Conversely, the portfolio’s IRR is 𝜎1+2+3 = 32.24%, and its Hotelling stream is 𝑐(𝑃) = (110, 130.3, 72.8, 1.5) ≠ (110, 129.6, 81.4,−4.9) =, 𝑐(𝑃1) + 𝑐(𝑃2) + 𝑐(𝑃3). Therefore, IRR 

does not preserve value additivity, which implies that a portfolio’s IRR is not equal to the Hotelling 
AIRR of the portfolio: 𝜎1+2+3 ≠ 𝑖(𝐶𝜎1+2+3)    = 𝑖(𝐶𝜎1 + 𝐶𝜎2 + 𝐶𝜎3), the latter being equal to the 

weighted average of the individual IRRs, 𝑖(𝐶𝜎1+2+3) = (∑ 𝐶𝜎𝑗 ⋅ 𝑖(𝐶𝜎𝑗))3𝑗=1 /∑ 𝐶𝜎𝑗3𝑗=1  as shown in 

section 4.2  (see also Magni 2013a,  Danielson 2016, Jiang 2017). 

 Griffiths (2009) and Gredil et al. (2014) endorsed the use of the Direct Alpha method for private 

equity investments (PEI). The alpha the authors refer to is incorporated in a continuous-time model 

according to which a PEI’s (continuous) rate of return, 𝑖(𝜏), 𝜏 ∈ ℝ, is the sum of a benchmark return, 

expressed as a force of interest, 𝑟(𝜏), and an (assumed constant) excess term, 𝛼: 𝑖(𝜏) = 𝑟(𝜏) + 𝛼. In 

our context, this implies, using the continuous-time AIRR setting, 

 𝑁𝑃𝑉 = ∫ 𝑖(𝜏)𝑐(𝜏)𝑛
0 𝑒−∫ 𝑟(𝑠)𝜏0 d𝑠d𝜏 − ∫ 𝑟(𝜏)𝑐(𝜏)𝑛

0 𝑒−∫ 𝑟(𝑠)𝜏0 d𝑠d𝜏 = 𝛼𝐶𝛼 

 

(23) 

where 𝑐(𝜏) = −∫ 𝑥(𝑢)𝜏0 𝑒∫ 𝑟(𝑠)d𝑠 𝜏 𝑢  ⋅ 𝑒𝛼(𝜏−𝑢) 𝑑𝑢 is the capital value at 𝜏  and 𝐶𝛼 = ∫ 𝑐(𝜏)𝑛0 𝑒−∫ 𝑟(𝑠)𝜏0 d𝑠𝑑𝜏 

is the aggregate capital (see section 4.3). Discretizing time, the forward rate 𝑟𝑡 is such that (1 + 𝑟𝑡) = 𝑒∫ 𝑟(𝑠)d𝑠𝑡𝑡−1 , 𝑡 ∈ N𝑛1  and the (discrete) direct alpha is 𝑎 = 𝑒𝛼 − 1. Therefore, the capital is 

recursively obtained by marking up the equilibrium rate: 𝑐𝑡 = 𝑐𝑡(𝑎) = 𝑐𝑡−1(𝑎)(1 + 𝑟𝑡)(1 + 𝑎) − 𝑥𝑡 . 
Recalling that 𝑐𝑛 = 0, the (discrete) direct alpha can be found as a solution of ∑ 𝑥𝑡𝑑𝑡,0(1 + 𝑎)−𝑡 =𝑛𝑡=00 and, hence 𝑐𝑡(𝑎) = −∑ (𝑥𝑘/𝑑𝑡,𝑘) ⋅ (1 + 𝑎)𝑡−𝑘𝑡𝑘=0 , 𝑡 ∈ N𝑛−11 . The corresponding direct-alpha AIRR is 

computed as in (17) with 𝑐𝑡 = 𝑐𝑡(𝑎). Equivalently, 𝑖̅ = �̅� + 𝑁𝑃𝑉𝐶𝑎  where 𝐶𝑎 = ∑ 𝑐𝑡−1(𝑎)𝑑𝑡−1,0𝑛𝑡=1 . 

Therefore, 𝐶𝑎(𝑖̅ − �̅�) = 𝑁𝑃𝑉 and, using (23), 𝛼 = (𝑖̅ − �̅�) ⋅ (𝐶𝑎𝐶𝛼), which tells us that the (discrete) 

direct alpha is a modified excess AIRR. 

 If the force of interest is constant, the term structure of interest rate is flat: 𝑟𝑡 = 𝑟 for all 𝑡, and 𝑟(𝑡) = 𝛿 = ln(1 + 𝑟) for all 𝑡. Then, 𝑒∫ 𝛿⋅d𝑠𝑡0 ⋅ 𝑒𝛼𝑡  = 𝑒(𝛿+𝛼)𝑡 = (1 + 𝑞)𝑡 for all 𝑡, where 𝑞 = 𝑟 + 𝑎(1 +𝑟). Hence, 𝑐𝑛 = −∑ 𝑥𝑡 ⋅ (1 + 𝑞)𝑛−𝑡𝑛𝑡=0 = 0 which implies 𝑞 = 𝜎 = 𝑖 ̅and 𝛼 = ln(1 + 𝜎) − ln(1 + 𝑟). 
 The latter relation means that, if, multiple IRRs arise, multiple direct alphas arise as well. However, 

if the force of interest 𝑟(𝜏) (or, equivalently, the equilibrium rate 𝑟𝑡) is not constant, multiple direct 

alphas may arise even if the IRR is unique. For example, consider �⃗� = (−100, 585,−1056.3, 540.54) 
and let 𝑟 = (0.5, 0.4, 0.3, 0.2). The unique IRR is 8.82%, but ∑ 𝑥𝑡𝑑𝑡,0(1 + 𝑎)−𝑡 = 0𝑛𝑡=0  has three 

solutions: 𝑎1 = 0.1, 𝑎2 = 0.3 , 𝑎3 = 0.5 (and, correspondingly, 𝛼1 = 0.0953, 𝛼2 = 0.2624, 𝛼3 =0.4055). Each direct alpha is associated with its own corresponding depreciation pattern. 

 

7.2 The modified Hotelling class and the MIRR 

As seen in section 3, the MIRR is itself an IRR of the cash-flow vector �⃗�𝑀 = (𝑥0, 0, … ,0,∑ 𝑥𝑡𝑛𝑡=1 (1 +𝑦)𝑛−𝑡).  
 

Proposition 17 The MIRR is the AIRR associated with the modified project’s Hotelling class [𝐶𝜎𝑀]: 
 𝜎𝑀 = 𝑟 + 𝑁𝑃𝑉𝐶𝜎𝑀 . (24) 

In particular, if a project IRR exists, then, for any IRR, 𝜎𝑗 , the MIRR is a weighted average of 𝜎𝑗 , and the 

reinvestment/financing rate 𝑦: 
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 𝜎𝑀 = 𝜆𝜎𝑗 + (1 − 𝜆)𝑦 (25) 

where 𝜆 expresses the capital invested in 𝑃 as a proportion of total capital 𝐶𝜎𝑀 . 
 

Proof.  Consider the cash-flow vector �⃗�(𝑡) = −𝑥𝑡 ⋅ 1⃗⃗𝑡 + 𝑥𝑡  (1 + 𝑟)𝑛−𝑡 ⋅ 1⃗⃗𝑛  where 1⃗⃗𝑡 is a vector of 

zeroes except the 𝑡-th component, which is equal to 1, 𝑡 ∈ N𝑛−11 . The modified project �⃗�𝑀 can then be 

viewed as a portfolio composed of 𝑃 and the additional projects  𝑃(𝑡) whose cash flow streams are �⃗�(𝑡), 𝑡 ∈ N𝑛−11 : �⃗�𝑀 = 𝑥 + �⃗�(1) + �⃗�(2) +⋯+ �⃗�(𝑛−1).  As 𝑃(𝑡) has no interim cash flows, its capital is 𝑐𝑘(𝑡) = 𝑐𝑘−1(𝑡) (1 + 𝑦). This implies 𝑐𝑘(𝑡) = 0 for 𝑘 < 𝑡 and 𝑐𝑘(𝑡) = 𝑥𝑡(1 + 𝑦)𝑘−𝑡 for 𝑘 ≥ 𝑡. Hence, the 

overall (Hotelling) capital is 𝐶(𝑡)(𝑟) = ∑ 𝑐𝑘−1(𝑡) 𝑑𝑘,0𝑛𝑘=1 . The overall capital put in place by the interim 

reinvestment/financing operations  is then  ∑ 𝐶(𝑡)(𝑟)𝑛−1𝑡=1 .  The net return from project 𝑃 is 𝜎𝑗 ⋅ 𝐶𝜎𝑗  
and the net return from the reinvestments/financings is 𝑦 ⋅ ∑ 𝐶(𝑡)(𝑟)𝑛−1𝑡=1 . Therefore, exploiting the 

associativity property of the Chisini mean:17  

 𝜎𝑀 = 𝜎𝑗𝐶𝜎𝑗  + 𝑦∑ 𝐶(𝑡)(𝑟)𝑛−1𝑡=1𝐶𝜎𝑀 . (26) 

where 𝐶𝜎𝑀 = 𝐶𝜎𝑗 + ∑ 𝐶(𝑡)(𝑟)𝑛−1𝑡=1 . The thesis follows with 𝜆 = 𝐶𝜎𝑗/𝐶𝜎𝑀 . 18∎ 

Note that, if 𝑦 = 𝑟, then 𝜎𝑀 = 𝜆 𝜎𝑗 + (1 − 𝜆)𝑟 and the additional projects 𝑃(𝑡) are value-neutral: 𝑁𝑃𝑉(𝑃(𝑡)) = 0 for all 𝑡 ∈ 𝑁𝑛−11 . Hence, the overall NPV of the modified project is equal to the NPV of 𝑃: 𝑁𝑃𝑉 = 𝑁𝑃𝑉(𝑃 + ∑ 𝑃(𝑡)𝑛−1𝑡=1 ) = 𝐶𝜎𝑀 ⋅ (𝜎𝑀 − 𝑟); by Definition 4, the MIRR is NPV-consistent 

(consistency is not guaranteed if 𝑦 ≠ 𝑟). Note that 𝐶𝜎𝑀(𝜎𝑀 − 𝑟) = 𝜆𝐶𝜎𝑀(𝜎𝑗 − 𝑟). If 𝐶𝜎𝑀 > 0 and 𝜆 < 0, the MIRR is an investment rate whereas the project IRR is a financing rate. 

7.3 TRM (1965) – The dual Hotelling class and the dual rate of return 

As seen in section 3, TRM (1965a,b) did not provide any rate of return for the entire project. In 

addition, they introduce the restriction that either the PIR or the PFR is equal to the COC, 𝑟. The AIRR 

approach enables filling the gap under more general assumptions. Let 𝜎𝐼 and 𝜎𝐹 be the PIR and PFR, 

respectively, not necessarily equal to 𝑟.  Let a mixed project be defined (more generally than in TRM) 

as a project such that there exists some 𝑘, 𝑗 ∈ 𝑁𝑛−10  such that 𝑐𝑘 ⋅ 𝑐𝑗 < 0. In this case, one can split up 

the project into an investment region and a financing region: The investment region is the set 𝑇𝐼 = {𝑡: 𝑡 ∈ N𝑛−10  ∧ 𝑐𝑡 ≥ 0} of those periods where the firm invests the capital in the project (the 

investment rate, 𝜎𝐼, applies); the financing region is the set 𝑇𝐹 = {𝑡: 𝑡 ∈ N𝑛−10  ∧ 𝑐𝑡 < 0} of periods 

where the firms subtracts capital from the project (the financing rate, 𝜎𝐹, applies). Let 𝐶𝐼 =𝐶𝐼(𝜎𝐼 , 𝜎𝐹) =  ∑ 𝐶𝑡 > 0𝑡∈𝑇𝐼  denote the total capital loaned to the project and 𝐶𝐹 = 𝐶𝐹(𝜎𝐼 , 𝜎𝐹) =∑ 𝐶𝑡 < 0𝑡∈𝑇𝐹  denote the total capital loaned from the project. Consider the dual Hotelling class [𝐶𝐼,𝐹] 
where 𝐶𝐼,𝐹 = 𝐶𝐼 + 𝐶𝐹. Propositions 11-13 trigger what we call the dual AIRR:  

 𝑖(𝐶𝐼,𝐹) = 𝑟 + 𝑁𝑃𝑉𝐶𝐼,𝐹  (27) 

or, equivalently,  𝑖̅ = (𝐶𝐼𝜎𝐼 + 𝐶𝐹𝜎𝐹)/(𝐶𝐼 + 𝐶𝐹). The point (𝐶𝐼+𝐹 , 𝑖(𝐶𝐼+𝐹)) lies on the iso-value curve. Under TRM’s more restrictive assumptions, either  𝜎𝐹 = 𝑟 (so that   𝑖̅ = (𝐶𝐼𝜎𝐼(𝑟) + 𝐶𝐹 ⋅ 𝑟)/(𝐶𝐼 + 𝐶𝐹) , 
with 𝐶𝑗 = 𝐶𝑗(𝜎𝐼(𝑟), 𝑟), 𝑗 = 𝐼, 𝐹) or  𝜎𝐼 = 𝑟 (so that 𝑖̅ = (𝐶𝐼 ⋅ 𝑟 + 𝐶𝐹 ⋅ 𝜎𝐹(𝑟))/(𝐶𝐼 + 𝐶𝐹), with 𝐶𝑗 = 𝐶𝑗(𝑟, 𝜎𝐹(𝑟)), 𝑗 = 𝐼, 𝐹). 
 

                                                           
17 See also Magni (2013b, Section 4) on portfolios’ capital values and rates of return. 
18 It should be noted that, in case of multiple IRRs, 𝜆 depends on 𝜎𝑗: Different IRRs generate different values of 𝜆. 
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The AIRR paradigm naturally induces a generalization of eq. (27). Allowing for time-variant 

investment rates 𝜎𝑡,𝐼 as well as financing rates 𝜎𝑡,𝐹 , consider the AIRR of the investment rates and the 

AIRR of the financing rates, respectively: 

 �̅�𝐼 = ∑  𝜎𝑡,𝐼 ⋅ 𝐶𝑡𝑡∈𝑇𝐼∑ 𝐶𝑡𝑡∈𝑇𝐼 ,    �̅�𝐹 = ∑ 𝜎𝑡,𝐹 ⋅ 𝐶𝑡𝑡∈𝑇𝐹∑ 𝐶𝑡𝑡∈𝑇𝐹 . (28) 

The first rate is a PIR and the latter is a PFR. Likewise, we define a market investment AIRR and a 

market financing AIRR: 

 �̅�𝐼 = ∑ 𝑟𝑡𝐶𝑡𝑡∈𝑇𝐼∑ 𝐶𝑡𝑡∈𝑇𝐼 ,     �̅�𝐹 = ∑ 𝑟𝑡𝐶𝑡𝑡∈𝑇𝐹∑ 𝐶𝑡𝑡∈𝑇𝐹 . (29) 

The net project return is 𝐼 = �̅�𝐼 𝐶𝐼 + �̅�𝐹 𝐶𝐹  while the net market return is 𝑅 = �̅�𝐼 𝐶𝐼 + �̅�𝐹 𝐶𝐹 . As 𝑁𝑃𝑉 = 𝐼 − 𝑅, the NPV can be decomposed into an investment NPV and a financing NPV:   

 
𝑁𝑃𝑉 = 𝐶𝐼(�̅�𝐼 − �̅�𝐼 )⏟      investment NPV+ 𝐶𝐹(�̅�𝐹 − �̅�𝐹 )⏟        .financing NPV  (30) 

Unlike the traditional NPV approach, the AIRR approach enables analysts to unearth the causes of a 

given NPV: Value can be created not only by investing funds at a greater return rate than the market 

investment rate, but also by borrowing funds from the project at a rate which is smaller than the 

market financing rate. For example, if the net working capital of a project is negative and sufficiently 

high in absolute value (as opposed to fixed assets), then the capital is negative: It means that 

customers and suppliers are “coining” money for the firm.19 

 Further, there exist a unique rate of return/cost 𝑖 ̅and a unique COC, �̅�, which are the (generalized) 

weighted mean of the PIR and PFR and the weighted mean of the investment market AIRR and 

financing market AIRR, respectively: 

 𝑖̅ = 𝐶𝐼�̅�𝐼 + 𝐶𝐹�̅�𝐹𝐶𝐼 + 𝐶𝐹 ,      �̅� = 𝐶𝐼�̅�𝐼 + 𝐶𝐹𝑟 ̅𝐹𝐶𝐼 + 𝐶𝐹 . (31) 

 (see also Magni 2014a). 

