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Abstract. This paper considers the most important aspects of model uncertainty for spatial regression

models, namely the appropriate spatial weight matrix to be employed and the appropriate explanatory vari-

ables. We focus on the spatial Durbin model (SDM) specification in this study that nests most models used

in the regional growth literature, and develop a simple Bayesian model averaging approach that provides a

unified and formal treatment of these aspects of model uncertainty for SDM growth models. The approach

expands on the work by LeSage and Fischer (2008) by reducing the computational costs through the use

of Bayesian information criterion model weights and a matrix exponential specification of the SDM model.

The spatial Durbin matrix exponential model has theoretical and computational advantages over the spatial

autoregressive specification due to the ease of inversion, differentiation and integration of the matrix expo-

nential. In particular, the matrix exponential has a simple matrix determinant which vanishes for the case of

a spatial weight matrix with a trace of zero (LeSage and Pace 2007). This allows for a larger domain of spatial

growth regression models to be analysed with this approach, including models based on different classes of

spatial weight matrices. The working of the approach is illustrated for the case of 32 potential determinants

and three classes of spatial weight matrices (contiguity-based, k-nearest neighbor and distance-based spatial

weight matrices), using a dataset of income per capita growth for 273 European regions.

JEL: C11, C21, C52, O47, O52, R11

2



Introduction

This paper considers model uncertainty associated with the selection of explanatory variables X and the

specification of the spatial weight matrix W in spatial growth regressions, where we often face a large number

of potential drivers of growth with only a limited number of observations. In particular, we focus on the

spatial Durbin model (SDM) specification that nests most models used in the regional growth literature:

(i) the spatial autoregressive (SAR) model that includes a spatial lag of growth rates from related regions,

but excludes these regions’ characteristics; (ii) the spatial error model specification in situations where

there are no omitted variables that exhibit correlation with included variables; (iii) the spatially lagged

X growth regression model (SLX) that assumes independence between regional growth rates, but includes

characteristics from related regions in the form of explanatory variables WX; and (iv) the non-spatial linear

growth regression model (LeSage and Fischer 2008).

A natural solution to the problem of model uncertainty, supported by formal probabilistic reasoning, is the

use of Bayesian model averaging (BMA) which assigns probabilities on the model space and deals with model

uncertainty by mixing over models, using the posterior model probabilities as weights (Hoeting et al. 1999).

Fernández et al. (2001b) introduced the use of BMA in non-spatial least squares growth regressions with

uncertainty in the choice of regressors.1 Often the posterior probability is widely spread among many models

which strongly supports using BMA rather than choosing a single model.2 Evidence of superior predictive

performance of BMA can be found, for example, in Fernández et al. (2001a), and Raftery et al. (1997). Work

by Fernández et al. (2001a,b) considers cases where the number of potential models is sufficiently large that

calculation of posterior probabilities for all models is difficult or infeasible. But the Markov chain Monte

Carlo model composition methodology, known as MC3, proposed by Madigan and York (1995), allows for a

simple treatment of potentially very large model spaces.

LeSage and Parent (2007) extended the MC3 approach to the case of spatial Durbin models that contain

alternative explanatory variables conditional on a single fixed spatial weight matrix. Since the spatial

weight matrix is the hallmark of spatial growth regressions that distinguishes these from non-spatial growth

regressions, LeSage and Fischer (2008) extended this approach that can be used to increase or decrease the

number of nearest neighbors in the spatial weight matrix.3

With these authors we share the ambition to develop a Bayesian model averaging approach that simulta-

neously specifies the spatial weight or connectivity structure assigned to regions that form the observational

basis of spatial data samples, and the explanatory variables to be included in SDM growth models. But there

are a number of notable differences. From a technical point of view, LeSage and Fischer (2008) propose the

use of numerical integration techniques to obtain posterior model probabilities for model specifications with

different k-nearest spatial weight matrices. More precisely, the log-marginal likelihood for a given model

specification is treated as conditional on the distance metric and the number of neighbors to construct the
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weight matrix. The posterior model probabilities are then used to obtain Bayesian model-averaged estimates.

The computational cost of this procedure makes it an impractical choice for large datasets such as these

usually considered in spatial growth empirics.

This paper expands upon this previous work of model averaging for spatial regression models by reducing

the method’s computational costs through the use of weights based on the Bayesian information criterion

(BIC) on the one side and the matrix exponential specification of the SDM on the other. This allows for a

larger domain of spatial growth regression models to be analyzed with this technique, for example, not only

those based on k-nearest neighbor spatial weight matrices as in the study by LeSage and Fischer (2008),

but also on any other type of weight matrices such as distance-based spatial weight matrices with critical

distances and the contiguity-based matrices.

We employ the matrix exponential spatial specification (MESS) of the SDM that replaces the geometric

decay by an exponential decay of spatial externalities over space. LeSage and Pace (2007) have shown that

matrix exponential spatial specifications can produce estimates and inferences similar to those from conven-

tional spatial autoregressive models, but have analytical and computational advantages. In particular, they

simplify the log-likelihood allowing a closed form solution to the problem of maximum likelihood estima-

tion. Hence, matrix exponential spatial specifications, where the log-determinant vanishes, greatly alleviates

Markov chain Monte Carlo computations.

Model averaging is based on Bayesian information criterion (BIC) weights. Note that the posterior

model weights equal the prior model weights times the (exponentiated) Bayesian information criterion,

developed by Schwarz (1978). The BIC weights depend on the likelihood, but penalize relatively large

models through a penalty term. The implied preference for more parsimonious models addresses collinearity

among the explanatory variables. Explanatory variables that are very similar explain less of the variaton of

the dependent variable which implies less weight on such models. BIC posterior model weights have been

widely used in the literature, and provide a reasonable approximation to proper Bayesian model weights and

are moreover consistent in large samples (Doppelhofer and Weeks 2009).

It is important to note that we distinguish the terms Bayesian model comparison and Bayesian model

averaging in the following sense. Bayesian model comparison methods produce posterior model probabilities.

Bayesian model averaging uses these posterior model probabilities (produced by the comparison methods)

to weight alternative models, producing (model averaged) estimates and inferences. Some of the model

averaging literature is sloppy making a clear destinction here (see, for example, Hoeting et al. 1999). With

this clarification in mind, it appears worth noting that the study by Han and Lee (2013) deals with Bayesian

comparison in the context of three different spatial econometric models, one being a local spillover spatial

Durbin error model specification with finite distributed lags and exogenous variables, and the other a global

spillover SAR and its MESS counterpart. Model averaging, however, is outside the scope of their study.

The paper is structured as follows. The section that follows describes the matrix exponential spatial
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specification of the SDM growth model, followed by an outline of the Bayesian model averaging approach

that uses a BIC approximation to the marginal likelihood for the models of interest along with a MC3

method to reduce the computational burden. The next section summarizes simulation results to investigate

the performance of our BMA approach (in terms of computational time) compared to alternative approaches

involving the computation of Bayesian marginal likelihoods that do not have closed form solutions. The

paper continues to illustrate our methodology for the case of 32 potential determinants and three classes of

spatial weight matrices (contiguity-based, k-nearest neighbor and distance-based spatial weight matrices),

using a dataset of income per capita growth for 273 European regions. We conclude with a summary and

evaluation of our results in the final section.

