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Abstract

This study develops a Schumpeterian growth model with endogenous entry of het-
erogeneous firms to analyze the effects of monetary policy on economic growth via a
cash-in-advance constraint on R&D investment. Our results can be summarized as
follows. In the special case of a zero entry cost, an increase in the nominal interest
rate decreases R&D, the arrival rate of innovations and economic growth as in previ-
ous studies. However, in the general case of a positive entry cost, an increase in the
nominal interest rate affects the distribution of innovations that are implemented and
would have an inverted-U effect on economic growth if the entry cost is sufficiently
large. We also calibrate the model to aggregate data of the US economy and find
that the growth-maximizing inflation rate is about 3%, which is consistent with recent
empirical estimates.
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1 Introduction

This study develops a Schumpeterian growth model with endogenous entry of heterogeneous
firms to analyze the effects of monetary policy on economic growth. The canonical Schum-
peterian growth model in seminal studies such as Segerstrom et al. (1990), Grossman and
Helpman (1991) and Aghion and Howitt (1992) features an identical step size of quality
improvements across firms. In this study, we consider a Schumpeterian model with random
quality improvements as in Minniti et al. (2013) but with the addition of a fixed entry
cost to generate endogenous entry of firms with heterogeneous step sizes of quality improve-
ments. To incorporate money demand into this growth-theoretic framework, we impose a
cash-in-advance (CIA) constraint on R&D investment. Berentsen et al. (2012), Chu and
Cozzi (2014) and Chu et al. (2015) provide extensive discussion on evidence for the presence
of cash requirements on R&D expenditures.! We capture these cash requirements using a
CIA constraint on R&D.

In this monetary growth-theoretic framework, we derive the following results. In the
special case of a zero entry cost, an increase in the nominal interest rate decreases R&D,
the arrival rate of innovations and economic growth as in previous studies, such as Chu and
Cozzi (2014) who consider a monetary Schumpeterian growth model with an identical step
size of quality improvements, because the distribution of innovations that are implemented
is exogenous under a zero entry cost despite random quality improvements. However, in the
general case of a positive entry cost, monetary policy affects the distribution of innovations
that are implemented. Specifically, an increase in the nominal interest rate decreases R&D
and the arrival rate of innovations, which increases the present value of future profits. The
resulting higher value of inventions leads to a lower threshold of quality improvements above
which an innovation is implemented generating a positive effect on economic growth due
to more entries. Together with the negative effect on the arrival rate of innovations, an
increase in the nominal interest rate would have an inverted-U effect on economic growth if
the entry cost is sufficiently large. Because the Fisher equation gives rise to a positive long-
run relationship between the nominal interest rate and the inflation rate that is supported
by empirical studies such as Mishkin (1992) and Booth and Ciner (2001), our result also
implies an inverted-U relationship between inflation and economic growth. This theoretical
prediction on an inverted-U relationship between inflation and economic growth is supported
by empirical studies such as Bick (2010) and Lépez-Villavicencio and Mignon (2011). Finally,
we calibrate the model to aggregate data of the US economy to provide a quantitative analysis
and find that the growth-maximizing inflation rate is 2.9%, which is close to the empirical
estimate in Lépez-Villavicencio and Mignon (2011) who identify a threshold inflation rate of
2.7% for industrialized countries.

'For example, early empirical studies such as Hall (1992) and Opler et al. (1999) find a positive and
significant relationship between R&D and cash flows in US firms. More recently, Bates et al. (2009)
document that the average cash-to-assets ratio in US firms increased substantially from 1980 to 2006 and
argue that this is partly driven by their rising R&D expenditures. Brown and Petersen (2011) provide
evidence that firms smooth R&D expenditures by maintaining a buffer stock of liquidity in the form of cash
reserves. Falato and Sim (2014) use firm-level data in the US to show that firms’ cash holdings increase
(decrease) significantly in response to a rise (cut) in R&D tax credits. These results suggest that due to
financial frictions, firms need to use cash to finance their R&D investment.



This study relates to the literature on innovation and economic growth. The R&D-
based growth model originates from Romer (1990), who develops a variety-expanding growth
model in which economic growth is driven by the development of new products. Then,
Segerstrom et al. (1990), Grossman and Helpman (1991) and Aghion and Howitt (1992)
develop the Schumpeterian quality-ladder growth model in which economic growth is driven
by the quality improvement of existing products. For simplicity, these studies assume an
identical step size for all quality improvements. A recent study by Minniti et al. (2013)
generalizes the Schumpeterian model by allowing for heterogeneous step sizes of quality
improvements that are randomly drawn from a distribution. Our study extends the elegant
framework of Minniti et al. (2013) by introducing a fixed entry cost of implementing a
developed invention in order to generate endogenous entries of heterogeneous firms,? which
turn out to have important implications on the effects of monetary policy.