Remark 7.2 As seen above, the direct-alpha setting assumes that the forward rates are marked up by 

a constant term 𝑎 = ln(1 + 𝛼) so that 𝑖𝑡 = 𝑟𝑡 + 𝑎(1 + 𝑟𝑡). One can generalize and assume that the 

direct alpha is not constant but depends on the sign of the interim value, so that  𝑖𝑡 = 𝑟𝑡 + 𝑎𝐼(1 + 𝑟𝑡) 
if 𝑐𝑡−1 ≥ 0 or 𝑖𝑡 = 𝑟𝑡 + 𝑎𝐹(1 + 𝑟𝑡) if 𝑐𝑡−1 < 0, 𝑎𝐼 ≠ 𝑎𝐹.  This is a special case of dual Hotelling 

depreciation. Therefore, the DA-AIRR, 𝑖̅ = �̅� + 𝑁𝑃𝑉/𝐶𝑎 is a special case of the dual AIRR presented in 

(31), obtained assuming 𝑎𝐼 = 𝑎𝐹 = 𝑎 (see also Magni 2014a, Theorem 8 and footnote 8 above). 

7.4 Rate of return on initial contribution (IC-AIRR) and rate of return on total contributions 

(TC-AIRR) 

Consider the class of those capital streams associated with the initial investment (Magni 2010a, pp. 

168-169; Magni 2013a, p. 99). This is the class [𝐶1], induced by 𝑐 = (𝑐0,, 0, … ,0).  The related AIRR 

expresses the rate of return per unit of initial investment: 

 𝑖(𝐶1) = 𝑟 + 𝑁𝑃𝑉𝐶1 . (32) 

   
We call it the initial-contribution AIRR (IC-AIRR). It is worth noting that it is an affine transformation 

of the well-known profitability index (𝑃𝐼):  𝑃𝐼 = 𝑁𝑃𝑉𝑐0 = (𝑖(𝐶1) − 𝑟)/(1 + 𝑟).  We will later show that 

                                                           
19

 Such a business strategy has been used by such firms as Wal-Mart, Amazon, and McDonald’s. Typical 
businesses that may have negative working capital are restaurants, grocery stores, online retailers, discount 
retailer, broadcasting firms (see a detailed example in Magni 2015a). 
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𝑖(𝐶1) is equal to 𝑗1, the first-period rate of return incorporated in the Keynesian rate of return, 𝑘 

(section 5). 

Consider the class of those capital streams associated with the total cash outflow (e.g., Magni 

2010a, pp. 168-169; Magni 2013a, p. 99). Let 𝑥ℎ𝑗−  denote the absolute value of an outflow and let ℎ𝑗 ∈ N𝑛0   be the date at which it occurs, 𝑗 ∈ 𝐴 ⊂ N𝑛0 . Consider the class [𝑋−] induced by 𝑐 = (𝑥𝑡− if  𝑡 = ℎ𝑗; 0 otherwise). We call the associated rate of return the total-contribution rate of return (TC-

AIRR), since it expresses the rate of return per unit of total outflow: 

 𝑖(𝑋−) = 𝑟 + 𝑁𝑃𝑉𝑋− . (33) 

The IC-AIRR and the TC-AIRR can be seen as the rates of return that are obtained by choosing a 

depreciation class where investments are expensed as incurred (cash-flow depreciation).20 

7.5 Bailey (1959)  and efficient markets  ̶  Shareholder rate of return (SRR) and Economic 

AIRR (EAIRR) 

What happens if one follows Bailey’s (1959) advice of assuming 𝑖𝑡 = 𝑟𝑡 for all 𝑡 except one? Bailey 

(1959) did not specify which rate should be allowed to differ from the cost of capital. This section 

shows that the choice made by an efficient market is unambiguous: 𝑖1 ≠ 𝑟1, 𝑖𝑡 = 𝑟𝑡 for 𝑡 > 1. More 

specifically, assume that a firm has the opportunity of investing in a project 𝑃 whose cash-flow 

stream is   �⃗� = (𝑥0, 𝑥1, … , 𝑥𝑛) and its shares are traded in the security market (which, as specified 

earlier, we assume to be frictionless and arbitrage-free). For the sake of simplicity,  we maintain the 

assumption that 𝑟𝑡 = 𝑟 for all 𝑡 (generalization is straightforward via Proposition 15). 

When the decision of undertaking a project is made public by the firm a state of disequilibrium 

occurs due to new information. The stock price adjusts instantaneously to arbitrage away the 

disequilibrium (see Ross et al. 2011, pp. 326–327). As Rubinstein (1973, p. 172) puts it, “when a project is undertaken, the firm can be viewed in temporary disequilibrium”, and for the project to be worth undertaking, “it is . . . necessary to show that, given the market strives for equilibrium, the 
market value of the stock will increase by more than the investment outlay” (Bierman and Hass, 
1973, p. 122). Shareholders’ wealth increase can be interpreted as a ‘windfall gain’ accruing to shareholders at time 0, generated by the firm’s ability of investing in a project that is more profitable 

than the standard market rate 𝑟. After the new equilibrium has been achieved, “there is no tendency for subsequent increases and decreases” (Ross et al., 2011 p. 327). In particular, “once the ‘windfall gain’ is realized through the increase in value of the owners’ stock, income will continue to be 

realized at a rate of exactly [𝑟] ... for the remainder of the project’s life” (Robichek and Myers 1965, p. 
11). We now formalize such a disequilibrium-to-equilibrium process and show that a frictionless, 

arbitrage-free market triggers an unambiguous project rate of return, which we call Economic AIRR 

(EAIRR), where all the holding period rates, except the first one, are equal to the equilibrium rate, 𝑟. 

To this end, we will use the capital stream v⃗⃗𝑐0 = (𝑐0, v1, v2, … , v𝑛−1). Consider the economic class [𝑉𝑐0  ] = {𝑐 ∈ 𝑆𝑐  such that 𝑐 ≃ v𝑐0} (note that v⃗⃗ ≠ v⃗⃗c0). 21 
 

Proposition 18 (Economic AIRR) In an efficient market, where disequilibrium is quickly arbitraged 

away, investors’ rational behavior induces the economic class [𝑉𝑐0]. The project rate of return is the 

weighted average of the disequilibrium rate, 𝑖1, and the  equilibrium rate, 𝑟:  

 𝑖̅  = 𝑖1𝜇 + 𝑟(1 − 𝜇) (34) 

                                                           
20 The vector 𝑐(5) in Table 2 refers to the equivalence class of total cash outflow, so 23.11% is the TC-AIRR. 
21 Lindblom and Sjögren (2009) endorsed the use of v⃗⃗𝑐0  (referred to as “strict market-based depreciation schedule”) for increasing goal congruence in managerial performance evaluation. They showed that such a 
choice is superior to ordinary straight-line, annuity-based or IRR-based depreciation schedules (see also 
Brealey et al. 2011, p. 331.).  
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where 𝑖1  = 𝑖(𝐶1), 𝜇 = 𝐶1/𝑉𝑐0 , and  𝑉𝑐0 = 𝑐0𝑑1,0 +∑ v𝑡𝑛𝑡=2 𝑑𝑡,0. Equivalently,   

 𝑖̅ = 𝑖(𝑉𝑐0) = 𝑟 + 𝑁𝑃𝑉𝑉𝑐0  . (35) 

Proof. The current market value of the firm’s equity is 𝐸0 = 𝑠 ⋅ 𝑝, where 𝑠 is the number of 

outstanding shares.  Denoting as 𝑒𝑡 the firm’s prospective equity cash flow for 𝑡 ∈ N𝑞1 , 𝑞 ≤ +∞, before 

acceptance of the project, the following equilibrium relation holds: 𝐸0 = (𝑒1 + 𝐸1) ⋅ (1 + 𝑟)−1 (where 𝐸1 is the end-of period equity market value) which implies  

 𝑠𝑝(1 + 𝑟)  = 𝑒1 + 𝐸1. (36) 

After acceptance, the firm’s equity cash flows become 𝑒𝑡′ = 𝑒𝑡 + 𝑥𝑡 with 𝑥𝑡 = 0 for 𝑡 > 𝑛. The market 

reacts to fully reflect new information. With no loss of generality, we assume that the firm issues Δ𝑠 

shares at the new equilibrium price 𝑝′ = 𝑝 + Δ𝑝 to finance the project, so that Δ𝑠 ⋅ 𝑝′ = 𝑐0, whence Δ𝑠 = 𝑐0/(𝑝 + Δ𝑝). This implies that, after equilibrium is restored, the firm’s equity is 𝐸0′ = (𝑠 + Δs) ⋅(𝑝 + Δ𝑝) and the new equilibrium relation is 𝐸0′ = (𝑒1 + 𝐸1 + 𝑥1 + v1) ⋅ (1 + 𝑟)−1, which implies   

 (𝑠 + Δs)(𝑝 + Δ𝑝)(1 + 𝑟) = 𝑒1 + 𝑥1 + 𝐸1 + v1 (37) 

The project’s first-period return rate, 𝑖1, generated by the temporary state of disequilibrium is  

 𝑖1 = (𝑥1 + v1)/𝑐0   − 1. (38) 

Subtracting (36) from (37), one finds 𝑥1 + v1 = (𝑠Δ𝑝 + Δ𝑠(𝑝 + Δ𝑝))(1 + 𝑟).  Hence, exploiting the 

equality 𝑐0 = Δ𝑠(𝑝 + Δ𝑝), (38) can be framed as 𝑖1 = 𝑠Δ𝑝(1 + 𝑟)/Δ𝑠(𝑝 + Δ𝑝) + 𝑟 . However, 𝑠Δ𝑝 = 𝐸0′ − 𝐸0 − 𝑐0 = (𝑥1 + v1)(1 + 𝑟)−1 − 𝑐0 = ∑ 𝑥𝑡𝑑𝑡,0𝑛𝑡=0 = 𝑁𝑃𝑉, so that 𝑖1 = 𝑟 + 𝑁𝑃𝑉/𝐶1 =𝑖(𝐶1). Consider now that, after the first period, shareholder income will continue to be realized at the 

equilibrium rate 𝑟 for 𝑡 ∈ N𝑞1 , which just means that the project’s invested capital will be v𝑡 for every 𝑡 ∈ N𝑛1 . Therefore, the capital stream is v⃗⃗𝑐0 = (𝑐0, v1, v2, … , v𝑛−1) and the internal vector is 𝑖 = (𝑖(𝐶1), 𝑟, 𝑟, … , 𝑟).  The value-weighted average of such rates is (34). ∎ 
 

(See also Magni 2013a, 2014a).22 

Remark 7.3 The above proposition says that the IC-AIRR is the first-period disequilibrium rate of 

return generated in an efficient market. We call it shareholder rate of return (SRR) (see also Fernandez’s, 2002, ch. 1, notion of shareholder return). Note that 𝑖1 = 𝑖(𝐶1) = 𝑗1, that is, the IC-AIRR 

is incorporated in the Keynesian rate of return. It is also worth noting that the Keynesian rate of 

return and the EAIRR share the same internal vector 𝑖 = (𝑗1, 𝑟, 𝑟, … , 𝑟) (and, therefore, the same 

depreciation schedule v⃗⃗𝑐0), but the former uses undiscounted weights, whereas the latter uses 

discounted weights. 
 

Remark 7.4  The proof of Proposition 18 makes it clear that the shareholders’ wealth increase is just 
the project NPV: Δ𝑝 ⋅ 𝑠 = v0 − 𝑐0. 23 This is the windfall gain of a shareholder owning stocks before 

the undertaking of the project who sells the shares after the announcement of project undertaking. It 

is worth noting that 𝑗1 = (𝑥1 + v1 − 𝑐0)/𝑐0 can be decomposed into two shares: Shareholders earn an 

instantaneous gain equal to NPV at time 0 and a subsequent return equal to 𝑟v0 at the end of the 

period so that 𝑗1 = 𝑁𝑃𝑉𝑐0 + 𝑟v0𝑐0 . 
 

Remark 7.5  We have shown that (i) the EAIRR is the value-weighted arithmetic mean of 𝑗1 and 𝑟, (ii) 

the Keynesian rate of return is the (undiscounted)-value-weighted arithmetic mean of 𝑗1 and 𝑟, (iii) 

the MIRR is the value-weighted arithmetic mean of 𝜎 and 𝑟. Barry and Robison (2014) found the 

                                                           
22 The vector 𝑐(2) in Table 2 refers to the economic class, so 11.4% is the EAIRR. 
23 Note that the project is worth undertaking if and only if Δ𝑝 > 0. This is equivalent to 𝐸𝐴𝐼𝑅𝑅 > 𝑟, as we 

should expect (because Δ𝑝 = 𝑁𝑃𝑉/𝑠). 
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result that MIRR is a time-weighted geometric mean of 𝑗1 and 𝑟. More precisely, 1 + 𝜎𝑀 =√(1 + 𝑗1)(1 + 𝑟)𝑛−1𝑛
. 

  

7.6 Bailey (1959) and Anthony (1975)  ̶ Replicating portfolio’s rate of return and return on 

time-scaled contribution In the previous section, Bailey’s (1959) recommendation was fulfilled with the internal vector 𝑖 = (𝑗1, 𝑟, 𝑟, … , 𝑟), which means that value creation is recognized in the first period. However, his 

recommendation might also be fulfilled by picking the internal vector 𝑖 = (𝑟, 𝑟, … , 𝑟, 𝑗𝑛), 𝑗𝑛 = 𝑥𝑛/𝑐𝑛−1∗ − 1, which means that value creation is recognized only in the last period. In terms of capital 

depreciation, this means that the capital stream is 𝑐∗ = (𝑐0, 𝑐1∗, 𝑐2∗, … , 𝑐𝑛−1∗ ) (see section 5). 

