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In this paper, a Poisson gravity model is introduced that incorporates spatial
dependence of the explained variable without relying on restrictive distribu-
tional assumptions of the underlying data generating process. The model
comprises a spatially filtered component — including the origin, destination
and origin-destination specific variables — and a spatial residual variable
that captures origin- and destination-based spatial autocorrelation. We de-
rive a 2-stage nonlinear least squares estimator that is heteroscedasticity-
robust and, thus, controls for the problem of over- or underdispersion that
often is present in the empirical analysis of discrete data or, in the case of
overdispersion, if spatial autocorrelation is present. This estimator can be
shown to have desirable properties for different distributional assumptions,
like the observed flows or (spatially) filtered component being either Pois-
son or Negative Binomial. In our spatial autoregressive model specification,
the resulting parameter estimates can be interpreted as the implied total im-
pact effects defined as the sum of direct and indirect spatial feedback effects.
Monte Carlo results indicate marginal finite sample biases in the mean and
standard deviation of the parameter estimates and convergence to the true
parameter values as the sample size increases. In addition, the paper il-
lustrates the model by analysing patent citation flows data across European
regions.
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Introduction

Gravity models1 — sometimes also called spatial interaction models — represent
a class of models that utilize origin-destination flow data to explain mean frequen-
cies of interactions across space. Origin-destination flow data reflect (aggregate)
interactions from a set of origin locations to a set of destination locations in some
relevant geographic space. Such interactions may represent movements of various
kinds. Examples include migration flows, journey-to-work flows, traffic and com-
modity flows, as well as flows of information such as telephone calls or electronic
messages, and even the transmission of knowledge. Locations may be either area
or point units.

Gravity models typically rely on three types of factors to explain origin-
destination flows: first, origin-specific variables that characterize the ability of
origin locations to generate flows; second, destination-specific variables that repre-
sent the attraction of destination locations; and, third, origin-destination functions
that characterize the way interactions are impeded by separation (distance). In
essence, gravity models assert a multiplicative relationship between mean inter-
action frequencies and the effects of origin, destination, and origin-destination
variables2, respectively (see Fischer and Wang 2011).

The gravity model specification has the advantage of simplicity, but assumes
independence of origin-destination flows. LeSage and Pace (2008) and Fischer
and Griffith (2008) provide theoretical and empirical motivations that this may
not be adequate, because flows might exhibit spatial dependence. In previous
work, different approaches have been taken to account for the violation of the
independence of flows assumption.

A simple way to overcome this weakness is to start with a log-additive version
of the gravity model3 and allow for spatial dependence in the flow variable, as
suggested in LeSage and Pace (2008). The major problem with this approach,
especially when flows are a rare event, is the potential presence of zero flow mag-
nitudes between origin-destination pairs; the so-called zero flows problem. Mathe-
matically, this approach involves taking the logarithm of zero, which is not defined.
In empirical applications, this problem can be avoided by adding an arbitrary con-
stant to the observed zero flows. However, the selected constant might result in a
downward bias in the parameter estimates for the model (see LeSage and Fischer
2010). Nevertheless, the log-additive version of the gravity model is widely used
in practice.

Another way of accounting for spatial dependence is by assuming that the
origin-destination flows are independently distributed Poisson variates, and intro-
ducing two n-by-1 vectors of spatially structured regional effect parameters. These
parameters contain one effect for each region treated as an origin, and another for
each region treated as a destination. These assumptions lead to the Bayesian
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hierarchical4 Poisson model suggested by LeSage et al. (2007).
In contrast, Fischer and Griffith (2008) suggest incorporating spatial depen-

dence in the disturbance process, as in the case of serial correlations in time series
regression models. They apply Griffith’s spatial filtering methodology to deal
with the issue of spatial dependence in Poisson gravity models5. Within this semi-
parametric approach6, synthetic variables are introduced to control for spatial
dependence in the error term, arising from missing origin and destination vari-
ables that are spatially autocorrelated. These surrogate variables are constructed
from the eigenvectors of a modified version of the spatial weight matrix (Griffith
2003).

In this paper, we propose a generalisation of the Poisson gravity model7 as an
alternative approach to account for spatial dependence in flows. Thus, we avoid
the logarithmic transformation of the dependent variable and, hence, the zero flows
problem. Spatial autocorrelation in the dependent flow variable is introduced by
the origin- and destination-based dependencies, as suggested by LeSage and Pace
(2008). Consequently, unlike models that incorporate the spatial dependence in the
error term, our model implies direct, indirect and total effects that are necessary
for a proper model interpretation (as motivated by LeSage and Pace 2009).

