Nonparametric Dynamic Conditional Beta

John M Maheu and Azam Shamsi

McMaster University, McMaster University

16 September 2016

Online at https://mpra.ub.uni-muenchen.de/77424/
MPRA Paper No. 77424, posted 11 March 2017 01:51 UTC
Nonparametric Dynamic Conditional Beta*

John M. Maheu † Azam Shamsi ‡

February 2017

Abstract

This paper derives a dynamic conditional beta representation using a Bayesian semiparametric multivariate GARCH model. The conditional joint distribution of excess stock returns and market excess returns are modeled as a countably infinite mixture of normals. This allows for deviations from the elliptic family of distributions. Empirically we find the time-varying beta of a stock nonlinearly depends on the contemporaneous value of excess market returns. In highly volatile markets, beta is almost constant, while in stable markets, the beta coefficient can depend asymmetrically on the market excess return.

Key words: Dirichlet Process Mixture; GARCH; Beta.

*Maheu thanks the SSHRC of Canada for financial support. We are grateful for comments from Ron Balvers, Martin Burda and Jia Liu. We thank participants of the CFE 2015 conference, Melbourne Bayesian Econometric Workshop 2015 and the Doctoral Workshop in Applied Econometrics, University of Toronto 2016 for helpful comments.

†DeGroote School of Business, McMaster University, Hamilton, ON, Canada. E-mail address: maheujm@mcmaster.ca.

‡DeGroote School of Business, McMaster University, Hamilton, ON, Canada. E-mail address: shamsa3@mcmaster.ca.
1 Introduction

This paper shows how to nonparametrically estimates the dynamic conditional beta of a stock using a Bayesian semiparametric multivariate GARCH model. This extends Engle’s (2016) parametric version of dynamic conditional beta to the case of an unknown general continuous distribution. In this setting the whole distribution can affect the compensation for risk.

Researchers have long studied the beta coefficient of a stock which represents the nondiversifiable risk arising from exposure to market movements. Traditional approaches estimate the beta coefficient by regressing excess stock returns on the excess market return as in the one-factor Capital Asset Pricing Model (CAPM, Sharpe (1964) and Lintner (1965)), or exploiting more empirically supported asset pricing models, such as Fama-French three-factor model, which incorporate additional explanatory variables (Fama & French (1993)). Our multivariate model nests both cases, but allows for time variation in the conditional second moments. There is a large literature based on multivariate GARCH (MGARCH) models that link a time varying beta to the conditional second moments. Some examples include Bollerslev et al. (1988), Giannopoulos (1995), McCurdy & Morgan (1992) and Choudhry (2002).

Recently Engle (2016) proposes a multivariate normal GARCH model from which the conditional distribution defines the dynamic beta coefficient. This directly links time-varying second moments to the time-varying beta in a consistent fashion. The parametric pricing relationship holds more generally for the elliptic family of distributions. This is an attractive approach but may be limiting if the parametric distributional assumptions are not valid.

A key insight of our approach is that if the joint distribution of excess stock returns and market returns are correctly specified then it follows that their contemporaneous pricing relationship is completely determined by the associated conditional distribution. Therefore, we semiparametrically model the conditional distribution as a countably infinite mixture of multivariate normals. Each normal component in the mixture has a conditional covariance directed by a MGARCH process. Our model nests the Gaussian and Student-t distribution as special cases but importantly allows for deviations from the elliptic family of distributions. This includes asymmetric distributions which the elliptic family omit being only symmetric. The mixing is over both the mean vector and covariance matrix.

We follow Jensen and Maheu (2013) to implement a Bayesian semi-parametric MGARCH model and extend it to allow for asymmetric shocks in volatility. The data strongly support the semiparametric MGARCH specification over Gaussian and Student-t distributional alternatives.

In this framework, the conditional distribution of stock returns given the market excess return (and possibly other factors) can be represented as an infinite mixture with weights written as functions of the value of the market excess return. Consequently, the beta coefficient of a security at each time will depend nonparametrically on the contemporaneous value of market return, as opposed to the beta derived from existing models which is insensitive to the contemporaneous value of the market return.

We use a new approach to selecting the number of factors in a model. Since specifications with a different number of factors are not comparable by the usual Bayes factors due to different dimensions of the dependent variable we select the number of factors based on the marginal predictive likelihood. This relies on the marginal predictive likelihood of
the individual stock return derived from models with different dimensions and is directly comparable across specifications. Empirically, the one factor model is strongly supported for all stocks compared to specifications with Fama-French factors and momentum.

Although the time series of the realized conditional betas from the semiparametric model are similar to the benchmark model, we find significant nonlinear dependence in beta as a function of the contemporaneous value of the market excess return. In the parametric models, beta is constant as a function of the market excess return.

When the market is highly volatile, beta is not affected by unexpected shocks in the market return. While in a calm market, beta can change dramatically from unexpected shocks. For stocks which are highly correlated with the market, an unexpected shock during calm periods increases the beta coefficient. The effect is the reverse for the stocks with low correlation with the market. In other words, when an asset is highly correlated with the market, large moves in a stable market increase the conditional covariance between the market and the asset more than they increase the conditional variance of the market, resulting in a significant increase in the beta coefficient. When an asset has low conditional correlation with the market, large moves in a stable market increase the conditional variance of the market more than they increase the conditional covariance between the market and the asset, leading to a drop in conditional beta. These are important contemporaneous nonlinear dynamics that are absent in other models.

The remainder of the paper is structured as follows. We begin by reviewing the benchmark model which is an MGARCH model with Student-t innovations. Section 3 provides a general theoretical setting of the multivariate model used in this study, key features of the semiparametric MGARCH model, and the use of the Dirichlet process prior. Posterior sampling is detailed in Section 4. The derivation of the nonparametric dynamic conditional beta is presented in Section 5. Data is introduced in Section 6, and Section 7 assesses models with different number of factors and compares the performance of the proposed model to the benchmark model. Applications of the semiparametric model are found in Section 8, and Section 9 provides some implications of the semiparametric model in finance. Section 10 concludes and an Appendix defines distributions and collects the detailed derivations.

2 Benchmark Model

Our benchmark model is a straightforward extension of Engle (2016). Engle (2016) defines dynamic conditional beta using a multivariate GARCH (MGARCH) model assuming a multivariate normal distribution as the joint density of stock returns and factors. We replace the normal distribution with a Student-t to accommodate the fat-tails in the data. Let the excess stock return on asset \(i \) be \(r_{i,t} \) and a vector of regressors (factors) including the excess market return be \(r_{f,t} = (r_{f,1,t}, r_{f,2,t}, \ldots, r_{f,q,t})' \). \(r_t = (r_{i,t}, r_{f,t}')' \) is assumed to follow the MGARCH-t

\[
\begin{align*}
 r_t | r_{1:t-1} &\sim t(\mu, H_t, \nu), \\
 H_t & = \Gamma_0 + \Gamma_1 \odot (r_{t-1} - \eta)(r_{t-1} - \eta)' + \Gamma_2 \odot H_{t-1},
\end{align*}
\]

where \(t(\mu, \Sigma, \nu) \) denotes a t-distribution (see appendix) with mean vector \(\mu \), scale matrix \(\Sigma \) and degree of freedom \(\nu \) and \(r_{1:t-1} = \{r_1, \ldots, r_{t-1}\} \) is the information set available at time \(t - 1 \). The scale matrix, \(H_t \), is based on the vector-diagonal multivariate GARCH model of Ding & Engle (2001) but other MGARCH formulations could be used. The
symbol \odot denotes the Hadamard product. The parameter is $\Gamma = \{\Gamma_0, \Gamma_1, \Gamma_2, \eta\}$, with the symmetric positive definite matrices parameterized as $\Gamma_0 = \Gamma_0^{1/2}(\Gamma_0^{1/2})'$, $\Gamma_1 = \gamma_1(\gamma_1)'$, and $\Gamma_2 = \gamma_2(\gamma_2)'$ where Γ_0 is a lower triangular $(q+1) \times (q+1)$ matrix and γ_1, γ_2 and η are $(q+1)$-vectors. η permits a nonlinear asymmetric response to shocks and can be considered a multivariate version of the asymmetric GARCH model (Engle & Ng 1993).

Partition $r_i = (r_{1,i}, r_{2,i})'$ into a k_1 and k_2 ($k_1 + k_2 = q + 1$) vector and similarly $\mu = (\mu_1', \mu_2')'$ and

$$H_t = \begin{bmatrix} H_{11,t} & H_{12,t} \\ H_{12,t} & H_{22,t} \end{bmatrix}.$$

Applying the properties of the Student-t distribution (Roth 2013) the conditional distribution of $r_{1,t}$ given $r_{2,t}$ is

$$r_{1,t} | r_{2,t} \sim t(\mu_{1|2}, H_{1|2}, \nu_{1|2}),$$

$$\mu_{1|2} = \mu_1 + H_{12,t}H_{22,t}^{-1}(r_{2,t} - \mu_2),$$

$$H_{1|2} = \frac{\nu + (r_{2,t} - \mu_2)'H_{22,t}^{-1}(r_{2,t} - \mu_2)}{\nu + k_2}(H_{11,t} - H_{12,t}H_{22,t}^{-1}H_{12,t}'),$$

$$\nu_{1|2} = \nu + k_2,$$

where the conditional mean is $\mu_{1|2}$, the conditional scale matrix is $H_{1|2}$ and the degree of freedom $\nu_{1|2}$.

