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Abstract  

Intelligence quotient (IQ) scores are normally distributed within a nation’s population. In a 

cross-country regression, Burhan et al. (2014, Intelligence, 46, 1–8) had statistically proven 

that intellectual class represented by the 95th percentile IQ had contributed most to economic 

growth. Those with average ability (50th percentile IQ) contributed second most, followed by 

the non-intellectual class (5th percentile IQ). Also, the researchers found that only the 

intellectual class was significant for technological progress. This paper reanalyzed their 

dataset using robust regressions. After eliminating some outliers, the IQs of the intellectual 

class and average ability group were found to have equal impacts on economic growth, and 

the impacts were larger than that of non-intellectual’s. Furthermore, the IQ of the average 

ability group was significant on technological achievement although not as strong as the 

intellectual class. Nevertheless, the number of professional researchers employed in research 

and development (R&D) sector did not give the same paramount effects as the impact of the 
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average ability IQ in generating technological progress. Based on the conclusions drawn, it 

will be better for R&D sectors to employ professionals who possess not only high academic 

qualifications, but also exceptional levels of cognitive skills to develop new innovations.  

Keywords: economic growth; technological achievement; intelligence; social class; robust 

regression 

JEL Classifications: I25, J24, O3, O47, Z13 

 

1. Background of the Study  

Economics and psychology literatures have established that intelligence quotient (IQ) 

or cognitive ability is fundamental to numerous aspects of socioeconomic development and 

well-being of people. For example, individuals with higher IQs are said to be healthier (Batty, 

Der, Macintyre & Deary, 2006; Gottfredson & Deary, 2004; Whalley & Deary, 2001). In 

addition, high IQ individuals retain positive attitudes such as patience, ambitious and do not 

seek instant gratification and are more likely to be a team player (Gill & Prowse, 2016; Jones, 

2008; Robalino & Robson, 2016; Shamosh & Gray, 2008). These qualities affects the country 

as a whole, in which societies with higher average IQs experience higher quality of life and 

health (Lynn &Vanhanen, 2012, pp. 163–165, pp. 177–187; Madsen, 2016; Nikolaev & 

McGee, 2016; Nikolaev & Salahodjaev, 2016). The countries also enjoy higher levels of 

savings rates, gender equality, democracy and globalization (Burhan, Sidek, Kurniawan & 

Mohamad, 2015; Jones, 2012b; Salahodjaev, 2015a; Salahodjaev & Azam, 2015), as well as 

lower levels of corruption and crime rates (Beaver & Wright, 2011; Potrafke, 2012; Rushton  

& Templer, 2009; Rushton & Whitney 2002; Salahodjaev, 2015b). Furthermore, individuals 

with high IQ thrive in work settings as excellent cognitive abilities are indispensable for tasks 
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that involve advanced technologies, knowledge, and skills. In particular, higher cognitive 

ability and skills are associated with greater working memory capacity and information-

processing speed in individuals (Deary & Ritchie, 2016; Fry & Hale, 1996, 2000; Sheppard 

& Vernon, 2008; Tourva, Spanoudis & Demetriou, 2016). For that reason, individuals with 

higher IQs are more efficient in calculating financial risk and making choices (Fang, Keane 

& Silverman, 2008; Grinblatt, Ikäheimo, Keloharju & Knüpfer, 2015; Grinblatt, Keloharju & 

Linnainmaa, 2011, 2012). Intellectuals are also found to be more competent in learning and 

applying new knowledge, skills, and experiences across occupations, which make them more 

productive, and therefore obtain higher earnings than those with lower cognitive abilities 

(Ceci & Williams, 1997; Lynn & Vanhanen 2012, pp. 70–72, p. 74; Nyborg & Jensen, 2001; 

Schmidt & Hunter, 2004; Schmidt, Hunter, Outerbridge & Goff, 1988; Zagorsky, 2007; Zax 

& Rees, 2002). Consequently, cross-country achievement is strengthened, where nations with 

higher average IQ attain higher levels of gross domestic product (GDP) per capita (Jones, 

2013; Jones & Schneider, 2010; Lynn & Vanhanen, 2002, 2006, 2012), financial 

development (Hafer, 2016; Kodila-Tedika & Asongu, 2015), economic (GDP per capita) 

growth rate (Hanushek & Kimko 2000; Jones & Schneider, 2006; Ram, 2007; Weede & 

Kämpf, 2002), and technological progress (Davies, 1996; Gelade, 2008; Jones, 2012a; Lynn, 

2012) than lower IQ countries.  

In a globalized world such as today, intelligent individuals are a country’s capital for 

advanced progression. IQ can be measured through a series of tests, and the scores are 

normally distributed within a nation’s population. As such, the test scores can be modelled in 

a bell-shaped graph that allows the study of the cause-effect relationship between IQ and 

socioeconomic development across countries. While positive association between national 

average IQ and the level of economic development has been well-discussed in literature, a 

few recent empirical studies suggested that national level of income and economic growth are 
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mostly contributed by intellectual class, particularly the group of people with higher than the 

average IQ. Although the population size of the intellectual class is smaller than the average 

ability group, IQ of the intellectual class has contributed most to the well-being of nation than 

the average ability group, especially on economic growth and technological progress 

(Ciccone & Papaioannou, 2009; Gelade, 2008; Hanushek & Woessmann, 2008, 2012; 

Rindermann, 2012; Rindermann & Thompson, 2011; Rindermann, Sailer & Thompson, 

2009). The most recent study on the impact of social classes of IQ on economic growth and 

technological progress was conducted by Burhan, Mohamad, Kurniawan, and Sidek (2014). 

