

Trade and Economic Growth in Germany

Bakari, Sayef

LIEI, Faculty of Economic Sciences and Management of Tunis (FSEGT), University of Tunis El Manar, Tunisia

15 February 2017

Online at https://mpra.ub.uni-muenchen.de/77404/ MPRA Paper No. 77404, posted 10 Mar 2017 06:13 UTC

Trade and Economic Growth in Germany

Sayef Bakari

PhD Student, Department of Economic Science, LIEI, Faculty of Economic Sciences and Management of Tunis (FSEGT), University of Tunis El Manar, Tunisia, Email: <u>bakari.sayef@yahoo.fr</u>

Abstract:

The nexus between trade and economic growth in Germany has been widely debated given to the high economic status compared to most countries in the world. This paper investigates the relationship between exports, imports, and economic growth in Germany. In order to achieve this purpose, annual data were collected from the reports of World Bank for the periods between 1985 and 2015, was tested by using Augmented Dickey-Fuller (ADF) and Phillip-Perron (PP) stationary test, co integration analysis of Vector Auto Regression Model and the Granger-Causality tests. According to the result of the analysis, unit root tests show that economic growth, exports and imports series become stationary when first difference is considered. Also, it was determined by using co integration analysis of Vector Auto Regression Model that there is no relationship between the three variables in Germany. On the other hand, and according to the Granger-Causality tests, we defined that there is unidirectional causality between exports and imports and between exports and economic growth. In addition, we found that there is a strong evidence of bidirectional causality from import to economic growth. These results provide evidence that exports and imports, thus, are seen as the source of economic growth in Germany.

Key words: export, import, economic growth, Germany, Cointegration and Causality.

JEL Codes: D53

1. INTRODUCTION

It has been theoretically argued that both export and import may play a crucial role in economic development. The theoretical and empirical studies mainly concentrate on either the relationship between export and growth or between import and growth or the association between export, import and economic growth. Germany's economy is one of the largest economies of the world, where it occupies the fourth place in terms of GDP after the United States, China, and Japan. Furthermore it is ranked fifth in terms of purchasing power since it is the most populous country in Europe, where the population is roughly 82 million people. Additionally, Germany's booming economy attracted millions of immigrants from around the world as it is the third largest country in terms of the number of immigrants. Germany maintained a high standard of living. In other words, Germany is the largest economy in the European Union. They benefit from a large group of talented labor force that enabled Germany to be one of the most industrious states in terms for cars, machinery, chemicals, equipments, and appliances all over the world. In 2014, Germany exports reached \$ 1.41 trillion making it the 3rd largest exporter in the world. During the last five years the exports of Germany have increased to an annual rate of 6.3%, from \$ 1.04 trillion in 2009 to \$ 1.41 trillion in 2014. The most recent exports are led by cars which represent 116% of the total exports of Germany, followed by vehicle's spare parts that reach the level of 4.49%. In 2014, Germany imported \$ 1.13 billion, which makes it the third largest importer in the world. During the last five years the imports of Germany have increased to reach an annual rate of 6.1%, from \$842 billion in 2009 to \$1.13 trillion in 2014. The most recent imports are led by crude oil. Its production represents 4.7% of the total imports of Germany, followed by cars, which account for 4.17%. The aim of this paper, therefore, is to econometrically investigate the direct linkages between trade and economic growth of Germany, through employing yearly data for the period 1985-2015. In particular, this work tries to empirically find an answer for the question of whether exports lead economic growth or imports lead economic growth or economic growth leads exports and imports to achieve this objective the paper is structured as follows. In section 2, we present the review literature concerning the nexus between trade and economic growth. Secondly, we discuss the Methodology Model Specification and data used in this study in Section 3. Thirdly, Section 4 presents the empirical results as well as the analysis of the findings. Finally, Section 5 is dedicated to our conclusion.