This is a useful result in that it tells us how the conditional distribution of $r_{1,t}$ reacts to any value of $r_{2,t}$. For instance, if $r_{1,t} \equiv r_{i,t}$ and conditioning on one factor, the excess market return, $r_{2,t} \equiv r_{m,t}$, substituting into (2.4) directly gives a dynamic risk premium for asset i as

$$E[r_{1,t} | r_{m,t}, H_t] = \mu_i + H_{12,t}H_{22,t}^{-1}(r_{m,t} - \mu_m).$$

This tells how the expected excess return of asset i reacts to any value of the market. If the market shock is zero ($r_{m,t} = \mu_m$) then the expected value is μ_i but for all other realizations the market shock impacts the expected return of the asset. Engle identifies the dynamic conditional beta that arises from the joint relationship as

$$\beta_t = H_{12,t}H_{22,t}^{-1}.$$

This is the derivative of (2.7) with respect to $r_{m,t}$. A conditional pricing relationship is obtained by setting $r_{2,t} \equiv E[r_{m,t} | r_{1,t-1}]$ and substituting into (2.7).

There are several advantages to modeling excess returns in this way. First, it confronts the simultaneous nature of the asset return and the factors that price the risk premium. Rather than specifying a single equation partial equilibrium relationship the model begins with the full joint dynamics. Second, the joint distribution of the asset and the factors directly pins down the conditional distribution and the implications for the risk premium. The dynamic beta is a function of the conditional covariance matrix. This is a general result that holds for the elliptic family of distributions.

We estimate the model from a Bayesian perspective. The posterior density has the non-standard form

$$p(\mu, \Gamma, \nu | r_{1:T}) \propto p(\nu)p(\mu)p(\Gamma) \times \prod_{t=1}^T t(r_t | \mu, H_t, \nu),$$

(2.9)
where $t(r_t | \mu, H_t, \nu)$ is the density of the Student-t distribution, and $p(\nu)p(\mu)p(\Gamma)$ is the prior density for μ, Γ, ν. Posterior draws of the parameters vector are simulated with a Metropolis-Hastings sampler.

Although attractive, the conditional distribution in (2.3) has some drawbacks. The conditional beta derived from MGARCH-t model, at each time, is constant with respect to the contemporaneous value of market return (Equation 2.8), and consequently, the conditional expected return of the stock is a linear function of the factor returns. This pricing relationship will not hold for more general distributions not belonging to the elliptic family. The elliptic family of distributions are symmetric about their mean and do not account for asymmetry observed in financial returns.

This model imposes a strong assumption on the functional form of the joint distribution of the data. In this paper, we remove this restrictive assumption by employing a Dirichlet process mixture (DPM) to model the unknown joint distribution of returns. This results in a potentially non-constant conditional beta and a nonlinear conditional expected return of the stock as a function of the contemporaneous value of the market return.

3 A Bayesian Semiparametric Model

Unlike the benchmark model that assumes a specific parametric joint distribution for the individual asset returns and the factors, we model this joint distribution nonparametrically by an infinite mixture of normal distributions which can approximate any continuous multivariate distribution. Recall that $r_t = (r_{i,t}, r_{f_1,t}, ..., r_{f_q,t})'$ represents the excess return vector of an individual stock and q factors at time t. The infinite mixture representation can be written as

$$r_t | H_t, \mu, B, W \sim \sum_{j=1}^{\infty} \omega_j N(\mu_j, (H_t^{1/2})B_j(H_t^{1/2})').$$ \hfill (3.1)

where $H_t^{1/2}$ is the Cholesky decomposition of H_t, $\mu = \{\mu_1, \mu_2, \ldots \}$, $B = \{B_1, B_2, \ldots \}$ and $W = \{\omega_1, \omega_2, \ldots \}$ is the vector of the weights, such that $\omega_j \geq 0$ for all j and $\sum_{j=1}^{\infty} \omega_j = 1$. The mixing is over the mean vector and the component B_j of the covariance matrix. The second component, H_t of the covariance matrix captures volatility clustering through time but is not a function of j. B_j is a symmetric positive definite matrix which scales H_t to yield a better estimate of the joint density of data. Given H_t, in general any positive definite matrix $H_t^{1/2}B_j(H_t^{1/2})'$ can be represented with the appropriate choice of B_j making this a very flexible structure.

The conditional mean can be derived in exactly the same way as in the benchmark model except it will follow an infinite mixture of conditional normal distributions. If $r_{ft} = (r_{f_1,t}, ..., r_{f_q,t})'$ then the conditional density of $r_{i,t}$ given r_{ft} is a mixture distribution as well and the conditional expectation can be written as the following weighted mixture

$$E(r_{i,t} | r_{ft}, H_t) = \sum_{j=1}^{\infty} q_j(r_{ft}) E(r_{i,t} | r_{ft}, \mu_j, B_j, H_t).$$ \hfill (3.2)

The weights, $q_j(r_{ft})$ are a function of the factors and affect how much each conditional expectation, $E(r_{i,t} | r_{ft}, \mu_j, B_j, H_t)$, in the mixture contributes. The details on the derivations will be explained later but for now it is important to see that unlike the parametric
model the conditional expectation is not a linear function of the factors. To obtain
the nonparametric conditional beta, we take the derivative of (3.2) with respect to the
desired factor. The conditional beta is not constant in general but it changes as the con-
temporaneous value of the corresponding factor changes. The next section introduces the
Dirichlet process prior to estimate this model. In Section 5 we derive the nonparametric
conditional beta.

In Bayesian inference the Dirichlet process (DP) prior (Ferguson 1973) is a stan-
dard prior used for infinite dimensional objects such as (3.1). A draw from a DP,
\(G \sim DP(\alpha, G_0) \), is almost surely a discrete distribution and is governed by two pa-
rameters. The concentration parameter \(\alpha \), a positive scalar and a base distribution \(G_0 \).
The nonparametric distribution \(G \) is centered on the base distribution \(G_0 \), which can be
considered as the prior guess; \(E(G) = G_0 \). The concentration parameter measures the
strength of belief in \(G_0 \). The larger \(\alpha \), the stronger belief in \(G_0 \) and the more distinct
elements we have with non-negligible mass. Lo (1984) introduces Dirichlet process mix-
ture (DPM) model in which \(G \) is the mixing measure over a continuous kernel. This
has become a standard Bayesian approach to nonparametric estimation of an unknown
continuous distribution. In this paper, \(G \) is the unknown distribution that governs the
mixing over the mean vector and covariance matrix of the normal kernel in our mixture
model.

The model (MGARCH-DPM) is an extension of Jensen & Maheu (2013) and allows
for asymmetry in the MGARCH process from shocks to volatility and fat tails without
making any restrictive assumption. The hierarchical form of the model is,

\[
\begin{align*}
 r_t | \phi_t, H_t & \sim N(\xi_t, H_t^{1/2} \Lambda_t (H_t^{1/2}')), \quad t = 1, ..., T \\
 \phi_t & \equiv \{\xi_t, \Lambda_t\} | G \sim G, \\
 G | \alpha, G_0 & \sim DP(\alpha, G_0), \\
 G_0 & \equiv N(\mu_0, D) \times W^{-1}(B_0, \nu_0), \\
 H_t & = \Gamma_0 + \Gamma_1 \circ (r_{t-1} - \eta)(r_{t-1} - \eta)' + \Gamma_2 \circ H_{t-1}.
\end{align*}
\]

In this model \(\xi_t \) is a \((q+1)\)-vector and \(\Lambda_t \) is a symmetric positive definite matrix and \(H_t \) fol-
low the same MGARCH specification as the benchmark parametric model. \(W^{-1}(B_0, \nu_0) \)
represents an inverse Wishart distribution (see appendix) with scale matrix \(B_0 \) and degree
of freedom \(\nu_0 \).

Sethuraman (1994) characterizes a stick-breaking representation of the DP. Com-
bining this with the normal kernel gives the associated stick breaking representation of
the MGARCH-DPM density as

\[
p(r_t | \mu, B, W, H_t) = \sum_{j=1}^{\infty} \omega_j N(r_t | \mu_j, H_t^{1/2} B_j (H_t^{1/2}')), \quad (3.8)
\]

\[
\omega_1 = v_1, \quad \omega_j = v_j \prod_{l=1}^{j-1} (1 - v_l), \quad j > 1,
\]

\[
v_j \stackrel{iid}{\sim} \text{Beta}(1, \alpha), \quad (3.9)
\]

\[
\mu_j \stackrel{iid}{\sim} N(\mu_0, D), \quad B_j \stackrel{iid}{\sim} W^{-1}(B_0, \nu_0), \quad (3.10)
\]

where \(N(r_t | \mu_j, H_t^{1/2} B_j (H_t^{1/2}')) \) denotes the multivariate normal density with mean \(\mu_j \) and
covariance \(H_t^{1/2} B_j (H_t^{1/2})' \) evaluated at \(r_t \). Note that \(\mu \) and \(B \) are the set of unique points
of support in the discrete distribution G while ξ and Λ denote draws from G in (3.4), with the possibility of repeated draws of μ_j and B_j.

The model nests several special cases. First, the Gaussian model is obtained when $\alpha \to 0$ as $\omega_1 = 1$, $\omega_j = 0, \forall j > 1$ and $B_j = I$. The Student-t model results from μ_j being constant for all j and $\alpha \to \infty$, since $G \to G_0$, the inverse Wishart distribution.