A Poisson gravity model

Let us assume a spatial system consisting of n regions, and let y = (y1, . . . , yN)
denote a sample of flows for N = n2 origin-destination pairs of regions. The n-by-n
flow matrix that contains intraregional flows in its main diagonal, and interregional
flows in its off-diagonal elements, is vectorized by stacking the columns to form the
N -by-1 vector of flows contained in y. We use i = 1, . . . , N to index observations,
each of which represents an origin-destination pair.

In a Poisson gravity model, yi is assumed to follow an independently distributed
Poisson process, such that

yi ∼ P(µi) (1)

whose mean parameter µi is given by8

µi = exp(ziβ) = exp

(
K∑

k=1

zi,kβk

)
(2)

where zi = (zi,1, . . . , zi,K) represents vectors of (logged) origin-specific, destination-
specific and origin-destination variables9 associated with the i-th observation, and
β = (β1, . . . , βK)

′ is a K-by-1 (k = 1, . . . , K) parameter vector. The exponential
function appearing in µi is justified by the positivity of µi, because a linear function
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µi = ziβ possibly would imply incompatible constraints on the parameters. The
conditional mean and the conditional variance of yi given zi are equal to µi, and
the density function of yi is

exp(−µi)(µi)
yi

yi!
. (3)

Given independent observations yi, the standard estimator for this Poisson
gravity model is the maximum likelihood estimator (MLE). The log-likelihood
function then takes the following form

L(β) =
N∑

i=1

{yi log(exp(ziβ))− exp(ziβ))− ln(yi!)} , (4)

which has to be optimized numerically.
In the Poisson gravity model, yi has mean µi = exp(ziβ) and variance10 µi.

Because flow data almost always reject the restriction that the variance equals the
mean, Fischer et al. (2006) suggest a heterogeneous Poisson gravity model with
gamma-distributed unobserved individual heterogeneity reflecting the fact that the
true mean is not perfectly observed.

In matrix notation, the Poisson gravity model can be expressed as

y ∼ P(µ) (5)

µ = exp(Zβ) (6)

where Z is a N -by-K matrix of (logged) origin, destination and origin-destination
characteristics and a constant term, with the associatedK-by-1 vector of regression
parameters11 β. Hence, we may write

Zβ = αιN +Xdγd +Xoγo + δD (7)

with

Xd = ιn ⊗X1 and (8)

Xo = X2 ⊗ ιn (9)

where X1 is an n-by-K1 matrix of (logged) destination-specific characteristics, and
X2 is an n-by-K2 matrix of (logged) origin-specific characteristics in the n regions,
ιn is an n-by-1 unity-vector, ⊗ represents the Kronecker product, and γd and
γo are K1-by-1 and K2-by-1 parameter vectors associated with the destination-
specific and origin-specific characteristic of the regions, respectively. The K3-by-1
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parameter vector δ reflects the effect of the N -by-K3 matrix of (logged) spatial
separation variables (D) between each origin-destination pair. The parameter α

denotes the constant parameter12.

The spatial autoregressive Poisson gravity model

In gravity models, the assumption that observations are mutually independent is
a heroic assumption — as LeSage and Pace (2009, p. 212) point out — because
origin-destination flows are fundamentally spatial in nature. Models of the type
given by Eqs. (5) and (6) neglect spatial dependencies in the origin-destination
flows contained in the dependent variable y, hereafter termed spatial autocorre-

lation. Following LeSage and Pace (2008), we define spatial autocorrelation to
mean that observed flows from an origin region r to a destination region j are
either negatively or positively correlated with: (i) flows from regions nearby the
origin r to the destination j, say regions r′ and r′′ that are neighbors to region
r, which they label origin-dependence; and, (ii) flows from origin region r to re-
gions neighboring the destination region j, say regions j′ and j′′, which they label
destination-dependence13.

Introducing spatial autocorrelation in the Poisson gravity

model

In our model, the original variable, y, representing origin-destination flows, is given
by a spatially filtered variable y∗ and a residual spatial variable ỹ. The latter is
assumed to be given by

ỹ = ρoWoy + ρdWdy, (10)

Wo = W ⊗ In, and (11)

Wd = In ⊗W, (12)

where W is an n-by-n spatial weight matrix with diagonal elements set to zero,
and In is an n-by-n identity matrix. Typically the spatial weight matrix is normal-
ized to have row sums of unity14, and thus produces linear combinations of flows
from neighboring regions (see LeSage and Pace 2009, p. 10). Non-zero entries in
matrix W indicate that a neighborhood relation exists between the correspond-
ing regions. Neighbors may be defined using contiguity or measures of spatial
proximity, such as cardinal distance (measured, for example, in terms of travel
time) and ordinal distance (for example, the five nearest neighbors). Given an
origin-centric organization of sample data, the spatial weight matrix Wo is used
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to form an N -by-1 spatial lag vector Woy that captures origin-based dependence
arising from flows that neighbor the origin; similarly, a spatial lag of y is formed
using the spatial weight matrix Wd that captures destination-based dependence
using a linear combination of flows associated with observations that neighbor the
destination region. ρo and ρd are the corresponding scalar spatial lag parameters
(LeSage and Fischer 2010).