This study also relates to the literature on inflation and innovation. In this literature,
Marquis and Reffett (1994) is the seminal study that analyzes the effects of inflation on
innovation in the Romer variety-expanding growth model. In contrast, we analyze the effects
of inflation in a Schumpeterian quality-ladder model as in Chu and Lai (2013), Chu and
Cozzi (2014), Chu et al. (2015) and He and Zou (2016), whose models however feature an
identical step size of quality improvements across firms. Subsequent studies, such as Chu
and Ji (2016) and Huang et al. (2015), consider monetary policy in a Schumpeterian growth
model with both variety expansion and (identical) quality accumulation across firms. As in
Marquis and Reffett (1994), these studies predict a monotonic relationship between inflation
and economic growth.?> The present study contributes to this literature by allowing for the
endogenous entry of firms with heterogeneous step sizes of quality improvements, which
gives rise to a novel channel through which monetary policy affects innovation and growth.
As a result, the model generates an inverted-U relationship between inflation and economic
growth, which is supported by recent empirical studies.

The rest of this study is organized as follows. Section 2 presents and solves the model.
Section 3 analyzes the effects of monetary policy. The final section concludes.

2 A Schumpeterian model with heterogeneous firms

The Schumpeterian quality-ladder growth model is based on Grossman and Helpman (1991).
We extend their model by (a) introducing money demand via a CIA constraint on R&D to
analyze monetary policy, (b) considering lab-equipment innovation and entry processes that
use final goods (instead of labor) as the input, (c) allowing for random quality improvements
as in Minniti et al. (2013), and (d) incorporating a fixed entry cost to generate endogenous
entry of heterogeneous firms as in Melitz (2003). In summary, when a firm invents a higher
quality product, the step size of the quality increment is randomly drawn from a Pareto

2See also Baldwin and Robert-Nicoud (2008), Haruyama and Zhao (2008) and Gustafsson and Segerstrom
(2010) who adapt this fixed entry cost into the R&D-based growth model, but they do not consider random
increments on the quality ladder.

3The relationship between the two variables is usually found to be monotonically negative, but some of
these studies also find that the relationship can be monotonically positive under some conditions.



distribution. If and only if the quality increment is sufficiently large, then the firm would
pay the fixed entry cost to implement the invention and enter the market.

2.1 Household

In the economy, there is a representative household which has the following lifetime utility
function:

U:/ e " In c,dt, (1)
0

where the parameter p > 0 is the subjective discount rate and ¢; denotes consumption of
final goods (numeraire) at time t. The household maximizes utility subject to an asset-
accumulation equation (expressed in real terms) given by

dt + mt = Gy — T¢My + itbt +wy + T — Gt (2)

a; is the real value of financial assets (in the form of equity shares in monopolistic intermediate
goods firms) owned by the household. 7, is the real interest rate. m; is the inflation rate. m; is
the real money balance accumulated by the household. b; is the amount of money borrowed
by R&D entrepreneurs subject to the following constraint: b; < my. i, is the interest rate on
money b; borrowed by R&D entrepreneurs, and it can be shown as a no-arbitrage condition
that 7; must be equal to the nominal interest rate such that i; = r; + m; from the Fisher
equation. To earn the wage rate w,, the household inelastically supplies one unit of labor.*
T4 is a lump-sum transfer from the government to the household. From standard dynamic
optimization, the familiar Euler equation is

L= p. (3)

Ct

2.2 Final goods

Final goods are produced by perfectly competitive firms that employ labor and a composite
of intermediate goods as inputs. The production function of final goods is Y; = LYK},
where L, = 1 is labor input. K; is a composite of intermediate goods produced with the
following Cobb-Douglas aggregator:

K, = exp { /0 In [Z 0w, 1) (w, j)] dw}, )

where the integer j in ¢;(w,j) denotes the quality vintage of intermediate goods w. Let j,
denotes the highest-quality vintage in industry w. Firms are indifferent between the highest-
quality vintage and the second-highest-quality vintage if their relative price is

plw o)  @lwige) y
p(w,jw— 1) qlw,jo—1) Ar(w), (5)