4 Posterior Sampling

To estimate the unknown parameters in (3.3)-(3.7), we apply an MCMC sampler along with the slice sampler of Walker (2007) and Kalli et al. (2011). Slice sampling introduces a latent variable, $u_t \in (0,1)$, to elegantly convert an infinite sum to a finite mixture model which makes the sampling feasible. Estimating the joint posterior density of u with the slice sampler of Walker (2007) and Kalli et al. (2011). Slice sampling introduces the slice variable but then discarding the desired posterior density. In practice, this means jointly sampling all parameters including the slice variable but then discarding u_t. Define u_t such that the joint density of (r_t, u_t) given $(W, \Theta \equiv (\mu, B))$ is given by

$$f(r_t, u_t|W, \Theta) = \sum_{j=1}^{\infty} \mathbf{1}(u_t < \omega_j)N(r_t|\mu_j, (H_t^{1/2})'B_jH_t^{1/2}).$$

(4.1)

Let $s_{1:T} = \{s_1, ..., s_T\}$ be the configuration set that partitions the data $r_{1:T}$ into c distinct clusters such that observation r_t is assigned parameter $\theta_{s_t} = (\mu_{s_t}, B_{s_t})$. Let $n_j = \{\#t|s_t = j\}$ be the number of observations allocated to state j. The full likelihood is

$$p(r_{1:T}, u_{1:T}, s_{1:T}|W, \Theta) = \prod_{t=1}^{T} \mathbf{1}(u_t < \omega_{s_t})N(r_t|\mu_{s_t}, (H_t^{1/2})B_{s_t}(H_t^{1/2})'),$$

(4.2)

and the joint posterior is proportional to

$$p(W_{1:K})\prod_{j=1}^{K}p(\mu_j, B_j)\prod_{t=1}^{T} \mathbf{1}(u_t < \omega_{s_t})N(r_t|\mu_{s_t}, (H_t^{1/2})B_{s_t}(H_t^{1/2})'),$$

(4.3)

where K is the smallest natural number that satisfies the condition $\sum_{j=1}^{K}\omega_j > 1 - \min\{u_t\}_{t=1}^{T}$ and $W_{1:K}$ denotes the finite set of W and similarly for other parameters $\mu_{1:K}$ and $B_{1:K}$. Having defined the notation, the steps of the MCMC algorithm are discussed next.

Steps of MCMC algorithm for MGARCH-DPM

1. The posterior distribution of $\theta_j = (\mu_j, B_j), \ j = 1, ..., K$: Using the transformation $z_t = H_t^{-1/2}r_t$, and applying the results of conditionally conjugate priors for the linear regression model we have

$$B_j|r_{1:T}, s_{1:T}, \mu_j, \Gamma \sim \mathcal{W}^{-1}\left(n_j + \nu_0, B_0 + \sum_{s_t=j}(z_t - H_t^{-1/2}\mu_j)(z_t - H_t^{-1/2}\mu_j)'
ight),$$

(4.4)

$$\mu_j|r_{1:T}, s_{1:T}, B_j, \Gamma \sim N(\overline{\mu}, \overline{D})$$

(4.5)

in which

$$\overline{D}^{-1} = D^{-1} + \sum_{t|s_t=j} H_t^{-1/2}B_j^{-1}H_t^{-1/2}, \overline{\mu} = \overline{D}\left(\sum_{t|s_t=j} H_t^{-1/2}B_j^{-1}z_t + D^{-1}\mu_0\right).$$

(4.6)
2. Updating v_j, $j = 1, ..., K$.

$$v_j | S \sim \text{Beta} \left(1 + \sum_{t=1}^{T} 1(s_t = j), \alpha + \sum_{t=1}^{T} 1(s_t > j) \right) .$$

(4.7)

Then we update $W_{1:K}$ based on (3.9).

3. Updating u_t, $t = 1, ..., T$. $u_t | s_{1:T} \sim \mathcal{U}(0, \omega_t)$. Then update K such that $\sum_{j=1}^{K} \omega_j > 1 - \min\{u_t\}_{t=1}^{T}$. Additional ω_j and θ_j will need to be generated from the priors if K is incremented.

4. Updating $s_{1:T}$. For each $t = 1, ..., T$,

$$p(s_t = j | r_{1:T}) \propto 1(\omega_j > u_t)N(r_t | \mu_j, H_t^{1/2}B_j(H_t^{1/2})'), j = 1, ..., K.$$

(4.8)

5. Updating α: Assuming a gamma prior $\alpha \sim \mathcal{G}(a_0, b_0)$ (see appendix) α can be sampled following the two steps below (Escobar & West 1995). Recall that c is the number of alive clusters defined as the number of clusters in which at least one observation is allocated. Note that $c \leq K$. Then the sampling steps are as follows.

(a) $(\tau | \alpha, c) \sim \text{Beta}(\alpha + 1, T)$.

(b) Sample α from

$$\alpha | \tau \sim \pi_\tau \mathcal{G}(a_0 + c, b_0 - \log(\tau)) + (1 - \pi_\tau) \mathcal{G}(a_0 + c - 1, b_0 - \log(\tau)),$$

where π_τ is defined by $\frac{\pi_\tau}{1 - \pi_\tau} = \frac{a_0 + c - 1}{T(b_0 - \log(\tau))}$.

6. Updating GARCH parameters $\Gamma = (\Gamma_0^{1/2}, \gamma_1, \gamma_2, \eta)$. The conditional posterior is

$$p(\Gamma | \mu, B, S, r_{1:T}, H_{1:T}) \propto p(\Gamma) \times \prod_{t=1}^{T} N(r_t | \mu_{s_t}, H_t^{1/2}B_{s_t}(H_t^{1/2})')$$

(4.9)

which is not of standard form, and we apply a Metropolis-Hastings sampler. Given the current value Γ of the chain, the proposal Γ' is sampled $\Gamma' \sim N(\Gamma, \hat{V})$. The draw is accepted with probability

$$\min\{p(\Gamma'' | \mu, B, S, r_{1:T}, H_{1:T}) / p(\Gamma | \mu, B, S, r_{1:T}, H_{1:T}), 1\},$$

and otherwise rejected. \hat{V} is proportional to the inverse Hessian matrix of $\ell = \log[p(\Gamma | \mu, B, S, r_{1:T}, H_{1:T})]$ evaluated at its posterior mode, $\hat{\Gamma}$, which is computed once at the start of estimation. \hat{V} is scaled to achieve an acceptance rate between 0.2 and 0.5. In this paper we apply the numerical optimization of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to approximate the posterior mode of ℓ.

5 Nonparametric Dynamic Conditional Beta

To study the behaviour of the conditional beta of an individual stock, we first consider a special case of our model, $r_t = (r_{i,t}, r_{m,t})$ where $r_{i,t}$ and $r_{m,t}$ represent an individual stock’s excess return and the market excess return, respectively. Applying the posterior
sampling algorithm, we sample model parameters for many iterations and after dropping a set of burn-in draws we have the following set of sampled parameters:

\[
\{(\mu_j^{(g)}, B_j^{(g)}), i_j^{(g)}, j = 1, \ldots, K^{(g)}\}, \{s_t^{(g)}, u_t^{(g)}, t = 1, \ldots, T\}, H_{1:T}^{(g)} = \{H_1^{(g)}, \ldots, H_T^{(g)}\}, \tag{5.1}
\]

for \(g = 1, \ldots, M\) where \(M\) is the number of MCMC iterations. At each iteration \(g = 1, \ldots, M\) of the algorithm, a draw of \(G|\gamma_{1:T}\), can be written as

\[
G^{(g)} = \sum_{j=1}^{K^{(g)}} \omega_j^{(g)} \delta_{\theta_j^{(g)}} + \left(1 - \sum_{j=1}^{K^{(g)}} \omega_j^{(g)}\right) G_0(\theta), \tag{5.2}
\]

where \(\theta_j^{(g)} = (\mu_j^{(g)}, B_j^{(g)})\) and \(\delta_{\theta_j^{(g)}}\) is a mass point at \(\theta_j^{(g)}\).

Combining this with the normal kernel gives the predictive density for the generic return \((r_{i,t}, r_{m,t})\) conditional on \(G^{(g)}\) as

\[
p(r_{i,t}, r_{m,t}|r_{1:T}, G^{(g)}) = \sum_{j=1}^{K^{(g)}} \omega_j^{(g)} f(r_{i,t}, r_{m,t}|\theta_j^{(g)}) + \left(1 - \sum_{j=1}^{K^{(g)}} \omega_j^{(g)}\right) \int f(r_{i,t}, r_{m,t}|\theta)G_0(\theta)d\theta,
\]

where \(f(r_{i,t}, r_{m,t}|\theta)\) is the multivariate normal density.