In Burhan et al.’s study, the independent variables of interest are respectively the intellectual, 

average ability, and non-intellectual classes IQ at the 95th, 50th, and 5th percentiles of the 

normal distribution of population IQs. The researches employed Rindermann et al.’s (2009) 

cognitive ability dataset for 90 countries that is based on the data on three international 

scholastic achievement test scores. The tests were the Trends in International Mathematics 

and Science Study (TIMSS) (1995–2007), the Programme for International Student 

Assessment (PISA) (2000–2006), and the Progress in International Reading Literacy Study 

(PIRLS) (2001–2006). The data from those test scores were then converted into IQ scale. 

Using Rindermann et al.’s dataset, Burhan et al. performed regression analyses and verified 

that all IQ measures were significant at 99 per cent level, where the effect of the 95th 

percentile IQ on the GDP per capita growth rate was the highest, followed by the 50th and 5th 

percentiles’ IQ. Furthermore, after controlling other factors, only the 95th percentile IQ was 

found to be significant (p<.01) on technological achievement, measured by the number of 

patents produced. In contrast, both 50th and 5th percentiles of IQ were non-significant even at 

90 per cent level in the regressions. These prove that the IQ of the smartest group adds more 

to a nation’s wealth as compared to national average IQ.  
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Burhan et al.’s (2014) study employed three percentiles of IQ, allowing the relative 

effect of each IQ classes on economic development to be determined, after controlling other 

factors. The study is based on economic growth model (Ram, 2007; Mankiw, Romer & Weil, 

1992) and technological achievement model, namely ‘ideas production function’ (Furman, 

Porter & Stern, 2002) that acts as the proxy for innovative output. So far, Burhan et al. (2014) 

is the only study that examined the impacts of 95th, 50th, and 5th percentiles’ IQ on economic 

growth and technological achievement using regression analyses through the use of 

econometric models. However, the Ordinary Least Squares (OLS) model employed by 

Burhan et al. (2014) claimed that the data are homoscedastic - the expected value of all error 

terms when squared are assumed equal at any specified point. However, in cross-sectional 

models, when the variances of the error terms are not the same, the data suffers from 

heteroskedasticity. The regression coefficients of an OLS estimate are still unbiased, but 

standard errors and confidence intervals obtained from the regression are inaccurate (Engle, 

2001). For example, in Burhan et al.’s cross-section regressions of economic growth and 

technological achievement on IQs, the error terms may be larger among countries with high 

achievement than low achievement, or vice versa. Therefore, in the present study, White’s 

(1980) covariance-matrix estimator is employed. This allows for the computation of 

heteroskedasticity-robust standard errors to correct for possible heteroskedasticity in the 

residuals as the skedastic function is unknown (Rodriguez & Rodrik, 2001).  

Other than White’s heteroskedasticity correction, robust regression methods are also 

applied to deal with potential outliers in the data samples. Temple (1999b) asserted that it is 

very important to identify outliers in the cross-country regression, especially when samples 

are inclusive of a large number of heterogeneous countries. Robust regression methods 

frequently give different results than using OLS especially in the presence of extreme outliers 

in the samples. For instance, Jappelli and Pagano (2002) found that significance level and the 
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size of the regression coefficients are reduced in the Huber-weighted robust regressions. 

Furthermore, many economics studies have shown that the significance levels of independent 

variables have slightly changed after down weighting outliers, and substantially changed after 

removing even a single outlier (e.g., De Haan & Sturm, 2003; Temple & Johnson, 1998; 

Temple & Woessmann, 2006; Sturm & De Haan, 2005). Studies conducted by Ding and 

Knight (2009) and Zaman, Rousseeuw, and Orhan (2001) found that omitting the outliers 

from samples has resulted in a rise of the R2 of OLS and a decline in the estimated standard 

errors of most independent variables, both of which imply improved goodness of fit of the 

regressions. One of the advantages of robust regression approach is that it can cope with large 

number of outliers. Hence, this approach is better than single-case diagnostics such as Cook's 

distance measure, the Studentized residuals, and DFITS that are likely to overlook group of 

outliers (e.g., masking effect) or mistakenly identify representative points as outlying 

observations, as advocated by Sturm and De Haan (2001) and Temple (1999a).  In contrast, a 

robust analysis fits a regression model to the data, and attempts to identify points that have 

large residuals of so-called outliers. Therefore, two types of robust regression method are 

utilized in this study. The first was OLS with Huber-weight option that gives less weight to 

high-leverage observations (Huber, 1973). This is to ensure that extremely large or small 

observational values will not bias to the regression estimates, without removing outliers from 

the samples. Robust regression uses ‘ROBUSTREG’ command using the M-estimation 

technique and the Huber-weight option, which follows procedure recommended in Huber's 

(1973) work. Secondly, in addition to Huber’s, the growth regression is estimated using OLS 

with Bisquare-weight option, a method formulated by Beaton and Tukey (1974) to mitigate 

the biasing effects of outliers in the regression. Also, if necessary, it removes outliers from 

the observations. Robust solutions provide high resistance to outliers, and give better 

predictions.  
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2. Robust Regression Analyses  