As a result, the spatial autoregressive version of the Poisson gravity model
(SPGM) takes the form15:

y = ỹ + y∗ = ρoWoy + ρdWdy + y∗, (13)

E[y∗] = µ = exp(Zβ), (14)

y∗ ∼ P(µ). (15)

Note that if ρo = ρd = 0, the SPGM collapses to the conventional Poisson gravity
model:

y = y∗, E[y∗] = µ = exp(Zβ) and y∗ ∼ P(µ). (16)

As is shown subsequently, the interpretation and estimation of the model given
by Eqs. (13) - (15) does not depend on the strict assumption given in Eq. (15),
concerning the distribution of y∗ being Poisson, and, hence, the model is valid
for a more general model class. However, for the following discussion, we retain
the assumption of y∗ ∼ P(µ) and examine the resulting dispersion properties of a
spatially autocorrelated Poisson distributed variable.

Dispersion properties of spatially autocorrelated Poisson

distributed variables

Adding spatial lags to the Poisson gravity model results in interesting dispersion
properties for y, given the underlying data generating process is y∗ ∼ P (µ). These
properties can be derived from the first two central moments of y that are given
by16

E[y] = (IN − ρdWd − ρoWo)
−1µ, (17)

V ar[y] = (IN − ρdWd − ρoWo)
−1diag[µ](IN − ρdW

′
d − ρoW

′
o)

−1, (18)

where the operator diag[·] transforms the vector µ into a diagonal matrix, and IN
is an N -by-N identity matrix. Equations (17) and (18) imply that if ρd 6= 0 and
ρo 6= 0, then E[y] 6= V ar[y] which then violates the equidispersion property of the
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Poisson distribution (see Cameron and Trivedi 1998, p. 4). Because each entry in
the vectors E[y] and diag[V ar[y]] may differ, an analytic comparison between Eqs.
(17) and (18) with respect to over- or underdispersion17 is difficult. However, to
give some insights regarding the dispersion dynamics caused by spatial autocor-
relation in Poisson distributed variables, consider the following simple example.
Assume that µ = exp (Zβ) = ιN and a spatial weight matrix W that reflects a
simple first-order one-step-forward contiguity neighborhood structure. Because W
is row-normalized, E[y∗] = ιN and Eq. (17) simplifies to E[y] = 1

1−ρd−ρo
ιN . For a

sample size of n = 25 (and thus N = 625), we simulated the first two moments
given by Eqs. (17) and (18) over a grid of ρd and ρo ranging from +0.4 to -0.4
in steps of 0.05. As a measure of the deviation between mean and variance, we
constructed τ , which denotes the average percentage distance between the mean
and variance of y:

τ = ∅(diag[µ]−1(diag[V ar[y]]− E[y])), (19)

whereas the operator ∅[·] takes the average of a vector. If τ > 0 (τ < 0), y shows
a tendency toward overdispersion (underdispersion).

Figure 1 portrays the relationship between τ and both ρo and ρd. To test
the statistical significance of over- or underdispersion, we use the test statistic
suggested by Cameron and Trivedi (1998, 77p). This statistic corresponds to a
simple OLS regression of the form

ỹ = ηŷ + ε, (20)

ŷ = (IN − ρdWd − ρoWo)
−1µ

ỹ = diag[ŷ]−1 ((y − ŷ)⊙ (y − ŷ)) ,

where ŷ is the fitted values of y, ỹ is a measure of deviation between mean and
variance, and ε is a standard normal error term. The sign ⊙ denotes the Hadamard
product, which refers to an elementwise multiplication of two vectors or matrices.
The t-statistic of the resulting coefficient η is asymptotically normally distributed
under the null hypothesis of equidispersion. The alternative hypothesis is over- or
underdispersion.