To assess the nonlinear regression function \(E(r_{i,t}|r_{m,t}, r_{1:T})\), or the conditional beta of the individual stock \(i\), we require the conditional density derived from this predictive (joint) density of \((r_{i,t}, r_{m,t})\). Therefore,

\[
p(r_{i,t}|r_{m,t}, r_{1:T}, G^{(g)}) = \frac{p(r_{i,t}, r_{m,t}|r_{1:T}, G^{(g)})}{p(r_{m,t}|r_{1:T}, G^{(g)})} \tag{5.4}
\]

\[
= \frac{p(r_{i,t}, r_{m,t}|r_{1:T}, G^{(g)})}{\sum_{j=1}^{K^{(g)}} \omega_j^{(g)} f_2(r_{m,t}|\theta_j^{(g)}) + \left(1 - \sum_{j=1}^{K^{(g)}} \omega_j^{(g)}\right) \int f_2(r_{m,t}|\theta)G_0(\theta)d\theta}
\]

\[
= \sum_{j=1}^{K^{(g)}} \omega_j^{(g)} f(r_{i,t}|r_{m,t}, \theta_j^{(g)}) + \left(1 - \sum_{j=1}^{K^{(g)}} \omega_j^{(g)}\right) \int f_{2}(r_{m,t}|\theta)G_0(\theta)d\theta \tag{5.5}
\]

where

\[
q_j^{(g)}(r_{m,t}) = \frac{\omega_j^{(g)} f_2(r_{m,t}|\theta_j^{(g)})}{\sum_{j=1}^{K^{(g)}} \omega_j^{(g)} f_2(r_{m,t}|\theta_j^{(g)}) + \left(1 - \sum_{j=1}^{K^{(g)}} \omega_j^{(g)}\right) \int f_2(r_{m,t}|\theta)G_0(\theta)d\theta} \tag{5.6}
\]

and \(f_2(r_{m,t}|\theta_j^{(g)})\) is the marginal (normal) density of \(r_{m,t}\) and \(f(r_{i,t}|r_{m,t}, G_0)\) is the conditional distribution using the base measure. The terms \(q_j^{(g)}(r_{m,t})\) determine which components in the mixture receive more weight. Clusters that have a marginal density \(f_2(r_{m,t}|\theta_j^{(g)})\) that has a higher likelihood value for \(r_{m,t}\) will receive larger weights. The marginal density, and hence relative weight of clusters, will change with \(r_{m,t}\) as well as over time through the MGARCH component, \(H_t\). These features will determine the relative weights on the cluster specific conditional expectations which we derive next.
Our focus is on the conditional mean of $r_{i,t}$ given $r_{m,t}$. Using the properties of the normal distribution the conditional mean directly comes from (5.5) and is

$$
E(r_{i,t}|r_{m,t},r_{1:T},G^{(g)}) = \sum_{j=1}^{K^{(g)}} q_{j}^{(g)}(r_{m,t})[\mu_{j,1}^{(g)} + \beta_{j}^{(g)}(r_{m,t} - \mu_{j,2}^{(g)})] +
$$

$$
\left(1 - \sum_{j=1}^{K^{(g)}} q_{j}^{(g)}(r_{m,t})\right) \frac{\int [\mu_{1} + \beta_{j}^{(g)}(r_{m,t} - \mu_{2})]N(r_{m,t}|\mu_{2},(H_{t}^{(g)})^{1/2}BH_{t}^{(g)})_{22}p(\mu, B)d\mu dB}{\int N(r_{m,t}|\mu_{2},(H_{t}^{(g)})^{1/2}BH_{t}^{(g)})_{22}p(\mu, B)d\mu dB}.
$$

The cluster specific beta is defined as

$$
\beta_{j}^{(g)} = \frac{(H_{t}^{(g)})^{1/2}B_{j}(H_{t}^{(g)})^{1/2}}{(H_{t}^{(g)})^{1/2}B_{j}(H_{t}^{(g)})^{1/2}}_{12}
$$

where the subscript (i,j) on $(())_{ij}$ denotes element (i,j) of the matrix and β_{j} in the second line of (5.7) is defined as $\beta_{j}^{(g)}$ except B_{j} is replaced with B. The numerator and denominator in the last term of (5.7) can be approximated by simulation.

Integrating all parameter and distributional uncertainty results in an estimate of the predictive conditional mean as

$$
E(r_{i,t}|r_{m,t},r_{1:T}) \approx \frac{1}{M} \sum_{g=1}^{M} E(r_{i,t}|r_{m,t},r_{1:T},G^{(g)}).
$$

The predictive mean of the conditional beta is the derivative of this conditional expectation of $r_{i,t}$ given $r_{m,t}$, (5.9) with respect to $r_{m,t}$. This is,

$$
b_{m,t}(r_{m,t}) = \frac{\partial E(r_{i,t}|r_{m,t},r_{1:T})}{\partial r_{m,t}} \bigg|_{r_{m,t}=r_{m,t}}.
$$

Full details on this derivative and estimate are provided in the appendix.

In the case that we have more than one factor, we follow the same process. We first estimate the joint model and back out the conditional distribution of the stock return $r_{i,t}$ given all factors. The nonparametric conditional beta in this case is a vector. It is defined analogously to (5.10) as the partial derivative with respect to the factor. For instance in the case of the Fama-French 3-factor model (Fama & French 1993), beta for size factor is defined as

$$
b_{SMB,t} = \frac{\partial E(r_{i,t}|r_{m,t},r_{1:T})}{\partial r_{SMB,t}} \bigg|_{r_{m,t}=r_{m,t},r_{SMB,t}=r_{SMB,t},r_{HML,t}}.
$$

with a similar expression for the other factor coefficients $b_{m,t}$ and $b_{HML,t}$.

6 Data

We use the value-weighted index constructed by the Center of Research in Security Prices (CRSP) as a proxy for market returns. Daily market excess returns as well as five individual stock excess returns for IBM, General Electric or GE, Exxon or XOM, Amgen or AMGN, and bank of America or BAC are obtained from 03/01/2000 to 31/12/2013.
(3521 daily observations). Excess returns are derived after subtracting the risk-free return approximated by the three-month Treasury bill rate. All returns are scaled by 100. Figure 1 displays the data and Table 1 reports summary statistics. All individual stocks display skewness and excess kurtosis. Figure 1 shows that returns with absolute large (small) value tend to be followed by other large (small) absolute returns reflecting volatility clustering. Daily data for the size factor, \(r_{SMB,t} \), value factor, \(r_{HML,t} \), and momentum factor, \(r_{MOM,t} \), are obtained from Kenneth French’s website.

7 Model Performance

The criteria that we use to compare different models is the value of the log-predictive likelihood. For each particular model \(\mathcal{M} \) (i.e., MGARCH-t or MGARCH-DPM), the predictive likelihood for \(r_{L:T} \), \(L < T \) is expressed in terms of the one-step-ahead predictive likelihoods,

\[
m(r_{L:T}|r_{1:L-1}; \mathcal{M}) = \Pi_{t=L}^{T} p(r_t|r_{1:t-1}; \mathcal{M})
\]

(7.1)

where \(L > 1 \) is chosen to eliminate the influence of the priors on model comparison. We can approximate the one-step-ahead predictive likelihoods, \(p(r_t|r_{1:t-1}; \mathcal{M}) \), by averaging the data density over draws of the unknown parameters conditional on the data history \(r_{1:t-1} \). This integrates out parameter and distributional uncertainty as

\[
p(r_t|r_{1:t-1}, \mathcal{M}) = \int p(r_t|\theta, r_{1:t-1}, \mathcal{M}) p(\theta|r_{1:t-1}, \mathcal{M}) d\theta
\]

(7.2)

where \(\theta^{(g)} \) is a posterior draw from \(p(\theta|r_{1:t-1}, \mathcal{M}) \) and \(p(r_t|\theta^{(g)}, r_{1:t-1}, \mathcal{M}) \) is the data density given \(\theta^{(g)} \) and \(r_{1:t-1} \) for model \(\mathcal{M} \).

The following priors are used in estimation. In the MGARCH-t model, \(\nu \sim \mathcal{U}(2, 100) \), and \(\mu \sim N(0, 0.1I) \) for both models. For each of GARCH parameters in both models, we set \(\Gamma_{0,ij}^{1/2} \sim N(0, 100)1_S \), \(\gamma_{1,i} \sim N(0, 100)1_S \), \(i = 1, \ldots, q + 1 \), \(j \leq i \) as prior distribution where \(S \) denotes the following restriction: \(\text{diag}(\Gamma_{0,ii}^{1/2}) > 0, \gamma_{11} > 0, \gamma_{22} > 0 \) to impose identification. For the concentration parameter \(\alpha \sim \mathcal{G}(0.1, 0.3) \) with a mean of 1/3. The prior on \(\alpha \) controls the number of the distinct components in the mixture model, although with a large number of observations the effect of the prior is diminished. For the hyper-parameters of the base measure \(G_0 \), we set \(B_0 = (\nu_0 - q - 1)I \) which makes \(E(B) = I \) and centers the conditional covariance of \(r_t \) at \(H_t \). \(\nu_0 = 8 \), but other values for \(\nu_0 \) do not change our conclusions.

Based on (7.2), the predictive likelihoods for the two models are estimated as

\[
p(r_t|r_{1:t-1}, \text{MGARCH-t}) \approx \frac{1}{M} \sum_{g=1}^{M} t(r_t|\mu^{(g)}_t, H^{(g)}_t, \nu^{(g)}),
\]

(7.3)

\[
p(r_t|r_{1:t-1}, \text{MGARCH-DPM}) \approx \frac{1}{M} \sum_{g=1}^{M} N(r_t|\mu^{(g)}_t, \lambda^{(g)}_t, \nu^{(g)}); \gamma_{11}^{-1/2} B^{(g)}_t \gamma_{22}^{-1/2} H^{(g)}_t),
\]

(7.4)

Note that we are able to compute \(H^{(g)}_t \) at each iteration of the MCMC since we have \(H^{(g)}_{t-1} \) and GARCH parameters: \(H^{(g)}_t = \Gamma^{(g)}_0 + \Gamma^{(g)}_1 \odot (r_{t-1} - \eta^{(g)})(r - \eta^{(g)})'_{t-1} + \Gamma^{(g)}_2 \odot H^{(g)}_{t-1} \).
In MGARCH-DPM model, at each iteration g, $s_t^{(g)}$ is drawn from one of the $K^{(g)} + 1$ components with weights $\omega_j^{(g)}$, $j = 1, \ldots, K^{(g)}$ and $1 - \sum_{j=1}^{K^{(g)}} \omega_j^{(g)}$. When $s_t^{(g)} = K^{(g)} + 1$ a new parameter $\theta \sim G_0$ is drawn.