4Given that our model is already quite complex, we normalize the aggregate supply of labor to unity in
order to sidestep the issue of scale effects; see for example, Peretto (1998, 2007) and Segerstrom (1998) for
important ways of removing the strong scale effect in the Schumpeterian growth model.
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where A\;(w) > 1 is the quality increment between the two consecutive vintages of interme-
diate goods w at time ¢. As usual, whenever this equality holds, we focus on the case in
which firms buy the highest-quality intermediate goods only. In equilibrium, only the highest
quality intermediate goods are traded. From profit maximization, the conditional demand
function for intermediate goods w € [0, 1] is given by

1-0)Y, (1-0)K"
pw,jo)  pw,de)

(6)

yt(w7jw) =

Multiplying ¢;(w, j.,) to both sides of (6) and then aggregating the natural log of the resulting
equation with respect to w, we derive

Ko =[(1-0)Q/P]"", (7)

where Q; = exp [ fol In ¢ (w, jw)dw} and P, = exp [ fol In p;(w, jw)dw] denote respectively the
aggregate quality index and the aggregate price index of intermediate goods.

2.3 Intermediate goods

There is a unit continuum of industries w € [0, 1] producing differentiated intermediate
goods. Each industry is temporarily dominated by a quality leader until the arrival and
implementation of the next higher-quality product. The owner of the new innovation becomes
the next quality leader. The current quality leader in industry w uses one unit of final goods
to produce one unit of intermediate goods y;(w, j.), so that the marginal cost of production
is one. From Bertrand competition,’ limit pricing yields the equilibrium price given by

pe(w, Ju) = M(w). (8)
Therefore, the amount of monopolistic profit in industry w is

M) = D) ~ o) = | 2492 1 - oy, )

where the second equality uses (6) and (8).

24 R&D

R&D is performed by a continuum of competitive entrepreneurs. If an R&D entrepreneur
employs R;(w) units of final goods to engage in innovation in industry w, then she is successful
in inventing the next higher-quality product in the industry with an instantaneous probability
given by

¢r(w) = R(w)/on, (10)

5This is known as the Arrow replacement effect; see Cozzi (2007) for a discussion of the Arrow effect.
6See Denicold and Zanchettin (2010) for an analysis of Cournot competition in the Schumpeterian model.




where a; = anlfe)/ o inversely measures R&D productivity and is proportional to lefa)/ o
to ensure balanced growth. To facilitate the payment of R;(w), the entrepreneur needs to
borrow cash from the household, and the cost of borrowing is determined by the nominal
interest rate i;. Therefore, the cost of R&D is (1 + i) R;(w). Let vf(w, j, + 1) denotes the
expected value of an innovation before the realization of its quality increment. Then, the
R&D free-entry condition is given by

vy (W, Jw + Dy (w) = (1 4+ 44) Ry(w) < vf(w, Jw + 1) /oy = (1 +44) . (11)

2.5 Random quality improvements

As in Minniti et al. (2013), when an R&D entrepreneur invents a higher-quality product in
industry w, the quality increment \;(w) > 1 is drawn from a stationary Pareto distribution
with the following probability density function:

F) ==A"+, (12)
K
where the parameter x € (0,1) determines the shape of the Pareto distribution. Given
that the expected value of A\(w) is equal across industries, (9) implies that the expected
value of II;(w, j,,) is also the same across industries. Therefore, we will follow the standard
treatment in the literature to focus on the symmetric equilibrium in which the arrival rate
of innovations is equal across industries,” such that ¢,(w) = ¢, for w € [0, 1].

2.6 Endogenous firm entry

To generate an endogenous distribution of heterogeneous firms, we follow Melitz (2003) and

others to consider a fixed entry cost. The entry cost is given by 3, = BQEPQ)/ 9,8 which
is proportional to le_é))/ % to ensure balanced growth. Given the entry cost, a firm enters
the market if and only if v;(\) > f3,, where v, (A) denotes the ez post value of an innovation
(i.e., after the realization of the quality increment \).? v; ()) is monotonically increasing in A
because II;(\) = (1—0)Y;(A—1)/)\ is increasing in \. Given that v;(1) = 0 and vt()\)/le_e)/g
is stationary in equilibrium, it can be shown that there exists a stationary threshold value
of \,'% denoted as 5\, above which firms implement their innovations and enter the market

generating endogenous entry of firms with heterogeneous quality improvements.