We simulated 10,000 replications of y∗ ∼ P (µ0) and derived the respective
y = (IN − ρdWd − ρoWo)

−1y∗ for each combination of ρo and ρd. If the corre-
sponding p-value is less than 0.05 in at least 9,500 of the repetitions, we treat
over- or underdispersion as being statistically significant. Such a case is indicated
by shaded entries in Figure 1. For ρo, ρd < 0, we find statistically significant and
substantial overdispersion. The opposite case of ρo, ρd > 0 leads to significant
underdispersion, but, to a somewhat lesser extent. Values around zero for both
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Figure 1: Simulated mean percentage
distance between the mean and vari-
ance of y
Coloured (transparent) cells indicate signifi-
cant (insignificant) sign(τ) with 95 percent ac-
curacy.

Figure 2: Significant over- and under-
dispersion for different spatial lag pa-
rameter values
Symbols: o indicates significant overdispersion
and * significant underdispersion.

ρo and ρd do not lead to significant dispersion patterns. Mixtures of positive and
negative spatial autocorrelation parameters translate into significant overdisper-
sion for values approximately greater than |0.2|. For a better depiction of this
pattern, consider Figure 2, which highlights spatial lag parameters that result in
significant over- or underdispersion18. As can be seen more clearly in this figure,
for mixed signs in spatial autocorrelation parameters — ρo < 0 and ρd > 0, or
ρo > 0 and ρd < 0 — significant overdispersion is present for negative spatial
autocorrelation parameters smaller than -0.20.

Model interpretation and estimation

As the SPGM belongs to the class of spatial autoregressive models, the total effect
of an explanatory variable on the dependent variable, has to include the indirect
effects arising from the spatial feedback effects (see LeSage and Pace 2009, 33pp)19.
Like LeSage and Pace (2009), we suggest total impact effects for the interpretation
of the coefficients.

Model interpretation

We define the total average effects in a sense that they reflect the total average
elasticity of the explanatory variables with respect to the expected value of y. By
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construction20, the elasticity of E [yi] with respect to z is given by

χk,q,i :=
∂ log (E [yi])

∂zq,k
, (21)

where zk,q denotes the k
th variable (or the kth column of Z) and q = 1, ..., N denotes

the origin-destination pair (or row of Z). Hence, we can define the average total
impacts of the kth variable on y by

Totalk =
1

N

∑N

i=1

∑N

q=1
χk,q,i, (22)

as suggested in LeSage and Pace (2009, pp. 36-38). Because the explanatory
variables in Z are in logarithms, the resulting total effects can be interpreted as
elasticities. Rewriting E [yi] in an element-wise fashion yields

E [yi] =
N∑

q=1

si,q exp

(
K∑

k=1

zq,kβ0,k

)
, (23)

where si,q ∈ S and S := (IN − ρd,0Wd − ρo,0Wo)
−1. True parameters of the DGP

in Eq. (23) are indexed with a zero: ρo,0, ρd,0 and β0, respectively. As Eqs. (24)
and (25) show, the total impact effects do not depend on ρd,0 or ρo,0, and are
equal to β0,k. Thus, in contrast to spatial autoregressive models that are linear in
the spatial autocorrelation coefficient, there is no need for a simulation approach
to produce an empirical distrubtion of the parameters because the SPGM total
effects only depend on the true parameter vector β0. In other words,

∂ logE [yi]

∂zq,k
=

si,q exp
(∑K

κ=1
zq,κβ0,κ

)
β0,k

∑N

u=1
si,u exp

(∑K

κ=1
zu,κβ0,κ

) (24)

⇒ Totalk =
1

N

∑N

i=1

∑N

q=1

si,q exp
(∑K

κ=1
zq,κβ0,κ

)
β0,k

∑N

u=1
si,u exp

(∑K

κ=1
zu,κβ0,κ

) =

1

N

∑N

i=1

∑N

q=1
si,q exp

(∑K

κ=1
zq,κβ0,κ

)
β0,k

∑N

u=1
si,u exp

(∑K

κ=1
zu,κβ0,κ

) = β0,k. (25)

The direct and indirect elasticities respectively, are given by
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Directk :=
1

N

∑N

i=1

∂ log (E [yi])

∂xi,k

=
1

N

∑N

i=1

si,i exp
(∑K

κ=1
xi,κβ0,κ

)
β0,k

∑N

j=1
si,j exp

(∑K

κ=1
xj,κβ0,κ

)

(26)

Indirectk :=
1

N

∑N

i=1

∑N

q=1,i 6=q

∂ log (E [yi])

∂xq,k

= Totalk −Directk (27)

The direct and indirect effects in this model still depend on ρd,0 and ρo,0, and
therefore their standard deviations need to be simulated. To derive an efficient
simulation algorithm, Eq. (26) needs to be rewritten in the matrix form

Directk =
γ0,k

N
ι′N(diag(S)⊘ exp (Xγ0))⊙ S exp (Xγ0) , (28)

where ⊘ denotes element-wise division of matrices or vectors. In order to simulate
Eq. (28), one has to calculate the elements si,i, which poses a similar computa-
tional problem as in spatial autoregressive models that are linear in the spatial
autocorrelation coefficient. Because our model has two spatial weight matrices
(Wd and Wo), the algorithms for the computation of the log-determinants given in
LeSage and Pace (2009, Chapter 4) need to be adopted.