This study is an analysis based on these two linear regression models shown in the 

first row of Table 1 and Table 2. Definition for each dependent and independent variables are 

presented as footnotes of those tables. As shown in Table 1, the average annual economic 

growth rates (GROWTH) for the 1970–2010 period are the dependent variable, while in 

Table 2, the number of patents (PATENTS) averaged for the 2000–2009 period are the 

dependent variable. The effect of the variables of interest, which are a set of IQ variables on 

GROWTH and PATENTS, are controlled for other factors as specified in Table 1 and Table 

2, respectively. Each IQ variables is entered separately into the regression models to avoid 

serious multicollinearity problem. In particular, the correlations between IQs at the 95th, 50th, 

and 5th percentiles, namely IQ95th, IQ50th, and IQ5th are reported at r=.90–.98 where their 

VIF values are very high, ranging from 5.3 to 24.4. Furthermore, the VIF between other 

independent variables are less than 4.0, indicating an absence of multicollinearity among 

variables. See Table A1 and Table A2 in Appendix A for details on the correlations and VIF 

for all variables employed.  

[Insert Table 1 here] 

[Insert Table 2 here] 

Table 1 summarizes the regression results for economic growth model. Model 1 is the 

result of a basic growth regression, which shows that SCHOOL was non-significant on 

economic growth during 1970–2010 period. This finding is in contrast to Mankiw et al.’s 

(1992) and Ram’s (2007) who reported a positive and significant effect of the variable on 

economic growth during 1960–1985 period. Hence, SCHOOL may be a crude measure of 

education quantity of the society, and its effect on economic growth is diminishing over time. 
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Model 2 to Model 4 are the results of regression after we incorporated IQ into the growth 

model, as reported in Burhan et al. (2014). Model 5 to Model 7 show the regression results 

when the standard errors were corrected for heteroskedasticity, a procedure suggested by 

White (1980). There was no difference in significance level (p<.01) of IQ variables in Model 

5 to Model 7 compared to Model 2 to Model 4. Across Model 1 to Model 7, including the IQ 

variables has increased the adjusted R
2 from .336 to .524–.574. All measures of IQ were 

significant at p<.01 level, where IQ95th (β=.104) has the largest effect on GROWTH, 

followed by IQ50th (β=.088) and IQ5th (β=.066). An increase in the magnitude of log(Y1970) 

from β=|-1.693| to β=|-2.681|–|-2.832| demonstrates that higher rate of convergence occurred 

when IQ is included into the growth model. Therefore, human capital (i.e., IQ) is a 

fundamental determinant of steady state level of per capita income in the long-run (Mankiw 

et al., 1992).  

For robustness check, Model 2 to Model 7 were re-estimated by using robust 

regression methods. Robust regressions are very useful when dealing with outliers. For 

example, using Huber and Bisquare-weight techniques has increased the adjusted R
2 from 

.524–.574 in Model 2 to Model 7 to .585–.789 in Model 8 to Model 13. All measures of IQ 

remained significant at p<.01 level across all models. There is a reduction in the number of 

observations to N=59 and N=60 in Model 11 and Model 12, respectively, showing that there 

are severe outliers that have been removed from the regression by Bisquare-weight method. 

Moreover, adjusted R
2s of the models are the largest after the Bisquare-weight technique 

were applied in the regression analyses. In Model 2 to Model 4, the difference in the β-

coefficients of IQ95th (β=.104) and IQ5th (β=.066) was 58 per cent. After removing outliers, 

the effects of IQ95th (β=.119) on GROWTH intensified, raising the difference in coefficients 

of IQ95th (β=.119) and IQ5th (β=.064) to 86 per cent. Across Model 11 to Model 12, there is 

almost no difference in the effect of IQ95th (β=.119) and IQ50th (β=.112) as compared to that 
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of Model 2 to Model 4 (IQ95th: β=.104; IQ50th: β=.088). On the other hand, the differential 

effects of IQ50th and IQ5th had increased significantly from 33 per cent in Model 3 to Model 

4 (IQ50th: β=.088; IQ5th: β=.066) to 75 per cent in Model 12 to Model 13 (IQ50th: β=.112; 

IQ5th: β=.064). These findings demonstrate the impacts of IQ95th and IQ50th on economic 

growth are almost equal. On the other hand, the effect of IQ5th is 75–80 per cent smaller than 

the other two, a finding that is in contrast to those reported in Model 2 to Model 7 (i.e., 

Burhan et al., 2014).  

Table 2 presents the summary of regression results for technological achievement 

model. Model 1 is the basic model of ‘ideas production function’, where GDP and 

RESEARCHER were positively significant (p<.01) on PATENTS. The summary shows that 

national level of income and the number of professional engaged in research and 

development (R&D) are substantial to raise the number of patents produced across countries. 

The adjusted R2 of the model was distinctive, which is reported at .86. Across Model 2 to 

Model 7, IQ95th (β=.041) was significant at p<.01 level when it was added into the basic 

model, while IQ50th (β=.017) and IQ5th (β=.004) were non-significant at p<.10 level, such as 

found by Burhan et al. (2014). Furthermore, RESEARCHER was significant at 95 per cent 

level in the presence of IQ5th (Model 4 and Model 7), but non-significant at 90 per cent level 

in the presence of IQ95th (Model 2 and Model 5) or IQ50th (Model 3 and Model 6).  