"Cozzi et al. (2007) provide a theoretical justification for the symmetric equilibrium to be the unique
rational-expectation equilibrium in the Schumpeterian model.

8We do not impose a CIA constraint on entry for the following reasons. Unlike R&D investment that
is subject to uncertainty in innovation success, the entry cost is incurred after an innovation is already
developed and patented. Therefore, banks should be available to extend credits to the firm, which can use
the patent as a collateral.

9In a symmetric equilibrium with ¢,(w) = ¢,, the value of innovations does not depend on w.

10Gee Appendix A for the proof.



2.7 Asset prices

The ex-ante value of an innovation (i.e., before the realization of \) is formally defined as

5\ oo o0
o ju +1) = / 0. F(N)dA + / [0(\) — B F(N)dA = / u(NF(N)dA — Pr(A > V)5,

1

where Pr(\ > \) denotes the probability of the innovation being implementable. In the
symmetric equilibrium with vf(w, j, + 1) = v{, the no-arbitrage condition for the ex-ante
value of innovation can be derived as'!

I + 6§ + Pr(A > X)B, — Pr(A > Vg, |vf + Pr(A > V)3,
Ty = =
! ve + Pr(A > V)3,

: (13)

where ¢, is the arrival rate of innovation. Pr(A > S\)th is the instantaneous probability that
an innovation is created and implemented in an industry. The Pareto probability density
function implies that

Pr(A > \) = / FO)dA =" (14)
by
Substituting (14) into (13) and rearranging terms yield

~—1/k -

II¢ ~—1/k ¢+ A ﬁ
g A - (15)
vi+A TSy v+ A By
where the ex-ante value of monopolistic profits can be shown to be
® /A1 A—1/(1+k
m - | [7(52) s a-owi- |2 aoow g
)\ )\ K

Similarly, the no-arbitrage condition for the ez-post value of an innovation with A > X is

e (A)

IT;(A)
(bt - 3
Ut()\)

ve(N)

~—1/k

:Tt+/\ (17)

where the ex-post value of monopolistic profits with A > s given by

m) = (25 ) @ - o (18)

1 Gee Appendix A for the proof.



2.8 Monetary authority

The monetary policy instrument that we consider is the nominal interest rate ¢;, which is
exogenously set by the monetary authority. Given i;, the inflation rate 7, is endogenously
determined according to the Fisher equation such that 7, = 4, — r;, where r; is the real
interest rate and determined from the Euler equation in (3). Then, the growth rate of the
nominal money supply is given by u, = m; + 77, /my;, which becomes ;1 = i — p on the
balanced growth path.'? Finally, the monetary authority returns the seigniorage revenue as
a lump-sum transfer 7, = m; + m;m; to the household.

2.9 Dynamics

In this section, we characterize the dynamics of the model. Lemma 1 shows that given a
constant nominal interest rate 7, the economy immediately jumps to a balanced growth path.
On this balanced growth path, each variable grows a constant (possibly zero) growth rate.

Lemma 1 The economy jumps to a unique and saddle-point stable balanced growth path.

Proof. See Appendix B. =

2.10 Economic growth

Recall that the (log of ) aggregate quality index is In Q; = fol In ¢;(w, jw)dw. In industry w, the

quality g¢(w, j.,) jumps to g (w, ju+1) = Mw)q(w, j.,) with probability Pr(A > A)¢ = ~_1/K¢.
The continuum of industries shares this random process of quality improvements. Therefore,
the time derivative of In Q); is given by

@:{ K 1) —1 ' d}f\l/”:[ A d}x”" 19
o= maes D —ma e 50 = | [Tna@ie 7 a9
Using the law of large numbers, we obtain'?
% - [ / T\ f(A)dA] AV = A+ r)d e, (20)
t by

where In A + x captures the average step size of implemented quality improvements and f (N
is defined as
; )

f) = T

121t is useful to note that in this model, it is the growth rate of the money supply that affects the real
economy in the long run, and a one-time change in the level of money supply has no long-run effect on
the real economy. This is the well-known distinction between the neutrality and superneutrality of money.
Empirical evidence generally favors neutrality and rejects superneutrality, consistent with our model; see
Fisher and Seater (1993) for a discussion on the neutrality and superneutrality of money.

13Derivations are available in an unpublished appendix; see Appendix C.