Apparently, the first one to endorse this pattern was Anthony (1975). He viewed equity as shareholders’ credit and recommended to use a depreciation schedule such that equity interest 

should be recognized at the market rate. In such a way, every period is value-neutral and income 

(and, therefore, value creation) is recognized only in the last period. In later years, the same 

depreciation pattern was used by several different authors, in disparate contexts, with different 

labels and justified in different ways and for various purposes (Long and Nickels 1996, O’Hanlon and 

Peasnell 2002, Drukarczyk and Schueler 2000, Magni 2000. See Magni 2004, 2005, 2010b, 2012, 

Ghiselli Ricci and Magni 2014 for discussions and findings related to this depreciation pattern).  We 

now discuss the AIRR associated with such a depreciation plan. Consider a portfolio traded in the 

market such that the contributions and distributions exactly match the project’s cash flows. Assume, 

with no loss of generality, 𝑟𝑡 = 𝑟; then, the replicating portfolio’s value is 𝑐𝑡∗ = 𝑐𝑡−1∗ (1 + 𝑟) − 𝑥𝑡 and 

the overall capital is 𝐶∗ = ∑ 𝑐𝑡−1∗ 𝑑𝑡,0𝑛𝑡=1 . We call the corresponding AIRR the replicating portfolio  

AIRR (RP-AIRR): 

 𝑖(𝐶∗) = 𝑟 + 𝑁𝑃𝑉𝐶∗ . (39) 

This AIRR (and the related undiscounted variant AROI, 𝑗̅ = ∑ 𝑥𝑡𝑛𝑡=0 /∑ 𝑐𝑡−1∗  𝑛𝑡=1 ) can be employed in  

corporate projects, real estate investments, project financing transactions (Altshuler and Magni 

2012, Magni 2015b, 2016) and for investment performance measurement, as private equity 

investments are often matched against (replicating) benchmark portfolios (Long and Nickels 1996, 

Gredil et al. 2014, Magni 2014b, Altshuler and Magni 2015).24 As noted above, EAIRR and RP-AIRR 

are symmetric: EAIRR recognizes value creation in the first period whereas the RP-AIRR recognizes 

value creation in the last period. Nonnegativity of interim values in (39), often a required feature in 

Private Equity, can be easily ensured by picking 𝑐𝑡 = max  [𝑐𝑡−1∗ (1 + 𝑟𝑡) − 𝑥𝑡; 0]. 
 

 Most recently, Jiang (2017) applied the AIRR approach on a capital base 𝐶𝑇𝑆 = ∑ 𝑥𝑡𝑑𝑡,0(𝑛 − 𝑡)𝑛𝑡=0 , 

which represents the time-scaled net contribution of the project, so that 

 𝑖(𝐶𝑇𝑆) = 𝑟 + 𝑁𝑃𝑉𝐶𝑇𝑆  (40) 

is an AIRR on time-scaled contribution (TS-AIRR). Making use of the above mentioned replicating 

portfolio, the author measured the capital 𝑐(𝜏) in continuous time. Denoting as 𝑡𝑖 ∈ ℝ the date where 

discrete cash flows 𝑥𝑡𝑖 are available, and allowing for a time-variant benchmark rate 𝑟(𝜏), the capital  

is 𝑐(𝜏) = 𝑐(𝑡𝑖−1)𝑒∫ 𝑟(𝑠)d𝑠𝜏𝑡𝑖−1  
 for 𝜏 ∈ [𝑡𝑖−1, 𝑡𝑖], 𝑖 ∈ N𝑛1  and 𝑐(𝑡𝑖) = 𝑐(𝑡𝑖−1)𝑒∫ 𝑟(𝑠)d𝑠𝑡𝑖𝑡𝑖−1  − 𝑥𝑡𝑖  for 𝑖 ∈ N𝑛−11 . 

The author introduced a three-step decomposition aimed at guaranteeing nonnegativity of capital 

values and showed that the overall capital of the replicating portfolio is equal to the overall project’s 
                                                           
24

 The vector 𝑐(3) in Table 2 refers to the replicating class, so 15.47% is the replicating AIRR. 



29 

 

time-scaled net contribution 𝐶 = ∫ 𝑐(𝜏)𝑡𝑛𝑡0 𝑒∫ 𝑟(𝑠)d𝑠𝜏𝑡0  d𝜏 = ∑ 𝑥𝑡𝑑𝑡,0(𝑛 − 𝑡)𝑛𝑡=0 = 𝐶𝑇𝑆. Eq. (40) supplies a 

relevant piece of information: The rate of return associated with the project’s time-scaled net 

contribution is equal to the rate of return that would obtain by measuring the project return as per 

unit of the overall continuous-time benchmark capital. The author also mentioned (39) as the 

discrete version of  (40).  

 

7.7 The average return on asset (AROA) 

In many financial investments, cash flows are often the results of an investor’s decisions (e.g. 
deposits and withdrawals from a fund). However, the situation in corporate projects (and project 

financing transactions) is subtly different. Here, cash flows must be inferred from forecasts of sales 

and costs, that is, from accounting magnitudes. In particular, pro forma financial statements are 

drawn, which record period-by-period revenues, operating costs, depreciation, interest expenses, 

taxes, as well as working capital requirements, net property, plant and equipment. We now show that 

the project rate of return associated with the book value of assets is an average Return On Assets 

(ROA) which, compared with the COC, correctly captures the economic value created by the project. 

Let 𝑏t𝑤 and 𝑏𝑡𝑓 denote the net working capital requirements and the fixed assets, respectively. The 

book value of the project at time 𝑡 is 𝑏𝑡 = 𝑏𝑡𝑤 + 𝑏𝑡𝑓 and  Dep𝑡 = 𝑏𝑡−1𝑓 − 𝑏𝑡𝑓 measures capital 

depreciation. Total accruals are given by Δ𝑏𝑡𝑓 + Δ𝑏𝑡𝑤 = Δ𝑏t where Δ denote a variation (i.e. Δ𝑦𝑡 ≔ 𝑦𝑡 − 𝑦𝑡−1). Letting 𝜋𝑡 be the earnings before interest, taxes, depreciation and amortization, the project’s free cash flow, 𝑥𝑡, is then derived from the accounting estimates in the following way:  

 
𝑥𝑡 = (𝜋𝑡 − Dep𝑡) ⋅ (1 − ω)⏟              𝑁𝑂𝑃𝐴𝑇𝑡 − Δ𝑏𝑡       𝑥0 = −𝑏0 

(41) 

where 𝜔 is the company’s tax rate. The prospective ROA is defined as the ratio of the net operating 

profit after taxes (NOPAT, also known as ‘unlevered net income’) to book value of assets: 𝑅𝑂𝐴𝑡 = 𝑁𝑂𝑃𝐴𝑇𝑡/𝑏𝑡−1. In this context, the cost of capital, 𝑟, is given by the project-specific weighted 

average cost of capital (wacc). It is the expected rate of return of an asset equivalent in risk to the 

project under consideration. The AIRR associated with the book values (and, in general, with the 

accounting class [𝐵]), is the project ROA, which is an average accounting rate of return obtained from 

the project 𝑅𝑂𝐴’s: 

 𝑖(𝐵) = 𝐵1 ⋅ 𝑅𝑂𝐴1 + 𝐵2 ⋅ 𝑅𝑂𝐴2 +⋯+ 𝐵𝑛 ⋅ 𝑅𝑂𝐴𝑛𝐵1 +𝐵2 +⋯+ 𝐵𝑛 = 𝑅𝑂𝐴̅̅ ̅̅ ̅̅  (42) 

or, equivalently, 𝑖(𝐵) = 𝑟 + 𝑁𝑃𝑉/𝐵. It is then evident that the ROAs supply important pieces of 

economic information that can be aggregated by a Chisini mean.  
 

Proposition 19 (AROA) The AROA is the AIRR associated with the accounting class [𝐵]. The economic 

value created can then be viewed as a function of the prospective ROAs: 𝑁𝑃𝑉 = 𝐵 ⋅ (𝑅𝑂𝐴̅̅ ̅̅ ̅̅ − 𝑟). The 

AROA correctly captures a project’s economic profitability when compared with the project wacc: 𝑅𝑂𝐴̅̅ ̅̅ ̅̅ ≷ 𝑟.  
 

This interesting result is in sharp contrast with the accounting literature on economic rate of return, 

according to which accounting rates of return do not provide any information about a project’s or firm’s economic profitability (e.g. Harcourt 1965, Solomon 1966, Livingstone and Salamon 1970, 

Gordon 1974, Kay 1976, Fisher and McGowan 1983, Luckett 1984, Salamon 1985, Kay and Mayer 

1986, Gordon and Stark 1989, Whittington 1988, Feenstra and Wang 2000, Stark 2004. See also 

Magni 2009a, 2011c, Magni and Peasnell 2012, 2015). 

 

7.8 Straight-line rate of return  
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Consider the assumption of a constant linear decrease in the project’s value and the related 

depreciation class. In a sense, this assumption is opposite to the assumption of constant exponential 

growth associated with the IRR. Let a capital sum be invested at a growth rate equal to  𝛾. Then, the 

capital at time 𝑡 will be 𝑐𝑡 = 𝑐0(1 + 𝛾)𝑡 , 𝑡 ∈ N𝑛1 . If no interim cash flows occur, then 𝑥𝑛 = 𝑐0(1 + 𝛾)𝑛 

and  𝛾 = 𝜎 is the project IRR. Conversely, in case of a linear decrease at a rate 𝛾, the capital at time 𝑡 
will be 𝑐𝑡 = 𝑐0(1 − 𝛾𝑡). Using the boundary condition 𝑐𝑛 = 0, one gets 𝑐𝑛 = 𝑐0(1 − 𝛾𝑛) = 0 so that 𝛾 = 1/𝑛 . This implies that capital depreciates uniformly through time: 𝑐𝑡−1 − 𝑐𝑡 = 𝛾𝑐0. This 

depreciation path is the well-known straight-line depreciation, such that 𝑐𝑡 = 𝑐0 (1 − 𝑡𝑛) , 𝑡 ∈ N𝑛1  . The 

straight-line depreciation class [𝐶𝑆𝐿] is such that 𝐶𝑆𝐿 = ∑ 𝑐0 (1 − 𝑡−1𝑛 ) 𝑑𝑡,0𝑛𝑡=1 . The associated AIRR is 

here called straight-line AIRR (SL-AIRR): 

 𝑖(𝐶𝑆𝐿) = 𝑟 + 𝑁𝑃𝑉𝐶𝑆𝐿 . (43) 

This SL-AIRR always exists and is unique, so it will be available in any circumstance, and the financial 

nature of the project is unambiguously identified by the sign of 𝑥0. If 𝑥0 > 0 (<), then 𝐶𝑆𝐿 > 0 (<) 

and the project is a net investment (financing). We will see in the next section that the SL-AIRR (as 

well as the IC-AIRR) enjoys a stronger form of NPV-consistency than the traditional one.25 
 

 

7.9 AIRR on market values (MV-AIRR) 

Consider an investment in a financial asset or fund/portfolio and assume the analyst is evaluating its 

ex post performance (so, 𝑛 denotes current time). In this case, 𝑥𝑡 < 0  denotes a contribution and 𝑥𝑡 > 0 denotes a distribution. Let 𝑚𝑡 be the fund’s ending values as observed in the market (before 

cash movements). Then, the beginning-of-period market value at time 𝑡 is 𝑚𝑡𝑏 = 𝑚𝑡 − 𝑥𝑡 and 𝑖𝑡 = 𝑚𝑡/𝑚𝑡−1𝑏 − 1 is the fund’s holding period rate. Let 𝑟 be the holding period rate of a benchmark 

portfolio which acts as a cost of capital in period [𝑡 − 1, 𝑡]. The mean of these return rates, weighted 

by the respective market values, is the AIRR on (observed)  market values:26 

 𝑖̅ = 𝑖(𝑀) = 𝑟 + 𝑁𝑃𝑉𝑀 . (44) 

where 𝑀𝑡 = 𝑚𝑡−1𝑏 𝑑𝑡,0 is the discounted beginning value and 𝑀 = ∑ 𝑀𝑡𝑛𝑡=1  is the overall invested 

value.  Recall that the dependence on the market class [𝑀] holds under the assumption of constant 

COC. As already noted, if COCs are time-variant, then 𝑖 is not a function of 𝑀 but a function of �⃗⃗⃗�𝑏: 

Using (15), 

 𝑖̅ = ∑ 𝑚𝑡−1𝑏 𝑖𝑡𝑑𝑡,0𝑛𝑡=1∑ 𝑚𝑡−1𝑏 𝑑𝑡−1,0𝑛𝑡=1  (45) 

where  𝑑𝑡−1,0 = ∏ (1 + 𝑖𝑘)−1𝑡−1𝑘=1 . (The MV-AIRR can be used for ex ante valuation as well; in this case, 

the values are estimated). 

 Other capital bases are possible, and the analyst may even blend two or more depreciation classes 

and generate a new AIRR (See the blended EAIRR in Cuthbert and Magni 2016. See also Magni 2013a, section “Relations with IRR”, and Magni 2014b, Section 6). 

 

8. The relevant rate of return: A guide for practitioners 

                                                           
25 The vector 𝑐(1) in Table 2 refers to straight-line depreciation, so 10.59% is the SL-AIRR. 
26

 In this context, “market value” does not mean “economic value” (i.e., discounted value of prospective cash 

flows). It is the price at which the asset can be purchased or sold in the market. 
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The AIRR theory unveils the fundamental ambiguity of the rate-of-return notion owing to the 

phenomenon of underdetermination illustrated above. While this calls for a capital valuation theory 

yet to be developed, it also enriches the economic content of the rate-of-return notion (see section 

11). However, practitioners may find it cumbersome to investigate multiple rate/capital 

combinations; they often need a well-defined criterion to choose the relevant capital stream and 

therefore the relevant rate of return. In this section, we sketch some simple guidelines to help 

practitioners choose the relevant rate of return.  

 We divide investments into two categories:  

(i) investments whose cash flows are estimated starting from pro-forma financial 

statements (e.g.,  corporate projects, project financing transactions, engineering 

projects) or whose capital amounts are explicitly predetermined (e.g., loans) 

(ii) investments whose cash flows do not depend on pro forma financial statements (e.g., 

real asset investments, financial assets, funds, portfolios).  

In the former case, it is compelling to use the capital value recorded in the pro forma balance sheet as 

the relevant capital. In this case, the cash flows (and, therefore, the project NPV) explicitly depend on 

accounting constructs and, in particular, on the pro forma book values. More precisely, from (41), 𝑁𝑃𝑉 = [(𝜋𝑡 − Dep𝑡) ⋅ (1 − ω)⏟              𝑁𝑂𝑃𝐴𝑇𝑡 − 𝑏t + 𝑏t−1] 𝑑𝑡,0. 
This means that the relevant rate of return is the AROA. To choose a different pattern, such as the 

Hotelling depreciation (which generates the IRR), would boil down to negating those very capital values that have been used for estimating the project’s cash flows (and, therefore, have determined 

the economic profitability), thereby resulting in a contradictory series of interim values, that is, book 

values for cash flows and Hotelling values for rate of return. In these cases, the use of IRR for should 

be discouraged and the use of the AROA is appropriate as the relevant rate of return.   