 To determine the robustness of IQ classes on technological achievement, Model 2 to 

Model 7 were re-estimated using robust regression methods, the same procedure applied 

previously to the growth regression. Model 8 to Model 10 and Model 11 to Model 13 show 

the results of OLS with Huber-weight and Bisquare-weight techniques, correspondingly. 

Unlike the growth regressions reported in Table 1, there was no difference in the number of 

observations (N=66) after using the Bisquare-weight method, which indicates an absence of 
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extreme outliers in the samples. With reference to Model 8 and Model 11, the coefficients of 

IQ95th persisted at β=.041 and significant at 99 per cent level. RESEARCHER remained 

significant at the p<.05 level in the presence of IQ5th (Model 10 and Model 13), which was 

non-significant at 90 per cent level. In contrast to Model 3 and Model 6, IQ50th was 

significant at p<.05 in Model 9 and Model 12. After giving less-weight to high-leverage 

observation(s), the β-coefficient of IQ50th has increased from β=.017 to β=.021–.026 in 

Model 9 and Model 12, leaving RESEARCHER non-significant on PATENTS in both 

models. The adjusted R2 for Model 12 was reported as high as .90.  

3. Conclusions and Policy Implications  

This paper attempted to determine the robustness of Burhan et al.’s (2014) empirical 

findings on the effects of social classes of IQ on economic growth and technological progress 

at a cross-country level. Based on the results of robust regression, there are two important 

findings that need to be highlighted. Firstly, consistent with Burhan et al., the robust analysis 

had verified that all IQ classes were significant at 99 per cent level on economic growth. In 

Burhan et al.’s study, the researchers had found that intellectual class (IQ95th) has the largest 

effect on economic growth rate, followed by the average ability (IQ50th) and non-intellectual 

(IQ5th) classes. In contrast to Burhan et al., this report established that the effects of both 

IQ95th and IQ50th on economic growth were almost equal, while the effect size of IQ5th was 

about 80 per cent smaller than the other two (i.e., IQ95th and IQ50th). Furthermore, the 

average ability class were comprised mostly of working class citizens, and hence the 

contribution of this group to productivity growth is greater than the non-intellectual class. 

Also, the average ability group has the most members, and therefore this group have 

significant cumulative contribution to economic growth that is equivalent to the small-size 
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intellectual-class. In conclusion, all IQ classes within a national society play significant role 

to generate higher rate of economic growth. 

Secondly, consistent with Burhan et al. (2014), the robust analysis has confirmed that 

IQ at 95th percentile was exceptionally significant at 99 per cent level on the technological 

achievement, while the effect of 5th percentile IQ was non-significant even at 90 per cent 

level after controlling other factors. It is confirmed that 95th percentile IQ is more important 

than the number of professional researchers engaged in R&D in raising the number of patents 

produced across countries. This shows that merely high number of researchers in R&D is not 

crucial, but an exceptional level of cognitive ability in order to invent and innovate on new 

technologies is. However, it is still more resourceful to utilize more professional researchers 

(p<.05; R2=.89) than non-intellectual class into the R&D activities, since the IQ of the non-

intellectual class was non-significant and might not be adequate to match to the advance 

technological knowledge and innovation. On the other hand, the findings differ from Burhan 

et al. in the way that a significant effect of the 50th percentile IQ (p<.05; R
2=.91) on 

technological achievement was found. This finding has not been uncovered in their study 

through the use of non-robust OLS regression. Although the IQ-effect of this average ability 

group was much smaller than intellectual class, our robust analysis has demonstrated a 

thought provoking evidence. It was found that the number of professional researchers 

employed in R&D was non-significant for generating technological progress as compared to 

the effect of the average ability group. Based on these findings, it can be argued that at a 

cross-country level, people of average IQ are critically more productive than professional 

researchers to R&D. Hence, if cognitive skills are essential for generating new technologies, 

it could be that most of professional researchers employed in R&D were drawn from people 

with cognitive abilities that is less than 50th percentile of the bell curve distribution of IQ, 

although they do have IQs higher than the non-significant 5th percentile IQ group. In this 
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study, it is unexpected to observe that the average IQ group rather than the number of 

professional researchers was significant on technological achievement, especially because 

those professional researchers have been qualified with high academic credentials (e.g., 

second stage of tertiary education) before they were employed in the R&D sector. However, 

this proves that high academic qualification does not guarantee that they have the highest 

level of cognitive skills gained through their education years. Therefore, public and private 

R&D sectors should employ professionals who possess not only high academic qualifications 

such as masters or doctoral degrees, but they must also have exceptional levels of cognitive 

skills, in order to accelerate the generation of new technological knowledge and innovation. 

Finally, to fulfil the industrial needs, national education system and curriculum need to be 

reformed to provide future generations with higher-order thinking skills. This enhances the 

societal level of IQ and warrants higher economic growth and technological achievement in 

the future.  

 [Insert Table A1 here]  

[Insert Table A2 here]  

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

References  

Barro, R.J., & Lee, J.W. (2010). A new data set of educational attainment in the world, 1950–
2010, NBER Working Paper No. 15902. Cambridge, MA: National Bureau of Economic 
Research.  

Batty, G. D., Der, G., Macintyre, S., & Deary, I. J. (2006). Does IQ explain socioeconomic 
inequalities in health? evidence from a population based cohort study in the west of Scotland. 
British Medical Journal, 332, 580–584.  