2. REVIEWLITERATURE:

The relationship between import, export and economic, has been a subject matter for a substantial body of empirical work. Their nexus is usually investigated in the empirical literature in

two different lines: The first line of the existing empirical research attempt to separately examine the importance of export or import on economic growth, the second line of the empirical works examines the relationship between export and import collectively. With regard to methods haven used to determine the importance of export and/or import to economic growth, there are two main methods. The first one employs simple or multiple regressions, while the second method employs the causality technique. Recently, most of studies have attended to focus on VAR and VEC models and cointegration approach. Our review of literature is limited to studies that focus on the joint impact of both export and import on economic growth, which are emphasized on the table below.

Table 1: Studies related to the relationshi	p between exports, in	mports and economic	growth
		I	0

Study	Data	Method	Keys findings
Hadi Salehi	1960 - 1973	OLS and	The major contribution of exports to the GDP growth
Esfahani	(annual): 31	Granger	rate is to relieve the import shortage that many semi-
(1989)	countries	causality	industrialized country confront.
		tests	
Frederik	1980 - 1991	OLS	Exports have shown comparable high productivity
Sjôholom	(annual):		growth. The larger the share of an establishment's
(1999)	Indonesia		output that is exported, the higher its productivity
			growth. The effects of imports on productivity
			growth are mixed.
Johan Asafu-	1960 - 1994	Cointegration	There is no evidence of the existence of a causal
Adjaye and	(annual):	analysis and	relationship between export, import, and economic
Debasish	India,	VECM	growth.
Chakraborty	Nigeria, Fiji		
(1999)	and Papua		
	New Guinea		
Francisco F.	1865 - 1998	Cointegration	There is a feedback effect between exports output
Ribeiro	(annual):	analysis,	growth and imports output growth.
Ramos	Portugal	VECM and	There is no kind of significant causality between
(2000)		Granger	import export growths.
		causality	

		tests	
	10.50 1000	01.0	
Rubina	1973 – 1993	OLS	Exports have a positive and significant impact on
Vohra (2001)	(annual):		economic growth when a country has achieved some
	India,		level of economic development.
	Pakistan, the		
	Philippines,		
	Malaysia and		
	Thailand		
Leo Michelis	1950 - 1990	Cointegration	Strong evidence of Granger causality from the
and George	(annual):	analysis,	foreign sector to GDP.
K. Zestos	Belgium,	VECM and	Strong evidence of bi-directional causality from GDP
(2004)	France,	Granger	to exports and, imports.
	Germany,	causality	
	Greece, Italy	tests	
	and the		
	Netherlands		
Titus O.	For Bulgaria:	Cointegration	Trade stimulates economic growth.
Awokuse	1994 - 2004	analysis,	
(2006)	(quarterly)	ECM, and	
	For Czech	Granger	
	Republic:	causality	
	1993 - 2002	tests	
	(quarterly)		
	For Poland:		
	1995 - 2004		
	(quarterly)		
Ullah et al	1970 - 2008	Cointegration	Exports expansion lead to economic growth.
(2009)	(annual):	analysis,	Unidirectional causality between economic growth,
	Pakistan	VECM and	exports, and imports.

		Granger	
		causality	
		tests	
Yuhong Li	1981 - 2008	Cointegration	Existence of long term and short term causality
and all (2010)	(annual):	analysis,	between GDP, exports, and imports.
	China	VECM and	Strong development of foreign trade greatly benefits
		Granger	the economic development.
		causality	No existence of causality between exports, imports,
		tests	and economic growth.
Barbara	1863 - 2004	Cointegration	Strong bidirectionality between imports and exports
Pistoresi and	(annual):	analysis and	resulted in the increase in intra-industry trade.
Alberto	Italy	Granger	Weak support of exports led growth and growth-led
Rinaldi		causality	imports.
(2011)		tests	Exports were not the only or the main driver of
			economic growth.
Dilawar	1972 - 2009	Cointegration	The existence of long-run correlation among exports,
Khan and al	(annual):	analysis,	imports, and economic growth.
(2012)	Pakistan	VECM and	Exports and imports are considered an essential part
		Granger	for economic growth of Pakistan.
		causality	Economic growth has an important impact on exports
		tests	and imports.
Aleksandra	1988- 2010	OLS	Trade between countries stimulates economic growth.
Parteka and	(annual): 163		
Massimo	countries		
Tamberi			
(2013)			
SK Kamal	1972 - 2006	OLS	Exports and imports are moderately related to the
Ahmed and al	(annual):		growth of GDP.
(2013)	Bangladesh		Exports contribute positively to GDP where imports'
			contribution is unenthusiastic.