Matrix exponential spatial growth models

We consider cross-sectional spatial growth regression models where the dependent variable undergoes a linear

transformation as in Eq. (1):

Sy = β0ιN +Xβ +WXγ + ε. (1)

y is an N × 1 vector of spatial observations on the dependent variable representing growth rates. X is an

N×Qmatrix of observations on theQ independent variables representing growth determinants. Each of these

observations on the dependent and explanatory variables comes from regions in space. The N -element vector

ε is distributed as N (0, INσ2). β is a Q× 1 vector of parameters associated with the explanatory variables,

ιN is a vector of ones and β0 is the associated intercept parameter. The matrix W is an N×N spatial weight

matrix that contains non-zero elements [W ]ij if observations j and i are neighboring regions (i, j = 1, . . . , N)

and zero otherwise. Characteristically, the matrix W is row-stochastic, so that the N ×Q spatial lag matrix

WX contains values constructed from an average of neighboring regions. The Q × 1 parameter vector γ

measures the marginal impact of the explanatory variables from neighboring observations (regions) on the

dependent variable y.

S is an N -by-N non-singular matrix of constants that may depend on an unknown real scalar parameter

α. We focus on the transformation S used to model spatial dependence among the (regional) elements of

the vector y. A prominent member of the family of spatial growth regression models given by Eq. (1) is the

conventional spatial Durbin model that arises when setting S = (IN − ρW ), where ρ is a scalar parameter

reflecting the magnitude of spatial dependence.

The focus on this paper is on the matrix exponential as a specification for S defined in Eq. (2):

S(α) = exp(αW ) =
∞
∑

t=0

αt

t!
W t

= IN + αW +
α2

2!
W 2 +

α3

3!
W 3 + . . . (2)
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where α is a real scalar parameter with −∞ < α < ∞. S is a linear combination of row-stochastic matrices

and hence is proportional to a row-stochastic matrix, since products of row-stochastic matrices are row-

stochastic. The parameter α plays the role of ρ in the conventional SDM capturing the extent of spatial

dependence.

The matrix exponential spatial specification (MESS), introduced by LeSage and Pace (2007), replaces

the conventional geometric decay of influence from higher-order neighboring relations by the spatial autrore-

gressive process in conventional spatial Durbin model relationships with an exponential pattern of decay

in influence from higher-order neighboring relationships. Spatial growth regression models of type (1) with

a matrix exponential specification of S may be termed spatial Durbin matrix exponential models. For

implementation purposes, we truncate the infinite expansion shown in Eq. (2) to R terms creating an

approximation to S = exp(αW ).

LeSage and Pace (2007, 2009) discussed several of the salient properties of MESS models, some of which

may be enumerated as follows: First, S(α) is non-singular (Property 1). Second, S(α)−1 =
[

exp(αW )
]

−1
=

exp(−αW ) (Property 2) and third, | exp(αW )| = exp
[

tr(αW )
]

(Property 3). Property 1 guarantees a

positive definite covariance matrix and thus avoids the need to restrict the parameter space, or to carry

out tests for positive definiteness during parameter estimation. Property 2 leads to a simple mathematical

inversion of the matrix exponential. Property 3 implies that the log-likelihood of the MESS model does not

contain a troublesome log-determinant of an N × N matrix unlike for the case of the conventional spatial

Durbin model. LeSage and Pace (2007) provide a closed form solution for the parameters of the MESS

model. Finally, it is worth noting that there are approximate relations α ≈ log(1 − ρ) or ρ ≈ 1 − exp(α),

and this relation between α and ρ facilitates interpretations of parameter estimates for α allowing them to

be viewed in terms of the parameter ρ from the conventional spatial Durbin model.

The model averaging approach

We are interested in averaging over matrix exponential spatial growth regression models that differ in two

respects, namely the spatial weight matrix specification and the set of explanatory variables. With Q

potential growth determinants and J potential spatial weight matrices, the cardinality of the model space

M is (IJ) with I = 22Q. A particular model Mij ∈ M (i = 1, . . . , I; j = 1, . . . , J) is characterized by its

parameter vector θ =
[

β0 β′ γ′ α σ2
]

′

. In the Bayesian model averaging framework4, the posterior

for the parameters θ, calculated using Mij , is written as:

p(θ|Mij ,D) =
f(D|θ,Mij)π(θ|Mij)

p(D|Mij)
(3)

with D = (y,Z) denoting the data. The notation makes clear that we now have a posterior p(θ|Mij ,D), a

likelihood f(D|θ,Mij), and a prior π(θ|Mij) of the parameter vector for each candidate model.
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The posterior model probability p(Mij |D) propagates model uncertainty into the posterior distribution

of model parameters. By Bayes’ rule, p(Mij |D) can be expressed as:

p(Mij |D) =
f(D|Mij)π(Mij)

p(D)
∝ f(D|Mij)π(Mij) (4)

such that the posterior model probability (weight) of model Mij is proportional to the product of the model-

specific marginal likelihood f(D|Mij) and the prior model probability π(Mij). Model weights can hence be

obtained using the marginal (or integrated) likelihood f(D|Mij) for each individual model Mij after eliciting

a prior π(Mij) over the model space. The marginal likelihood of model Mij is in turn given by:

f(D|Mij) =

∫

f(D|θ,Mij)π(θ|Mij) dθ. (5)

The ratio of marginal likelihoods of two different models is the Bayes factor and it is closely related to the

likelihood ratio statistic. Using the law of total probability the posterior density of the parameters for all

the candidate models under consideration is given by:

p(θ|D) =

I
∑

i=1

J
∑

j=1

p(Mij |D)p(θ|Mij ,D). (6)

Hence, the full posterior distribution of θ is an average of the posterior distributions under each of the

models, weighted by their posterior model probabilities p(Mij |D). When applying Bayesian model averaging

according to Eq. (6), both estimation and inference come naturally together from the posterior distribution.

This posterior distribution provides inference about θ that takes full account of model uncertainty. As an

alternative measure of significance we can also compute the posterior inclusion probability (PIP) for a given

explanatory variable (spatial weight matrix). The posterior inclusion probability is calculated as the sum of

the posterior model probabilities for all models including that variable (spatial weight matrix).

While Bayesian model averaging is an intuitively attractive solution to the problem of accounting for

model uncertainty, its implementation in the context of our study is difficult because of two reasons. First,

the number of terms in Eq. (6) is enormous, rendering exhaustive summation infeasible. Second, the

integrals implicit in Eq. (6) are hard to compute. To tackle the first problem, Markov chain Monte Carlo

model composition (MC3) methods (Madigan and York 1995) can be used to directly approximate Eq. (6).

This approach eliminates the need to consider all possible models by constructing a sampler that explores

relevant parts of the very large model space.5

Let M denote the current model state of the chain, models are proposed using a neighborhood, say

nbd(M), which consists of the model M itself along with models containing either one explanatory variable

more or one variable less than M . We extend the notion of model neighborhood to include models that not

only involve different matrices of explanatory variables but also different spatial weight matrices. Similarity

between spatial weight matrices, say WM and WM ′ , is measured in terms of a concordance index G of
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matrix similarity that consists of the cross-products of the matching elements in the two spatial weight

matrices6 such that:

G(WM ,WM ′) ≡
N
∑

i=1

N
∑

j=1

[WM ]ij [WM ′ ]ij . (7)

The proposed model M ′ is compared to the current model state using the following acceptance probability:

min

[

1,
p(M ′|D)

p(M |D)

]

. (8)

Given J distinct (contiguity-based, k-nearest neighbor and distance-based) spatial weight matrices, we get a

J×J matrix G representing the pair-wise similiarities between any two weight matrices. Row-normalization