1
K

= X" f(N).
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Finally, the growth rate of output Y; and consumption ¢; is equal to

1—6C 1— - 1)k
109 10 S a Y

g_TQt ~ T ¢. (21)

Equation (21) shows that the equilibrium growth rate depends on two endogenous vari-
ables, the arrival rate ¢ of innovations and the threshold step size \. We can determine ¢
using the R&D condition vf = (1 + i)anl_g)/ 9, where the balanced-growth value of vy is
given by vf = II¢/(p + 5\_1/K¢) — X_l/HBle_G)/G using (15) and the Euler equation. Then,
substituting (16) into the R&D condition, we obtain

A—1/(1+ k)
i
)\ K

In Appendix B, we show that the production function of final goods can be expressed as

1— 0\ 007" (1-6)/6
n:( ) QU (23)

Y
nge)/e

= [(1 +i)a + Y””ﬁ] (pr i "

9). (22)

5\6“

Similarly, we can determine A using the entry condition vt(S\) = 6@?79)/ 9, where the

balanced-growth value of v;()\) is given by v;(\) = II;(\)/(p + :\71/%5) using (17) and the
Euler equation. Then, substituting (18) into the entry condition, we obtain

5\—]. Y, ~—1/k

Combining (22) and (24), we have the A condition given by

|
Gopaie L O s
l1+7al+k

(25)

where the left-hand side is monotonically increasing in A. Therefore, (25) implicitly deter-
mines the unique equilibrium value of X. Using (23)-(25), we obtain the ¢ condition given
by

P 1=V 1/

K
O I S T AR (26)

Given the equilibrium value of \ from (25), (26) determines the unique equilibrium value of

o.

3 Monetary policy and economic growth

In this section, we explore the effects of monetary policy on economic growth. In Section 3.1,
we analytically derive the effects of the nominal interest rate. In Section 3.2, we calibrate
the model to quantify the relationship between inflation and economic growth.



3.1 Qualitative analysis

Here we first derive the effects of increasing the nominal interest rate ¢+ on the innovation-
arrival rate ¢ and the threshold step size A. Lemma 2 shows that ¢ is decreasing in i for
a given A. Lemma 3 shows that X is decreasing in 7. The intuition can be explained as
follows. An increase in the nominal interest rate ¢ increases the cost of R&D and reduces the
incentives for innovation; as a result, the innovation rate ¢ decreases for a given A. From the
balanced-growth version of (15), we have vf = Hf/(p—i—j\il/ngb) —Z\fl/nﬁle_HW, which shows
that the decrease in ¢, by reducing creative destruction, increases the present value of the
profit stream generated by implementing an innovation. This induces the implementation of
innovations associated with smaller profit margins, thereby reducing the threshold mark-up
A for entry.

Lemma 2 For a given A, the innovation rate ¢ is decreasing in the nominal interest rate 1.

Proof. Use (26). m

Lemma 3 The threshold step size \ is decreasing in the nominal interest rate 1.
Proof. Use (25). m

When the entry cost (3, is zero, the nominal interest rate has no effect on the distribution
of innovations that are implemented because all firms enter the market regardless of the size
of quality increments. In this case, A =1, and g= ¥m¢ is monotonically decreasing in ¢ via
¢. This result is the same as in Chu and Cozzi (2014), who consider a Schumpeterian growth
model with an identical step size of quality improvements across firms. However, when the
entry cost (3, is positive, the nominal interest rate i affects both A and ¢. In this case,

Pr(A > \) = AV 5 increasing in i. In other words, an increase in the nominal interest rate
reduces the threshold value A for entry and leads to more innovations being implemented for
a given ¢. When the entry cost (3, is sufficiently large, the overall effects of ¢ on the composite

innovation rate 5\_1/H¢ and the equilibrium growth rate g = l%f’(ln A H)S\_l/ﬁgb become non-

~-1
monotonic. Specifically, we find that when the nominal interest rate ¢ increases, A /K¢ and
g first increase and eventually decrease. We summarize these results in Proposition 1.

Proposition 1 If the entry cost is sufficiently large (small), an increase in the nominal

interest rate has an inverted-U (negative) effect on the composite innovation rate 5\71/H¢ and
the equilibrium growth rate g

Proof. See the Appendix B. =

Before we conclude this section, we explore the relationship between inflation and eco-
nomic growth. The Fisher equation gives rise to a positive long-run relationship between
the inflation rate and the nominal interest rate that is supported by empirical studies such
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as Mishkin (1992) and Booth and Ciner (2001). In our model, the inflation rate is given by
the Fisher equation m = i —r = ¢ — g(i) — p, where the second equality follows from the FEuler
equation. Therefore, so long as dg(i)/di < 1, we have On/0i = 1 — dg(i)/di > 0.1 Given
this positive relationship, inflation and economic growth would also exhibit an inverted-
U relationship. Recent empirical studies such as Bick (2010) and Lépez-Villavicencio and
Mignon (2011) provide evidence that supports an inverted-U relationship between inflation
and economic growth.