Velnampy.T	1970 - 2010	Correlation	Exports and imports have the significant positive
and	(annual): Sri	analysis and	relationship with each other. Also the result shows
Achchuthan.	Lanka	regression	that exports and imports have a significant impact on
S (2013)		analysis	the economic growth.
Rummana	2000 - 2010	VECM	Exports and imports have significant relationship
Zaheer and al	(annual):		with growth rate.
(2014)	Pakistan		Government should move towards more exchange
			rate liberalization policy in order to increase its
			economic growth.
Auro Kumar	1981 - 2010	Cointegration	Mineral exports, industrial production, and economic
Sahoo,	(annual):	analysis,	growth are cointegrated, indicating an existence of a
Dukhabandhu	India	VECM,	long run equilibrium relationship among variables.
Sahoo and		ARCH and	There is a long-run Granger causality relationship
Naresh		Granger	running from economic growth and industrial
Chandra		causality	production to the mineral export.
Sahu (2014)		tests	
Hussain M	1977 - 2012	Cointegration	There is unidirectional causality from imports to
and Saaed	(annual):	analysis,	GDP. As imports do lead GDP.
A.(2014)	Tunisia	VECM and	
		Granger	
		causality	
		tests	
Güngör	1984 - 2012	OLS	Exports have a positive impact on the economic
Turan and	(annual):		growth, however imports have a negative impact on
Bernard	Albania		the economic growth.
Karamanaj			
(2014)			
Afaf Abdull	1977 - 2012	Cointegration	There is unidirectional causality between exports and
J. Saaed and	(annual):	analysis,	imports and between exports and economic growth.
Majeed Ali	Jordan	VECM and	Imports are seen as the source of economic growth in
Hussain		Granger	Tunisia.
(2015)		causality	
		tests	

Sachin N.	1976 - 2014	Engle	There is a long run co-integrating relationship
Mehta (2015)	(annual):	Granger	between Gross Domestic Products (GDP), Export,
	India	Cointegration	and Import in India. In long term the results of
			Granger causality tests show that GDP leads to
		VECM and	Exports but Exports does not lead to GDP, also GDP
		Granger	does not lead to Import and Import do not lead to
		causality	GDP. Finally Export lead to Imports but Imports do
		tests	not lead to Exports.
Serhat	1961- 2014	Engle	The increase in exports causes higher growth rate in
Yüksel and	(annual):	Granger	Argentina. There is also a causal relationship between
Sinemis	Argentina,	Cointegration	import to export in China and Turkey. Then, exports
Zengin	Brazil, China,	analysis,	cause higher imports in Malaysia. Finally, the
(2016)	Malaysia,	VECM and	relationship between import, export and growth rate
	Mexico and	Granger	is not same for all developing countries.
	Turkey	causality	
		tests	
Masoud	1967 - 2010	Cointegration	There is a causal relationship from exports to
Albiman Md	(annual):	analysis,	economic growth and from exports to imports.
and Suleiman	Malaysia	VAR and	
NN (2016)		Granger	
		causality	
		tests	

3. DATA AND METHODOLOG

Our investigation starts by studying the integration properties of the data, conducting a systems cointegrating analysis, and checking Granger causality tests. The data are annual Germany observations uttered and expressed by natural logarithms for the sample period running from 1985 to 2015. Data were sources from World Development Indicators (WDI), which includes logarithm of real GDP measure of economic growth, logarithm of exports of goods and services (Current US\$) and logarithm of imports of goods and services (Current US\$).