To determine the factors to be used, we compare the values of the marginal predictive likelihood of the individual stock return derived from each model, using different factors. The predictive likelihoods discussed above are directly comparable but when comparing a model with 2 factors versus 3 factors the independent variable r_t is 2 dimensional and 3 dimensional, respectively. These predictive likelihood values are not comparable. Instead we compare the marginal predictive likelihood for the individual stock return only. This is obtained from each full model after integrating out the factors in each model. For instance, for excess stock return i we compare the one-factor model against the two-factor model with $p(r_{i,t}|r_{i,1:t-1}, r_{f_1,1:t-1})$ and $p(r_{i,t}|r_{i,1:t-1}, r_{f_1,1:t-1}, r_{f_2,1:t-1})$. These marginal predictive likelihoods are derived from the full predictive likelihood. For example, the first one is obtained from $p(r_{i,t}, r_{f_1,t}|r_{i,1:t-1}, r_{f_1,1:t-1})$ by marginalizing out $r_{f_1,t}$. This can be done directly on the terms (7.3) and (7.4) by selecting the associated univariate marginal density from the multivariate Student-t and normal on the right hand side of these equations.

We first compare the performance of the MGARCH-DPM model with different factors. These factors include market excess return, size factor and value factor from the Fama-French 3-factor model, and the momentum factor. The set of factors can be extended to include any factor. Table 2 reports the marginal log-predictive likelihood of IBM, BAC, GE, XOM and AMGN, for the MGARCH-DPM model, for 12/03/2012 to 31/12/2013 (500 observations) when we use different factors. The table shows that, for all stocks under study, the 1-factor model with market excess return as the only factor results in a better marginal predictive likelihood compared to the 3 (market, SMB, HML) and 4-factor models (market, SMB, HML, momentum). The evidence for one factor is very strong. For instance, the log-predictive Bayes factor for the 1 factor IBM model against the 3 factor version is 243^{35}. Therefore the remainder of the empirical results focus on the 1-factor model.

Table 3 reports the log-predictive likelihoods for the 1-factor MGARCH-t and MGARCH-DPM models, and the log-Bayes factor over 12/03/2012 to 31/12/2013. Bivariate models based on daily excess returns on IBM, GE, XOM, AMGN and BAC each with excess market returns are considered. The results strongly support our semiparametric model relative to the benchmark model. For instance, log-Bayes factors are all greater than 211. This is very strong evidence of significant deviations from the Student-t MGARCH model.

Figure 2 displays the time-series of the market and IBM excess returns as well as the difference in the log-predictive likelihood of the two models using

$$\log p(r_{1,t}|r_{1,1:t-1}, \text{MGARCH-DPM}) - \log p(r_{1,t}|r_{1,1:t-1}, \text{MGARCH-t}).$$

(7.5)

Positive values favour the MGARCH-DPM specification. This figure shows that the MGARCH-DPM model almost always outperforms MGARCH-t model. There are large differences when the market or IBM returns are extreme.

8 Applications of Semiparametric Conditional Beta

This section presents empirical estimates of the nonparametric dynamic conditional beta from the MGARCH-DPM model for several individual stocks and compares them with
the corresponding counterpart from the parametric MGARCH-t model. Not only does
the beta computed in this way change over time, but also the time-varying conditional
beta is sensitive to the contemporaneous value of excess market return. This implies
that the value of the systematic risk of an asset at each time depends on the level of the
market return.

The model is applied to derive a nonparametric conditional beta (calculated in
Section 5) using excess returns on a single stock and on the market return \((q = 1)\).
This results in a conditional expected return of the individual stock comparable to the
conditional CAPM model.

The analysis reported here is based on 25000 iterations of the MCMC algorithm.
The first 15000 draws were dropped as burn-in and the following 10000 used for inference.
The average acceptance rate of GARCH parameters is about 20\% and about 30\% for
parametric and nonparametric models, respectively.

Tables 4-8 report the posterior mean and the 0.95 probability density intervals of
the fixed parameters for both models and for different stocks. The estimated MGARCH
parameters from the two models are consistent. The tables report \(c\), the number of
components in the mixture used to estimate the unknown density. On average, the
bivariate joint density of IBM, XOM, GE, and BAC with the market is estimated using
about 3.6-6.3 components but the density intervals indicate considerable uncertainty.
However, for AMGN and the market, about 15 components are used, showing that this
joint density is far more complex than the others. These results are compatible with
the small degree of freedom estimated in the benchmark models. Estimates of \(\eta_1\) and \(\eta_2\)
are consistently positive indicating a larger response to the conditional covariance from
negative shocks.

Figures 3-7 compare the posterior mean of the realized beta over time derived from
both models for each of the stocks. For MGARCH-t model, the posterior mean of \((2.8)\) is
reported while for the MGARCH-DPM model the posterior mean of \((5.10)\) is evaluated
at the realized excess market return value for time \(t\). As seen in the figures, both models
result in very similar time series for the conditional beta.

Figures 8-12 illustrate posterior mean of each stock’s conditional beta as a function
of the contemporaneous market excess return using \((5.10)\) at several dates. These figures
show that beta is changing over time and, more importantly, at each time the value of
beta is sensitive to the contemporaneous value of the market excess return. For each
stock there are dates that beta is a constant function of the market return which would
be consistent with the MGARCH-t model. However, each stock has dates in which beta
is nonlinearly dependent on the market return. Moreover, often beta is asymmetrically
related to the market; when the market excess return increases (large positive values),
conditional beta drops more significantly (Figures 8-10).

The nonlinear relationship between beta and the market transfers directly into the
conditional expected excess return. For example, Figure 13 displays the posterior mean
of the conditional expected excess return of IBM given different values of the contem-
poraneous market excess return, derived from \((5.9)\), for dates for which the conditional
betas are illustrated in Figure 8. This figure clearly shows how the nonlinear conditional
beta results in the nonlinear conditional expected return.

To investigate the significance of this nonlinear relationship Figures 14-18 display
the posterior mean of the nonparametric conditional beta as a function of the market
excess return as well as the 0.90 density intervals for selected dates for each stock. Beta
derived from the MGARCH-t model is included and is a constant function at each time.
In Figure 14, generally returns outside of \((-2, 2)\) have density intervals that exclude the constant beta for the MGARCH-t. The deviation of the nonparametric beta from the constant one is very large for 27/01/2011. On the other hand, Figure 15 shows fewer episodes that differ from the constant beta for XOM. Figure 17 displays large deviations for 27/08/2003 and 23/10/2008 for AMGN and similarly for BAC 04/11/2011 (Figure 18). It is clear from these figures that there are significant departures of the nonparametric beta from the constant beta in the MGARCH-t model.

Finally, Figures 19-23 provide a three dimensional version of Figures 8-12 for each stock. In some periods beta is essentially flat and consistent with the MGARCH-t model while in other times beta is very sensitive to the market return.

8.1 Summary of Empirical Results

As the empirical results illustrate, the conditional beta is time-varying and at each time depends on the contemporaneous market excess return, as opposed to the constant beta of the benchmark model.

The previous results show some periods in which the conditional beta is insensitive to the value of \(r_{m,t}\) (beta is almost constant with respect to \(r_{m,t}\)) while in other time periods beta changes significantly with \(r_{m,t}\). To measure the sensitivity of \(b_{m,t}(r_{m,t})\) to \(r_{m,t}\) at each time \(t\) consider the following measure

\[
d_t = \max_{r_{m,t}} b_{m,t}(r_{m,t}) - \min_{r_{m,t}} b_{m,t}(r_{m,t}),
\]

(8.1)

where \(b_{m,t}(r_{m,t})\) is defined in (5.10). Large values of \(d_t\) indicate that \(b_t(r_{m,t})\) is strongly sensitive to \(r_{m,t}\), while a \(d_t = 0\) indicates no sensitivity. The MGARCH-t model has a \(d_t = 0\) for all \(t\). Figure 24 illustrates this \(d_t\) over time for all individual stocks. Among these five stocks, the dynamic conditional beta for IBM and BAC have the most sensitivity and XOM has the least sensitivity to \(r_{m,t}\). What is apparent is that during relatively high volatility periods such as 2002-03, 2009 and 2011:6-2012, \(d_t\) attains its smallest values over the sample. In these periods shocks to the market are expected to be large. During lower volatility periods large shocks to the market and firms are unexpected and the conditional beta adjusts accordingly.

To investigate how \(b_{m,t}(r_{m,t})\) changes with different market conditions Figures 25-29 show the broad trends that we find in all stocks. When the market is highly volatile, an individual stock’s conditional beta is less affected by unexpected shocks in the contemporaneous market return. While in a calm market, the conditional beta changes remarkably from unexpected shocks to the market. However, the changes depend on the stocks correlation with the market.

When the market is calm, an unexpected shock increases the conditional beta for a stock that is highly correlated with the market, while this effect is completely the reverse for stocks with low correlation with the market. In other words, when an asset is highly correlated with the market, a large move in a stable market increases the conditional covariance between the market and the asset more than it increases the conditional variance of the market, resulting in a significant increase in the conditional beta. When an asset is less correlated with the market, a large move in a stable market increases the conditional variance of the market more than it increases the conditional covariance between the market and the asset, leading to a drop in the conditional beta. Although the actual curve differs for each stock, the figures show that these broad trends are quite robust over our sample of stocks.
It is often the case that the effect on $b_{m,t}(r_{m,t})$ from $r_{m,t}$ is asymmetric. Frequently $b_{m,t}(r_{m,t})$ is more sensitive to large positive values of $r_{m,t}$ compared to negative values. In addition, when the market is calm, we see both u-shape and inverse u-shape patterns for the conditional beta of all stocks.