3.2 Quantitative analysis

In this section, we calibrate the model to aggregate data of the US economy to provide a
quantitative illustration on the effects of monetary policy on economic growth. The model
features the following structural parameters {p, 6, «,5,x} and policy variable i. For the
discount rate, we set p to a standard value of 0.05. For the labor share, we set 6 to a value
of 0.59; see Elsby et al. (2013) who document that the labor share in the US has fallen to
less than 0.60 recently. According to the Conference Board Total Economy Database, the
average growth rates of total factor productivity (TFP) in the US is about 0.6% from 1990 to
2014. We calibrate the R&D cost parameter « by targeting the scenario in which domestic
innovation drives half of the TFP growth in the US (i.e., g = 0.3%).'®> For the cost of entry,
we calibrate 5 by setting the time between arrivals of innovation 1/¢ to about 3 years as
in Acemoglu and Akcigit (2012). For the Pareto distribution parameter, we follow Minniti
et al. (2013) to consider k = 0.21 as our benchmark, but we also explore another value
x = 0.16 that has interesting implications. Finally, we calibrate the value of ¢ by targeting
the average inflation rate 7 in the US, which is about 2.5% in the past two decades. The
parameter and variable values are summarized in Table 1.

Table 1: Calibration

Targets r  wL/Y g 1) T
0.0563 0.590 0.003 0.338 0.025
Parameters K P 0 Q@ I} 1

0.210 0.050 0.590 0.0013 1.1249 0.078
0.160 0.050 0.590 0.0023 1.0951 0.078

Under our benchmark parameter values, we find that economic growth is an inverted-U
function of the nominal interest rate. In Figures 1 and 2, we plot the equilibrium growth rate
g against the inflation rate m, which is monotonically increasing in the nominal interest rate
1. Figure 1 presents our benchmark result and shows that the relationship between economic
growth and inflation follows an inverted-U shape. Furthermore, the growth-maximizing
inflation rate is about 2.9%, which is close to the empirical estimate in Lopez-Villavicencio
and Mignon (2011) who find a threshold inflation rate of 2.7% for industrialized countries.

14 Under our calibrated parameter values, steady-state inflation is indeed increasing in the nominal interest
rate.
15See Chu (2010) who finds that domestic R&D drives less than half of the TFP growth in the US.
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Figure 1: Inflation and economic growth

(k= 0.21)

In the empirical literature, studies sometime find a monotonically negative effect of in-
flation on economic growth; see for example, Guerrero (2006) and Vaona (2012). Indeed,
we find that our model is flexible enough to deliver a negative relationship between inflation
and economic growth under reasonable parameter values. When we decrease the value of
k to 0.16 and recalibrate the rest of the parameters, we find that the relationship between
economic growth and inflation becomes monotonically negative. In this case, the smaller
value of x implies a smaller ratio of 3/, such that the negative effect of inflation dominates
the positive effect.

0.310]- ]
0.305]- ]

0.300 |- ]

The growth rate (%)

0.295 =

-4 -2 0 2 4 6

The inflation rate (%)

Figure 2: Inflation and economic growth

(k = 0.16)
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Conclusion

In this study, we have developed a monetary Schumpeterian growth model with endoge-
nous entry of firms with heterogeneous quality improvements. Given this monetary growth-
theoretic framework, we explore the effects of monetary policy on economic growth and find
that inflation could have an inverted-U effect on economic growth. Furthermore, we cali-
brate the model to aggregate data of the US economy to provide a quantitative investigation.
Under our benchmark parameter values, we find that the growth-maximizing inflation rate
is about 2.9%, which is consistent with recent empirical estimates. However, given that we
have a stylized model, the quantitative analysis should be viewed as an illustrative exercise.
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Appendix A: The stationary quality threshold

In the symmetric equilibrium vf(w, j, + 1) = v, the ex-ante value of an innovation is
given by

X ) 00 -
v = /1 0- fF(A\)dA + A [0(A) = Bf(N)dA = /A ve(A)f(A)A = Pr(A = A)B,. (A1)