The empirical model used to test the relationship between GDP, exports and imports. Can be specified by the following form:

$$GDP_t = f(Exports, Imports)(1, 1)$$

The function can also be represented in a log-linear econometric format thus:

$$Ln(GDP_t) = \alpha + \beta_0 Ln(Exports_t) + \beta_1 Ln(Imports_t) + \varepsilon_t (1.2)$$

Where: α is the constant term, 't' is the time trend, and ' ϵ ' is the random error term assumed to be normally, identically and independently distributed. The empirical methodology used in this study is in two stages and is to determine the degree of integration of each variable. In the econometric literature several statistical tests are used to determine the degree of integration of a variable. The test that will be used as part of this study is testing Augmented Dickey-Fuller (ADF) and Phillips-Perron test (PP).

The general form of ADF test is estimated by the following regression:

$$\Delta Y_1 = a + \beta Y_{t-1} + \sum_{i=1}^n \beta_1 \Delta Y_i + \varepsilon_t (1.3)$$
$$\Delta y_t = \Delta y_{t-1} + \varepsilon_t (1.4)$$

Once the order of integration of the known series is determinate, the next step is to review the possible presence of cointegration relationships that can long exist between the variables. This analysis will be following the cointegration test procedure of Johansen (1988) more effective than the two-step strategy of Engle and Granger (1987) when the sample is small and the high number of variables (before the cointegration test, we look for the number of delays from the optimum choice criterion of use SC). If there are cointegrating relationships we will use the VECM model, if no one applies the VAR model.

The VAR-based cointegration test using the methodology developed in Johansen (1991, 1995) is described below:

Consider a VAR of order p

$$Y_t = \mu + \Delta_t Y_{t-1} + \Delta_p Y_{t-p} + \varepsilon_t (1.5)$$

If the economic variables are not cointegrated, we can proceed to use the Vector Auto-regression (VAR) representation. This VAR can be rewritten as follows:

$$\Delta Y_t = \mu + \eta_{Yt-1} + \sum_{i=1}^{p-1} \tau_1 \Delta Y_{t-1}(1.6)$$

Finally, we apply Granger causality test. In the absence of cointegration, the unrestricted VAR in first difference is estimated, which takes the following form:

$$\Delta GDP_{t} = \sum_{i=1}^{n} \beta_{1t} \Delta GDP_{t-1} + \sum_{i=1}^{n} C_{1} \Delta e^{t-1} + \sum_{i=1}^{n} d_{1t} \Delta Imp_{t-1} + \varepsilon_{2t}(1.7)$$
$$\Delta e^{t} = \sum_{i=1}^{n} \beta_{3t} \Delta GDP_{t-1} + \sum_{i=1}^{n} C_{3t} \Delta e^{t-1} + \sum_{i=1}^{n} d_{3t} \Delta Imp_{t-1} + \varepsilon_{3t}(1.8)$$
$$\Delta Im p_{t} = \sum_{i=1}^{n} \beta_{3t} \Delta GDP_{t-1} + \sum_{i=1}^{n} C_{3t} \Delta e^{t-1} + \sum_{i=1}^{n} d_{3t} \Delta Imp_{t-1} + \varepsilon_{3t}(1.9)$$

4. EMPIRICAL ANALYSIS

Tables 2 and 3 show that all the variables (GDP, exports and imports) were differenced once the ADF and PP test were conducted on them; the result reveals that all the variables became stationary at first difference. The table 5 shows the result of the cointegration test. In the table, both trace statistic and maximum Eigenvalue statistic indicate no cointegration at the 5 percent level of significance, meaning that the null hypothesis cannot be rejected at the 5% significance level. This means that there is no cointegrating relation between the variables so tested; this implies that exports, imports and economic growth have no long-run relationship. Also, the table 8 justifies the efficiency and the quality of the estimation of VAR model in the tables 6 and 7. And finally, the table 9 presents the Granger Causality tests.