(i. e., dividing the elements by the respective row-sums) yields a matrix that describes the transition

probability vector from a particular spatial weight matrix to another. It is important to note that conditional

on WM (i. e., the spatial weight matrix in current state M), our MC3 algorithm simultaneously draws a

spatial weight matrix for each recursion.7

The second difficulty in implementing Bayesian model averaging is that the integrals implicit in Eq. (6)

are hard to compute. For matrix exponential spatial growth regression models, closed form integrals for the

marginal likelihood (5) are not available. We therefore use Bayesian information criterion (BIC) weights as

an approximation to f(D|Mij):

f(D|Mij) ≃ f(D|θ̂,Mij)N
−dij/2 (9)

where θ̂ is the maximum likelihood estimate of the parameter vector θ in model Mij , and dij denotes

the number of parameters in model Mij . Bayesian information criterion model weights have been widely

discussed in the literature (see Schwarz 1978, Kass and Wasserman 1995, Raftery 1995). When the number

of observations becomes large or rather non-informative priors are used, we may furthermore assume that

the expectation of the posterior distribution equals the maximum likelihood estimates. There exist several

approaches which make use of BIC as a means to approximate posterior model probabilities in the empirical

growth literature. For example, Sala-i-Martin et al. (2004) advocate frequentist ordinary least squares

estimates along with BIC model weights. This approach became known as Bayesian model averaging of

classical estimates (BACE). A generalization to maximum likelihood estimates is provided by Moral-Benito

(2012). The use of information-theoretic quantities to calculate model weights is moreover extensively used in

the frequentist model averaging literature. Frequentist model averging techniques are thoroughly described

in Burnham and Anderson (2004), and Claeskens and Hjort (2008).

Model priors π(Mij) are the only quantities which remain to be chosen. Many studies use a uniform

model prior structure by assigning equal probability to the models prior seeing the data D. However, a

uniform prior structure would implicitly impose a mean prior model size of Q, since the majority of models

in M are of such intermediate size. Therefore, several alternatives to a uniform model prior have been
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proposed in the literature. For example, Ley and Steel (2009) propose the use of binomial-beta priors which

uses a hyperprior on the inclusion of each regressor:

π(Mij) ∝ Γ(1 + ϕij)Γ(1 + 2Q− ϕij) (10)

where Γ(·) and ϕij denote the gamma function and the number of non-constant covariates in model Mij ,

respectively. Unlike a uniform model prior, which attaches uniform prior mass to the respective models, the

prior given in Eq. (10) is uniform over prior expected model size.

Monte Carlo experiments

Before turning to an illustrative example, we present the results of Monte Carlo experiments to investigate the

performance of the approach outlined above in comparison to two alternative approaches, namely Bayesian

model averaging of spatial Durbin models put forward by LeSage and Fischer (2008), and Bayesian model

averaging of spatial Durbin matrix exponential model specifications as proposed by LeSage and Pace (2007).

The latter approaches involve the computation of Bayesian marginal likelihoods which do not have closed

form solutions. The evaluation of the marginal posteriors for ρ and α requires numerical integration over a

fine grid of the respective parameter space.

For Bayesian model averaging of conventional spatial Durbin models we define the prior for ρ to follow

a uniform distribution π(ρ) ∼ U(−1, 1). To increase computational speed we used the log-determinant

approximation proposed by Pace and Barry (1998). For its MESS counterpart we used a normal distribution

with zero mean and a standard deviation of ten as a prior specification for α. In this setting we use

numerical integration over the interval α ∈ [−3, 3]. Note that both prior specifications are rather diffuse.

On the slope parameters we use the well-known Bayesian risk inflation criterion (BRIC) specification for

the g-prior as proposed by Fernández et al. (2001a). For the parameters which are common to all models

(i. e., the parameter on the constant term β0 and σ2) non-informative priors are used (see Fernández

et al. 2001b, Koop 2003).

We conduct Monte Carlo experiments by drawing five potential independent variables

X =
[

x1 x2 · · · x5

]

using N = 273 draws from a standard normal distribution for each covariate, so

as to match the sample size of our empirical application in the next section. The experiment examined nine

cases that vary by the degree of spatial autocorrelation in the dependent variable as well as the signal-to-

noise ratio. We consider three cases of the degree of spatial autocorrelation, namely α = −0.10 (ρ ≈ 0.1),

α = −1.00 (ρ ≈ 0.63), and α = −2.00 (ρ ≈ 0.86). Data on the dependent variable are generated according

to:8

y = exp(1W )(1ιN + 1.5x1 + 2x2 − 0.5x3 + 3Wx2 − 2Wx3 − 0.5Wx4 + 0.25ε) (11)

where ε is normally distributed with mean zero and variance σ2. σ2 was set to a level that assured that
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the signal-to-noise ratio (SNR) equaled 0.1, 0.5, or 0.9. The N × N spatial weight matrix is treated as

fixed using a seven nearest neighbor specification based on standard uniform draws of longitude and latitude

values. The set of potential (non-constant) regressors is given by
[

X WX

]

, which yields a cardinality of

the model space of 210.

The data generating process in Eq. (11) is chosen such that one variable (x1) enters the equation without

its spatial lag, two variables (x2 and x3) exert both lagged and non-lagged effects, one variable (x4) involves

only its spatial lag and one variable (x5) neither enters in its original nor in its spatially lagged form.

[Table 1 about here]

All computations were carried out on a computer with a 3.33 GHz processor using Windows 7 and

MATLAB version 8.1.0.604 (R2013a). The BMA approaches under consideration were carried out to produce

250 draws with the first 50 discarded to allow the MC3 algorithm to converge to a steady state. The

estimation results are reported in Table 1. They relate to averages over 1, 000 simulated runs. True values

used to generate the data are reported in the first column. The table reports the simulation results of

the three approaches under consideration in the columns that follow: first, the BMA approach based on

BIC weights and spatial Durbin matrix exponential model (SDMEM) specifications, then BMA based on

Bayesian posterior model probabilities (PMP) and spatial Durbin matrix exponential model specifications,

and finally BMA based on PMP and conventional spatial Durbin model (SDM) specifications.

For each approach the table reports the posterior means of the respective parameters along with aver-

aged timing results and the Bayesian information criterion (as a measure of the in-sample fit). In all cases

using different values of SNR and α, the results indicate that the approach using BIC and maximum likeli-

hood estimates of MESS outperforms both SDM and SDMEM specifications using Bayesian posteriors and

marginal likelihoods, in terms of in-sample performance as well as computational efficiency. Not surpisingly,

the conventional SDM specification yields the largest BIC. Overall, Table 1 reveals that the best in-sample

fits can be achieved for moderate degrees of spatial autocorrelation (α = −1).

The posterior mean estimates for all parameters are very close to their true values. Specifically, the

estimated parameters in the SDMEM approaches are most similar to the true values. Albeit misspecified,

conventional spatial Durbin model specifications also yield results very close to the true data generating

process, which is largely owing to the close relationship of MESS and conventional specifications of global

spillovers (see LeSage and Pace 2007). Comparing the average posterior means of SDMEM using BIC and

Bayesian posterior model probabilities shows that for large signal-to-noise ratios the BIC approach tends

to be closer to the true parameter values compared to the approach using Bayesian marginal likelihoods.

This may be due to the fact that the Bayesian framework additionally involves the use of prior information,

whereas the BIC approach relies only on information from the sampled data.

The results reported in Table 1 demonstrate that spatial Durbin matrix exponential models replicate
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conventional spatial Durbin models. They also indicate that our approach is computationally faster than

the other existing approaches. We see a speed improvement in computation times that is attributable to the

fact that the approach strictly relies on closed form solutions and avoids the calculation of log-determinants

as a consequence of the theoretical properties of MESS models. In summary, the results indicate that our

approach using BIC weights and maximum likelihood estimates of SDMEM outperforms both other BMA

approaches in terms of in-sample performance and computational efficiency.