9 Financial Applications

From Equation (5.5), we are able to examine the whole conditional density of the stock given factor values. This allows for the study of the individual stock’s conditional expected return but also risk measures under different market scenarios. For instance, what is the expected return tomorrow of a stock if a market crash occurred or what is the value-at-risk in this case?

Consider the predictive conditional expected return of IBM at time t derived from the 1-factor model, $E[r_{IBM,t}|r_{m,1:t-1}, r_{IBM,1:t-1}]$. Using the semiparametric model, this value is a nonlinear function of $r_{m,t}$. Therefore, when a large shock is expected to the market, this shock affects our expectation of the IBM return nonlinearly, while in the benchmark model this effect is linear. For instance, Figure 30 illustrates IBM’s predictive conditional expected return for a specific date (30/11/2000). From this figure we can assess the expected impact of a large positive or negative shock to the market on the value of IBM’s expected return.

Consider a second example of a large realized market shock in 29/10/2008 and the impact on IBM. Figure 31 shows IBM’s predictive conditional expected return for this day derived from the benchmark model and the semiparametric model. The realized market return and IBM return on this day are %9.77 and %9.56, respectively. Accounting for the nonlinearity using the semiparametric model reduces the prediction error considerably. The blue line from the nonparametric model is much closer to the realized return.

The previous example focused on one specific date. If we consider all dates in which the market had a large realized shock (more than 6%) the root mean squared error of the prediction is reduced from 8.394 and 8.131 in moving from the MGARCH-t to the nonparametric model. This represents a 3.2% improvement in accuracy.

In addition to the expected return, the semiparametric model enables us to study the effect of large shocks in the market on IBM’s whole conditional density and the impact on different risk measures. Figure 32 illustrates the effect of +5% and −5% shocks in the market return on IBM’s predictive conditional density on 17/05/2012. The value-at-risk from a $1 investment in IBM when we have no shock in the market is 2.306%. A +5% shock in the market return decreases the value-at-risk to 0.180%, while a −5% shock in the market return increases the value at risk to 4.471%. Therefore, we can carry out different risk scenario analyses in order to measure the effect of big shocks in the market on our investment in a specific firm.

10 Conclusion

This paper derives a dynamic conditional beta representation using a Bayesian semiparametric multivariate GARCH model. We show how to select the number of factors and that the predictive Bayes factors strongly support this semiparametric model over a multivariate GARCH with Student-t innovations. Empirically we find the time-varying beta from our model nonlinearly depends on the contemporaneous value of excess market
return. In highly volatile markets, beta is almost constant, while in stable markets, the beta coefficient can depend asymmetrically on the contemporaneous value of the market excess return. The paper concludes with a discussion of how the model can be used to assess different risk scenarios.

11 Appendix

11.1 Distributions

If \(r \sim t(\mu, \Sigma, \nu) \) then the density function of the Student-t (Bauwens et al. 2000) is

\[
f(r|\nu, \mu, \Sigma) = \frac{\Gamma(\nu/2)}{\Gamma((\nu+1)/2)\pi^{n/2}\Sigma^{n/2}} \left[1 + \frac{1}{\nu}(r - \mu)^T \Sigma^{-1}(r - \mu)\right]^{-(\nu + p)/2}, \quad \nu > 0.
\]

The \(q \times q \) matrix \(B \) follows an inverse Wishart density with a symmetric positive definite scale matrix \(B_0 \) and degree of freedom \(\nu_0 \geq q + 1 \), if its pdf can be written as

\[
f(B|B_0, \nu_0) = \frac{|B_0|^{\nu_0/2}}{2^{\nu_0/2} \pi^{q(q+1)/4} \prod_{j=1}^q \Gamma(\nu_0/2 + 1)} |B|^{-(q + \nu_0 + 1)/2} \exp \left[-\frac{1}{2} \text{tr}(B^{-1}B_0)\right],
\]

with \(E(B) = \frac{1}{\nu_0 - q - 1} B_0 \).

The pdf of the Gamma distribution \(G(a, b) \) with shape parameter \(a \) and scale parameter \(b \) is written as

\[
f(x|a, b) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-xb}, \quad x \in (0, \infty), \quad E(x) = \frac{a}{b}.
\]

11.2 Derivation of the nonparametric conditional beta

\[
E(r_{i,t}|r_{i,t-1}, r_{1:T}, G^{(g)}) = \sum_{j=1}^{K^{(g)}} q_j^{(g)}(r_{m,t}) [\mu_{j,1} + \beta_{j,1}(r_{m,t} - \mu_{j,2})] +
\]

\[
(1 - \sum_{j=1}^{K^{(g)}} q_j^{(g)}(r_{m,t})) \int [\mu_1 + \beta_1(r_{m,t} - \mu_2)] N(r_{m,t}|\mu_2, (H_t^{(g)1/2} BH_t^{(g)1/2})_{22}) p(\mu, B) d\mu dB.
\]

Let

\[
A_1 = \int [\mu_1 + \beta_1(r_{m,t} - \mu_2)] N(r_{m,t}|\mu_2, (H_t^{(g)1/2} BH_t^{(g)1/2})_{22}) p(\mu, B) d\mu dB,
\]

\[
A_2 = \int N(r_{m,t}|\mu_2, (H_t^{(g)1/2} BH_t^{(g)1/2})_{22}) p(\mu, B) d\mu dB.
\]

\(A_1 \) and \(A_2 \) can be easily approximated by Monte Carlo simulation as follows

\[
A_1 \approx \frac{1}{N} \sum_{n=1}^{N} [\mu_{n,1} + \beta_{n,1}^{(g)}(r_{m,t} - \mu_{n,2})] N(r_{m,t}|\mu_{n,2}, (H_t^{(g)1/2} B_n H_t^{(g)1/2})_{22})
\]

\[
A_2 \approx \frac{1}{N} \sum_{n=1}^{N} N(r_{m,t}|\mu_{n,2}, (H_t^{(g)1/2} B_n H_t^{(g)1/2})_{22})
\]
where μ_n and B_n, $n = 1, \ldots, N$ are i.i.d draws from the prior $p(\mu, B)$ which in our model is $N(\mu|\mu_0, D)$ and $\mathcal{W}^{-1}(B|B_0, \nu_0)$, and

$$
\beta_{nt}^{(g)} = \frac{(H_t^{(g)})^{1/2} B_n H_t^{(g)'1/2})_{12}}{(H_t^{(g)})^{1/2} B_n H_t^{(g)'1/2})_{22}}. \tag{11.6}
$$

Now we obtain the posterior mean of the nonparametric conditional beta by taking the derivative of 11.1:

$$
b_{m,t}(r_{m,t}) = \frac{1}{M} \sum_{g=1}^{M} b_{m,t}(r_{m,t}, G^{(g)}) = \frac{1}{M} \sum_{g=1}^{M} \frac{\partial E(r_{t,t}|r_{m,t}; r_{1:T}; G^{(g)})}{\partial r_{m,t}} \bigg|_{r_{m,t}=r_{m,t}}. \tag{11.7}
$$

After replacing A_1 and A_2 with their approximations we have

$$
\frac{\partial E(r_{t,t}|r_{m,t}, r_{1:T}, G^{(g)})}{\partial r_{m,t}} \approx \sum_{g=1}^{G} \frac{K^{(g)}}{d_t^{(g)}} (r_{m,t}) \beta_{nt}^{(g)}
$$

$$
+ \sum_{g=1}^{G} \frac{K^{(g)}}{d_t^{(g)}} (r_{m,t}) \beta_{nt}^{(g)} + \sum_{g=1}^{G} \frac{K^{(g)}}{d_t^{(g)}} (r_{m,t} - \mu_{nt}^{(g)}),
$$

$$
- \sum_{g=1}^{G} \frac{K^{(g)}}{d_t^{(g)}} (r_{m,t}) \sum_n [\mu_{n,1} + \beta_{nt}^{(g)} (r_{m,t} - \mu_{nt}^{(g)})] \sum_n N(r_{m,t}|\mu_{n,2}, (H_t^{(g)})^{1/2} B_n H_t^{(g)'1/2})_{22}]
$$

$$
+ \left(1 - \sum_{g=1}^{G} \frac{K^{(g)}}{d_t^{(g)}} (r_{m,t}) \right) \sum_n N(r_{m,t}|\mu_{n,2}, (H_t^{(g)})^{1/2} B_n H_t^{(g)'1/2})_{22}]
$$

$$
+ \sum_n N(r_{m,t}|\mu_{n,2}, (H_t^{(g)})^{1/2} B_n H_t^{(g)'1/2})_{22}]
$$

$$
- \sum_n N(r_{m,t}|\mu_{n,2}, (H_t^{(g)})^{1/2} B_n H_t^{(g)'1/2})_{22}]
$$

$$
\sum_n N(r_{m,t}|\mu_{n,2}, (H_t^{(g)})^{1/2} B_n H_t^{(g)'1/2})_{22}]
$$

$$
\sum_n N(r_{m,t}|\mu_{n,2}, (H_t^{(g)})^{1/2} B_n H_t^{(g)'1/2})_{22}]
$$

$$
|\sum_n N(r_{m,t}|\mu_{n,2}, (H_t^{(g)})^{1/2} B_n H_t^{(g)'1/2})_{22}|
$$

where $\beta_{nt}^{(g)}$, $\beta_{nt}^{(g)}$, and $q_t^{(g)}(r_{m})$ are defined in Equations (5.8), (11.6), and (5.6), respectively, and $N(x|x_0)$ is the derivative of the pdf of Normal distribution with respect to x. In the case that we have more than one factor (say q factors), the derivations follow similarly but the derivative will be a vector of size q, each element of which is the coefficient of the corresponding factor.