A two-stage nonlinear least squares estimator for the model

As mentioned previously, the standard approach for estimating a Poisson regression
model is to derive the likelihood function and apply Maximum Likelihood (ML)
estimation methods (see Cameron and Trivedi 1998, 22pp.). However, unlike the
multivariate normal distribution for linear models, no analytically closed form for a
multivariate Poisson distribution21 has been derived to date. Therefore estimation
techniques like ML or Bayesian methods are infeasible. Hence, the estimator
introduced in this paper builds upon the non-linear least squares (NLS) estimator
for Poisson distributions, as in Cameron and Trivedi (2005, 150pp.).

To generalize the estimation results with respect to different distributional as-
sumptions of the underlying DGP, we assume that the spatially filtered variable y∗

can have any distribution C (µ,Ω) with a specified (finite) mean µ, and an unspeci-
fied (finite) diagonal variance-matrix Ω with diagonal entries:
(σ2

0,1,1, σ
2
0,1,2, ..., σ

2
0,n,1, σ

2
0,2,1 , ..., σ

2
0,n,n) and off diagonals of zeros. Hence, our SPGM

estimator can be considered heteroscedasticity-robust (i.e., robust against over- or
underdispersion22). Note that if ρd,0 = ρo,0 = 0 the DGP collapses to the one
described in Cameron and Trivedi (2005, 150pp), which can be estimated by NLS
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used for Poisson distributed random variables. Similar to Cameron and Trivedi
(2005), we employ an NLS estimation framework to find estimates for ρd,0, ρo,0
and β0.

Assume that ρd,0 and ρo,0 have values such that the maximum absolute eigen-
value of ̥ is smaller than one23, where ̥ := ρd,0Wd + ρo,0Wo. Thus the inverse of
IN −̥ exists (for details, see Kelejian and Prucha 1998). Hence, Eq. (13) can be
solved for y to obtain

y = (IN − ρd,0Wd − ρo,0Wo)
−1

y∗ where y∗ ∼ C (µ,Ω) . (29)

Because Wd and Wo represent spatial weight matrices, their entries can be treated
as fixed weights. Hence, the mean of y is given by E [y] = (IN− ρd,0Wd− ρo,0Wo)

−1

exp (Zβ0). The DGP in Eq. (29) is more general than the one given in Eq. (13), be-
cause y∗ can be drawn from a variety of distributions. Given that y represents count
data flows, three particular distributions are of importance: First, y∗ could be
drawn from a Poisson distribution; hence, E[y∗] = µ and V ar[y∗] = µ. Therefore,
if ρd,0 = ρo,0 = 0, then y is Poisson distributed as well. Second, y∗ could be drawn
from a Negative Binomial distribution; hence, the expected value is unchanged,
and the variance is quadratic in mean such that V ar[y∗] = µ + λ(µ ⊙ µ) with
dispersion parameter λ. Therefore, if ρd,0 = ρo,0 = 0, then y is Negative Binomial
distributed as well. In both cases, if ρd,0 6= 0 and ρo,0 6= 0, the random variable y is
no longer Poisson or Negative Binomial. Finally, y∗ could be drawn from a distribu-
tion such that the random variable y is Poisson or Negative Binomial distributed.
Given the case that y is Poisson, the DGP given in Eq. (29) does not account for
possible overdispersion in y, because E[y] = V ar[y] = (IN − ρd,0Wd − ρo,0Wo)

−1
µ.

However, independent of the distributional assumption, each DGP results in the
same first moment of y. Because a heteroscedasticity-robust NLS estimator re-
quires only a correctly specified first moment (mean), our estimation procedure
results in the same estimates independent of the underlying distribution of y∗ or
y, and, hence, is robust against a huge variety of possible misspecification of the
distribution24.