Beaton, A. E., & Tukey, J. W. (1974). The fitting of power series, meaning polynomials, 
illustrated on band-spectroscopic data. Technometrics, 16, 147–185.  

Beaver, K. M., & Wright, J. P. (2011). The association between county-level IQ and county-
level crime rates. Intelligence 39, 22–26.  

Burhan, N. A. S., Mohamad, M. R., Kurniawan, Y., & Sidek, A. H. (2014). The impact of 
low, average, and high IQ on economic growth and technological progress: do all individuals 
contribute equally? Intelligence, 46, 1–8. 

Burhan, N. A. S., Sidek, A. H., Kurniawan, Y., & Mohamad, M. R. (2015). Has globalization 
triggered collective impact of national intelligence on economic growth? Intelligence, 48, 
152–161. 

Ceci, S. J., & Williams, W. M. (1997). Schooling, intelligence, and income. American 

Psychologist, 52, 1051-1058. 

Ciccone, A., & Papaioannou, E. (2009). Human capital, the structure of production, and 
growth. Review of Economics and Statistics, 91, 66–82. 

Davies, H. (1996).  High IQ and low technology: Hong Kong's key to success. Long Range 

Planning, 29, 684–690. 

Deary, I. J., & Ritchie, S. J. (2016). Processing speed differences between 70-and 83-year-
olds matched on childhood IQ. Intelligence, 55, 28–33.  

De Haan, J., & Sturm, J. E. (2003). Does more democracy lead to greater economic freedom? 
new evidence for developing countries. European Journal of Political Economy, 19, 547–
563. 

Ding, S., & Knight, J. (2009). Can the augmented Solow model explain China’s remarkable 
economic growth? a cross-country panel data analysis. Journal of Comparative Economics, 
37, 432–452. 

Engle, R. (2001). GARCH 101: the use of ARCH/GARCH models in applied econometrics. 
Journal of Economic Perspectives, 15, 157–168. 

Fang, H., Keane, M. P., & Silverman, D. (2008). Sources of advantageous selection: evidence 
from the Medigap insurance market. Journal of Political Economy, 116, 303–350. 



14 

 

Fry, A. F., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: 
evidence for a developmental cascade. Psychological Science, 7, 237−241. 

Fry, A. F., & Hale, S. (2000). Relationships among processing speed, working memory, and 
fluid intelligence in children. Biological Psychology, 54, 1−34. 

Furman, J. L., Porter, M. E., & Stern, S. (2002). The determinants of national innovative 
capacity. Research Policy, 31, 899–933. 

Gelade, G. A. (2008). IQ, cultural values, and the technological achievement of nations. 
Intelligence, 36, 711−718. 

Gill, D., & Prowse, V. L. (2016). Cognitive ability, character skills, and learning to play 
equilibrium: a level-k analysis. Journal of Political Economy, 124, 1619–1676.  

Gottfredson, L. S., & Deary, I. J. (2004). Intelligence predicts health and longevity, but why? 
Current Directions in Psychological Science, 13, 1−4. 

Grinblatt, M., Ikäheimo, S., Keloharju, M., & Knüpfer, S. (2015). IQ and mutual fund choice. 
Management Science, 62, 924–944. 

Grinblatt, M., Keloharju, M., & Linnainmaa, J. T. (2011). IQ and stock market participation. 
The Journal of Finance, 66, 2121–2164.  

Grinblatt, M., Keloharju, M., & Linnainmaa, J. T. (2012). IQ, trading behavior, and 
performance. Journal of Financial Economics, 104, 339–362. 

Hafer, R. W. (2016). Cross-country evidence on the link between IQ and financial 
development. Intelligence, 55, 7–13.  

Hanushek, E. A., & Kimko, D. D. (2000). Schooling, labor-force quality, and the growth of 
nations. American Economic Review, 90, 1184–1208. 

Hanushek, E. A., & Woessmann, L. (2008). The role of cognitive skills in economic 
development. Journal of Economic Literature, 46, 607–668. 

Hanushek, E. A., & Woessmann, L. (2012). Do better schools lead to more growth? cognitive 
skills, economic outcomes, and causation. Journal of Economic Growth, 17, 267–321. 

Heston, A., Summers, R., & Aten, B. (2012). Penn World Table Version 7.1, Center for 
International Comparisons of Production, Income and Prices at the University of 
Pennsylvania, Nov 2012.  

Huber, P. (1973). Robust regression: asymptotics, conjectures and Monte Carlo. Annals of 

Statistics, 1, 799−821. 

Jappelli, T., & Pagano, M. (2002). Information sharing, lending and defaults: cross-country 
evidence. Journal of Banking and Finance, 26, 2017–2045. 



15 

 

Jones, G. (2008). Are smarter groups more cooperative? evidence from prisoner’s dilemma 
experiments, 1959–2003. Journal of Economic Behavior and Organization, 68, 489–497. 

Jones, G. (2012a). Cognitive ability and technological diffusion: an empirical test. Economic 

Systems, 36, 444–460. 

Jones, G. (2012b). Will the intelligent inherit the earth? IQ and time preference in the global 
economy. Working paper, George Mason University. 

Jones, G. (2013). The O-ring sector and the foolproof sector: an explanation for skill 
externalities. Journal of Economic Behavior and Organization, 85, 1–10. 