			ADF First	Difference wi	th constant		
Variable	ADF Level with constant only			only	only		
	Test critical			Test critical			
	values	test statistic	Probability	values	test statistic	Probability	
LGDP 1% level	-3.670170			-3.679322			
LGDP 5% level	-2.963972	-4.431395	0.0015	-2.967767	-4.000355	0.0044	
LGDP 10% level	-2.621007			-2.622989			
LEXPORT 1% level	-3.670170			-3.679322			
LEXPORT 5% level	-2.963972	-2.399173	0.1504	-2.967767	-4.567129	0.0011	
LEXPORT10% level	-2.621007			-2.622989			
LIMPORT 1% level	-3.670170			-3.679322			
LIMPORT 5% level	-2.963972	-2.294967	0.1800	-2.967767	-4.591160	0.0010	
LIMPORT 10% level	-2.621007			-2.622989			

Table 2: Tests for Unit Root: ADF

 Table 3: Tests for Unit root (PP)

PP Level with constant only			PP First Difference with constant only			
Variable	Test critical			Test critical		
	values	test statistic	Probability	values	test statistic	Probability
LGDP 1% level	-3.670170			-3.679322		
LGDP 5% level	-2.963972	-3.781078	0.0076	-2.967767	-4.424404	0.0016
LGDP 10% level	-2.621007			-2.622989		
LEXPORT 1% level	-3.670170			-3.679322		
LEXPORT 5% level	-2.963972	-2.399173	0.1504	-2.967767	-4.556735	0.0011
LEXPORT10% level	-2.621007			-2.622989		
LIMPORT 1% level	-3.670170			-3.679322		
LIMPORT 5% level	-2.963972	-2.294967	0.1800	-2.967767	-4.591160	0.0010
LIMPORT 10% level	-2.621007			-2.622989		

Table 4: Lag order Selection Criteria

VAR	VAR Lag Order Selection Criteria					
Endog	genous variab	les: LOG(GI	DP) LOG(EXPOR	TS) LOG(IMP	ORTS)	
Exoge	nous variable	s: C				
Sampl	e: 1985 2015					
Includ	led observatio	ons: 27				
Lag	LogL	LR	FPE	AIC	SC	HQ
0	67.14017	NA	1.73e-06	-4.751124	-4.607142	-4.708310
1	135.7616	116.9106*	2.11e-08*	-9.167528*	-8.591600*	-8.996274*
2	139.2914	5.229290	3.26e-08	-8.762325	-7.754452	-8.462632
3	145.5216	7.845418	4.31e-08	-8.557154	-7.117335	-8.129020
4	154.9904	9.819489	4.83e-08	-8.591879	-6.720115	-8.035306

Table 5: Cointegration Test

Included obser	vations: 29 after adjust	ments			
Trend assumpt	ion: Linear determinist	ic trend			
Series: LOG(C	GDP) LOG(EXPORTS)	LOG(IMPORTS)			
Lags interval (in first differences): 1 t	o 1			
Unrestricted C	ointegration Rank Test	(Trace)			
Hypothesized			0.05		
No. of CE(s)	Eigen value	Trace Statistic	Critical Value	Prob. **	
None	0.397656	22.34260	29.79707	0.2798	
At most 1	0.229549	7.641743	15.49471	0.5045	
At most 2	0.002726	0.079148	3.841466	0.7784	
Trace test indi	cates no cointegration a	at the 0.05 level			
* denotes reject	ction of the hypothesis	at the 0.05 level			
**MacKinnon	-Haug-Michelis (1999)	p-values			
Unrestricted C	ointegration Rank Test	(Maximum Eigen valu	ue)		
Hypothesized		Max-Eigen	0.05		
No. of CE(s)	Eigen value	Statistic	Critical Value	Prob. **	
None	0.397656	14.70085	21.13162	0.3104	
At most 1	0.229549	7.562596	14.26460	0.4249	
At most 2	0.002726	0.079148	3.841466	0.7784	
Max-Eigen value test indicates no cointegration at the 0.05 level					
* denotes rejection of the hypothesis at the 0.05 level					
**MacKinnon-Haug-Michelis (1999) p-values					
1 Cointegrating Equation(s): Log likelihood 148.1779					
Normalized co	integrating coefficients	s (standard error in par	entheses)		
LOG(GDP)	LOG(EXPORT)	LOG(IMPORT)			
1.000000	14.09609	-16.70118			
	(3.74100)	(4.20642)			