Applying NLS estimation methods to the DGP given in Eq. (29) yields the
following estimator δ0 := (ρd,0 ρo,0 β

′
0)

′:

δ̂ = min
ρd,ρo,β

e(δ)′e(δ), where e(δ) = y − (IN − ρdWd − ρoWo)
−1 exp (Zβ) . (30)

The gradient of the NLS criteria function presented in Eq. (30) for δ = δ0 is

E
[
▽|δ=δ0

e(δ)′e(δ)
]
= E


−2




SWdS exp (Zβ0)
SWoS exp (Zβ0)

(ι′K ⊗ (S exp (Zβ0)))⊙ Z




′

e(δ0)


 = 0. (31)
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Because25 E
[
▽|δ=δ0

e(δ)′e(δ)
]
= 0, the minimization problem defined by Eq. (30)

yields a consistent estimate for δ0 (for more details, see Pötscher and Prucha 1997).
This NLS estimator has the following asymptotic distribution:

N → ∞:
1√
N

(
δ̂ − δ0

)
∼ N

(
0, G−1H−1G−1

)
,

where G = Υ′Υ, H = Υ′ΩΥ, Υ =




SWdS exp (Zβ0)
SWoS exp (Zβ0)

(ι′K ⊗ (S exp (Zβ0)))⊙ Z


 , (32)

and Ω = SΩS ′. In expression (32), N (·) denotes a multivariate normal distri-
bution. Because G and H are not known, we use their empirical equivalents;
especially, we use for the typical diagonal element of Ω,

σ̂2

b :=

(
yb −

N∑

q=1

ρ̂dwd,i,qyq −
N∑

q=1

ρ̂owo,i,qyq − exp
(
Ziβ̂
))2

,

where wd,i,q and wo,i,q are typical elements of the matrices Wd and Wo.
Because the two spatial lags introduce heteroscedasticity into the error term

e(δ0), the minimisation procedure described in Eq. (30) yields inefficient esti-
mates. Therefore, an estimator that filters this kind of heteroscedasticity pat-
tern improves the efficiency of the estimates. Such a procedure corresponds to a
heteroscedasticity-robust second stage estimation procedure, as given in Cameron
and Trivedi (2005, 667pp). Using ρ̂d and ρ̂o from the first stage, we can construct
ŷ∗ = (IN − ρ̂dWd − ρ̂dWo) y, which essentially is the spatially filtered version of
our origin-destination flows y. In the second stage, we predict ŷ∗ with the ex-
planatory variables exp(Zβ). In the second stage, we obtain no estimates for ρ̂d
and ρ̂o because we filter out the two spatial components. However, this is unprob-
lematic because we are mainly interested in the models implied total effects that
are given by the estimates of the second stage of the model. We therefore refer to
our estimator as a 2-stage NLS estimator (2NLS).

Monte Carlo simulation study

In the following Monte Carlo study, the DGP of the flows y is given by Eqs. (13)
- (15). Thus, we demonstrate the properties of our estimator for the case that
the underlying distribution of the non-spatial process y∗ is given by a Poisson
distribution with mean and variance µ. However, as discussed previously, our
2NLS estimator also is efficient for other distributional assumptions, as long as
the mean is correctly specified.
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Monte Carlo design

For simplicity, the matrix of explanatory variables Z includes one origin-specific
variable (K1 = 1), one destination-specific variable (K2 = 1) and one origin-
destination variable (K3 = 1) and no constant term. We simulate the explanatory
variables, each of size n-by-1, from a standard normal distribution26, and then
apply the Kronecker product transformations, as previously outlined. The three
explanatory variables are simulated just once for each sample size.

The true parameter vector β0 = (γd,0, γo,0, δ0)
′ is varied over the following

three different specifications (respectively, to allow for varying means of the Pois-
son distribution): β0,low = (0.5, 0.3,−0.7), β0,med = (1.5, 0.9,−0.7) and β0,high =
(2.5, 1.5,−0.7). Higher values of β0 lead to higher means in the Poisson process y∗,
and therefore result in a higher probability of large realisations. These distribu-
tions, showing large outliers, are likely to be found in empirical data sets, so they
are explicitly included in the Monte Carlo design. The Appendix presents illus-
trative examples for the influence of the β-values and different degrees of spatial
autocorrelation.