Jones, G., & Schneider, W. J. (2006). Intelligence, human capital, and a Bayesian Averaging 
of Classical Estimates (BACE) Approach. Journal of Economic Growth, 11, 71–93. 

Jones, G., & Schneider, W. J. (2010). IQ in the production function: evidence from 
immigrant earnings. Economic Inquiry, 48, 743–755.  

Kodila-Tedika, O., & Asongu, S. A. (2015). The effect of intelligence on financial 
development: a cross-country comparison. Intelligence, 51, 1–9. 

Lynn, R. (2012).  IQs predict differences in the technological development of nations from 
1000 BC through 2000 AD. Intelligence, 40, 439–444. 

Lynn, R., & Vanhanen, T. (2002). IQ and the wealth of nations. Westport, CT: Praeger 

Lynn, R., & Vanhanen, T. (2006).  IQ and global inequality.  Augusta, GA: Washington 
Summit. 

Lynn, R., & Vanhanen, T. (2012). Intelligence: a unifying construct for the social sciences. 
London: Ulster Institute for Social Research.  

Madsen, J. B. (2016). Barriers to prosperity: parasitic and infectious diseases, IQ, and 
economic development. World Development, 78, 172–187. 

Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A contribution to the empirics of economic 
growth. Quarterly Journal of Economics, 107, 407–437. 

Nikolaev, B., & McGee, J. J. (2016). Relative verbal intelligence and happiness. Intelligence, 
59, 1–7.  

Nikolaev, B., & Salahodjaev, R. (2016). The role of intelligence in the distribution of national 
happiness. Intelligence, 56, 38–45. 

Nyborg, H., & Jensen, A. R. (2001). Occupation and income related to psychometric g. 
Intelligence, 29, 45–55. 

Potrafke, N. (2012). Intelligence and corruption. Economics Letters, 114, 109–112. 



16 

 

Ram, R. (2007). IQ and economic growth: further augmentation of Mankiw–Romer–Weil 
model. Economics Letters, 94, 7–11. 

Rindermann, H. (2012). Intellectual classes, technological progress and economic 
development: the rise of cognitive capitalism. Personality and Individual Differences, 53, 
108−113. 

Rindermann, H., Sailer, S., & Thompson, J. (2009). The impact of smart fractions, cognitive 
ability of politicians and average competence of peoples on social development. Talent 

Development and Excellence, 1, 3–25. 

Robalino, N., & Robson, A. (2016). The evolution of strategic sophistication. The American 

Economic Review, 106, 1046–1072. 

Rodriguez, F., & Rodrik, D. (2001). Trade policy and economic growth: a skeptic's guide to 
the cross-national evidence, in NBER Macroeconomics Annual 2000. Cambridge, MA: MIT 
Press, vol. 15, pp. 261–338. 

Rushton, J. P., & Templer, D. I. (2009). National differences in intelligence, crime, income, 
and skin color. Intelligence, 37, 341–346. 

Rushton, J. P., & Whitney, G. (2002). Cross-national variation in violent crime rates: race, r-
K theory, and income. Population and Environment, 23, 501–511. 

Salahodjaev, R. (2015a). Democracy and economic growth: the role of intelligence in cross-
country regressions. Intelligence, 50, 228–234. 

Salahodjaev, R. (2015b). Intelligence and shadow economy: a cross-country empirical 
assessment. Intelligence, 49, 129–133. 

Salahodjaev, R., & Azam, S. (2015). Intelligence and gender (in) equality: empirical evidence 

from developing countries. Intelligence, 52, 97–103. 

Schmidt, F. L., & Hunter, J. E. (2004). General mental ability in the world of work: 
occupational attainment and job performance. Journal of Personality and Social Psychology, 
86, 162–173. 

Schmidt, F. L., Hunter, J. E., Outerbridge, A. N., & Goff, S. (1988). The joint relation of 
experience and ability with job performance: a test of three hypotheses. Journal of Applied 

Psychology, 73, 46–57. 

Shamosh, N. A., & Gray, J. R. (2008). Delay discounting and intelligence: a meta-analysis. 
Intelligence, 36, 289–305. 

Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: a 
review of 50 years of research. Personality and Individual Differences, 44, 535–551. 

Sturm, J. E., & De Haan, J. (2001). How robust is the relationship between economic 
freedom and economic growth? Applied Economics, 33, 839–844. 



17 

 

Sturm, J. E., & De Haan, J. (2005). Determinants of long-term growth: new results applying 
robust estimation and extreme bounds analysis. Empirical Economics, 30, 597–617. 

Temple, J. (1999a). The new growth evidence. Journal of Economic Literature, 37, 112–156. 

Temple, J. (1999b). A positive effect of human capital on growth. Economics Letters, 65, 
131–134. 

Temple, J., & Johnson, P. A. (1998). Social capability and economic growth. Quarterly 

Journal of Economics, 113, 965–990. 

Temple, J., & Woessmann, L. (2006). Dualism and cross-country growth regressions. Journal 

of Economic Growth, 11, 187–228. 

Tourva, A., Spanoudis, G., & Demetriou, A. (2016). Cognitive correlates of developing 
intelligence: the contribution of working memory, processing speed and attention. 
Intelligence, 54, 136–146. 

USCB (2013). International Database. United States Census Bureau. Available only at: 
http://www.census.gov/ population/international/data/idb/informationGateway.php. 