An applied illustration

This section serves to illustrate the working of the model averaging approach on a matrix exponential spatial

specification of the spatial Durbin growth regression for both identifying model covariates and unveiling

spatial structures in pan-European growth data.

The sample data

Our sample is a cross-section of 273 European regions representing 28 European countries9 over the 2000-2010

period. The units of observation are the NUTS-2 regions (NUTS revision 2010).10 These regions, though

varying in size, are generally considered to be appropriate spatial units for modeling and analysis purposes.

In most cases, they are sufficiently small to capture subnational variations. But we are aware that NUTS-2

regions are formal rather than functional regions, and their delineation does not represent the boundaries of

regional growth processes very well. The sample regions include regions located in Austria (nine regions),

Belgium (11 regions), Bulgaria (six regions), Czech Republic (eight regions), Denmark (five regions), Estonia

(one region), Finland (five regions), France (22 regions), Germany (38 regions), Greece (13 regions), Hungary

(seven regions), Italy (21 regions), Latvia (one region), Lithuania (one region), Luxembourg (one region),

Netherlands (12 regions), Norway (seven regions), Poland (16 regions), Portugal (five regions), Republic of

Ireland (two regions), Romania (eight regions), Slovakia (four regions), Slovenia (two regions), Spain (16

regions), Sweden (eight regions), Switzerland (seven regions) and the United Kingdom (37 regions). A map

of the regions used is depicted in Figure 1.

[Figure 1 about here]

We use gross-value added (gva), rather than gross regional product at market prices as a proxy for regional

income. The proxy is measured in accordance with the European System of Accounts (ESA) 1995. The

data for the European regions come from the Cambridge Econometrics database. The dependent variable

represents average per capita growth rates over the period 2001-2010.

[Table 2 about here]
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We consider a set of Q = 32 candidate explanatory variables as well as their spatially lagged forms. To avoid

potential endogeneity problems all the variables are measured at the beginning of the sample period (that

is, 2000). The variable names and the data sources are depicted in Table 2. A very popular variable in the

regional growth regression literature is the initial level of income. Most studies include this variable and find

it to be significant. Proxies for human capital are also widely considered as a key determinant of economic

growth. We measure human capital by the skills of the workforce as given by the level of educational

attainment of the population, and distinguish between lower and higher educated workers, where high and

low education levels are defined by the ISCED (international standard classification of education) levels 1-2

and 5-6, respectively. We also included physical capital stocks constructed using the perpetual inventory

method using a depreciation rate of ten per cent and investment data for the years 1990-2000.

There is substantial empirical evidence supporting the role of high-technology firms in technological

change and economic growth. Despite the inherent difficulties in measuring the effects of technological

progress on economic growth we rely on two candidate variables that capture different aspects of the process

of innovation and technological change at the regional level. We consider the ratio of the number of high-

technology patent applications at the European Patent Office (EPO) to gross-value added per capita as a

proxy for the output of high-technology invention activities in each region. Another candidate variable, the

share of human resources employed in science and technology, represents a technology input measure. To ac-

count for the industrial mix, we also consider the shares of employment in agriculture, mining-manufacturing-

energy, construction, and market services. Harris (1954), and LeSage and Fischer (2008) argue that market

access is also important for regional income. We therefore include an index of market potential that measures

the export demand each region faces given its spatial location and that of its trading partners.

Theoretical as well as empirical studies show that the age-structure of the population might exert a

decisive effect on economic growth (see Azomahou and Mishra 2008, Boucekkine et al. 2002). We rely on

two measures to proxy the demographic structure of the regions. First, the child-dependency ratio of a

region which is defined as the number of people aged 0-14 as a ratio to the number of people aged 15-64.

Second, the old-age dependency ratio of a region which is given by the ratio between the number of people

aged 65 and over and the number of people aged 15-64. Both variables capture the burden of the economic

productive part of the population to maintain the economically dependent.

Moreover, we follow Fingleton (2001) and consider population density, employment density and output

density as candidate explanatory variables to control for urban agglomerations. Urban agglomerations are

typically equipped with larger human capital stocks as a repository of knowledge, which facilitates innovation

creation and adoption and thus accelerates technological progress and economic growth. Finally, we also

include candidate explanatory variables in the regressions with the purpose of accounting for likely differences

in the access to sea, roads, air and rail transport, and a series of dummy variables suggested by Crespo

Cuaresma et al. (2014), and Crespo Cuaresma and Feldkircher (2013).
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Alternative spatial weights

In order to illustrate the ability of our approach to both identify model covariates and unveil spatial struc-

tures present in the data, we restrict our space of potential (row-normalized) spatial weight matrices to three

different classes: (binary) Queen contiguity-based matrices, (binary) k-nearest neighbor matrices and (bi-

nary) distance-based matrices. Queen contiguity-based matrices consider regions as neighbors if they share

a common border (including cases where the common border is just a vertex). We will consider first-order

and second-order contiguity definitions for neighbors in this class. k-nearest neighbor matrices constrain

the neighbor structure to the k-nearest neighbors and thereby precluding islands and forcing each region

to have the same number of neighbors. For this class of weighting matrices, we consider k = 5, . . . , 14.

Finally, distance-based matrices are based on a distance criterion, such that two regions i and j are defined

as neighbors when the distance between them is less than a given critical value d. Critical distance is defined

here by the first and second quintile of the entire distribution, respectively.

k-nearest neighbor and distance-based spatial weight matrices are used with three alternative distance

metrics that reflect different aspects of spatial connectivity: (i) geodesic distances, (ii) road travel time

distances for cars, and (iii) drive time distances for heavy goods vehicles. LeSage and Fischer (2008) argue

that drive time measures of distance reflect economic distance which may introduce important aspects to

connectivity. The structure of the road networks, presence of mountains, rivers, landlocked areas, national

car and lorry speed limit, as well as statutory rest periods for drivers may lead to considerable differences

between geodesic and drive time distances. The travel time spatial weight matrices are based on information

on road infrastructure from the European transport network database of the Institute of Spatial Planning

in Dortmund (IRPUD) based on reference year 2005.

A comparison of alternative spatial weight matrices

An important point to note about spatial model comparison is that the performance will depend on the

strength of the spatial dependence in the sample data. LeSage and Pace (2009) illustrate this for spatial

weight matrix comparisons in the case of conventional SAR models using data generated experiments. They

show that values for the spatial dependence parameter close to zero make it difficult to distinguish between

alternative spatial weight matrices. Since the spatial dependence in our growth model is moderately strong,

with ρ ≈ 0.64, this should not present a problem here.

[Table 3 about here]

Posterior probabilities of inclusion for the 38 spatial weight matrices are shown in Table 3. We see support

for a spatial weight matrix based on 10 (probability of inclusion: 0.396) and 11 nearest neighbors (proba-

bility of inclusion: 0.237) where distance is measured in terms of lorry travel times or geodesic distances,
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respectively. Since the average number of first-order contiguous neighbors for the European regions in our

sample is near five, and the average number of second-order contiguous neighbors is 13, this suggests a

spatial connectivity structure that extends beyond first-order contiguous regions, but not to all second-order

contiguous neighbors.