 In Tables 4-6 we use HomeNet’s example presented in Berk and DeMarzo (2014, pp. 234-

244), with slightly modified inputs, to show the easiness and intuitiveness of the computation of 

AROA for a corporate project (we assume 𝑟 = 12%). The resulting rate of return is 65.5%. The NPV is 

13,724 and is obtained thanks to an investment scale of 28,732 (present value of invested amounts)27 

and a project efficiency of 53.5%=65.5%−12% (excess AROA). Note that the project IRR is 𝜎 = 59%, 

quite different from the 65.5% generated by the estimated capital values.  The vector of Hotelling 

values, derived from the IRR assuming that the capital grows at a constant force of interest, is 𝑐(0.59) = (12,500;  11,175.5; 8,069.5; 4,930.8; 440.2). This capital stream (as well as any other in the 

Hotelling class) is inconsistent with the capital stream  �⃗⃗� = (12,500; 9,500; 5,500; 3,300; 1,600) that 

has been used to determine (the cash flows and) the NPV. Note that the IRR is a function of the cash-

flow stream, �⃗�, but the latter is a function of the pro forma book values, 𝑏𝑡. So, on one hand, the IRR is 

affected by the pro forma book values; on the other hand, the IRR generates capital values that are 

different from the pro forma book values, which is contradictory. Tables 6-7 cope with the same 

project, under the assumption of time-variant COCs, a case which is often considered impossible to 

cope with in the corporate finance literature (we use eq. (17) for computing 𝑖 ̅and �̅�). 

 A second example is a (variant of) a real-life investment illustrated in Hartman (2007, pp. 

344-345). Sunoco Inc. faces the opportunity of building a coke-making plant with an annual capacity 

of 0.65 million tons per year in order to supply plants of International Steel Group (ISG)  Inc. The 

investment cost is $140 (numbers in million), and ISG agrees to purchase the coke (needed for 

producing steel) for 14 years. Table 9 summarizes the inputs for revenues, materials, labor, energy 

                                                           
27 We have used (15) with 𝑐𝑡 = 𝑏𝑡  so the denominator of 𝑖 ̅is the present value of the invested amounts (or, 
which is the same, (42) with 𝐵𝑡 = 𝑏𝑡−1𝑑𝑡−1,0). 
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and the respective growth rates. Overhead is constant at $15, the COC is 12%. The investment is to be 

depreciated under the straight-line method and the salvage value is estimated to be zero. Production 

begins at time 0. The unlevered net income (NOPAT) at time t is 
 𝑁𝑂𝑃𝐴𝑇𝑡 = (𝜋𝑡 − Dep𝑡)(1 − ω)= (Annual Production ⋅ Price1 ⋅ (1.02)𝑡−1 −Materials1(1.02)𝑡−1 − Labor1(1.01)𝑡−1− Energy1(1.01)𝑡−1 − Overhead − Dep𝑡)(1 − 𝜔). 
 

The AROA is  RO𝐴̅̅ ̅̅ ̅̅ = 22.7%. Note that this is equal to the SL-AIRR, given that depreciation is linear. 

The project creates value, since 22.7% > 12% and the economic value created is 𝑁𝑃𝑉 = 65.98 (see 

Table 9). Note that one does not even have to unravel cash flows to compute the NPV. And again, one 

can decompose the NPV into investment scale and economic efficiency: 𝑁𝑃𝑉 = 65.98 = 688.04 ⋅(0.227 − 0.12)/1.12. The IRR is 19.6%, inconsistent with the estimated capital values. 

 

Table 4. HomeNet’s project:  Pro forma accounting and Free Cash Flow 

 
  Year 0 1 2 3 4 5 

Incremental Earnings Forecast               

 Sales     23,500 23,500 23,500 23,500   

 Cost of goods sold     -9,500 -9,500 -9,500 -9,500   

 Gross Profit     14,000 14,000 14,000 14,000   

 SG&A     -3,000 -3,000 -3,000 -3,000   

 Depreciation     -1,500 -1,500 -1,500 -1,500 -1,500 

 EBIT     9,500 9,500 9,500 9,500 -1,500 

 Income tax (40%)    -3,800 -3,800 -3,800 -3,800 600 

 Unlevered Net Income 
(NOPAT) 

   5,700 5,700 5,700 5,700 -900 

                  

Free Cash Flow               

 Plus: Depreciation    1,500 1,500 1,500 1,500 1,500 

 Less: Capital 
Expenditures 

  -7,500           

 Less: Increases in NWC   -5,000 1,500 2,500 700 200 100 

 Free Cash Flow   -12,500 8,700 9,700 7,900 7,400 700 

                  

 

Table 5. HomeNet’s project: The Net Present Value 

                  
  Year 0 1 2 3 4 5 

Net Present Value               

 Free Cash Flow   -12,500 8,700 9,700 7,900 7,400 700 

 Project cost of capital 12%             

 Discount factor   1.000 0.893 0.797 0.712 0.636 0.567 

 PV of Free Cash Flow   -12,500 7,768 7,733 5,623 4,703 397 
 NPV 13,724             

 

 

Table 6. HomeNet’s project: The AROA as the relevant project’s rate of return  

         

    Year 0 1 2 3 4 5 
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Capital invested               

 Net Fixed Assets   7,500 6,000 4,500 3,000 1,500 0 

 NWC   5,000 3,500 1,000 300 100 0 

 Invested capital   12,500 9,500 5,500 3,300 1,600 0 

 PV of capital    12,500 8,482 4,385 2,349 1,017 0 

 total capital invested 28,732             

 𝑹𝑶𝑨̅̅ ̅̅ ̅̅  65.5%             

 excess AROA 53.5%             

 project NPV 13,724             

 

 

 

 

Table 7. HomeNet’s project: The Net Present Value, assuming time-variant COCs 

                  
  Year 0 1 2 3 4 5 

Net Present Value               

 Free Cash Flow   -12,500 8,700 9,700 7,900 7,400 700 

 Project cost of capital    3%  5%  8%  10%  12%  

 Discount factor   1.000 0.971 0.925 0.856 0.778 0.695 
 PV of Free Cash Flow   -12,500 8,447 8,969 6,764 5,760 486 
 NPV 17,925             

 

 

 

Table 8. HomeNet’s project: The AROA as the relevant project’s rate of return, assuming time-variant COCs 

         

    Year 0 1 2 3 4 5 

Capital invested               

 Net Fixed Assets   7,500 6,000 4,500 3,000 1,500 0 

 NWC   5,000 3,500 1,000 300 100 0 

 Invested capital   12,500 9,500 5,500 3,300 1,600 0 
 PV of capital    12,500 9,223 5,086 2,825 1,245 0 

 total capital invested 30,879             

 project COC 5.09%       

 𝑹𝑶𝑨̅̅ ̅̅ ̅̅  63.1%             

 excess AROA 58.0%             

 project NPV 17,925             

 

  

 

  Table 9. Sunoco's investment: Inputs 

Investment $140  M Energy $12 M 

Annual Prod. 0.65 M tons 𝑔 (Energy) 1% 

Unit Price $250  per ton Overhead $15 M  𝑔 (Price) 2% 
 

Salvage Value $0  

Materials $27.5  M COC 12% 
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𝑔 (Materials) 2% M Dep Method straight-line 

Labor $75  M Tax rate 35% 𝑔 (Labor) 1%   Periods 14 years 𝑔=growth rate     

     

 

 

 

 

 

 

 

 

   Table 10. Sunoco's investment: EBITs and ROAs 

Time Dep. charge Book value EBIT NOPAT ROA 

0 
 

$140.00 
   1 $10.00 $130.00 $23.00 $14.95 10.7% 

2 $10.00 $120.00 $24.83 $16.14 12.4% 

3 $10.00 $110.00 $26.71 $17.36 14.5% 

4 $10.00 $100.00 $28.63 $18.61 16.9% 

5 $10.00 $90.00 $30.60 $19.89 19.9% 

6 $10.00 $80.00 $32.61 $21.20 23.6% 

7 $10.00 $70.00 $34.68 $22.54 28.2% 

8 $10.00 $60.00 $36.80 $23.92 34.2% 

9 $10.00 $50.00 $38.97 $25.33 42.2% 

10 $10.00 $40.00 $41.19 $26.77 53.5% 

11 $10.00 $30.00 $43.46 $28.25 70.6% 

12 $10.00 $20.00 $45.79 $29.77 99.2% 

13 $10.00 $10.00 $48.18 $31.32 156.6% 

14 $10.00 $0.00 $50.62 $32.90 329.0% 𝑵𝑷𝑽 = 65.98 $688.04  
 

𝑹𝑶𝑨̅̅ ̅̅ ̅̅ =22.7% 
 

If case (ii) occurs, it is compelling to use market values. For example, in financial portfolios, the investment’s values as they are determined by the market are evidently the relevant ones and, as in 

the previous case, the use of IRR, which is associated with the Hotelling values, would contradict the 

values that are actually observed in the market. So, the MV-AIRR is a correct rate of return and IRR is 

inappropriate. Whenever true market values cannot be observed, one can use the values of the 

replicating portfolio as a proxy for the investment’s values, whence the RP-AIRR will be the relevant 

rate of return. In Table 11 we present an example of an investment (e.g., a private equity investment) 

with known market prices and the associated MV-AIRR. The investment size is $2,720.3, the rate of 

return is 𝑖̅ =11.89%, the COC is �̅� = 11.01%, so that 𝑁𝑃𝑉 = 23.8 = 2,720.3 ⋅ (11.89%− 11.01%). 
The IRR, 𝜎 = 14.39%, is rather different from the MV-AIRR. The latter is computed by explicitly using 

true market values, the former incorrectly implies that the value of the investment should increase at 

a constant force of interest or follow an equivalent pattern of the Hotelling class. In Table 12, we 

illustrate the same investment under the assumption that interim market values are not known 

(initial value and terminal value are known and kept at $350 and $1441.1); the RP-AIRR is then the 

relevant rate of return.  Table 13 summarizes the guidelines. 
 

Table 11. Private Equity Investment: Known asset values 
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period 

 

contributions (+) 

distributions (-) 

portfolio's rates 

of return 

            Net Asset Value 

ending      beginning 

benchmark's 

rates of 

return 

discount 

factors 𝑡 −𝑥𝑡  𝑖𝑡  𝑚𝑡  𝑚𝑡𝑏 𝑟𝑡  𝑑𝑡,0 

0 350  0 350.0 
 

1 

1 200 30.0% 455.0 655.0 25.0% 0.8000 

2 500 -20.0% 524.0 1024.0 20.0% 0.6667 

3 -160 -10.0% 921.6 761.6 -11.0% 0.7491 

4 -110 60.0% 1218.6 1108.6 40.0% 0.5350 

5 -1441.1 30.0% 1441.1 0.0 12.0% 0.4777 

NPV 23.8   
𝐶 =2,720.3 

  
MV-AIRR (𝑖)̅ 11.89%      

COC (�̅�) 11.01%      
 

Table 12. Private Equity Investment: Unknown (interim) asset values 

period 

 

contributions (+) 

distributions (-) 

portfolio's rates 

of return 

         Net Asset Value 

ending      beginning 

benchmark's 

rates of 

return 

discount 

factors 𝑡 −𝑥𝑡  𝑖𝑡  𝑚𝑡  𝑚𝑡𝑏 𝑟𝑡  𝑑𝑡,0 

0 350 
 

0 350.0 
 

1 

1 200 25.0% 437.5 637.5 25.0% 0.8000 

2 500 20.0% 765.0 1265.0 20.0% 0.6667 

3 -160 -11.0% 1125.9 965.9 -11.0% 0.7491 

4 -110 40.0% 1352.2 1242.2 40.0% 0.5350 

5 -1441.1 16.0% 1441.1 0 12.0% 0.4777 

NPV 23.8   
𝐶 =3,091.4 

  
RP-AIRR (𝑖)̅ 11.40%      

COC (�̅�) 10.63%      
 

 

Table 13. Guidelines for practitioners 

Cash-flow stream Type of project  Depreciation Rate of return 

Cash flows depends 
on pro forma 
financial statements 

Corporate project, 
project financing 
transaction, 
engineering project, 
loan, etc. 

 book value AROA 

Cash flows do not 

depend on pro 
forma financial 
statements 

Real estate asset, 

financial portfolio, 
fund, etc. 

Market values are 

available 
market MV-AIRR 

Market value are 
not available 

replicating RP-AIRR 

 

 

9. Insights for future research (I): A stronger definition of NPV-consistency  

Definition 4 is a necessary condition for a metric to be considered reliable.  Future research might be 

addressed to restrict the set of NPV-consistent valuation metrics to a subset that should enjoy more 

stringent properties. In this section, we introduce the new notion of strong NPV-consistency. 
 

Consider a model and let �⃗⃗� = (𝑢1, 𝑢2, … , 𝑢𝑚) ∈ 𝑋 ⊆ ℝ𝑚,𝑚 > 1 be a set of input factors (key drivers), 

which affect the output of the model. The model is described by an objective function 𝑓: 𝑋 → ℝ such 

that 𝑦 = 𝑓(𝑢1, … . 𝑢𝑛) is a scalar output.  In our context,  a relevant piece of information that a 
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valuation metric 𝑓 should supply is not simply value creation/destruction (and, therefore, 

acceptance or rejection) but also how sensitive is 𝑓  (and, therefore, how robust is the decision) to 

changes in the inputs.28 Let �⃗⃗�0 = (𝑢10, 𝑢20, … , 𝑢𝑚0 ) ∈ 𝑋 be the estimated value of the parameters (base-

case value) and let 𝑦0 = 𝑓(�⃗⃗�0) be the corresponding value of 𝑓. In particular, important pieces of 

managerial information are (i) the direction in which the output 𝑦0 would change if the input 

parameters change, (ii) the magnitude of the changes, (iii) the ranking of the parameters based on the value drivers’ impact on the valuation metric. In this way, the robustness of the output can be 

assessed and invaluable information on the key drivers of the project and the riskiness of the output 

can be drawn. Sensitivity analysis (SA) is a commonly used methodology for studying these issues in 

practice. In particular, local SA studies the variation of the output in the neighborhood of �⃗⃗�0, while 

global SA considers variation of the inputs within the entire space X of variability of the inputs. 

Analysis can be made for changes of individual inputs or for simultaneous changes of more (or all) 

inputs (see Saltelli et al. 2008). 
 

Let �⃗⃗� = (𝑅1, … , 𝑅𝑚) ∈ ℝ𝑚 be the vector expressing the importance measures (relevances) of the 

model parameters. Consider the binary relation ≻ such that 𝑗 ≻ 𝑖 if and only if |𝑅𝑗| > |𝑅𝑖|, 𝑗 ≠ 𝑖. This 

means that 𝑗 ranks higher than 𝑖, that is, input 𝑗 has a greater impact on the output than input 𝑖. For 

example, the vector �⃗⃗� = (−0.1, 0.5, 0.01) informs that the output increases under changes in inputs 2 

and 3, but decreases under changes in input 1, and that input 2 ranks higher than input 1, which in 

turn ranks higher than input 3.  There are several SA techniques that provide importance measures 

and ranking of the key drivers (see Borgonovo and Plischke 2016, Pianosi et al. 2016). In our context, 

the natural question arises whether a given rate of return is consistent with the NPV in the sense that 

it provides the same ranking of a project’s value drivers as the one provided by the NPV. We then 

introduce the following 
 

Definition 6 (strong NPV-consistency)  Given a technique of sensitivity analysis 𝑇, a valuation metric 𝜙 possesses  strong NPV-consistency under T if and only if it fulfills Definition 4 and the ranking of the 

value drivers provided  by 𝜙 is the same as that provided by the NPV. The consistency is said to be strict 

if the vector �⃗⃗� of important measures of 𝜙 is the same as the NPV’s. If consistency holds for any 

technique T, then 𝜙 is said to possess absolute NPV-consistency. 
 