References

17

<table>
<thead>
<tr>
<th>Stock</th>
<th>Mean</th>
<th>Variance</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market</td>
<td>0.017</td>
<td>1.744</td>
<td>-0.070</td>
<td>7.067</td>
<td>11.350</td>
<td>-8.950</td>
</tr>
<tr>
<td>IBM</td>
<td>0.028</td>
<td>3.070</td>
<td>0.230</td>
<td>7.834</td>
<td>13.019</td>
<td>-15.567</td>
</tr>
<tr>
<td>GE</td>
<td>-0.003</td>
<td>4.277</td>
<td>0.323</td>
<td>8.397</td>
<td>19.702</td>
<td>-12.797</td>
</tr>
<tr>
<td>XOM</td>
<td>0.032</td>
<td>2.672</td>
<td>0.367</td>
<td>11.163</td>
<td>17.180</td>
<td>-13.950</td>
</tr>
<tr>
<td>AMGN</td>
<td>0.034</td>
<td>4.758</td>
<td>0.508</td>
<td>5.907</td>
<td>15.090</td>
<td>-13.437</td>
</tr>
<tr>
<td>BAC</td>
<td>0.031</td>
<td>10.701</td>
<td>0.891</td>
<td>23.399</td>
<td>35.261</td>
<td>-28.969</td>
</tr>
</tbody>
</table>

Table 1: Summary statistics of the daily excess returns on the market portfolio, IBM, GE, XOM and AMGN, BAC from 03/01/2000 to 31/12/2013 (3521 observations).

<table>
<thead>
<tr>
<th>Stock</th>
<th>Log Marginal Predictive Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-factor model</td>
</tr>
<tr>
<td>IBM</td>
<td>-774.37</td>
</tr>
<tr>
<td>AMGN</td>
<td>-917.05</td>
</tr>
<tr>
<td>BAC</td>
<td>-1071.36</td>
</tr>
<tr>
<td>XOM</td>
<td>-671.59</td>
</tr>
<tr>
<td>GE</td>
<td>-774.43</td>
</tr>
</tbody>
</table>

Table 2: This table reports the marginal log-predictive likelihood for MGARCH-DPM model, for the last 500 observations, from 12/03/2012 to 31/12/2013 for the univariate stock return. Data are daily excess market returns, SMB, HML and momentum returns coupled with excess returns on IBM, AMGN, BAC, XOM and GE from 03/01/2000 to 31/12/2013. The 1-factor model includes the market, the 3-factor model the market, SMB and HML, the 4-factor model the market, SMB, HML and momentum.

<table>
<thead>
<tr>
<th>Model</th>
<th>IBM</th>
<th>GE</th>
<th>XOM</th>
<th>AMGN</th>
<th>BAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGARCH-DPM</td>
<td>-983.27</td>
<td>-964.99</td>
<td>-875.47</td>
<td>-1140.12</td>
<td>-1473.11</td>
</tr>
<tr>
<td>MGARCH-t</td>
<td>-1353.67</td>
<td>-1369.03</td>
<td>-1300.21</td>
<td>-1571.32</td>
<td>-1684.72</td>
</tr>
<tr>
<td>log-Bayes factor</td>
<td>370.40</td>
<td>404.04</td>
<td>424.74</td>
<td>431.20</td>
<td>211.61</td>
</tr>
</tbody>
</table>

Table 3: This table reports the log-predictive likelihood for the bivariate MGARCH-t and MGARCH-DPM models and the log-Bayes factor, for the last 500 observations, from 12/03/2012 to 31/12/2013. Bivariate data are daily excess market returns coupled with excess returns on IBM, GE, XOM, AMGN, and BAC from 03/01/2000 to 31/12/2013.
Table 4: IBM Estimates

This table displays posterior mean and 95% density intervals (DI) for the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on IBM and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IBM MGARCH-DPM</th>
<th>95% DI</th>
<th>IBM MGARCH-t</th>
<th>95% DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>0.102</td>
<td>(0.055, 0.146)</td>
<td>0.023</td>
<td>(0.015, 0.037)</td>
</tr>
<tr>
<td>γ_2</td>
<td>-0.043</td>
<td>(-0.081, 0.003)</td>
<td>-0.042</td>
<td>(-0.053, -0.034)</td>
</tr>
<tr>
<td>γ_3</td>
<td>0.020</td>
<td>(0.001, 0.053)</td>
<td>0.020</td>
<td>(0.002, 0.048)</td>
</tr>
<tr>
<td>γ_4</td>
<td>0.247</td>
<td>(0.199, 0.307)</td>
<td>0.150</td>
<td>(0.144, 0.160)</td>
</tr>
<tr>
<td>γ_5</td>
<td>0.267</td>
<td>(0.232, 0.313)</td>
<td>0.224</td>
<td>(0.210, 0.233)</td>
</tr>
<tr>
<td>γ_6</td>
<td>0.971</td>
<td>(0.965, 0.977)</td>
<td>0.975</td>
<td>(0.971, 0.977)</td>
</tr>
<tr>
<td>γ_7</td>
<td>0.953</td>
<td>(0.945, 0.961)</td>
<td>0.955</td>
<td>(0.951, 0.961)</td>
</tr>
<tr>
<td>μ_1</td>
<td>0.025</td>
<td>(0.016, 0.046)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_2</td>
<td>0.041</td>
<td>(0.022, 0.074)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>5.37</td>
<td>(5.01, 5.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>5.6</td>
<td>(3.00, 11.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.571</td>
<td>(0.070, 1.61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_1</td>
<td>0.570</td>
<td>(0.349, 0.714)</td>
<td>0.807</td>
<td>(0.776, 0.864)</td>
</tr>
<tr>
<td>η_2</td>
<td>0.533</td>
<td>(0.434, 0.618)</td>
<td>0.507</td>
<td>(0.451, 0.644)</td>
</tr>
</tbody>
</table>

Table 5: XOM Estimates

This table displays posterior mean and 95% density intervals (DI) for the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on XOM and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>XOM MGARCH-DPM</th>
<th>95% DI</th>
<th>XOM MGARCH-t</th>
<th>95% DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>0.141</td>
<td>(0.108, 0.182)</td>
<td>0.110</td>
<td>(0.012, 0.200)</td>
</tr>
<tr>
<td>γ_2</td>
<td>0.014</td>
<td>(-0.003, 0.030)</td>
<td>0.016</td>
<td>(-0.058, 0.073)</td>
</tr>
<tr>
<td>γ_3</td>
<td>0.014</td>
<td>(0.001, 0.041)</td>
<td>0.032</td>
<td>(0.001, 0.082)</td>
</tr>
<tr>
<td>γ_4</td>
<td>0.250</td>
<td>(0.223, 0.283)</td>
<td>0.228</td>
<td>(0.165, 0.310)</td>
</tr>
<tr>
<td>γ_5</td>
<td>0.238</td>
<td>(0.198, 0.287)</td>
<td>0.228</td>
<td>(0.175, 0.288)</td>
</tr>
<tr>
<td>γ_6</td>
<td>0.956</td>
<td>(0.947, 0.965)</td>
<td>0.958</td>
<td>(0.935, 0.977)</td>
</tr>
<tr>
<td>γ_7</td>
<td>0.960</td>
<td>(0.953, 0.969)</td>
<td>0.958</td>
<td>(0.939, 0.974)</td>
</tr>
<tr>
<td>μ_1</td>
<td>0.025</td>
<td>(-0.076, 0.129)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_2</td>
<td>0.022</td>
<td>(-0.050, 0.092)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>9.89</td>
<td>(6.16, 13.90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3.6</td>
<td>(2.00, 9.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.324</td>
<td>(0.011, 1.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_1</td>
<td>0.480</td>
<td>(0.345, 0.591)</td>
<td>0.436</td>
<td>(-0.051, 0.775)</td>
</tr>
<tr>
<td>η_2</td>
<td>0.524</td>
<td>(0.436, 0.613)</td>
<td>0.514</td>
<td>(0.279, 0.708)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Post. Mean</td>
<td>95% DI</td>
<td>Post. Mean</td>
<td>95% DI</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>AMGN</td>
<td></td>
<td></td>
<td>GE</td>
<td></td>
</tr>
<tr>
<td>γ_01</td>
<td>0.061</td>
<td>(0.023, 0.093)</td>
<td>0.031</td>
<td>(0.012, 0.056)</td>
</tr>
<tr>
<td>γ_02</td>
<td>-0.033</td>
<td>(-0.054, -0.014)</td>
<td>-0.029</td>
<td>(-0.039, -0.008)</td>
</tr>
<tr>
<td>γ_03</td>
<td>0.018</td>
<td>(0.001, 0.052)</td>
<td>0.036</td>
<td>(0.022, 0.052)</td>
</tr>
<tr>
<td>γ_{11}</td>
<td>0.196</td>
<td>(0.174, 0.216)</td>
<td>0.170</td>
<td>(0.145, 0.188)</td>
</tr>
<tr>
<td>γ_{12}</td>
<td>0.204</td>
<td>(0.181, 0.225)</td>
<td>0.180</td>
<td>(0.168, 0.192)</td>
</tr>
<tr>
<td>γ_{21}</td>
<td>0.974</td>
<td>(0.967, 0.981)</td>
<td>0.974</td>
<td>(0.970, 0.981)</td>
</tr>
<tr>
<td>γ_{22}</td>
<td>0.964</td>
<td>(0.957, 0.970)</td>
<td>0.971</td>
<td>(0.967, 0.974)</td>
</tr>
<tr>
<td>μ_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>5.04</td>
<td>(3.00, 10.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.501</td>
<td>(0.060, 1.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_1</td>
<td>0.554</td>
<td>(0.414, 0.707)</td>
<td>0.633</td>
<td>(0.555, 0.785)</td>
</tr>
<tr>
<td>η_2</td>
<td>0.464</td>
<td>(0.395, 0.539)</td>
<td>0.463</td>
<td>(0.416, 0.561)</td>
</tr>
</tbody>
</table>