Weede, E., & Kämpf, S. (2002). The impact of intelligence and institutional improvements 
on economic growth. Kyklos, 55, 361–380. 

Whalley, L. J., & Deary, I. J. (2001). Longitudinal cohort study of childhood IQ and survival 
up to age 76. British Medical Journal, 322, 819. 

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct 
test for heteroskedasticity. Econometrica, 48, 817–838. 

WIPO (2009). Patent applications by patent office (1883- 2007), by resident and non-
resident. Geneva: World Intellectual Property Organization. Available online at: 
http://www.wipo.int/ipstats/en/statistics/patents. 

World Bank (2013). World development indicators 2013. Washington, DC: World Bank. 
Available online at: http://data.worldbank.org 

Zagorsky, J. L. (2007). Do you have to be smart to be rich? the impact of IQ on wealth, 
income and financial distress. Intelligence, 35, 489–501.  

Zaman, A., Rousseeuw, P. J., & Orhan, M. (2001). Econometric applications of high-
breakdown robust regression techniques. Economics Letters, 71, 1–8.  

Zax, J. S., & Rees, D. I. (2002). IQ, academic performance, environment and earnings. 
Review of Economics and Statistics, 84, 600–616.  

 

 



18 

 

Table 1 

 
The effects of the 95th, 50th, and 5th percentiles IQ on economic growth rates.  

 

Linear regression model: 
                                                                           
 

 
Ordinary Least Squares (OLS) 

OLS with White heteroskedasticity-
consistent standard errors  

OLS with Huber-weight option 
OLS with Tukey’s Bisquare-weight 

option 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 

log(Y1970) -1.693*** 
(.414) 

-2.740*** 
(.380) 

-2.832*** 
(.387) 

-2.681*** 
(.406) 

-2.740*** 
(.344) 

-2.832*** 
(.384) 

-2.680*** 
(.403) 

-2.862*** 
(.310) 

-2.971*** 
(.317) 

-2.676*** 
(.369) 

-2.863*** 
(.307) 

-3.139*** 
(.293) 

-2.632*** 
(.391) 

I/Y .130*** 
(.035) 

.058* 
(.031) 

.043 
(.032) 

.051 
(.034) 

.058 
(.036) 

.043 
(.040) 

.051 
(.047) 

.046* 
(.025) 

.030 
(.026) 

.044 
(.031) 

.036 
(.025) 

.002 
(.024) 

.039 
(.033) 

POPGR -.336** 
(.161) 

.014 
(.143) 

.045 
(.145) 

-.034 
(.150) 

.014 
(.167) 

.045 
(.173) 

-.034 
(.168) 

.040 
(.116) 

.071 
(.119) 

-.050 
(.136) 

.006 
(.116) 

.079 
(.010) 

-.076 
(.144) 

SCHOOL .017 
(.013) 

.002 
(.010) 

.008 
(.010) 

.015 
(.011) 

.002 
(.008) 

.008 
(.008) 

.015 
(.009) 

-.002 
(.008) 

.005 
(.008) 

.013 
(.010) 

-.003 
(.008) 

.003 
(.008) 

.012 
(.010) 

IQ95th  .104*** 
(.018) 

  .104*** 
(.023) 

  .116*** 
(.015) 

  .119*** 
(.015) 

  

IQ50th   .088*** 
(.016) 

  .088*** 
(.022) 

  .099*** 
(.013) 

  .112*** 
(.012) 

 

IQ5th    .066*** 
(.014) 

  .066*** 
(.018) 

  .066*** 
(.012) 

  .064*** 
(.013) 

              

N 61 61 61 61 61 61 61 61 61 61 59 60 61 

R2 .380 .608 .610 .564 .608 .610 .564 .759 .741 .624 .786 .807 .620 

Adjusted-R2 .336 .573 .574 .524 .573 .574 .524 .737 .717 .590 .766 .789 .585 

Note: Regression coefficients are unstandardized betas. Standard errors are in parentheses; *** p<.01, ** p<.05, and * p<.10 
a GROWTH is the annual growth rate (%) of real GDP per capita in country i (averaged 1970–2010). Source: Heston, Summers, and Aten (2012). 
b Y1970 is the GDP per capita in 1970. Source: Heston, Summers, and Aten (2012).  
c I/Y is the investment as a percentage of annual GDP (averaged 1970–2010). Source: World Bank (2013). 
d POPGR is the percentage of population growth rate (averaged 1970–2010). Source: USCB (2013).  
e SCHOOL is the percentage of the working-age population (those aged 15–19) in secondary schools (averaged 1970–2010). Source: Barro and Lee (2010).  
f IQ95th, IQ50th, and IQ5th are the 95th, 50th, and 5th percentiles’ IQ, respectively. Source: Rindermann, Sailer, and Thompson (2009). 
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Table 2 

 
The effects of the 95th, 50th, and 5th percentiles IQ on technological achievement.  