An important issue that deserves to be investigated is whether there is some rate of return that 

enjoys strong NPV-consistency. Some recent contributions have analyzed the relation between IRR 

and NPV, building upon Borgonovo and Apostolakis’ (2001) Differential Importance Measure (DIM), 

which measures the importance of the input factors around the base-value case �⃗⃗�0. The DIM is 

defined as the ratio of the partial differential of 𝑓 with respect to 𝑢𝑗 to the total differential of the 

function, assuming the function is differentiable and the vector of the first derivatives ∇𝑓(�⃗⃗�) is not 

orthogonal to the vector of increments d𝑢: 

𝐷𝐼𝑀𝑢𝑗 = (𝜕𝑓𝜕𝑢𝑗) d𝑢𝑗∑ (𝜕𝑓𝜕𝑢𝑗) d𝑢𝑗𝑚𝑗=1 . 
The ratio measures how much of the output change can be attributed to input 𝑗. The vector of the 

importance measures is �⃗⃗� = (𝐷𝐼𝑀𝑢1 , 𝐷𝐼𝑀𝑢2 , … , 𝐷𝐼𝑀𝑢𝑚). Borgonovo and Peccati (2004, 2006) and 

Percoco and Borgonovo (2012) showed that IRR and NPV provide not only different DIMs but also 

different rankings. This implies that IRR does not possess a strong NPV-consistency under the DIM 
                                                           
28 Typically, the key (or value) drivers in a corporate project are the sequences of the prospective revenues and 
costs, and the so-called accruals: Accounts receivables, accounts payables, inventory, liquid assets, depreciation 
of fixed assets, etc. (see also eq. (41)). 



37 

 

technique. Whether the degree of the NPV-inconsistency is high or low is an issue yet to be explored 

(see Marchioni and Magni 2016 for some results). Conversely, (at least) two AIRRs possess strong 

NPV-consistency  under DIM (in a strict form). 
 

Proposition 20 Given a COC, 𝑟, the SL-AIRR and the IC-AIRR are strongly NPV-consistent in a strict 

form under the DIM method. 29 
 

Proof. Let 𝑓 be the NPV function: 𝑓 = 𝜑. For any fixed 𝑟, each of the AIRRs can be viewed as an affine 

function of the project’s value drivers: 𝜙 = 𝑟 + 𝜑(𝑢1, 𝑢2, … , 𝑢𝑛)/𝐶𝑝  where 𝑝 = 𝑆𝐿, 𝐼𝐶. Then, the DIM 

of 𝜙 with respect to 𝑢𝑗 coincides with the DIM of NPV with respect to 𝑢𝑗:  
𝐷𝐼𝑀𝑢𝑗𝜙 = ( 1𝐶𝑝 ⋅ 𝜕𝜑𝑢𝑗𝜕𝑢𝑗 )d𝑢𝑗∑ ( 1𝐶𝑝 ⋅ 𝜕𝜑𝑢𝑗𝐶𝑝 )d𝑢𝑗𝑚𝑗=1 = (𝜕𝜑𝑢𝑗𝜕𝑢𝑗 )d𝑢𝑗∑ (𝜕𝜑𝑢𝑗𝜕𝑢𝑗 )d𝑢𝑗𝑚𝑗=1 = 𝐷𝐼𝑀𝑢𝑗𝑁𝑃𝑉 . ∎ 

More compellingly, it can be shown that the two above mentioned AIRRs are strongly NPV-consistent 

under many other SA techniques, such as the standardized regression coefficient (Saltelli and 

Marivoet 1990, Bring 1994, Saltelli et al. 2008), the individual and total sensitivity indices in 

variance-based decomposition models (Sobol' 1993, 2001, Saltelli et al. 2008), Helton’s (1993) 
normalized partial derivative, Borgonovo’s (2010a, 2010b) Finite Change Sensitivity Index. (See 

Marchioni and Magni 2016 for the proof). Indeed, they might even enjoy an absolute NPV-

consistency, for they are affine transformations of the NPV and, presumably, an affine transformation 

of a function 𝑓 presents the same ranking of the parameters as 𝑓 for any SA method. 

 

10. Insights for future research (II) : The rate of return in a Modigliani and Miller’s world 

In three famous papers, Modigliani and Miller (MM) set out the foundations of modern finance theory 

(Modigliani and Miller 1958, 1963; Miller and Modigliani 1961). MM focused on infinite-lived assets 

(firms) whose shares are traded in a frictionless, arbitrage-free market where no taxes or 

transactions or flotation costs occur and fair pricing of securities is guaranteed by rational investors, 

who are assumed to be price takers, and the firm’s investment policy is fixed. Under these 

assumptions, the authors presented three path-breaking results. The first one (MM-I) states that the 

value of a firm is independent of the capital structure, that is, of the way the firm is financed; the 

second one (MM-II) shows that the cost of levered equity (required return to equity) increases 

linearly with an increase in the leverage ratio (ratio of market value of debt to market value of 

equity); the third one (dividend irrelevance) states that the corporate payout policy is irrelevant for 

stockholders (i.e., it does not affect the firm’s share price).  
 

Let 𝑟𝑈, 𝑟𝐿 be the required return to assets for an unlevered (i.e., zero-debt) and levered company, and 

let 𝑟𝑒 and 𝑟𝑑  be the required return to equity and to debt, respectively. Let 𝐸0 and 𝐷0 be the current 

market value of equity and debt. Further, v0𝐿 = 𝐸0 + 𝐷0  denotes the market value of the firm and v0𝑈 

is the unlevered value of the firm. Finally, let 𝑥 be the expected value of the firm’s free cash flow 

(FCF), distributed to equityholders and debtholders. We can formalize MM’s results in the following 

ways: 

                                                           
29

 The assumption of a fixed COC is not unrealistic, since in practice the COC is often used as a subjectively 

determined hurdle rate, determined on the basis of several variables such as decision flexibility, future 
opportunities, rationing of managerial skills, strategic considerations, agency costs, and costs of external 
financing. Risk is an important factor as well, but the practitioners’ notion of risk is not equivalent to that of 
analytical models used in academia (see Magni 2009c). 
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(MM-I) The capital structure of a perpetual firm is irrelevant or, equivalently, the firm value is 

constant under changes in the debt/equity ratio: 

 𝑟𝐿 = 𝑥v0𝐿 = 𝑥v0𝑈 = 𝑟𝑈 = 𝑟. (46) 

(MM II) Given 𝑟𝑈 and 𝑟𝑑 , the  equity cost of capital increases linearly with the  debt-to-equity ratio:  

 𝑟𝑒 = 𝑟𝑈 + (𝑟𝑈 − 𝑟𝑑) 𝐷0𝐸0 . (47) 

The above equation has also the important interpretation according to which the unlevered cost of 

capital is a weighted average cost of capital (wacc): 

 𝑟𝑈 = 𝑟𝑒𝐸0 + 𝑟𝑑𝐷0𝐸0 + 𝐷0  (48) 

(Dividend Irrelevance) If  the firm is unlevered, and 𝑒𝑡 denotes the equity cash flow, then 

 v𝑡𝑈 = v𝑡+1𝑈 + 𝑒𝑡+11 + 𝑟𝑡+1𝑒 = v𝑡+1𝑈 + 𝑒𝑡+1 + ℎ𝑡+11 + 𝑟𝑡+1𝑒  
(49) 

for all 𝑡 ∈ ℕ ∪ {+∞} and  ℎ𝑡 > 0. 
 

The AIRR framework enables rewriting and generalizing all MM results allowing for time-variant 

rates, 𝑟𝑡, 𝑟𝑡𝑒 , 𝑟𝑡𝑑  and for finite-lived assets. Let �̅�𝑡𝑈 be the expected return on unlevered assets; hence, 

the firm’s value at time 𝑡 is such that v𝑡𝑈 = v𝑡−1𝑈 (1 + �̅�𝑡𝑈) − 𝑥𝑡 where 𝑥𝑡 is the time-𝑡 FCF, 𝑡 ∈ N𝑛1 . At 

the same date, the equity market value and the market value of debt are such that 𝐸𝑡 = 𝐸𝑡−1(1 +𝑟𝑡𝑒) − 𝑒𝑡 and 𝐷𝑡 = 𝐷𝑡−1(1 + 𝑟𝑡𝑑) − 𝑑𝑡 , where 𝑑𝑡 denotes the cash flow to debt. Using the equality 𝑥𝑡 = 𝑒𝑡 + 𝑑𝑡, no-arbitrage pricing implies v𝑡𝑈 = v𝑡𝐿 = 𝐸𝑡 + 𝐷𝑡 for every 𝑡 ∈ 𝑁𝑛0 and v𝑡𝑈 = v𝑡𝐿 =𝐸𝑡−1(1 + 𝑟𝑡𝑒) − 𝑒𝑡 + 𝐷𝑡−1(1 + 𝑟𝑡𝑑) − 𝑑𝑡 for every 𝑡 ∈ N𝑛1 . Imposing Chisini’s invariance requirement 
on v𝑡𝐿 = v𝑡𝐿(𝑟𝑡𝑒 , 𝑟𝑡𝑑) one finds �̅�𝑡𝐿 = 𝑟𝑡𝑒𝐸𝑡−1+𝑟𝑡−1𝑑 𝐷𝑡−1𝐸𝑡−1+𝐷𝑡−1 . This implies v𝑡𝐿 = v𝑡−1𝐿 (1 + �̅�𝑡𝐿) − 𝑥𝑡 and �̅�𝑡𝐿 = �̅�𝑡𝑈 = �̅�𝑡 is invariant under changes in the capital structure. Now, the market value of the overall 

shareholder return is 𝑅𝑒 = ∑ 𝑟𝑡𝑒𝑛𝑡=1 𝐸𝑡−1𝑑𝑡,0𝑒  where 𝑑𝑡,0𝑒 = ∏ (1 + 𝑟𝑘𝑒)−1𝑡𝑘=1 , while the market value of 

the debtholders’ interest is 𝑅𝑑 = ∑ 𝑟𝑡𝑑𝑛𝑡=1 𝐷𝑡−1𝑑𝑡,0𝑑  where 𝑑𝑡,0𝑑 = ∏ (1 + 𝑟𝑘𝑑)−1𝑡𝑘=1 . Imposing Chisini’s 
invariance requirement upon both 𝑅𝑒 = 𝑅𝑒(𝑟1𝑒 , 𝑟2𝑒 , … , 𝑟𝑛𝑒) and 𝑅𝑑 = 𝑅𝑑(𝑟1𝑑 , 𝑟2𝑑 , … , 𝑟𝑛𝑑) one gets the 

expected return on equity, 𝜌 ̅𝑒 = 𝑅𝑒/𝐸 where 𝐸 = ∑ 𝐸𝑡−1𝑑𝑡−1,0𝑒𝑛𝑡=1  and the expected return on debt, �̅�𝑑 = 𝑅𝑑/𝐷, where 𝐷 = ∑ 𝐷𝑡−1𝑑𝑡−1,0𝑑𝑛𝑡=1 . Analogously, 𝑅 = ∑ �̅�𝑡v𝑡−1𝑑𝑡,0𝑛𝑡=1  is the stakeholders’ 
(equityholders+debtholders) return, where 𝑑𝑡,0 = ∏ (1 + �̅�𝑡)−1𝑛𝑡=1 . Imposing Chisini’s invariance 
requirement upon 𝑅 = 𝑅(�̅�1, �̅�2, … , �̅�𝑛) one gets the average wacc: �̅� = 𝑅/v𝑈 where v𝑈 =∑ v𝑡−1𝑈 𝑑𝑡−1,0𝑛𝑡=1 . However, v𝑡𝑈 = v𝑡𝐿 = 𝐸𝑡 + 𝐷𝑡 in every period, and 𝑅 = 𝑅𝑒 + 𝑅𝑑 , so that v𝑈 = 𝐸 +𝐷 

and 

 𝑅v𝑈 = 𝑅v𝐿 = �̅� 
(50) 

which generalizes  (MM-I). Also, �̅�v𝑈 = �̅�𝑒𝐸 + �̅�𝑑𝐷 whence 

 �̅� = �̅�𝑒𝐸 + �̅�𝑑𝐷 𝐸 + 𝐷         or     �̅�𝑒 = �̅� + (�̅� − �̅�𝑑)𝐷𝐸  (51) 

which generalizes (MM-II).  

 As for the dividend irrelevance theorem, consider that MM treat the case where ℎ𝑡 > 0 for 

every 𝑡, that is, dividends are greater than FCFs, 𝑥𝑡 (= 𝑒𝑡), while a more general definition of 

dividend irrelevance includes the case where ℎ𝑡 > 0, that is, FCFs are not entirely distributed (see De 

Angelo and De Angelo 2006, 2007). In the former case, financing is needed to raise funds, in the latter 

case projects must be chosen where the excess cash retained is invested. Therefore, dividend 



39 

 

irrelevance means that current stockholders’ wealth does not change if and only if the use of extra 

funds ℎ𝑡 ∈ ℝ is value-neutral. Stated equivalently, it says that dividend policy is irrelevant if the full 

present value of FCF is distributed to shareholders (see also De Angelo and De Angelo 2006, 2007, 

Magni 2010d). As v0𝑈 = v0𝑈(ℎ⃗⃗) = ∑ (𝑥𝑡 + ℎ𝑡)𝑑𝑡,0∞𝑡=1 , we can reframe the thesis as v0𝑈(ℎ⃗⃗) = v0𝑈(0⃗⃗) for 

every ℎ⃗⃗ ∈ ℝ𝑛, 𝑛 ≤ ∞, which implies v0𝑈(ℎ⃗⃗) − v0𝑈(0⃗⃗) = ∑ ℎ𝑡𝑑𝑡,0𝑛𝑡=1 = 0 (Magni 2010d. p. 235). This 

means that dividend policy irrelevance holds if and only if ℎ⃗⃗ is an equilibrium asset. We then apply 

the AIRR approach to ℎ⃗⃗. Its value, denoted as 𝑧𝑡, is such that 𝑧𝑡 = 𝑧𝑡−1(1 + 𝑖𝑡) − ℎ𝑡 . Owing to the 

product structure, one gets ∑ ℎ𝑡𝑑𝑡,0𝑛𝑡=1 = 𝑍 ⋅   (𝑖(̅𝑍) − �̅�(𝑍)). Therefore, dividend irrelevance means 

 𝑖(̅𝑍) = �̅�(𝑍) for every ℎ⃗⃗. (52) 

This means that, under the assumptions made, the average expected return on the extra asset ℎ⃗⃗, 𝑖(̅𝑍), 
is equal to its average COC, �̅�(𝑍). (Note that 𝑖𝑡 = 𝑟𝑡 is a sufficient but not necessary condition for (52) 

to hold.) 
 

 As seen in section 4, whenever the equilibrium rates are time-variant, the COC changes under 

changes in the capital stream. While �̅� = (∑ 𝑟𝑡v𝑡−1𝑑𝑡,0𝑛𝑡=1 )/(∑ v𝑡−1𝑑𝑡−1,0𝑛𝑡=1 ) is the mean return of the 

equilibrium asset 𝑃v0 , with cash-flow stream (−v0, 𝑥1, 𝑥2, … , 𝑥𝑛), the rate �̅� = (∑ 𝑟𝑡𝑐𝑡−1𝑑𝑡,0)𝑛𝑡=1 /(∑ 𝑐𝑡−1𝑑𝑡−1,0𝑛𝑡=1 ) is the mean return of an equilibrium asset 𝑃∘ whose cash-flow stream is �⃗� = (𝑥0, 𝑥1∘, 𝑥2∘ , … , 𝑥𝑛∘ ), which is unambiguously associated with 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) (see Remark 4.2). 