Vector Autoregression	Estimates				
Sample (adjusted): 198	86 2015				
Included observations	: 30 after adjustm	ents			
Standard errors in ()	& t-statistics in []				
	LOG(GDP)	LOG(EXPORTS)	LOG(IMPORTS)		
	0.552440	-0.251130	-0.144682		
LOG(GDP(-1))	(0.14394)	(0.15893)	(0.15913)		
	[3.83787]	[-1.58017]	[-0.90919]		
LOG(EXPORTS(-1))	0 830564 (0.48321)	2 306040 (0.53350)	1 602537 (0.53420)		
	[1.71885]	[4.32247]	[2.99991]		
	-0.725396	-1.372324	-0.765968		
LOG(IMPORTS(-1))	(0.56237)	(0.62090)	(0.62170)		
	[-1.28990]	[-2.21023]	[-1.23205]		
	9.876544	8.941271	8.525268		
C	(2.06530)	(2.28025)	(2.28322)		
	[4.78214]	[3.92118]	[3.73388]		
R-squared	0.950852	0.981353	0.976623		
Adj. R-squared	0.945181	0.979201	0.973926		
Sum sq. resids	0.175994	0.214535	0.215094		
S.E. equation	0.082274	0.090837	0.090955		
F-statistic	167.6710	456.0995	362.0716		
Log likelihood	34.50939	31.53906	31.50003		
Akaike AIC	-2.033959	-1.835937	-1.833335		
Schwarz SC	-1.847133	-1.649111	-1.646509		
Mean dependent	28.50933	27.32250	27.25073		
S.D. dependent	0.351396	0.629856	0.563278		
Determinant resid covar	riance (dof adj.)	1.12E-08	I		
Determinant resid covariance		7.26E-09	7.26E-09		
Log likelihood		153.4118	153.4118		
Akaike information crit	erion	-9.427452	-9.427452		
Schwarz criterion		-8.866973			

Table 6: Vector Auto-regression Estimates

Table 7: Least Squares (Gauss-Newton/Marquardt steps)

Dependent Variable: LOG(GDP)

Method: Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 1986 2015

Included observations: 30 after adjustments

LOG(GDP) = C(1)*LOG(GDP(-1)) + C(2)*LOG(EXPORTS(-1)) + C(3)*LOG(IMPORTS(-1)) + C(4)Coefficient Std. Error t-Statistic Prob.

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	0.552440	0.143944	3.837868	0.0007
C(2)	0.830564	0.483209	1.718852	0.0975
C(3)	-0.725396	0.562365	-1.289902	0.2084
C(4)	9.876544	2.065298	4.782139	0.0001
R-squared	0.950852	Mean depe	Mean dependent var	
Adjusted R-squared	0.945181	S.D. depen	S.D. dependent var	
S.E. of regression	0.082274	Akaike info	Akaike info criterion	
Sum squared resid	0.175994	Schwarz cr	Schwarz criterion	
Log likelihood	34.50939	Hannan-Qu	Hannan-Quinn criter.	
F-statistic	167.6710	Durbin-Wa	Durbin-Watson stat	
Prob(F-statistic)	0.000000			
1	1			