Substituting the exz-post no arbitrage condition condition r,v; (A) = Iy (A) +0; (A) — Pr(A >
At)d,v¢ (A) into (A1) yields

rot = IS+ / T B FOVA-PIA > A6, / 1) = B FO)AA=[Pr(r = 3)6, + o] Pr(\ > A)B.
A A

(A2)
Combining (A1) and the R&D condition (11) and also using (14), we obtain

/X T U ONFO)AA = (L i) ar+ X B, (A3)

where 7, is chosen exogenously by the monetary authority. Differentiating (A3) with respect
to t, we use the Leibniz integral rule to derive

1 ~_1ts L

/ N BN FN AN = v, (N) f(xt)it — (i) + N B - EA; B, (A4)
A

We substitute (12) and the entry condition v;(\;) = 3, into (A4) to obtain

|0 = 1 e 3 (A5)

Substituting (A5) into (A2), the ex-ante no-arbitrage condition for an innovation can be
expressed as

~—1/k

. e i—1/k . i—1/k
1§ + [Ut + A 6t:| - N O [Ut + A ﬂt]

e ~—1/k ’
v A B

which uses (14) and the R&D condition (11) again. Moreover, we make use of the R&D
condition (11), oy = aQ % and B, = B to derive

Ty =

(A6)

. ~—1/k .

g+ 5B, (1-@) o)

v+ B, b
With this expression, (A6) becomes

He ]- _6 ‘ ~—1/k
Ty = ~i1/n + ( ) % -\ / o (A7)
vi+ A By




Meanwhile, the ez-post no-arbitrage condition for the threshold quality (A = 5\,5) can be
written as

- Ht<5\t) (1—0) %_ ~—1/k
Ty = Ut(j\t) + 0 )‘t by (AS)

By the R&D condition (11), the entry condition v;(\,) = f,, oy = anl—O)/G and 3, =
BRI, (A7) and (A8) imply

it (a9)
(1+da+i "8 B
Given (16) and (18), (A9) can be rearranged as
G-l L 0w (A10)

T (4 al+r
Equation (A10) shows that ), is always stationary.
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Appendix B: Proofs

Proof of Lemma 1. Using (8), we can express the aggregate price index of intermediate
goods as'6

P, = exp [ /O 1 In At(w)dw] = exp { /A oo(ln A) f(A)dA] = X", (B1)

where f()\) is defined as
. )5
f) = o=y = A
JiTF(N)dA
Here we introduce a modified density function f(\) in summing A on [, c0] because the

distribution of A in equilibrium is not on the original domain [1,c0), but instead on [\, 00),
due to endogenous entry. Note that [5° f(A)dA = 1. By (7) and (B1), we obtain K, =

f). (B2)

- q1/6
[(1 —0)Q,/(Me®)| . Incorporating this condition into the production function ¥; = LK},

. (1-0)/0
y, = {w] | (B3)
el

noting L; = 1. Recall that final goods are used for consumption, production of intermediate
goods, R&D and entry. Consumption is given by ¢;. By (6) and (8), the amount of final
goods used for the production of intermediate goods is

xp= [Pt dote= [ G a = oy [T SFoon =T my

Final goods for innovation and entry are given by

we obtain

1
~—1/k
X7 _/ Ry(w)dw = ¢, and X = Pidw = B / Pt (B5)
0

wey

where €); is the set of industries in which innovations take place and are implemented at
date ¢. Finally, we substitute (B3), (B4) and (B5) into the market-clearing condition Y; =
¢t + X"+ X[ + X7 to derive

16\ 07" —0
e [ ) o)
a+ A Aer (I1+k)A

where C; = ¢;/ Q" is a transformed variable that is stationary. We substitute (16) and
the R&D condition (11) into (A7) to derive

(1-0), [X—1/(1+n)
B

, oy ~iin
(I+2)ar+ A N

~—1/k —0
e 1

(B7)

Tt =

16We achieve this by applying integration by parts to

oo Al_m
In\)f 2 [ A
/; (In ) / . (d/\l )

18



Finally, substituting (B3) and (B7) into (3) yields

~—1/k

G 1-0Q, (1— )1/ [;\—1/(1—1—/1) 4 —p. (BS)

b [(1+i)a+5\71/”5]en(1—9)/9 ;\<1/9>+(1/n)

noting the definitions C; = ct/Qil_Q)/G and a; = aQ!""""?. Substituting (B6) into (B8), we
have an one-dimensional differential equation in C;.'" Given that ¢, decreases with C; in
(B6), the right-hand side of (B8) is increasing in C}, so the dynamics of C} is characterized
by saddle-point stability, such that C; must jump to its interior steady-state value. Given a
stationary value of Cy, (B6) implies that ¢, is also stationary. m