For capturing economic profitability of a project 𝑃 the rate of return 𝑖 ̅should be compared with �̅�, not �̅� (see eq. (18)). Like �̅� in (51), the rate �̅� can be itself decomposed into average cost of equity and 

average cost of equity, so that �̅� = (�̅�𝑒𝐶𝑒 + �̅�𝑑𝐶𝑑)/(𝐶𝑒 + 𝐶𝑑), with obvious meaning of the symbols 

(see Magni 2015a for details). Researchers may be interested in investigating the relation between 

time-variant equilibrium rates, 𝜌𝑡, and time-variant disequilibrium rates 𝑟𝑡, and use the AIRR 

paradigm to provide further insights on the relations among values, rates, and the effect of capital 

structure on value creation and rates of return, as well as the relations between dividend policy and 

rates of return. 

11. Insights for future research (III): The quest for a capital valuation theory and the 

empirical perspective 

Projects and firms are entities that cannot be formally described by a mere sequence �⃗� of cash flows. 

Economically, they are described by a set of actions undertaken by the investors, a set of economic 

transactions involving several different subjects (managers, shareholders, employees, customers, 

providers, government etc.) and a collections of tools that are necessary to undertake the actions and 

make the transactions. Formally, this description is best captured by the relations among capital (𝑐), 

rate of return (𝑖), and cash flow (�⃗�), which are connected by the recursive identity 𝑐𝑡 = 𝑐𝑡−1(1 + 𝑖𝑡) −𝑥𝑡. A new definition of project is naturally derived. 
 

Definition 7 (project)  A project is a triplet (𝑐, 𝑖, �⃗�) = (𝑐0, … , 𝑐𝑛−1; 𝑖1, 𝑖2, … , 𝑖𝑛; 𝑥0, 𝑥1, … , 𝑥𝑛) of capital 

amounts, rates of returns, cash flows (with 𝑐0 = −𝑥0). 
 

It is then no wonder that the notion of rate of return depends on capital valuation: One has to “account” for capital. Penman (2010, p. 111) makes essentially the same point: “[rate of return] can 
only be observed by doing some accounting; it is a product of the accounting employed to measure it.” To compute the appropriate rate of return, one must specify the value of the capital amounts, and 

there is no single way to determine the capital stream. This insight was anticipated by Vatter (1966) 

sixty years ago: “unless capital recovery process is specified, there is no single way to measure the annual productivity of the investment” (Vatter, 1966, p. 687). This evidently calls for a theory of 

capital valuation capable of associating the proper capital stream with the asset under consideration. 
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 The underdetermination of the rate of return has then two sides. On one side, without 

determining the capital, there cannot be a rate of return. And the determination of of capital cannot 

be determined automatically from a mathematical (i.e., deductive) procedure: It is an economic issue 

and a case-specific and purpose-specific one, in the sense that it depends on  (i) the investor’s 
economic milieu, (ii) the implied economic transactions, (iii) the purpose of the analysis, (iv) the 

available information set, (v) the estimation tools, (vi) the subjective preferences, (vii) the piece(s) of 

information required. 
 

In other words, the choice of capital values (and, therefore, 𝐶) involves value judgment. Any 

reluctance to make value judgments will prevent the achievement of the appropriate/correct 

economic rate of return. The AIRR approach stimulates the evaluator to make an informed choice of 

the appropriate depreciation class.  On the basis of the above mentioned (and, possibly, other) 

features, a capital valuation theory, yet-to-be developed, should be capable of helping the analyst 

select the appropriate depreciation class.  
 

For example, as seen in section 8, book-value depreciation (and, therefore, AROA) seems to be 

compelling for capital investments, corporate projects, project financing transactions, where pro 

forma financial statements are available (see Magni 2013a, Bosch-Badia et al. 2014, Magni 2015a, 

Mørch et al. 2016) or for capturing a firm’s economic profitability in a given interval of time (see also 

Magni and Peasnell 2012, 2015), for which accounting data are often available. In these cases, the use 

of the IRR is erroneous, for it is associated with a depreciation class [𝐶𝜎] which negates the 

depreciation class [𝐵] which has been used for deriving the prospective cash flows. So, an IRR 

paradox is that it does depend on the pro forma book values but they are then denied with the 

assumption that the capital depreciation is 𝑐(𝜎) (or an equivalent one in [𝐶𝜎]). 
 

The EAIRR is best suited in those situations where a market-implied rate of return is sought and the 

market is considered efficient. It is also useful when no explicit information is available on the capital 

stream and only cash flows are available (e.g., Magni 2013a; Magni 2014a; Barry and Robison, 2014, 

Bosch-Badia et al., 2014, Jiang 2017) or when goal congruence is an issue for managerial 

performance evaluation (Lindblom and Sjögren, 2009). 
 

In the above situations and in all those situations where market values are relevant but are not 

available, the RP-AIRR may also be used: The benchmark portfolio’s capital can be viewed as a proxy 
for the project true market value (see Altshuler and Magni 2015). Jiang’s (2017) AIRR on time-scaled 

contribution, along with the proposed decomposition process, provides useful information about 

return on time-scaled net contribution. 
 

The SL-AIRR is, in depreciation terms, opposite to the IRR, in that it represents a linear depreciation 

as opposed to an exponential appreciation. The former is sometimes a more acceptable assumption. 

Further, unlike the IRR, the assumption of linear depreciation makes the SL-AIRR unique (so no problem arises of choosing a ‘relevant’ SL-AIRR) and enjoys a much more robust NPV-consistency 

than the IRR, as previously seen.  
 

IC-AIRR and TC-AIRR are useful whenever the analyst aims at measuring the economic profitability 

of an asset as per unit of initial investment or total contribution, respectively. IC-AIRR enjoys strong 

NPV-consistency as well as SL-AIRR.  
 

The use of the dual Hotelling depreciation and the dual AIRR might be advantageous in those cases 

where the capital values change sign, so signaling periods where funds are invested into the project 

and periods where funds are subtracted from the project. As seen, this makes it possible to 

decompose the economic value created into investment NPV and financing NPV, and therefore 
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accomplish a more sophisticated analysis than the traditional NPV analysis (see also Magni 2014a, 

2015a). 
 

The use of the DA-AIRR is advisable if the internal vector is a multiple of the market vector: 𝑖 = 𝑒𝛼 ⋅ 𝑟 = (1 + 𝑎) ⋅ 𝑟.  
 

As seen in section 8, the MV-AIRR is particularly compelling for financial investments and real estate 

investments (see Altshuler and Magni 2012) and, in general, for any cash-flow stream that is not 

derived from pro forma financial statements. 
 

Other AIRRs will entail different assumptions on capital depreciation and it is even possible to blend 

different depreciation classes for various purposes (e.g. see the blended EAIRR in Cuthbert and 

Magni 2016, used for Private Financial Initiatives). And if only some values are known, while others 

are unknown, they can be interpolated in various ways (see Magni 2014b, Jiang 2017).  Even the IRR 

benefits from the AIRR approach in case of time-variant COCs (see Magni 2013a, pp. 105-107, Magni 

2014b, section 6. See also Pressacco et al. 2014, Danielson 2016). 
 

On the other side, underdetermination unfolds a cornucopia of measures of worth: The analyst 

can rest on a powerful toolkit of rates of return, since he is left free to choose one or more values for 𝐶 and, therefore, one or more rates of return. Any such choice represents a different financial 

description of the same project. The AIRR approach stimulates the investigation of (i) the economic 

meaning of each possible choice of 𝐶, (ii) the pieces of information that can be derived from each 

choice, (iii) the corresponding financial interpretations of each choice (lending vs. borrowing), (iv) 

the informational content of each choice, (v) the domain and range of applicability of each choice. 
 

From this point of view, the AIRR may be viewed as a descriptive theory of rate of return, not a 

normative one.  It does not define (i.e., impose) a rate of return for a cashflow stream, but lets rates of 

return depend on the choice of the decision maker/analyst. Empirical evidence supports the idea 

that real-life different decision makers choose and use different metrics/rates of return for analyzing 

an investment (Remer and Nieto 1995a,b, Graham and Harvey 2001, Sandahl and Sjögren, 2003, 

Slagmulder et al., 1995; Hahn and Kuhn, 2012) and that various metrics are often used for the same 

project (Remer et al., 1993; Lefley,1996; Lindblom and Sjögren, 2009). This is consistent with the 

AIRR approach, which might then be considered  the theoretical support for such an empirical 

evidence.  
 

Evidently, an intrinsic tension and potential conflict may exist in the quest for a capital valuation 

theory, intrinsically aimed at narrowing the set of rates of return (more specifically, picking up a 

singleton containing the ‘relevant’ or ‘correct’ rate of return) and the fact that multiple rates of return 

expand the options and provide the analysts with different (but not mutually exclusive) pieces of 

information that enrich the economic analysis. In section 8 we have argued that, for practitioners, 

three AIRRs deserve a preferential status: If a project’s capital depreciation is explicitly determined 

(so that the cash-flow stream is drawn from pro forma financial statements), the AROA is relevant 

rate of return. In all other cases, the  relevant rate of return is the MV-AIRR or, if market values are 

not known, the RP-AIRR (see Table 12). 

Concluding remarks 

The AIRR approach, introduced in 2010, is a theoretical paradigm that unifies the concept of rate of 

return while at the same time extending the number of rates of return available for an economic 

transaction. A rate of return is underdetermined by cash flows, so while a unique return (AIRR) 

function exists for any project, a rate of return is fleshed out if and only if a depreciation pattern for 

the capital is selected. More precisely, the return function maps depreciation classes (or capital 

streams, if COC is time-variant) into rates of return. Consideration of the capital value is then 
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essential for activating a rate of return.  Thanks to the notion of Chisini mean, we show that a multiperiod project’s rate of return is the capital-weighted average of the various period rates and, as 

such, it is a ratio of total income to total capital, coherently with the function of “rate of growth” it is 
supposed to serve. We showed that the venerable IRR belongs to the class of AIRRs, which means 

that IRR is not a constant rate but an average of (generally time-variant) period rates generated by a 

Hotelling depreciation class that includes infinitely many depreciation schedules. In many cases, the 

Hotelling class is not appropriate for it contradicts the cash flow estimates. The MIRR is itself a 

special case of AIRR, as well as the average accounting rate of return, the shareholder rate of return, 

the project investment rate (project financing rate) of a mixed project  and many (indeed, all) rate-of-

return metrics.  
 

The AIRR framework is NPV-consistent, and the NPV itself can be viewed as a size-scaled excess rate 

of return. However, AIRR enables a more refined economic analysis than NPV: Economic profitability 

depends on both investment size and project efficiency and the AIRR approach enables the evaluator 

to decompose economic profitability into investment size (total capital invested) and  efficiency 

(excess AIRR). The same NPV can be found with either a small investment size and a high rate of 

return or a small rate of return and a high investment size.  Also, unlike a traditional NPV analysis, 

the AIRR analysis enables understanding whether value is created because funds are invested at a 

rate of return which is higher than the COC or, rather, because funds are borrowed at a financing rate 

which is smaller than the COC. The role of equity and debt in value creation can also be assessed by 

the AIRR approach. 
 

The  AIRR paradigm does not merely solve all the problems incurred by the IRR, but re-defines the 

notion of rate of return, and sheds lights on the strict link between the notions of capital and rate of 

return, and, therefore, the link among economics, finance, and accounting. The AIRR model is 

extremely flexible and can manage disparate instances of projects, either real assets or financial 

portfolios, either in ex ante settings or ex post ones.  It naturally illustrates and generalizes MM’s 
findings in a rate-of-return perspective. Future researches may be addressed to investigating the link 

between a rate of return and the capital structure, and the effect of dividend policy on rates of return. 

Also, a more reliable definition of NPV consistency is introduced in this paper which will hopefully 

stimulate research on the subset of AIRRs that possess it and the degree of NPV-inconsistency of 

those which do not possess it. Finally, a capital valuation theory will help analysts to choose among 

different capital depreciation patterns and pick up an appropriate rate of return for each project, 

with the understanding that multiple rates of return can be (and are often) used in practice, for they 

refine the economic analysis by supplying different pieces of economic information. 

Acknowledgments. The author wishes to thank Joseph Hartman, Gordon Hazen, Ken Peasnell, 

Lorenzo Peccati for their feedback and comments on the paper. The usual disclaimer applies. The 

author also wishes to thank Atsushi Kajii and  Roman Slowinski for their professional competence 

and academic integrity as editors. 

 

 

 

 



43 

 

 

 

 

 

 

References 

Altshuler D., Magni C.A. 2012. Why IRR is not the rate of return on your investment: Introducing the 
 AIRR to the Real Estate community. Journal of Real Estate Portfolio Management, 18(2), 219-230. 
Altshuler D., Magni C.A. 2015. Introducing Aggregate Return on Investment as a solution to the 
 contradiction between some PME metrics and IRR. Journal of Performance Measurement, 20(1) 
 (Fall), 48-56. 
Anthony R.N. 1975. Accounting for the Cost of Interest. D.C. Heath and Company, Lexington, MA. 
Arrow K. J., Levhari D. 1969. Uniqueness of the internal rate of return with variable life of investment. The 

 Economic Journal, 79, 560-566. 
Athanasopoulos P.J. 1978. A note on the modified internal rate of return and investment criterion. The 

 Engineering Economist, 23(2), 131-133. 
Aucamp, D.L, Eckardt, W.L. 1976. A sufficient condition for unique nonnegative internal rate of return: 
 Comment. Journal of Financial and Quantitative Analysis, 11, 329-332. 
Bailey M.J. 1959. Formal criteria for investment decisions. Journal of Political Economy, 67 (October), 476-488.  
Baldwin R.H. 1959. How to assess investment proposals. Harvard Business Review, 37(3) (May-June), 98-99. 
Barry P.J., Robison L.J. 2014. Technical note: Economic rates of return and investment analysis. The 

 Engineering Economist, 59(3), 231-236. 
Becker T. 2013. Measuring performance in the presence of deposits and withdrawals. Journal of  Performance 

 Measurement, 18(2) (Winter 2013/2014) 14-21. 
Berk J., DeMarzo P. 2014. Corporate Finance, Global Edition (3rd edition). Pearson, Harlow, UK.  
Bernhard R.H. 1979. A more general sufficient condition for a unique internal rate of return. Journal of 

 Financial and Quantitative Analysis, 14, 337-341. 
Bernhard R.H. 1980. A simplification and an extension of the Bernhard-De Faro sufficient condition for a 
 unique non-negative internal rate of return. Journal of Financial and Quantitative Analysis, 15(1), 201-
 209. 
Bidard, C. 1999. Fixed capital and internal rate of return. Journal of Mathematical Economics, 31, 523-541. 
Bierman H., Hass J. E. 1973. Capital budgeting under uncertainty: A reformulation, Journal of Finance, 28, 119-
 29. 
Biondi, Y. 2006. The double emergence of the Modified Internal Rate of Return: The neglected financial 
 work of Duvillard (1755 – 1832) in a comparative perspective. The European Journal of the History of 