Table 8: Residual Diagnostics Tests

R-squared	0.950852
Adjusted R-squared	0.945181
F -statistic	167.6710
Prob(F-statistic)	0.000000
Breusch-Godfrey Serial Correlation LM Test:	0.4517
Heteroskedasticity Test: Breusch-Pagan-Godfrey	0.8321
Jarque-Bera	0.830316

To investigate the causality between GDP and exports, on the one hand, and GDP and imports, on the other, a simple Granger causality test has been performed, by estimating the vector autoregressive processes for GDP, exports, and imports. The objective of this exercise is to test the GDP, exports and imports hypothesis for Germany empirically. The results of causality between economic growth (GDP), exports and imports are contained in the table 9. The Granger Causality Tests shows that there is unidirectional causality between exports and imports and between exports and economic growth. In addition, we found that there is a strong evidence of bidirectional causality from import to economic growth.

Pairwise Granger Causality Tests				
Sample: 1985 2015				
Lags: 1				
Null Hypothesis:	Obs	F-Statistic	Prob.	
LOG(EXPORTS) does not Granger Cause LOG(GDP)	30	6.62366	0.0159	
LOG(GDP) does not Granger Cause LOG(EXPORTS)	30	5.13643	0.0317	
LOG(IMPORTS) does not Granger Cause LOG(GDP)	30	5.12493	0.0318	
LOG(GDP) does not Granger Cause LOG(IMPORTS)	30	1.53946	0.2254	
LOG(IMPORTS) does not Granger Cause LOG(EXPORTS)	30	7.82963	0.0094	
LOG(EXPORTS) does not Granger Cause LOG(IMPORTS)	30	10.2341	0.0035	

Table 9: Pairwise Granger Causality Tests

5. CONCLUSION

The aim of this study was to explain the nexus between exports, imports and economic growth of Germany during the period 1985-2015. The cointegration, VAR model and Granger's causality tests are applied to investigate the relationship between these three variables. The unit root properties of the data were examined using the Augmented Dickey Fuller test (ADF) and Philips-Perron (PP) after that the cointegration and causality tests were conducted. The result shows that there is no relationship between the three variables in Germany. On the other hand, we defined that there is unidirectional causality between exports and imports and between exports and economic growth. In addition, we found that there is a strong evidence of bidirectional causality from import to economic growth. These results provide evidence that growth in Germany was propelled by a growth-led import and growth-led export strategy. Therefore, we can affirm that exports and imports are thus seen as the source of economic growth in Germany

REFERENCES

Afaf Abdull J. Saaed and Majeed Ali Hussain. (2015). The causality relationship between exports, imports and economic growth in Jordan: 1977-2012. *EPRA International Journal of Economic and Business Review*. Vol - 3, Issue- 7, July 2015.

Afaf Abdull J. Saaed and Majeed Ali Hussain. (2015). Impact of exports and imports on economic growth: Evidence from Tunisia. *Journal of Emerging Trends in Economics and Management Sciences*. 6(1):13-21, (ISSN: 2141-7016).

Aleksandra Parteka and Massimo Tamberi. (2013). Product diversification, relative specialization and economic development: Import-export analysis. *Journal of Macroeconomics*. 38, (2013), 121–135.

Asafu-Adjaye, J and D Chakraborty. (1999), 'Export-led Growth and Import Compression: Further Time Series Evidence from LDCs', *Australian Economic Papers*.

Auro Kumar Sahoo, Dukhabandhu Sahoo and Naresh Chandra Sahu (2014): Mining export, industrial production and economic growth: A cointegration and causality analysis for India. *Resources Policy*. 42, (2014), 27–34.

Barbara Pistoresi and Alberto Rinaldi. (2011). Exports, imports and growth: New evidence on Italy: 1863-2004. *Explorations in Economic History*.