High probability matrix exponential spatial growth regression models

Running the MC3 sampler for 30 million draws and discarding the first 5 million iterations produced 114,864

unique models. Note that there are 264 ≈ 1.84 1019 possible models based on alternative ways to combine

the 32 candidate explantory variables and their spatial lags, and for each of these another 38 possible spatial

weight matrices that can be used with each of these models. As a test for convergence of the MC3 procedure,

we produced several runs of the sampler using different starting models which resulted in correlations between

posterior model probabilities above 0.99. In all cases, the results are nearly identical, suggesting that the

MC3 procedure is converging sufficiently.11

[Table 4 about here]

Table 4 shows the variables appearing in the ten highest posterior probability models, along with the model

probabilities. The posterior probabilities for these models are (0.0994, 0.0524, 0.0448, 0.0349, 0.0255, 0.0229,

0.0130, 0.0121, 0.0107, 0.0104) accounting for 33.9 percent of the posterior probability mass. Variables that

appear in the respective models are designated with a ’1’, and those that do not appear with a ’0’. The bottom

rows of the table show the number of variables included, the particular spatial weight matrix employed, and

the posterior model probability. Fernández et al. (2001b) provide details on calculations of posterior inclusion

probabilities of individual variables. We find that two of the 32 variables (initial income and lower education

workers) appear in all ten highest probability models, and two variables (capital city regions and Objective

1 regions) appear in one model and not in others. Another 27 of the 32 variables do not appear in one of

the top ten models.

Model averaged parameter and impact estimates

Table 5 depicts the posterior inclusion probabilities and model-averaged parameter estimates of the variables

and their spatial lags. In addition to posterior standard deviations, Table 5 also reports conditional sign cer-

tainty probabilities as another measure of the significance of variables and their spatial lags (see Sala-i-Martin

et al. 2004). Conditional sign certainty probabilities are calculated from the marginal posterior distribution

which only consists of models where the respective variable or its spatial lag is included. Conditional on the

inclusion of a variable or its spatial lag this metric measures the probability that a coefficient has the same

sign as its posterior mean.

[Table 5 about here]
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The posterior mean (i. e., the model averaged estimate) of the spatial autocorrelation parameter ρ (ρ ≈

1− exp(α)) amounts to 0.64. With a corresponding posterior standard deviation of 0.11, α is estimated very

precisely. The high magnitude of the estimated spatial autocorrelation parameter stresses the importance

of accounting for spatial dependence in the observations, since it is well-known that an erroneously omitted

spatial lag in the dependent variable results in biased and inconsistent parameter estimates (LeSage and

Pace 2009).

With posterior inclusion probabilities close to unity, we identify the variable lower education attainment

and its spatial lag as well as the variable initial income as the most important growth determinants. The

posterior mean of initial income has a negative sign with a sign certainty probability of unity. Our results

thus suggest that poorer regions grow, on average, faster than richer regions – after controlling for other

factors – highlighting income convergence among the regions in the sample. Interestingly, Table 5 reveals a

positive posterior mean of the spatial lag of initial income giving rise to positive growth spillovers emanating

from the intital income of neighboring regions. Regions thus may benefit from being close to rich neighbors.

But the spatial lag of initial income receives with a probability of inclusion of 64 percent only moderate

posterior support. The negative conditional income convergence effect appears to outweight positive growth

spillovers from neighboring regions.

Both lower educational attainment measured in terms of primary and lower secondary education repre-

senting the highest degree obtained by population aged 25 and over, and its spatial lag exhibit a posterior

probability of inclusion of unity. As expected, the variable lower education workers has a negative posterior

mean. However, our results also suggest a positive posterior mean of its spatial lag. While a poorly educated

labor force hampers income growth in the same region, our results also reveal positive effects on income

growth rates to neighboring regions. Assuming that an increase in the lower educated labor force is mainly

caused by migration of workers between regions, the negative correlation between lower educated workers

and income growth results in positive spillover effects (see Olejnik 2008).

[Table 6 about here]

In Table 6 we report model averaged direct and indirect impact estimates based on the 114,864 models found

by the MC3 algorithm. From the estimates we see that the impact estimates of 30 from the 32 variables

fell within two standard deviations of zero. This leaves us with two variables from the set of candidate

explanatory variables that exerted significant total impact on growth with probabilities of inclusion above

99 percent. These variables were initial income and educational attainment measured by primary and lower

secondary education representing the highest degree obtained by population aged 25 and over. Initial income

was found to exert both a negative direct and total impact on growth. The respective spatial spillover effect,

however, was estimated very imprecisely. The educational attainment variable had a negative direct, but

positive indirect impact, which implies that a region, on average, benefits from a marginal increase in the
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share of low-educated in working age population in all other regions. Both estimates were found to be highly

significant.

In concluding we note that our approach allowed us to provide estimates and inference, which variables

from a set of 32 candidate explanatory variables exerted a significant impact on economic growth rates. Only

two of these variables (initial income and lower education) were found to exhibit a posterior probability of

inclusion close to unity. Both initial income and lower education exert a negative influence. But it is worth

noting that the direct impact of the latter variable is −0.058 and the spillover impact 0.020 revealing the

total negative influence. Moreover, we see support for spatial weight matrices based on 10 and 11 nearest

neighbors where distance is measured in terms of lorry travel times and geodesic distances, respectively.

Closing remarks

This paper represents a formal Bayesian solution to the problem of uncertainty regarding the most important

aspects of model specification that arise in applied practice. The problem of model uncertainty can arise from

several sources. First, the selection of appropriate variables is a difficult issue in growth empirics and involves

a trade-off between the arbitrary selection of a small number of variables, which may imply some omitted

variables bias, and the introduction of a larger set of variables with a number of econometric problems such

as endogeneity or multicollinearity. A second source of model uncertainty arises in a spatial setting. One

also has to specify the spatial weight matrix that defines connectivity between regions. LeSage and Fischer

(2008) focus on k-nearest spatial weight matrices and accomplish this by extending the MC3 approach of

LeSage and Parent (2007) that is used to increase or decrease the number of nearest neighbors in the spatial

weight matrix. From a technical point of view, this approach uses numerical integration techniques to obtain

posterior model probabilities for model specifications based on spatial weight matrices with differing numbers

of nearest neighbors, and is thus not feasible for models based on other classes of spatial weight matrices.

Moreover, the computional costs make it impractical for larger sets of covariates.

The model averaging approach introduced in this paper overcomes these shortcomings. This is accom-

plished by using first BIC as a means to approximate marginal likelihoods, second using spatial Durbin

matrix exponential model specifications to produce a closed-form solution for maximum likelihood estima-

tion, and third by extending the notion of model neighborhood to include models that not only involve

different matrices of explanatory variables but also different spatial weight matrices.

Monte Carlo experiments demonstrated that our approach is computationally faster than other existing

approaches. The improvement in computation times is attributable to the fact that the approach strictly

relies on closed form solutions and avoids the calculation of log-determinants as a consequence of the the-

oretical properties of MESS models. Moreover, it is worth mentioning that the simulations demonstrated

that spatial Durbin matrix exponential models can produce estimates and inferences similar to those from

16



conventional SDM models.

Notes

1 An alternative way (the so-called Bayesian averaging of classical estimates (BACE) approach) of dealing with the issue of

variable selection in non-spatial least squares regressions is proposed in Sala-i-Martin et al. (2004). This approach is not

totally Bayesian, as it is not formally derived from a prior likelihood specification, but relies on an approximation as sample

size goes to infinity.

2 Other papers using BMA in the context of conventional least squares growth regressions are Masanjala and Papageorgiou

(2008), León-González and Montolio (2004), among others.

3 Note that LeSage and Fischer (2012) extended to include not only spatial, but also technological dependencies.

4 For an introduction to Bayesian model averaging, see, for example, Koop (2003).

5 For more details on MC3 sampling see Madigan and York (1995), Koop (2003) and Fernández et al. (2001b). Note that the

sampler is only a tool to deal with the practical impossibility of exhaustive analysis of M, by only visiting the models which

have non-negligible posterior support.