Proof of Proposition 1. In this proof, we first show that the relationship between i and

X_l/ﬁ(b is either inverted U-shaped or negative. Combining (25) and (26), we have

~—1/k (1—0)1/0 5\—1
A o= Ber(=0)/0 \ 3179 — P (B9)

By differentiating the right-hand side of (B9) with respect to A, we can easily show that
d(ﬂil/ﬁgb)/dj\ > (<) 0if A < (>) 1/(1 — ), implying an inverted-U relationship between
\and A Kgﬁ. In identifying the relationship with respect to 7, we naturally focus on a

non-trivial range of X, i.e., (A, ), where 5\_1/5¢ > 0 holds.”® Given that A\ monotonically
decreases with i (Lemma 3), i > 0 provides another natural upper bound of 5\, say A;, which
is defined by

B kK

al+r

(N =)A= (B10)
When J; is large enough (exceeding 1/(1 — #)), the relationship between i and :\71/qu5 is
inverted U-shaped on the non-trivial range (A, \;); see Figure 3a. When \; is small enough
(falling below 1/(1 — 0)), X_l/nqﬁ is monotonically decreasing in 7 on (A, A;); see Figure 3b.
Note that, by (B10), \; increases with 3 and, by (B9), A decreases with §. This implies that
for a larger (smaller) entry cost (3, accompanied by a larger (smaller) )\;, the relationship

;-1 . .
between i and A\~ "¢ becomes inverted-U (negative).

17 Although \is an endogenous variable, it is stationary and a function of parameters as shown in (A10).

18The formal definition of (A, \) is given by incorporating 5\_1“(;5 =0 into (B9): A and A are equal to
such that (z — 1) /21/? = pBer(1=0)/¢ /(1 — §)1/%. This has the two solutions such as z = A and X if and only

if p8<6(1— 9)¥ /er(1=0)/9  Otherwise, 5\_1/H¢ cannot be positive.
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x 1 3

Figure 3a Figure 3b

In the rest of this proof, we characterize the relationship between ¢ and ¢g. For A <

1/(1—0), it holds d(:\f1 “$)/dX > 0 as shown above. Given that (In A+ ) is also increasing
in A, this implies dg/d\ > 0 for A < 1/(1 — 6), by noting (21). To see the case where
1/(1 —60) < X, using (21) and (B9), we can obtain

Y T [t (1) ] - e B (- L)

d\ (95\1+1/9 565(1—9)/9 ﬁem(l—ﬂ)/ﬁ 0 1—0
¢(X\): unimodal and concave in X &()\): increasing and convex in

Note the following properties: (a) ((1/(1 —6)) > 0 and £(1/(1 — 0)) =
uni-modal function' and £(X) is a strictly increasing function; (c) ((A
C() is strictly concave and £()) is strictly convex.

\_/
I

J\ro

\_/

Y
ﬂ'f.T 0 dg
i ot
Figure 4

Using these properties, we can graphically show that & (5\) intersects ( (:\) from below only
once at some point in A € (1/(1 — 6),X), below (above) which dg/d\ > (<) 0. This implies
an inverted-U relation between \ and g on (A, A). The rest of Proposition 1 straightforwardly
follows, noting that \; is increasing in 5. =

9Tt is useful to note that ¢()) is upward sloping at A = 1/(1 — 6).
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Appendix C (not for publication)

Equation (20): Recall that the equilibrium distribution of A is given by f(\), which is
defined by (B2) in Appendix B. Then we calculate

/Ol(ln)\(w))dw:/;o(ln)\) :—/ (InA\) A5 d,

where the second equality uses (12) and (B2). Given that
Ve d AT
T a1 - B

1 1k 1 Lie
/0 (In () do = AT/A (In\) [% (f_ M)] ix.

Applying integration by parts, we calculate

we have

~1/K] 177 1k - N e
A )\ by -
— (In \) d)\ — - A
/ n [dA( )] o {1_1+THI1 ~ /}\ 1_1:n }
From )\1,% 00 L N )\Jﬂ o
1_H_Klm/\ =kgkA “InA and/;\ _—1ﬂd)\_—/€2)\ .,
K 5\ -

we have fol (In AMw)) dw = In X + k.
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