 Economic Thought, 13(3), 311-335. 
Blank L., Tarquin, A. 2012. Engineering Economy. Seventh ed. McGraw-Hill Irwin, New York. 
Blank L., Tarquin A. 2014. Basics of Engineering Economy. Second ed. International Edition. McGraw-Hill, New 
 York. 
Borgonovo E. 2010a. Sensitivity analysis with finite changes: An application to modified EOQ models. 
 European Journal of Operational Research, 200, 127-138. 
Borgonovo E. 2010b. A Methodology for determining interactions in probabilistic safety. Assessment 
 models by varying one parameter at a time. Risk Analysis, 30 (3), 385-399. 
Borgonovo E., Apostolakis G. E. 2001. A new importance measure for risk-informed decision-making. 
 Reliability Engineering and System Safety, 72 (2), 193-212. 
Borgonovo E., Peccati L. 2004. Sensitivity analysis in investment project evaluation. International Journal of 

 Production Economics, 90, 17-25.  
Borgonovo E., Peccati L. 2006. The importance of assumptions in investment evaluation. International 

 Journal of Production Economics, 101, 298–311.  
Borgonovo E., Plischke E. 2016. Sensitivity analysis: A review of recent advances. European Journal of 

 Operational Research, 248(3), 869-887. 
Bosch M.T., Montllor-Serrats J., Tarrazon M.A. 2007. NPV as a function of the IRR: The value drivers of 
 investment projection, Journal of Applied Finance 17(2) (Fall/Winter), 41-45. 

http://papers.ssrn.com/abstract=1825544
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2598759
http://www.tandfonline.com/loi/rejh20?open=13#vol_13


44 

 

Bosch-Badia M.T., Montllor-Serrats J., Tarrazon-Rodon M.A. 2014. Capital budgeting and shareholders’ 
 value: Investment projects versus courses of action. The Engineering Economist , 59, 207-230. 
Boulding, K.E. 1935. The theory of the single investment, Quarterly Journal of Economics, 49, 475-494. 
Boulding, K.E. 1936. Time and investment: A reply, Economica, 3(12) (November), 440-442. 
Brealey R.A., Myers S., Allen F. 2011. Principles of Corporate Finance, Global Edition. McGraw-Hill Irwin, 
 Singapore.  
Brief R., Peasnell K.V., (Eds.), 1996. Clean Surplus: A Link Between Accounting and Finance. Garland,  New York. 
Bring J. 1994. How to standardize regression coefficients. The American Statistician, 48(3)(August), 209-213. 
Broverman S.A. 2008. Mathematics of Investment and Credit. Fourth edition. Winstex, Connecticut:  ACTEX 
 Publications. 
Burmeister E. 1974. Synthesizing the neo-Austrian and alternative approaches to capital theory: A survey. 
 Journal of Economic Literature, 12, 413-456 
Cannaday R., Colwell P.F., Paley H. 1986. Relevant and irrelevant rates of return. The Engineering Economist, 
 32(1), 17-38. 
Cantor D.G., Lippman S.A. 1983. Investment selection with imperfect capital markets. Econometrica, 
 51(4), 1121-1144. 
Cantor D.G., Lippman S.A. 1995. Optimal investment selection with a multitude of projects.  Econometrica, 
 63(5) (September), 1231-1240. 
Chisini O. 1929. Sul concetto di media [On the concept of mean]. Periodico di Matematiche, 4, 106-116. 
Chiu S.S., Garza Escalante E.F. 2012. A companion for NPV: The generalized relative rate of return. The 

 Engineering Economist, 57, 192-205. 

Coase R.H. 1968. The nature of costs. In: Solomons, D. (Ed.), Studies in Cost Analysis, second ed. Sweet & 
 Maxwell, London. 
Colwell P. 1995. Solving the dual IRR puzzle. Journal of Property Management, March/April, 60-61. 
Cuthbert J.R., Magni C.A. 2016. Measuring the inadequacy of IRR in PFI schemes using profitability index and 
 AIRR. International Journal of Production Economics, 179 (September), 130-140. 
Danielson M. 2016. The IRR of a project with many potential outcomes. The Engineering Economist, 61(1), 44-
 56. 
DeAngelo H., DeAngelo L. 2006. The irrelevance of the MM dividend irrelevance theorem, Journal of  Financial 

 Economics, 79(2), 293-315. 
DeAngelo H., DeAngelo L. 2007. Payout policy pedagogy: What matters and why, European Financial 

 Management, 13(1), 11-27. 
De Faro C. 1978. A sufficient condition for a unique non-negative internal rate of return: Further comment. 
 Journal of Financial and Quantitative Analysis, 13, 577-584. 
de Finetti B. 1931. Sul concetto di media [On the Concept of Mean]. Giornale dell'Istituto Italiano degli Attuari, 
 2, 369-396. 
Dorfman R. 1981. The meaning of internal rates of return. The Journal of Finance, 36(5) (December), 
 1011-1021. 
Drukarczyk J., Schueler A. 2000. Approaches to value-based performance measurement. In: G. Arnold, M. 
 Davies (Eds.), Value-based Management: Context and Application. John Wiley & Sons, Chichester, 
 UK. 
Duhem P. 1914. La théorie physique: son object et sa structure. Paris: Marcel Rivière. 
Eatwell J. 1975 A note on the truncation problem. Kyklos, 28(4), 870-875. 
Feenstra D.W., Wang H. 2000. Economic and accounting rates of return. Research Report 00E42, University  of 
 Groningen, Research Institute SOM (Systems, Organisations and Management). Available at: 
 <http://www.rug.nl/research/portal/files/3138080/00E42.pdf!null>  
Fernández P. 2002. Valuation Methods and Shareholder Value Creation. Elsevier Science, San Diego,  CA. 
Fisher, I. (1930) The Theory of Interest. MacMillan, New York. Reprinted by Augustum M. Kelley: Clifton, NJ, 
 1974. 
Fisher F.M., McGowan J.J. 1983. On the misuse of accounting rates of return to infer monopoly profits. 
 American Economic Review, 73(1) (March), 82–97. 
Flemming J.S, Wright J.F. 1971 Uniqueness of the internal rate of return: A generalization. The Economic 

 Journal, 81, 256-262. 
Ghiselli Ricci R., Magni C.A. 2014. Axiomatization of residual income and generation of financial 
 securities. Quantitative Finance, 14(7), 1257‒1271. 
Gordon L.A. 1974. Accounting rate of return vs. economic rate of return. Journal of Business Finance  & 

 Accounting, 1(3), 343–356. 
Gordon L.A., Stark A.W. 1989. Accounting and economic rates of return: A note on depreciation and  other 
 accruals. Journal of Business Finance & Accounting, 16(3) (Summer), 425-432.  

http://www.sciencedirect.com/science/article/pii/S0925527316300949
http://www.rug.nl/research/portal/files/3138080/00E42.pdf!null
http://papers.ssrn.com/abstract=1372371


45 

 

Gow I., Reichelstein S. 2007. Capital Budgeting: The Role of Cost Allocations. Operations Research Proceedings 

 2006, 115-121. 
Graham J.R., Harvey C.R. 2001.The theory and practice of corporate finance: Evidence from the field. Journal of 

 Financial Economics, 60,187-243.  
Graziani R., Veronese P. 2009. How to compute a mean? The Chisini approach and its applications. The 

 American Statistician, 63, 33-36. 
Gredil O., Griffiths B., Stücke 2014. Benchmarking Private Equity, the Direct Alpha method. SSRN Working 
 Paper, <http://ssrn.com/abstract=2403521>. 
Griffiths B. 2009. Estimating Alpha in Private Equity, in O. Gottschalg (Ed.), Private Equity Mathematics, PEI 
 Media. 
Gronchi S. 1984/1987.  Tasso di rendimento e valutazione dei progetti [IRR and project evaluation]. Franco 
 Angeli,  Milano. 
Gronchi S. 1986. On investment criteria based on the Internal Rate of Return. Oxford Economic Papers, 
 38(1) (March), 174-180. 
Guerra M.L., Magni C.A., Stefanini L. 2012. Average rate of return with uncertainty, Advances in 

 Computational Intelligence, part IV, Berlin-Heidelberg: Springer-Verlag, pp. 64-73,  Proceedings 

 of 14th International Conference on Information Processing and Management of Uncertainty in 

 Knowledge-Based Systems (IPMU 2012), Catania, July 9-13. 
Guerra M.L., Magni C.A., Stefanini L. 2014. Interval and fuzzy Average Internal Rate of Return for investment 
 appraisal, Fuzzy Sets and Systems, 257, 217-241. 

Hahn G.J., Kuhn H. 2012. Value-based performance and risk management in supply chains: A robust 
 optimization approach. International Journal Production Economics,139,135-144. 
Harcourt G.C. 1965. The accountant in a golden age. Oxford Economic Papers, 17(1) , 66-80. 
Hartman J.C. 2007. Engineering Economy and the Decision-making Process. Pearson, Upper Saddle River, NJ. 
Hartman J.C., Schafrick I.C. 2004. The relevant internal rate of return. The Engineering Economist, 
 49(2), 139-158. 
Hazen G.B. 2003. New perspective on multiple Internal Rates of Return. The Engineering Economist,  48(1), 31-
 51. 
Helton J.C. 1993. Uncertainty and sensitivity analysis techniques for use in performance assessment for 
 radioactive waste disposal. Reliability Engineering and System Safety, 42, 327-367. 
Herbst A.F. 1978. The unique, real internal rate of return: Caveat emptor. Journal of Financial and Quantitative 

 Analysis, 13, 363-370. 
Herbst A.F. 2002. Capital Asset Investments: Strategy, Tactics and Tools. John Wiley & Sons, Chichester, UK. 
Hicks J.R. 1970. Capital and Time. London, Oxford Economic Press. 

Hirshleifer J. 1958. On the theory of optimal investment decision. Journal of Political Economy, 
 66(4), 329-352. 
Hotelling H. 1925. A general mathematical theory of depreciation. Journal of the American Statistical 

 Association, September, 27-38. Reprinted in Brief R.P. (Ed.), 1984. Depreciation and Capital 

 Maintenance. Garland Publishing, New York , pp. 15-29. 
Howe K. M. 1991. Perpetuity rate of return analysis. The Engineering Economist, 36(3), 248-257. 
Jean W.H. 1968. On multiple rates of return. Journal of Finance, 23 (March), 187-191. 
Jiang Y. 2017. Introducing Excess Return on Time-scaled Contributions: An intuitive return measure and new 
 solution to the IRR and PME problem. The Journal of Alternative Investments, forthcoming. 
Kaplan S. 1965. A note on a method for precisely determining the uniqueness or non-uniqueness of  the 
 internal rate of return for a proposed investment. The Journal of Industrial Engineering, 16,  70-71. 
Kaplan S. 1967. Computer algorithms for finding exact rates of return. Journal of Business, 40, 389-392. 
Karmel P.H. 1959. The marginal efficiency of capital. Economic Record, 35, 429-434. 
Kay J.A. 1976. Accountants, too, could be happy in the golden age: The accountants rate of profit and the 
 internal rate of return. Oxford Economic Papers, 28(3) (November), 447-460. 
Kay J.A., Mayer C.P. 1986. On the applications of accounting rates of return. The Economic Journal, 96 
 (March), 199-207. 
Kellison S.G. 2009.  The Theory of Interest. McGraw-Hill Irwin, New York, NY. 
Keynes, J.M. 1936/1967. The General Theory of Employment, Interest and Money. Palgrave MacMillan, 
 London. 
Kirshenbaum P.S. 1965. A resolution of the multiple rate-of-return paradox. The Engineering Economist, 
 10(1), 11-16. 
Kierulff H. 2008. MIRR: A better measure. Business Horizons, 51, 321-329. 
Krugman P. 1979. A model of balance-of-payments crises. Journal of Money, Credit, and Banking, 11(3) 
 (August), 311-325. 

http://ssrn.com/abstract=2403521
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2080250


46 

 

Kulakov N.Y., Kulakova A.N. 2013. Evaluation of nonconventional projects. The Engineering Economist, 58(2), 
 137-148. 
Lefley F. 1996. The payback method of investment appraisal: A review and synthesis. International Journal of 

 Production Economics, 44(3), 207-224.  
Lefley F. 2015. The FAPM model and its Application in the Appraisal of ICT projects. Palgrave  Macmillan, 
 London. 
Lerner A.P. 1943. User cost and prime user cost, American Economic Review, 33 (1), 131-32. 
Lin A.Y.S. 1976. The modified internal rate of return and investment criterion. The Engineering Economist, 
 21(4), 237-247. 
Lindblom T., Sjögren S. 2009. Increasing goal congruence in project evaluation by introducing 
 a strict market depreciation schedule. International Journal of Production Economics, 121(2), 
 519-532. 
Livingstone J.L., Salamon G.L. 1970. Relationship between the accounting and the internal rate of return 
 measures: A synthesis and an analysis. Journal of Accounting Research, 8(2) (Autumn), 199-216. 
Long A. M. III, Nickels, C.J. 1996. A Private Investment Benchmark, AIMR Conference on Venture Capital 

 Investing, <http://dns1.alignmentcapital.com/pdfs/research/icm_aimr_benchmark_1996.pdf>. 
Lorie J. and Savage L.J. 1955. Three problems in capital budgeting. Journal of Business, 28, 229-239. 
Luckett P.F. 1984. ARR vs. IRR: A review and an analysis. Journal of Business Finance & Accounting, 11(2) 
 (Summer), 213–231. 
Magni C.A. 2000. Decomposition of a certain cash flow stream: Differential systemic value and net final 
 value, Proceedings of XXIV AMASES Conference, Padenghe. <http://ssrn.com/abstract=1096213>. 
Magni C.A. 2004. Modelling excess profit, Economic Modelling, 21, 595−617. 
Magni C.A. 2005. On decomposing Net Final Values: EVA, SVA and shadow project. Theory and Decision, 59(1), 
 51-95. 
Magni C.A. 2009a. Splitting up value: A critical review of residual income theories. European Journal of 

 Operational Research, 198(1) (October), 1−22. 
Magni C.A. 2009b.  Accounting and economic measures: An integrated theory of capital budgeting.  SSRN 
 Working paper. <http://ssrn.com/abstract=1498106>. 
Magni C.A. 2009c. Investment decisions, NPV and bounded rationality. Quantitative Finance, 9(8) (December), 
 967-979. 
Magni C.A. 2010a. Average Internal Rate of Return and investment decisions: A new perspective. The

 Engineering Economist, 55(2), 150-181. 
Magni C.A. 2010b. Residual income and value creation: An investigation into the lost-capital paradigm,
 European Journal of Operational Research, 201(2) (March), 505-519. 
Magni C.A. 2010c. Depreciation classes, return on investment and economic profitability. SSRN Working 
 paper. <http://ssrn.com/abstract=1718525>  
Magni C.A. 2010d. Relevance or irrelevance of retention for dividend policy irrelevance. International 

 Review of Applied Financial Issues and Economics, 2(2), 232-247. Magni C.A. 2011a. Addendum to “Average Internal Rate of Return and investment decisions: A new 
 perspective”. The Engineering Economist, 56(2), 181-182. 
Magni C.A. 2011b. Aggregate Return On Investment and investment decisions: A cash-flow  perspective. The 

 Engineering Economist, 56(2), 181-182. 
Magni C.A. 2011c. Return On Equity, Internal Rate of Return and shareholder value creation. Proceedings of 