6 Note that the G index has been applied to spatial autocorrelation by Hubert et al. (1985) and Anselin (1995), among others.

7 The validity of the concordance approach relies on the assumptions that the spatial weight matrices are row-stochastic and

that the main diagonal element in each row of the resulting transition probability matrix is larger than any off-diagonal

element in the same row.

8 MATLAB functions for the comparison of the three approaches are available upon request.

9 EU-27 member states plus Norway and Switzerland minus Cyprus.

10 We exlude the Spanish North African territories of Ceuta and Melilla, the Canary Islands, the Portuguese non-continental

territories Açores and Madeira, the French Départements d’Outre Mer Guadeloupe, Martinique, Guyane and Réunion.

Moreover, because of data availability problems we use the NUTS revision of 2006 rather than 2010 for the Finnish regions

Âland, Etelä-Suomi, Itä-Suomi, Länsi-Suomi and Pohjois-Suomi.

11 For alternative convergence diagnostics, see Fernández et al. (2001a).
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Table 1 Results of the Monte Carlo experiments, averaged over 1, 000 simulation runs

α = −0.10 α = −1.00 α = −2.00

BIC Weights PMP Weights BIC Weights PMP Weights BIC Weights PMP Weights
SNR Variables/ True SDMEM SDMEM SDM SDMEM SDMEM SDM SDMEM SDMEM SDM

BIC Mean Mean Mean Mean Mean Mean Mean Mean Mean

x1 1.50 1.48 1.50 1.50 1.49 1.49 1.45 1.51 1.51 1.45
x2 2.00 1.98 2.01 2.01 2.00 2.00 1.99 2.03 2.02 2.18
x3 -0.50 -0.43 -0.37 -0.37 -0.49 -0.48 -0.51 -0.49 -0.49 -0.65
x4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01
x5 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.10 Wx1 0.00 0.04 0.02 0.03 0.02 0.01 0.10 0.00 0.00 0.98
Wx2 3.00 2.95 2.99 3.05 3.10 3.04 3.41 3.13 3.07 5.18
Wx3 -2.00 -1.93 -1.96 -1.99 -2.05 -2.03 -2.13 -2.05 -2.03 -2.81
Wx4 -0.50 -0.33 -0.14 -0.15 -0.19 -0.19 -0.21 -0.32 -0.30 -0.44
Wx5 0.00 -0.15 -0.01 -0.01 0.03 0.03 0.03 0.02 0.02 0.01
α̂, ρ̂ -0.09 -0.10 0.08 -0.97 -0.98 0.63 -1.97 -1.99 0.85
BIC 584.14 598.04 598.21 548.97 549.07 551.13 798.81 799.15 867.36

x1 1.50 1.48 1.48 1.48 1.49 1.49 1.45 1.51 1.51 1.45
x2 2.00 2.01 2.00 2.01 2.00 1.99 2.00 2.02 2.01 2.20
x3 -0.50 -0.50 -0.50 -0.51 -0.50 -0.50 -0.53 -0.50 -0.50 -0.66
x4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02
x5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01

0.50 Wx1 0.00 0.00 0.00 0.00 0.01 0.00 0.13 0.02 0.01 1.18
Wx2 3.00 3.17 3.11 3.16 3.06 2.99 3.46 3.12 3.05 5.38
Wx3 -2.00 -2.02 -2.00 -2.02 -2.05 -2.02 -2.15 -2.11 -2.08 -2.94
Wx4 -0.50 -0.19 -0.19 -0.20 -0.23 -0.23 -0.26 -0.26 -0.25 -0.44
Wx5 0.00 -0.01 -0.01 -0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.03
α̂, ρ̂ -0.07 -0.09 0.07 -0.99 -1.01 0.64 -1.98 -2.00 0.84
BIC 435.70 435.84 435.95 395.95 396.23 402.38 639.56 639.99 719.14

x1 1.50 1.50 1.50 1.49 1.49 1.49 1.45 1.50 1.50 1.47
x2 2.00 2.00 1.99 2.00 2.00 1.99 2.02 2.00 1.99 2.24
x3 -0.50 -0.51 -0.50 -0.50 -0.50 -0.50 -0.54 -0.51 -0.50 -0.68
x4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.03
x5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.90 Wx1 0.00 0.02 0.00 0.01 0.00 -0.02 0.27 0.01 -0.02 1.32
Wx2 3.00 3.03 2.95 2.99 3.03 2.95 3.59 3.04 2.94 5.68
Wx3 -2.00 -2.02 -1.99 -2.00 -2.01 -1.98 -2.20 -2.01 -1.97 -3.07
Wx4 -0.50 -0.43 -0.42 -0.43 -0.50 -0.49 -0.51 -0.50 -0.49 -0.64
Wx5 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.02
α̂, ρ̂ -0.09 -0.12 0.10 -0.99 -1.02 0.61 -1.99 -2.02 0.82
BIC -6.48 -6.33 -6.21 -42.17 -41.85 -25.48 201.61 202.39 385.39

Time [sec.] 0.64 96.57 87.84 0.64 95.48 87.59 0.63 96.29 87.52

SNR stands for the signal-to-noise ratio, SDMEM for the spatial Durbin matrix exponential model, and SDM for the spatial Durbin model. BIC refers to the Bayesian
information criterion, and PMP to posterior model probabilities.
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Table 2 The variables used in the analysis

Variable Description

Initial income Gross-value added divided by population, 2000. Source: Cambridge Econometrics
Physical capital Gross fixed capital formation, 2000. Source: Cambridge Econometrics
Higher education workers
(share)

Share of population (aged 25 and over, 2000) with higher education (ISCED levels 1-2).
Source: Eurostat

Lower education workers
(share)

Share of population (aged 25 and over, 2000) with lower education (ISCED levels 5-6).
Source: Eurostat

High-technology invention
activities

Measured in terms of the ratio of the number of high-technology EPO (European Patent
Office) patent-applications to gross-value added per capita, 2000. High-technology is
defined to include the ISIC sectors of aerospace (ISIC 3845), electronics and
telecommunication (ISIC 3832), computers and office equipment (ISIC 3825), and
pharmaceuticals (ISIC 3522). Source: European Patent Office

Technology resources Human resources in science and technology, share in persons employed, 2000. Source:
Eurostat

Agricultural employment Share of NACE A and B (agriculture) in total employment, 2000. Source: Cambridge
Econometrics

Manufacturing employment Share of NACE C to E (mining, manufacturing and energy) in total employment, 2000.
Source: Cambridge Econometrics

Construction employment Share of NACE F (construction) in total employment, 2000. Source: Cambridge
Econometrics

Market services employment Share of NACE G to K (market services) in total employment, 2000. Source: Cambridge
Econometrics

Market potential For a region defined in terms where the size of the regional economy is proxied by
gross-value added, and the distance is the interregional great circle distance. Source:
gross-value added data from Cambridge Econometrics

Output density Gross-value added per square km, 2000. Source: Eurostat
Employment density Employed persons per square km, 2000. Source: Eurostat
Population density Population per square km, 2000. Source: Eurostat
Population growth Average growth rate of the population for 1996-2000. Source: Eurostat
Unemployment rate Average unemployment rate for 1996-2000. Unemployment rate is defined as the share of

unemployed persons of the economically active population Source: Eurostat
Labor force participation
rate

Employed and unemployed persons as a share of total population, 2000. Source: Eurostat

Child dependency ratio The ratio of the number of people aged 0-14 to the number of people aged 15-64, 2000.
Source: Eurostat

Old-age dependency ratio The ratio of the number of people aged 65 and over to the number of people aged 15-64,
2000. Source: Eurostat

Peripheriality Measured in terms of distance to Brussels
Accessibility road Potential accessibility road, ESPON space=100. Source: ESPON
Accessibility rail Potential accessibility rail, ESPON space=100. Source: ESPON
Region with a seaport Dummy variable, 1 denotes region with seaport, 0 otherwise. Source: ESPON
Region with an airport Dummy variable, 1 denotes region with airport, 0 otherwise. Source: ESPON
Coastal region Dummy variable, 1 denotes region with coast, 0 otherwise. Source: ESPON
Capital city region Dummy variable, 1 denotes region with capital city, 0 otherwise. Source: ESPON
Region with a large city Dummy variable, 1 denotes region with a city larger than 300, 000 inhabitants, 0

otherwise. Source: ESPON
Rural region Dummy variable, 1 denotes region with a population density lower than 100 and without

a city larger than 125, 000 inhabitants, 0 otherwise. Source: ESPON
Objective 1 region Dummy variable, 1 denotes region eligible under Objective 1 for 2000-2006, 0 otherwise.