The spatial autocorrelation (or lag) parameters ρd,0 and ρo,0 are set to ρ0,zero =
(ρd,0, ρo,0) = (0, 0), ρ0,lolo = (0.1, 0.1), ρ0,hilo = (0.4, 0.1) and ρ0,hihi = (0.4, 0.4), to
simulate different degrees of spatial autocorrelation27. We use two different n-by-n
spatial weight matricesW for the construction ofWd andWo. First, we use a simple
one-step-forward first-order contiguity neighborhood Wcont, where the regions are
organized in a chain (see LeSage and Pace 2009, p.3). By construction, each region
has exactly two neighbors, except for the first and the last regions, which have only
one neighbor28. To allow inference about the properties of the 2NLS estimator
for less sparse (or denser) spatial weight matrices (i.e., containing fewer zeros), we
also consider an ordinal distance-based six nearest neighbors spatial weight matrix
Word, using Euclidean distances between geographic coordinates taken from the
Pace and Barry (1997) data set29. The two spatial weight matrices are normalized
with respect to the maximum row sum (called row-standardisation).

Our dependent variable y is generated by

y = (IN − ρd,0Wd − ρo,0Wo)
−1

y∗, where E[y∗] = µ = exp (Zβ0) and y∗ ∼ P (µ) .
(33)

Finally, to analyse the behavior of our 2NLS estimator for different sample
sizes, we implemented our Monte Carlo simulations for three sample sizes, n =
25, 50 and 100. Given that the estimator is asymptotically efficient, the bias in
the estimates should decrease with increasing sample size. For each specification,
we decided to conduct 1,000 Monte Carlo runs of y∗ ∼ P (µ). To summarize, our
Monte Carlo experiment includes three different β0 parameters, four different ρ0,
two different spatial neighborhood structures (Wcont and Word), and three different
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sample sizes n. This design results in a total of 4 × 3 × 3 × 2 = 72 Monte Carlo
experiments, with 1,000 repetitions each.

Monte Carlo results

For the computation of the 2NLS estimator, we used sparse algorithms in order to
minimize the problem given in Eq. (30). Applying these algorithms, optimising
over inverse matrices reflecting a sample size of n = 300 (or N = 90, 000), three
explanatory variables and a six nearest neighbor matrix30, the computational time
is approximately 10 minutes31. This illustrative example reflects a common em-
pirical application for regional economists, because n = 300 is roughly the number
of NUTS-2 regions in Europe, and the six nearest neighbor concept is widely used
in practice.

From the estimation results of the simulations, we calculate the mean percent-
age bias of the point estimate and the root mean squared error of the standard
deviation of the vectors β0 and ρ0 for each of the 72 Monte Carlo experiments pre-
viously discussed. The mean percentage bias of β0, expressed in matrix notation,
is given by

BIAS
β̂
= ∅

[
diag[β0]

−1(β̂ − β0)
]
100, (34)

with β̂ being the mean of the point estimates β̂ for the 1,000 Monte Carlo repe-

titions32. Because β0, β̂, ρ0 and ρ̂ are vectors of dimension 3-by-1 and 2-by-1, for
brevity we report the mean of the bias and root mean squared error (RMSE) of

the standard deviation for the full vectors β̂ and ρ̂, and not each single parameter.
As a measure of the precision of our 2NLS estimator, we define the root mean
squared error (RMSE) of the empirical standard deviation of the point estimate β̂
in percent of the true parameter β0 by

RMSE
β̂
= ∅

[
diag[β0]

−1

√
(β̂ − β0)⊙ (β̂ − β0)

]
100. (35)

Table 1 summarizes the resulting measures of bias and standard deviation of
our 72 Monte Carlo experiments. Overall, the results indicate that the estimates
show virtually no bias in mean and standard deviation of the model (β̂) and spatial
lag (ρ̂) parameters. In almost all cases, the bias is less than one percent, even in
the sample of the smallest size (n = 25). Comparing the bias of the estimates and
the RMSE across sample sizes indicates that our estimates converge to the true
parameter values. Both, the bias and the RMSE decrease with increasing sample
size, independent of ρ0 and β0. Another result is that the bias and RMSE decrease
with increasing sample mean (i.e., a higher probability of large realisations). This
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finding is especially interesting for empirical researchers, because they often face
data with higher means and substantial outliers. In these cases, the Monte Carlo
results indicate nearly unbiased estimates. For these properties to hold in empirical
applications, the mean function and the spatial neighborhood structure of the
model has to be correctly specified.

As discussed previously, the interpretation of the parameter estimates and the
estimation method of the SPGM is irrespective of the distributional assumptions
for y∗ and y, given that the first moment of the model is correctly specified. In
addition to the DGP given by Eq. (33), we conducted a Monte Carlo experiment
using the same design for the following distributional assumption to demonstrate
the performance of the 2NLS estimator:

y ∼ P(µ̌), (36)

µ̌ = (IN − ρd,0Wd − ρo,0Wo)
−1

y∗.