Table 6: GE Estimates: This table displays posterior mean and 95% density intervals (DI) for the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on GE and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Post. Mean</th>
<th>95% DI</th>
<th>Post. Mean</th>
<th>95% DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMGN</td>
<td></td>
<td></td>
<td>GE</td>
<td></td>
</tr>
<tr>
<td>γ_01</td>
<td>0.137</td>
<td>(0.089, 0.171)</td>
<td>0.084</td>
<td>(0.065, 0.106)</td>
</tr>
<tr>
<td>γ_02</td>
<td>-0.011</td>
<td>(-0.031, 0.012)</td>
<td>-0.028</td>
<td>(-0.044, -0.007)</td>
</tr>
<tr>
<td>γ_03</td>
<td>0.016</td>
<td>(0.001, 0.039)</td>
<td>0.034</td>
<td>(0.015, 0.059)</td>
</tr>
<tr>
<td>γ_{11}</td>
<td>0.211</td>
<td>(0.182, 0.239)</td>
<td>0.165</td>
<td>(0.156, 0.175)</td>
</tr>
<tr>
<td>γ_{12}</td>
<td>0.188</td>
<td>(0.172, 0.211)</td>
<td>0.228</td>
<td>(0.195, 0.242)</td>
</tr>
<tr>
<td>γ_{21}</td>
<td>0.965</td>
<td>(0.945, 0.958)</td>
<td>0.973</td>
<td>(0.971, 0.976)</td>
</tr>
<tr>
<td>γ_{22}</td>
<td>0.951</td>
<td>(0.945, 0.958)</td>
<td>0.956</td>
<td>(0.950, 0.965)</td>
</tr>
<tr>
<td>μ_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>15</td>
<td>(7.00, 28.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>2.41</td>
<td>(0.500, 5.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_1</td>
<td>0.508</td>
<td>(0.428, 0.596)</td>
<td>0.768</td>
<td>(0.686, 0.876)</td>
</tr>
<tr>
<td>η_2</td>
<td>0.542</td>
<td>(0.459, 0.630)</td>
<td>0.479</td>
<td>(0.443, 0.566)</td>
</tr>
</tbody>
</table>

Table 7: AMGN Estimates: This table displays posterior mean and 95% density intervals (DI) for the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on AMGN and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Post. Mean</th>
<th>95% DI</th>
<th>Post. Mean</th>
<th>95% DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_{01}</td>
<td>0.064</td>
<td>(0.024, 0.115)</td>
<td>0.065</td>
<td>(0.045, 0.091)</td>
</tr>
<tr>
<td>γ_{02}</td>
<td>-0.031</td>
<td>(-0.062, 0.012)</td>
<td>-0.022</td>
<td>(-0.036, -0.008)</td>
</tr>
<tr>
<td>γ_{03}</td>
<td>-0.007</td>
<td>(-0.061, 0.042)</td>
<td>0.029</td>
<td>(0.004, 0.051)</td>
</tr>
<tr>
<td>γ_{11}</td>
<td>0.284</td>
<td>(0.235, 0.351)</td>
<td>0.219</td>
<td>(0.206, 0.238)</td>
</tr>
<tr>
<td>γ_{12}</td>
<td>0.212</td>
<td>(0.183, 0.260)</td>
<td>0.213</td>
<td>(0.197, 0.229)</td>
</tr>
<tr>
<td>γ_{21}</td>
<td>0.962</td>
<td>(0.954, 0.968)</td>
<td>0.962</td>
<td>(0.956, 0.966)</td>
</tr>
<tr>
<td>γ_{22}</td>
<td>0.955</td>
<td>(0.945, 0.963)</td>
<td>0.963</td>
<td>(0.956, 0.969)</td>
</tr>
<tr>
<td>μ_1</td>
<td></td>
<td></td>
<td>0.000</td>
<td>(-0.033, 0.033)</td>
</tr>
<tr>
<td>μ_2</td>
<td></td>
<td></td>
<td>0.040</td>
<td>(0.021, 0.072)</td>
</tr>
<tr>
<td>ν</td>
<td></td>
<td></td>
<td>6.37</td>
<td>(5.992, 6.839)</td>
</tr>
<tr>
<td>c</td>
<td>6.24</td>
<td>(3.000, 12.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.658</td>
<td>(0.092, 1.800)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_1</td>
<td>0.436</td>
<td>(0.326, 0.547)</td>
<td>0.472</td>
<td>(0.400, 0.554)</td>
</tr>
<tr>
<td>η_2</td>
<td>0.414</td>
<td>(0.333, 0.501)</td>
<td>0.432</td>
<td>(0.354, 0.558)</td>
</tr>
</tbody>
</table>

Table 8: BAC Estimates: This table displays posterior mean and 95% density intervals (DI) for the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on BAC and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).
Figure 1: Daily excess returns on the market, IBM, GE, XOM, AMGN and BAC.
Figure 2: The first panel indicates the difference of log predictive likelihood of the two models corresponding to each of the last 500 observations, from 05/01/2012 to 31/12/2013, for MGARCH-t and MGARCH-DPM. The second and third panel illustrate the time series returns on IBM and the market.
Figure 3: IBM: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.

Figure 4: XOM: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.

Figure 5: GE: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.
Figure 6: AMGN: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.

Figure 7: BAC: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.

Figure 8: IBM: posterior mean of conditional beta as a function of the market excess return for different dates.
Figure 9: XOM: posterior mean of conditional beta as a function of the market excess return for different dates.

Figure 10: GE: posterior mean of conditional beta as a function of the market excess return for different dates.
Figure 11: AMGN: posterior mean of conditional beta as a function of the market excess return for different dates.
Figure 12: BAC: posterior mean of conditional beta as a function of the market excess return for different dates.

Figure 13: IBM: posterior mean of the conditional expected excess return of IBM given different values of the contemporaneous market excess return for different dates.
Figure 14: The posterior mean and 0.90 density intervals of IBM’s conditional beta as a function of the excess market return from the MGARCH-DPM model. The red line shows the beta coefficients estimated with MGARCH-t model.
Figure 15: The posterior mean and 0.90 density intervals of XOM’s conditional beta as a function of the excess market return from the MGARCH-DPM model. The red line shows the beta coefficients estimated with MGARCH-t model.
Figure 16: The posterior mean and 0.90 density intervals of GE’s conditional beta as a function of the excess market return from the MGARCH-DPM model. The red line shows the beta coefficients estimated with MGARCH-t model.
Figure 17: The posterior mean and 0.90 density intervals of AMGN’s conditional beta as a function of the excess market return from the MGARCH-DPM model. The red line shows the beta coefficients estimated with MGARCH-t model.
Figure 18: The posterior mean and 0.90 density intervals of BAC’s conditional beta as a function of the excess market return from the MGARCH-DPM model. The red line shows the beta coefficients estimated with MGARCH-t model.
Figure 19: The posterior mean of IBM’s nonparametric conditional beta as a function of excess market return and time from 2009-07 to 2010-03 estimated with MGARCH-DPM model.

Figure 20: The posterior mean of XOM’s nonparametric conditional beta as a function of excess market return and time from 2006-08 to 2007-01 estimated with MGARCH-DPM model.
Figure 21: The posterior mean of GE’s nonparametric conditional beta as a function of excess market
return and time from 2009-12 to 2010-06 estimated with MGARCH-DPM model.

Figure 22: The posterior mean of AMGN’s nonparametric conditional beta as a function of excess
market return and time from 2005-02 to 2005-08 estimated with MGARCH-DPM model.
Figure 23: The posterior mean of BAC’s nonparametric conditional beta as a function of excess market return and time from 2012-10 to 2013-04 estimated with MGARCH-DPM model.

Figure 24: Variability of conditional beta with respect to the contemporaneous value of market excess returns over time for different stocks. \(d_t = \max_{r_{m,t}} b_{m,t}(r_{m,t}) - \min_{r_{m,t}} b_{m,t}(r_{m,t}) \).
Figure 25: IBM: conditional beta as a function of the market excess return for various dates grouped by market conditions and correlation.
Figure 26: XOM: conditional beta as a function of the market excess return for various dates grouped by market conditions and correlation.
Figure 27: GE: conditional beta as a function of the market excess return for various dates grouped by market conditions and correlation.
Figure 28: AMGN: conditional beta as a function of the market excess return for various dates grouped by market conditions and correlation.
Figure 29: BAC: conditional beta as a function of the market excess return for various dates grouped by market conditions and correlation.
Figure 30: IBM: Predictive conditional expected return of IBM derived from MGARCH-DPM and MGARCH-t model.

Figure 31: IBM: Predictive expected return from MGARCH-t and MGARCH-DPM models compared with the realized excess return of IBM when we expect a big shock to the market.
Figure 32: IBM: Effect of big shocks in the market return on IBM’s predictive conditional density.