Source: ESPON
Border region Dummy variable, 1 denotes region with country borders, 0 otherwise. Source: ESPON
EU-15 region Dummy variable, 1 denotes region belonging to the 15 pre-2004 EU member states, 0

otherwise
Pentagon region Dummy variable, 1 denotes region belonging to the Pentagon shaped by London, Paris,

Munich, Milan and Hamburg, 0 otherwise. Source: ESPON
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Table 3 Comparison of alternative spatial weight matrices

Spatial weight matrix Probability of inclusion
First-order contiguity 0.0000
Second-order contiguity 0.0000
Geodesic 5-nearest neighbors 0.0000
Geodesic 6-nearest neighbors 0.0000
Geodesic 7-nearest neighbors 0.0002
Geodesic 8-nearest neighbors 0.0005
Geodesic 9-nearest neighbors 0.0053
Geodesic 10-nearest neighbors 0.0087
Geodesic 11-nearest neighbors 0.2371
Geodesic 12-nearest neighbors 0.0218
Geodesic 13-nearest neighbors 0.0240
Geodesic 14-nearest neighbors 0.0166
Car travel time 5-nearest neighbors 0.0000
Car travel time 6-nearest neighbors 0.0000
Car travel time 7-nearest neighbors 0.0000
Car travel time 8-nearest neighbors 0.0000
Car travel time 9-nearest neighbors 0.0112
Car travel time 10-nearest neighbors 0.0050
Car travel time 11-nearest neighbors 0.0106
Car travel time 12-nearest neighbors 0.0009
Car travel time 13-nearest neighbors 0.0032
Car travel time 14-nearest neighbors 0.0042
Lorry travel time 5-nearest neighbors 0.0000
Lorry travel time 6-nearest neighbors 0.0000
Lorry travel time 7-nearest neighbors 0.0000
Lorry travel time 8-nearest neighbors 0.0009
Lorry travel time 9-nearest neighbors 0.0306
Lorry travel time 10-nearest neighbors 0.3963
Lorry travel time 11-nearest neighbors 0.0285
Lorry travel time 12-nearest neighbors 0.0525
Lorry travel time 13-nearest neighbors 0.0427
Lorry travel time 14-nearest neighbors 0.0987
Geodesic distance-based, first quintile 0.0000
Geodesic distance-based, second quintile 0.0000
Car travel time-based, first quintile 0.0000
Car distance-based, second quintile 0.0000
Lorry travel time-based, first quintile 0.0004
Lorry travel time-based, second quintile 0.0000
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Table 4 High probability models

Variable name Model 10 Model 9 Model 8 Model 7 Model 6 Model 5 Model 4 Model 3 Model 2 Model 1

Initial income 1 1 1 1 1 1 1 1 1 1

Physical capital 0 0 0 0 0 0 0 0 0 0

Higher education workers 0 0 0 0 0 0 0 0 0 0

Lower education workers 1 1 1 1 1 1 1 1 1 1

High-technology invention activities 0 0 0 0 0 0 0 0 0 0

Technology resources 0 0 0 0 0 0 0 0 0 0

Agricultural employment 0 0 0 0 0 0 0 0 0 0

Manufacturing employment 0 0 0 0 0 0 0 0 0 0

Construction employment 0 0 0 0 0 0 0 0 0 0

Market services employment 0 0 0 0 0 0 0 0 0 0

Market potential 0 0 0 0 0 0 0 0 0 0

Output density 0 0 0 0 0 0 0 0 0 0

Employment density 0 0 0 0 0 0 0 0 0 0

Population density 0 0 0 0 0 0 0 0 0 0

Population growth 0 0 0 0 0 0 0 0 0 0

Unemployment rate 0 0 0 0 0 0 0 0 0 0

Labor force participation rate 0 0 0 0 0 0 0 0 0 0

Child dependency ratio 0 0 0 0 0 0 0 0 0 0

Old-age dependency ratio 1 0 1 0 0 1 1 0 0 0

Peripheriality 0 0 0 0 0 0 0 0 0 0

Accessibility road 0 0 0 0 0 0 0 0 0 0

Accessibility rail 0 0 0 0 0 0 0 0 0 0

Region with a seaport 0 0 0 0 0 0 0 0 0 0

Region with an airport 0 0 0 0 0 0 0 0 0 0

Coastal region 0 0 0 0 0 0 0 0 0 0

Capital city region 0 1 0 0 0 0 0 0 0 0

Region with a large city 0 0 0 0 0 0 0 0 0 0

Rural region 0 0 0 0 0 0 0 0 0 0

Objective 1 region 1 0 0 0 0 0 0 0 0 0

Border region 0 0 0 0 0 0 0 0 0 0

EU-15 region 0 0 0 0 0 0 0 0 0 0

Pentagon region 0 0 0 0 0 0 0 0 0 0

Number of variables 4 3 3 2 2 3 3 2 2 2

Spatial weight matrix W
12 nearest

lorry

10 nearest

lorry

14 nearest

lorry

11 nearest

geodesic

14 nearest

lorry

10 nearest

lorry

11 nearest

geodesic

10 nearest

lorry

11 nearest

geodesic

10 nearest

lorry

Posterior model probability 0.0104 0.0107 0.0121 0.0130 0.0229 0.0255 0.0349 0.0448 0.0524 0.0994
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Table 5 Model averaged estimates

Variable
Inclusion
prob.

Mean
Standard

dev.
Sign
prob.