Dickey, D. A. & W. A. Fuller (1979), "Distribution of Estimators of Autoregressive Time Series with a Unit Root," *Journal of the American Statistical Association*, 74, 427-31.

Dickey, D. A. & W. A. Fuller (1981) "Likelihood ratio Statistics for autoregressive time series with a unit root," *Econometrica*, 49(4):1057-72.

Dilawar Khan and al. (2012). Exports, imports and economic growth nexus: Time series evidence from Pakistan. *World Applied Sciences Journal*. 18 (4): 538-542, 2012.

Engle, R. F. & Granger C. W. (1987), "Cointegration and Error Correction: Representation, Estimation and Testing," *Econometrica*, *55*, *251-276*.

Frederik Sjôholom. (1999). Exports, imports and productivity: Results from Indonesian Establishment Data: *World Development:* Volume 27, Issue 4, April 1999, Pages 705–715.

Hadi Salehi Esfahani. (1989). Exports, imports, and economic growth in semi-industrialized countries. *Journal of Development Economics*. 35, (1991), 93-116. North-Holland.

Güngör Turan and Bernard Karamanaj. (2014). An empirical study on import, export and economic growth in Albania. *Academic Journal of Interdisciplinary Studies*. Vol. 3, No, 3, June, 2014.

Leo Michelis and George K. Zestos. (2004). Exports, Imports and GDP Growth: Causal Relations in Six European Union Countries. *Journal of Economic Asymmetries*. Vol. 1. NO. 2.

Johansen, S. (1988), "Statistical Analysis of Cointegration Vectors," *Journal of Economic Dynamics and Control*, 12, 231-54.

Masoud Albiman Md and Suleiman NN. (2016). The Relationship among Export, Import, Capital Formation and Economic Growth in Malaysia. *Journal of Global Economics*. Volume, 4, Issue 2, 1000186.

Phillips, P. C. B. & Perron, P. (1988), "Testing for a Unit Root in Time Series Regression," *Biometrika*, 75(2), 335-46. Ramos, F. F. R. (2002). Exports, imports, and economic growth in Portugal: evidence from causality and cointegration analysis. *Economic Modeling*. 18. (2001). 613-623.

Rummana Zaheer and al. (2014). Impact of exports imports on GDP growth rate, in Pakistan time series data from 2000-2010. *International Journal of Research in Applied Natural and Social Sciences*. Vol. 2, Issue 7, Jul 2014, 29-34.

Sachin N. Mehta and al. (2015). The dynamics of relationship between exports, imports and economic growth in India. *International Journal of Research in Humanities* & Soc. Sciences. Vol.3, Issue: 7, July: 2015.

Serhat Yüksel and Sinemis Zengin. (2016). Causality relationship between import, export and growth rate in developing countries. *International Journal of Commerce and Finance*. Vol. 2, Issue 1, 2016, 147-156.

SK Kamal Ahmed and al. (2013). Effects of export and import on GDP of Bangladesh: An empirical analysis. *The International Journal of Management*. Vol. 2 Issue 3. (July, 2013).

Titus O. Awokuse. (2007). Causality between exports, imports, and economic growth: Evidence from transition economics. *Economics Letters*. 94. (2007). 389–395.

Ullah, Zaman, Farooq & Javid (2009), Cointegration and Causality between Exports and Economic Growth in Pakistan. *European Journal of Social Sciences*. Volume 10, Number 2.

Velnampy. T and Achchuthan. S. (2013). Export, import and economic growth: Evidence from Sri Lanka. *Journal of Economics and Sustainable Development*. Vol.4, No.9, 2013.

Vohra, R. (2001). Export and Economic Growth: Further Time Series Evidence from Less Developed Countries. *International Affairs and Global Strategy*. IAER: August 2001. Vol, 7, No.3.

Yuhong Li and al. (2010). Research on the relationship between Foreign Trade and the GDP Growth of East China-Empirical Analysis Based on Causality. *Modern Economy*. 2010, 1, 118-124.