 

Linear regression model:  
                                                                          
 

 
Ordinary Least Squares (OLS) 

OLS with White-
heteroskedasticity correction 

OLS with Huber-weight option 
OLS with Tukey’s Bisquare-weight 

option 

 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13  

log(GDP) 1.591*** 
(.167) 

1.505*** 
(.157) 

1.544*** 
(.168) 

1.579*** 
(.170) 

1.505*** 
(.172) 

1.544*** 
(.190) 

1.579*** 
(.202) 

1.557*** 
(.149) 

1.578*** 
(.161) 

1.640*** 
(.176) 

1.575*** 
(.157) 

1.567*** 
(.165) 

1.634*** 
(.176) 

log(POP) -.511*** 
(.169) 

-.394** 
(.160) 

-.443** 
(.172) 

-.493*** 
(.174) 

-.394** 
(.161) 

-.443** 
(.176) 

-.493** 
(.186) 

-.427*** 
(.152) 

-.458*** 
(.165) 

-.534*** 
(.179) 

-.441*** 
(.160) 

-.448** 
(.169) 

-.530*** 
(.180) 

log(RESEARCHER) .450*** 
(.157) 

.020 
(.193) 

.247 
(.197) 

.399** 
(.190) 

.020 
(.185) 

.247 
(.203) 

.399** 
(.195) 

.067 
(.183) 

.249 
(.190) 

.406** 
(.196) 

.082 
(.193) 

.240 
(.194) 

.410** 
(.197) 

IQ95th  .041*** 
(.012) 

  .041*** 
(.011) 

  .041*** 
(.011) 

  .041*** 
(.012) 

  

IQ50th   .017 
(.010) 

  .017 
(.013) 

  .021** 
(.010) 

  .026** 
(.010) 

 

IQ5th    .004 
(.008) 

  .004 
(.009) 

  .004 
(.008) 

  .004 
(.008) 

              

N 66 66 66 66 66 66 66 66 66 66 66 66 66 

R2 .867 .888 .872 .867 .888 .872 .867 .912 .899 .884 .915 .906 .886 

Adjusted-R2 .860 .880 .864 .858 .880 .864 .858 .907 .892 .877 .910 .900 .878 

Note: Regression coefficients are unstandardized betas. Standard errors are in parentheses; *** p<.01, ** p<.05, and * p<.10  
a PATENTS is the annual number of patents granted in the USA to the establishments in country i (averaged 2000–2009). Source: WIPO (2009). 
b GDP is the real gross domestic product (in billions of PPP-adjusted 2005 US$) (averaged 2000-2009). Source: Heston, Summers, and Aten (2012). 
c POP is the population size (thousand persons) (averaged 2000–2009). Source: Heston, Summers, and Aten (2012).  
d RESEARCHER is the number of professional researchers (per million people) engaged in the invention of new knowledge, processes, products, methods, or systems and in the supervision 

of the R&D projects involved (averaged 2000–2009), including postgraduate PhD students (ISCED97 Level 6: The second stage of tertiary education). Source: World Bank (2013).  
e IQ95th, IQ50th, and IQ5th are the 95th, 50th, and 5th percentiles’ IQ, respectively. Source: Rindermann, Sailer, and Thompson (2009).  
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Appendix A: Table A1 

Correlation matrix and variance inflation factor (VIF) for all variables in growth model 
(N=61).  

 

 

 

 

 

 

 

 

 

 

 

 

  1 2 3 4 5 6 7 8 

1 GROWTH 1.000        

2 log(Y1970) -.396*** 
(1.184) 

1.000       

3 I/Y .426*** 
(1.221) 

-.185 
(1.035) 

1.000      

4 POPGR -.008 
(1.000) 

-.449*** 
(1.253) 

.229* 
(1.055) 

1.000     

5 SCHOOL -.031 
(1.001) 

.543*** 
(1.417) 

-.093 
(1.009) 

-.449*** 
(1.253) 

1.000    

6 IQ95th .245* 
(1.064) 

.642*** 
(1.701) 

.110 
(1.012) 

-.567*** 
(1.473) 

.563*** 
(1.464) 

1.000   

7 IQ50th .258** 
(1.071) 

.635*** 
(1.675) 

.164 
(1.027) 

-.561*** 
(1.460) 

.515*** 
(1.361) 

.966*** 
(15.13) 

1.000  

8 IQ5th .256** 
(1.070) 

.595*** 
(1.548) 

.203 
(1.043) 

-.507*** 
(1.346) 

.429*** 
(1.225) 

.902*** 
(5.342) 

.975*** 
(20.01) 

1.000 

Note: VIF values are in parentheses; ***p < .01, **p < .05, *p < .10  
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Appendix A: Table A2 

Correlation matrix and variance inflation factor (VIF) for all variables in ideas production 
function (N=66).  

  

 

 

  1 2 3 4 5 6 7 

1 log(PATENTS) 1.000       

2 log(GDP) .858*** 
(3.802) 

1.000      

3 log(POP) .410*** 
(1.202) 

.740*** 
(2.212) 

1.000     

4 log(RESEARCHER) .636*** 
(1.681) 

.384*** 
(1.174) 

-.158 
(1.026) 

1.000    

5 IQ95th .605*** 
(1.577) 

.291** 
(1.093) 

-.216* 
(1.049) 

.837*** 
(3.344) 

1.000   

6 IQ50th .548*** 
(1.429) 

.267** 
(1.076) 

-.237* 
(1.059) 

.815*** 
(2.985) 

.965*** 
(14.49) 

1.000  

7 IQ5th .496*** 
(1.326) 

.257** 
(1.071) 

-.223* 
(1.053) 

.773*** 
(2.488) 

.906*** 
(5.556) 

.979*** 
(24.39) 

1.000 

Note: VIF values are in parentheses; ***p < .01, **p < .05, *p < .10  