α, ρ ≈ 1 − exp(α) -1.0223 0.1084 1.0000
Initial income 0.9877 -0.8239 0.2558 1.0000
Physical capital 0.0273 -0.0034 0.0205 1.0000
Higher education workers 0.0042 0.0000 0.0002 0.8153
Lower education workers 1.0000 -0.0602 0.0037 1.0000
High-technology invention activities 0.0229 -0.2164 1.4103 1.0000
Technology resources 0.0043 0.0000 0.0002 0.6158
Agricultural employment 0.0139 -0.0002 0.0016 0.9989
Manufacturing employment 0.0046 0.0000 0.0004 0.6912
Construction employment 0.0371 0.0019 0.0100 0.9998
Market services employment 0.0152 0.0002 0.0016 0.9998
Market potential 0.0047 -0.0001 0.0020 0.7473
Output density 0.0065 0.0003 0.0054 0.8893
Employment density 0.0100 -0.0006 0.0105 0.9625
Population density 0.0131 -0.0012 0.0132 0.9886
Population growth 0.0054 0.0001 0.0065 0.6517
Unemployment rate 0.0056 0.0000 0.0007 0.9485
Labor force participation rate 0.0080 0.0001 0.0010 0.9871
Child dependency ratio 0.0079 -0.0001 0.0021 0.8130
Old-age dependency ratio 0.3151 -0.0128 0.0188 1.0000
Peripheriality 0.0051 0.0002 0.0035 0.8621
Accessibility road 0.0148 0.0000 0.0002 0.9992
Accessibility rail 0.0107 0.0000 0.0002 0.9908
Region with a seaport 0.0056 0.0005 0.0066 0.9856
Region with an airport 0.0053 -0.0004 0.0055 0.9998
Coastal region 0.0061 0.0006 0.0078 0.9919
Capital city region 0.0881 0.0415 0.1321 1.0000
Region with a large city 0.0051 0.0003 0.0056 0.9482
Rural region 0.0050 0.0004 0.0072 0.9021
Objective 1 region 0.1042 0.0427 0.1258 1.0000
Border region 0.0055 0.0004 0.0062 0.9995
EU-15 region 0.0158 -0.0053 0.0445 1.0000
Pentagon region 0.0094 -0.0015 0.0164 0.9934
W initial income 0.6419 0.4841 0.3735 0.9999
W physical capital 0.0066 0.0002 0.0112 0.4629
W higher education workers 0.0056 0.0000 0.0007 0.9415
W lower education workers 0.9936 0.0464 0.0056 1.0000
W high-technology invention activities 0.0214 -0.4415 3.1287 0.9979
W technology resources 0.0103 0.0001 0.0016 0.9250
W agricultural employment 0.0093 -0.0001 0.0016 0.6054
W manufacturing employment 0.0105 -0.0003 0.0027 0.9829
W construction employment 0.0155 0.0015 0.0152 0.9931
W market services employment 0.0147 0.0002 0.0022 0.9902
W market potential 0.0059 0.0001 0.0055 0.5341
W output density 0.0110 0.0012 0.0144 0.8967
W employment density 0.0054 0.0002 0.0118 0.7117
W population density 0.0051 0.0000 0.0119 0.3665
W population growth 0.0104 0.0037 0.0393 0.9935
W unemployment rate 0.0055 0.0001 0.0014 0.8079
W labor force participation rate 0.0338 0.0011 0.0062 1.0000
W child dependency ratio 0.0118 0.0006 0.0066 0.9877
W old-age dependency ratio 0.0111 -0.0005 0.0052 0.9939
W peripheriality 0.0055 -0.0001 0.0067 0.5047
W accessibility road 0.0100 0.0000 0.0002 0.9750
W accessibility rail 0.0069 0.0000 0.0001 0.8730
W region with a seaport 0.0052 0.0005 0.0094 0.9085
W region with an airport 0.0098 0.0033 0.0360 0.9896
W coastal region 0.0053 0.0006 0.0103 0.9078
W capital city region 0.0048 0.0011 0.0271 0.8008
W region with a large city 0.0284 0.0174 0.1035 1.0000
W rural region 0.0060 0.0012 0.0208 0.9130
W Objective 1 region 0.0150 0.0065 0.0605 0.9112
W border region 0.0047 -0.0003 0.0074 0.7548
W EU-15 region 0.0042 0.0000 0.0002 1.0000
W Pentagon region 0.0108 -0.0023 0.0233 0.9937
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Table 6 Model averaged impact estimates

Variable
Average direct impacts Average indirect impacts Average total impacts

Mean Std. dev. Sign prob. Mean Std. dev. Sign prob. Mean Std. dev. Sign prob.

Initial income -0.8083 0.1631 1.0000 -0.1102 0.4905 0.4954 -0.9185 0.3847 0.9900

Physical capital -0.0036 0.0213 0.9003 -0.0052 0.0503 0.8939 -0.0088 0.0676 0.8944

Higher education workers -0.0000 0.0002 0.2886 0.0001 0.0019 0.7132 0.0001 0.0020 0.7132

Lower education workers -0.0583 0.0029 1.0000 0.0207 0.0085 0.9896 -0.0376 0.0084 1.0000

High-technology invention activities -0.2856 1.5602 0.9981 -1.6439 9.0263 0.9980 -1.9295 9.8028 0.9980

Technology resources 0.0000 0.0003 0.8357 0.0004 0.0044 0.8407 0.0004 0.0046 0.8407

Agricultural employment -0.0002 0.0018 0.8574 -0.0006 0.0057 0.8560 -0.0008 0.0068 0.8561

Manufacturing employment -0.0000 0.0003 0.7061 -0.0006 0.0064 0.7096 -0.0006 0.0066 0.7096

Construction employment 0.0023 0.0109 0.9992 0.0077 0.0421 0.9992 0.0100 0.0483 0.9992

Market services employment 0.0002 0.0016 0.9960 0.0010 0.0063 0.9960 0.0012 0.0073 0.9960

Market potential -0.0001 0.0023 0.5830 0.0001 0.0146 0.4174 0.0001 0.0158 0.4174

Output density 0.0004 0.0045 0.9150 0.0049 0.0469 0.9160 0.0053 0.0495 0.9160

Employment density -0.0006 0.0105 0.7457 -0.0004 0.0408 0.7431 -0.0011 0.0473 0.7434

Population density -0.0013 0.0134 0.8261 -0.0023 0.0431 0.8224 -0.0035 0.0521 0.8238

Population growth 0.0005 0.0080 0.8736 0.0104 0.1028 0.8741 0.0109 0.1077 0.8741

Unemployment rate 0.0001 0.0007 0.8758 0.0003 0.0042 0.8756 0.0004 0.0046 0.8756

Labor force participation rate 0.0002 0.0012 0.9972 0.0034 0.0167 1.0000 0.0036 0.0174 1.0000

Child dependency ratio -0.0001 0.0019 0.3243 0.0013 0.0160 0.6960 0.0013 0.0167 0.6956

Old-age dependency ratio -0.0141 0.0202 1.0000 -0.0254 0.0370 1.0000 -0.0395 0.0561 1.0000

Peripheriality -0.0000 0.0000 0.6319 -0.0000 0.0001 0.6322 -0.0000 0.0001 0.6321

Accessibility road -0.0000 0.0003 0.9928 -0.0001 0.0007 0.9907 -0.0001 0.0009 0.9921

Accessibility rail -0.0000 0.0003 0.9542 -0.0001 0.0006 0.9505 -0.0001 0.0008 0.9526

Region with a seaport 0.0005 0.0067 0.9390 0.0021 0.0258 0.9390 0.0026 0.0299 0.9390

Region with an airport -0.0001 0.0069 0.3575 0.0087 0.1004 0.6458 0.0086 0.1047 0.6458

Coastal region 0.0006 0.0080 0.9470 0.0024 0.0291 0.9470 0.0031 0.0340 0.9470

Capital city region 0.0295 0.1127 0.9888 0.0550 0.2145 0.9882 0.0845 0.3221 0.9885

Region with a large city 0.0019 0.0108 0.9950 0.0405 0.2419 0.9950 0.0424 0.2511 0.9950

Rural region 0.0005 0.0074 0.9109 0.0044 0.0630 0.9109 0.0049 0.0670 0.9109

Objective 1 region 0.0471 0.1310 0.9927 0.0960 0.2763 0.9906 0.1430 0.3887 0.9918

Border region 0.0005 0.0069 0.6733 0.0003 0.0224 0.6720 0.0007 0.0271 0.6720

EU-15 region -0.0039 0.0336 1.0000 -0.0067 0.0600 1.0000 -0.0106 0.0935 1.0000

Pentagon region -0.0020 0.0182 0.9892 -0.0097 0.0742 0.9896 -0.0117 0.0854 0.9896
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Figure 1 Regions in the sample
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