 EAA 2011 Annual Congress, Rome 20-22 April, European Accounting Association. Magni C.A. 2012. In search of the “lost capital”. A theory for valuation, investment decisions, performance 
 measurement. Frontiers in Finance and Economics, 9(1), 87-146. 
Magni C.A. 2013a. The Internal-Rate-of-Return approach and the AIRR paradigm: A refutation and a 
 corroboration. The Engineering Economist, 58(2), 73-111. Magni C.A. 2013b. Generalized Makeham’s formula and economic profitability. Insurance: Mathematics and 

 Economics, 53(3) (November), 747-756. 
Magni C.A. 2014a. Mathematical analysis of average rates of return and investment decisions: The missing 
 link. The Engineering Economist, 59(3), 175-206. 
Magni C.A. 2014b. Arithmetic returns for investment performance measurement. Insurance: Mathematics and 

 Economics, 55 (March), 291-300. 
Magni C.A. 2015a. Investment, financing and the role of ROA and WACC in value  creation, European 

 Journal of Operational Research, 244(3) (August), 855-866. 
Magni C.A. 2015b. Aggregate Return On Investment for investments under uncertainty, International 

 Journal of Production Economics, 165 (July), 29-37. 
Magni C.A. 2016. An average-based accounting approach to capital asset investment: The case of project 
 finance, European Accounting Review, 25(2),  275-286. 

http://dns1.alignmentcapital.com/pdfs/research/icm_aimr_benchmark_1996.pdf
http://ssrn.com/abstract=1096213
http://papers.ssrn.com/abstract=1406722
http://papers.ssrn.com/abstract=1320263
http://papers.ssrn.com/abstract=1268047
http://papers.ssrn.com/abstract=1268047
http://papers.ssrn.com/abstract=1498106
http://papers.ssrn.com/abstract=1498106
http://ssrn.com/abstract=1498106
http://papers.ssrn.com/abstract=1049541
http://papers.ssrn.com/abstract=1542690
http://papers.ssrn.com/abstract=1029680
file:///C:/Users/Carlo%20Alberto/Dropbox/Carlo%20Alberto/ARTICOLI/2016/JME/SSRN%20Working%20%09paper
file:///C:/Users/Carlo%20Alberto/Dropbox/Carlo%20Alberto/ARTICOLI/2016/JME/SSRN%20Working%20%09paper
http://ssrn.com/abstract=1718525
http://papers.ssrn.com/abstract=1027401
http://papers.ssrn.com/abstract=1027401
http://papers.ssrn.com/abstract=1542690
http://papers.ssrn.com/abstract=2335148
http://papers.ssrn.com/abstract=2335148
http://ssrn.com/abstract=1678057
http://ssrn.com/abstract=1678057
http://papers.ssrn.com/abstract=1029244
http://papers.ssrn.com/abstract=2172965
http://papers.ssrn.com/abstract=2331259
http://papers.ssrn.com/abstract=2331259
http://papers.ssrn.com/abstract=2374840
http://ssrn.com/abstract=2080775
http://ssrn.com/abstract=2080775
http://papers.ssrn.com/abstract=2560266
http://papers.ssrn.com/abstract=2560266
http://papers.ssrn.com/abstract=2335148
http://papers.ssrn.com/abstract=2335148
http://ssrn.com/abstract=2558762


47 

 

Magni C.A., Peasnell K.V. 2012. Economic profitability and the accounting rate of return. SSRN Working 
 paper, <http://ssrn.com/abstract=2027607>. 
Magni C.A., Peasnell K.V. 2015.  The term structure of capital values: An accounting-based framework for 
 measuring economic profitability. SSRN Working paper, <http://ssrn.com/abstract=2656651>. 
Mao J.C.T. 1967. Quantitative analysis of urban renewal investment decisions. Journal of Finance, 22(2) (May), 
 195-207. 
Marchioni A., Magni C.A. 2016. Sensitivity analysis and investment decisions: Consistency between NPV and 
 rates of return. Submitted. SSRN Working paper <http://papers.ssrn.com/abstract=2797685>. 
Mason S.P., Merton R.C. 1985. The roIe of contingent claims analysis in corporate finance, in E. Altman, M. 
 Subrahymanyam (Eds.), Recent Advances in Corporate Finance, Irwin, Homewood, IL. 
McMinn R.D. 2005. The Fisher Model and Financial Markets. World Scientific, Singapore. 
Miller M.H., Modigliani F. 1961. Dividend policy, growth, and the valuation of shares. Journal of Business, 34 (4), 
 411-433. 
Modigliani F., Miller M.H. 1958. The cost of capital, corporation taxes and the theory of investment,  American 

 Economic Review, 48(3), 261-297. 
Modigliani F., Miller M.H. 1963. Corporate income taxes and the cost of capital: A correction, American 

 Economic Review, 53(3), 433-443. 
Mørch O., Fagerholta K., Pantuso G., Rakkec, J. 2016. Maximizing the rate of return on the capital employed in 
 shipping capacity renewal. Omega, DOI: 10.1016/j.omega.2016.03.007. 
Newnan D.G., Eschenbach T.G., Lavelle J.P. 2009. Engineering Economic Analysis. International edition. Oxford 
 University Press, New York. 
Norstrøm C.J. 1970. Uniqueness of the Internal Rate of Return with variable life of investment: A comment. The 

 Economic Journal, 80 (December), 983-984. 
Norstrøm C.J. 1972. A sufficient condition for a unique non-negative internal rate of return. Journal of 

 Financial and Quantitative Analysis, 7(3), 1835-1839. 
Nosal E, Wang T. 2004. Arbitrage: The key to pricing options. Federal Reserve Bank of Cleveland, January 1, 1-4. 
Nuti D.M. 1973. On the truncation of production flows. Kyklos, 27(2), 345-369. 
Oakford R.V., Bhimjee S.A., Jucker, J.V. 1977. The internal rate of return, the pseudo internal rate of return, and 
 the NPV and their use in financial decision-making. The Engineering Economist, 22(3), 187-202. O’Hanlon J., Peasnell K.V. 2002. Residual income and value creation: The ‘missing link’. Review of Accounting 

 Studies, 7 (2/3), 229-245. 
Osborne M. 2010. A resolution to the NPV-IRR debate? The Quarterly Review of Economics and Finance, 50(2), 
 234-239. 
Osborne M. 2014. Multiple Interest Rate Analysis. Theory and Applications. Palgrave MacMillan UK 

Park C.S. 2013. Fundamentals of Engineering Economics. International Edition. Harlow, England: Pearson. 
Pasqual J.,  Padilla E., Jadotte E. 2013. Technical note: Equivalence of different profitability criteria with the net 
 present value. International Journal of Production Economics, 142(1) (March), 205-210. 
Peasnell K.V. 1981. On capital budgeting and income measurement. Abacus 17(1), 52-67. 
Peasnell K.V. 1982. Some formal connections between economic values and yields and accounting numbers. 
 Journal of Business Finance & Accounting 9(3), 361-381. 
Peccati L. 1989. Multiperiod analysis of a levered portfolio. Decisions in Economics and Finance 12(1), 157-
 166. Reprinted in Spronk, J., Matarazzo, B., (Eds.), 1992. Modelling for Financial Decisions. Berlin, 
 Sringer-Verlag. 
Penman S. 2010. Accounting for Value. Columbia University Press, New York. 
Percoco M., Borgonovo E. 2012. A note on the sensitivity analysis of the internal rate of return. International 

 Journal of Production Economics, 135, 526-529. 
Pfeiffer T. 2004. Net present value-consistent investment criteria based on accruals:A generalisation of the 
 residual income-identity. Journal of Business Finance & Accounting, 31(7/8), 905-926. 
Pianosi F., Beven F., Freer J., Hall J.W., Rougier J., Stephenson D.B., Wagener, T. 2016. Sensitivity analysis of 
 environmental models: A systematic review with practical workflow. Environmental Modelling & 

 Software, 79, 214-232. 
Pierru A. 2010. The simple meaning of complex rates of return. The Engineering Economist, 55(2), 105-117. 
Pike R., Neale B., Linsey P. 2012. Corporate Finance and Investment: Decisions and Strategies. Seventh edition. 
 Pearson, Harlow, UK. 
Pitchford J.D.,  Hagger A.J. 1958. A note on the marginal efficiency of capital. The Economic Journal, 68 
 (December), 597-600. 
Pratt J.W., Hammond J.S. 1977. Testing for multiple rates of return by simple arithmetic. Harvard Business 

 School Working Papers, 77-1. 
Pratt J.W., Hammond J.S. 1979. Evaluating and comparing projects: Simple detection of false alarms. The 

 Journal of Finance, 34 (December), 1231-1242. 

http://ssrn.com/abstract=2027607
http://ssrn.com/abstract=2027607
http://ssrn.com/abstract=2027607
http://ssrn.com/abstract=2656651
http://papers.ssrn.com/abstract=2797685
http://www.sciencedirect.com/science/article/pii/S0305048316300378
http://www.sciencedirect.com/science/article/pii/S0305048316300378
http://www.sciencedirect.com/science/article/pii/S0305048316300378
http://www.sciencedirect.com/science/article/pii/S0305048316300378
http://www.sciencedirect.com/science/article/pii/S0305048316300378
http://dx.doi.org/10.1016/j.omega.2016.03.007
http://www.sciencedirect.com/science/journal/09255273


48 

 

Pressacco F. , Magni C.A., Stucchi P. 2014. A quasi-IRR for a project without IRR. Frontiers in Finance and 

 Economics 11(2), 1-23. 
Promislow S.D., Spring D. 1996. Postulates for the internal rate of return of an investment project. Journal of 

 Mathematical Economics, 26(3), 325-361. 
Quine W.V. 1951. Two dogmas of empiricism, The Philosophical Review, 60, 20-43. 
Ramsey J.B. 1970 The marginal efficiency of capital, the internal rate of return, and net present value: An 
 analysis of investment criteria. Journal of Political Economy, 78(5), 1017-1027. 
Remer D.S., Nieto A.P. 1995a. A compendium and comparison of 25 project evaluation techniques. Part1: Net 
 present value and rate of return methods. International Journal of Production Economics, 42, 79-96. 
Remer D.S., Nieto A.P. 1995b.  A compendium and comparison of 25 project evaluation techniques. Part2: Ratio, 
 payback, and accounting methods. International Journal of Production Economics, 42, 101-129.  
Remer D.S., Stokdyk S.B., VanDriel M. 1993. Survey of project evaluation techniques currently used in industry. 
 International Journal of Production Economics, 32, 103-115. 
Robichek A. A., Myers, S.C. 1965. Optimal Financing Decisions. Prentice-Hall, Englewood Cliffs, NJ. 
Ross S.A., Spatt C.S., Dybvig, P.H. 1980. Present values and internal rates of return. Journal of Economic 

 Theory, 23, 66-81. 
Ross S.A., Westerfield R.W., Jordan, B.D. 2011. Essentials of Corporate Finance, 7th ed. McGraw-Hill Irwin, New 
 York. 
Rubinstein M. E. (1973) A mean-variance synthesis of corporate financial theory, Journal of Finance, 28, 167-
 182. 
Ryan P.A., Ryan  G.P. 2002. Capital budgeting practice of the Fortune 2000: How have things changed? Journal 

 of Business and Management, 8(4) (Fall), 355-364. 
Salamon G.L . 1985. Accounting rates of return. American Economic Review, 85, 75(3) (June), 495-504. 
Saltelli A., Marivoet J. 1990. Non-parametric statistics in sensitivity analysis for model output: A comparison of 
 selected techniques. Reliability Engineering & System Safety, 28, 229-253. 
Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., Tarantola S. 2008. Global 

 Sensitivity Analysis. The Primer. John Wiley & Sons. 
Samuelson P.A. (1937). Some aspects of the pure theory of capital. Quarterly Journal of Economics, 51 
 (May), 469-496. 
Sandahl G., Sjögren S. 2003. Capital budgeting methods among Sweden's largest groups of companies. The state 
 of the art and a comparison with earlier studies. International Journal of Production Economics, 84, 51-
 69. 
Schlick M. 1931. Die Kausalität in der gegenwärtigen Physik, Die Naturwissenschaften. Reprinted in M. 
 Schlick (1948) Gesetz, Kausalität und Wahrscheinlichkeit. Gerald & Co, Wien. 
Scott A.D. 1953. Notes on user cost. The Economic Journal, 63, 368-384. 
Sen A. 1975. Minimal conditions for monotonicity of capital value. Journal of Economic Theory, 11(3) 
 (December) 340-355. 
Shemin R. 2004. The Learning Annex Presents Making Money in Real Estate: A Smarter Approach, John Wiley & 
 Sons, Hoboken NJ. 
Shestopaloff Y., Shestopaloff A. 2013. Choosing the right solution of IRR equation to measure investment 
 success. Journal of Performance Measurement, (Fall), 35-50. 
Slagmulder  R., Bruggeman W., van Wassenhove L.1995. An empirical study of capital budgeting practices for 
 strategic investments in CIM technologies. International Journal of Production Economics, 40,121-152. 
Smithers A. 2013. The Road to Recovery: How and Why Economic Policy Must Change. John Wiley & Sons, 
 Chichester, West Sussex. Sobol’ I.M. 1993. Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and 

 Computational Experiment, 1, 407–414. 
Sobol' I.M. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo 
 estimates. Mathematics and Computers in Simulation, 55, 271-280. 
Solomon E. 1956. The arithmetic of capital budgeting decisions. Journal of Business, 29, 124-129. 
Solomon E. 1966. Return on investment: The relationship of book-yield to true yield. In R.K. Jaedicke Y. Ijiri, O. 
 Nielsen (Eds.), Research in Accounting Measurement. American Accounting  Association.  
Soper C.S. 1959. The marginal efficiency of capital: A further note. The Economic Journal, 69 (March), 174-177. Stark A.W. 2004. Estimating economic performance from accounting data―A review and a synthesis. The 

 British Accounting Review, 36(4) (December), 321-343. 
Teichroew D., Robichek A., Montalbano M. 1965a. An analysis of criteria for investment and financing 
 decisions under certainty. Management Science, 12(3), 151-179. 
Teichroew D., Robichek A., and Montalbano M. 1965b. Mathematical analysis of rates of return under 
 certainty. Management Science, 11(3), 395-403. 

http://ssrn.com/abstract=1800348
http://ssrn.com/abstract=1800348


49 

 

Torr C. 1992. The dual role of user cost in the derivation of Keynes's aggregate supply function. Review of 

 Political Economy,  4(1), 1-17. 
Vatter W.J. 1966. Income models, book yield, and the rate of return. The Accounting Review, 41(4) (October) 
 681-698. 
Ward T.R. 1994. Computer rate of return analysis of mixed capital projects. The Engineering Economist, 39(2) 
 (Winter), 165-176. 
Weber T.A. 2014. On the (non-)equivalence of IRR and NPV. Journal of Mathematical Economics, 52 (May), 25-
 39. 
Weingartner H.M. 1966. The generalized rate of return. The Journal of Financial and Quantitative Analysis, 1(3), 
 1-29. 
Whittington G. 1988. The usefulness of accounting data in measuring the economic performance of  firms. 
 Journal of Accounting and Public Policy, 7(4) (Winter), 261-266. Wright C.A. 1936. A note on “Time and investment”. Economica, 3 (November), 436-440. 
Zhang D. 2005.  A different perspective on using multiple internal rates of return: The IRR parity technique. The 

 Engineering Economist, 50, 327-335. 
 