Table 2 summarizes the Monte Carlo results for this DGP. Bias and root mean
squared error of the standard deviation are — similar to the DGP y∗ ∼ P(µ)
— negligible. Increasing the sample size further decreases the bias in the point
estimates and the standard deviations.
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Table 1: Monte Carlo experiment results for y∗ ∼ P(µ): mean percentage bias (BIAS), and root mean squared
percentage error (RMSE)

low mean medium mean high mean

β̂ ρ̂ β̂ ρ̂ β̂ ρ̂

W n ρo ρd BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
Wcont 25 0.0 0.0 0.015 0.034 -0.001 0.041 0.001 0.023 0.000 0.008 0.000 0.017 0.000 0.003

0.1 0.1 -0.032 0.036 -0.001 0.036 0.000 0.023 -0.001 0.008 0.000 0.017 0.000 0.003
0.4 0.1 0.008 0.034 -0.018 0.038 0.000 0.022 -0.003 0.008 0.000 0.017 0.000 0.003
0.4 0.4 -0.006 0.036 0.000 0.040 0.000 0.022 0.000 0.008 0.000 0.017 0.000 0.004

50 0.0 0.0 0.011 0.023 -0.001 0.022 0.002 0.032 0.000 0.014 0.000 0.003 0.000 0.001
0.1 0.1 0.023 0.023 -0.001 0.020 -0.001 0.031 -0.001 0.011 0.000 0.003 0.000 0.001
0.4 0.1 -0.021 0.023 0.002 0.021 0.001 0.033 -0.006 0.013 0.000 0.003 0.000 0.001
0.4 0.4 0.008 0.024 0.000 0.027 0.000 0.031 0.000 0.012 0.000 0.003 0.000 0.001

100 0.0 0.0 -0.002 0.010 0.000 0.010 0.000 0.005 0.000 0.003 0.000 0.003 0.000 0.001
0.1 0.1 -0.005 0.010 0.000 0.009 0.000 0.005 0.000 0.003 0.000 0.003 0.000 0.001
0.4 0.1 0.002 0.010 0.001 0.010 0.000 0.005 0.001 0.003 0.000 0.003 0.000 0.001
0.4 0.4 0.005 0.011 0.000 0.012 0.000 0.005 0.000 0.003 0.000 0.003 0.000 0.001

Word 25 0.0 0.0 0.004 0.033 -0.001 0.048 0.002 0.066 -0.003 0.039 0.000 0.008 0.000 0.002
0.1 0.1 -0.002 0.032 -0.001 0.040 -0.001 0.067 -0.002 0.027 0.000 0.008 0.000 0.001
0.4 0.1 0.017 0.033 -0.007 0.045 0.001 0.067 -0.016 0.034 0.000 0.008 0.000 0.001
0.4 0.4 0.032 0.035 0.000 0.042 -0.001 0.069 -0.001 0.029 0.000 0.008 0.000 0.001

50 0.0 0.0 0.002 0.026 0.000 0.031 -0.001 0.017 0.000 0.010 0.000 0.009 0.000 0.004
0.1 0.1 -0.009 0.025 0.000 0.025 0.000 0.017 0.000 0.007 0.000 0.009 0.000 0.003
0.4 0.1 -0.002 0.027 -0.004 0.029 0.000 0.017 0.003 0.009 0.000 0.009 0.000 0.004
0.4 0.4 0.007 0.026 0.000 0.027 0.000 0.017 0.000 0.006 0.000 0.009 0.000 0.002

100 0.0 0.0 -0.002 0.010 0.000 0.014 0.000 0.004 0.000 0.003 0.000 0.004 0.000 0.001
0.1 0.1 0.003 0.010 0.000 0.011 0.000 0.004 0.000 0.003 0.000 0.004 0.000 0.001
0.4 0.1 -0.003 0.010 -0.001 0.013 0.000 0.004 0.000 0.003 0.000 0.004 0.000 0.001
0.4 0.4 -0.002 0.010 0.000 0.013 0.000 0.004 0.000 0.002 0.000 0.004 0.000 0.001
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Table 2: Monte Carlo experiment results for y ∼ P(µ̌): mean percentage bias (BIAS), and root mean squared
percentage error (RMSE)

low mean medium mean high mean

β̂ ρ̂ β̂ ρ̂ β̂ ρ̂

W n ρo ρd BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
Wcont 25 0.0 0.0 0.004 0.042 -0.001 0.044 -0.001 0.027 -0.001 0.015 0.000 0.007 0.000 0.000

0.1 0.1 -0.028 0.047 -0.002 0.045 -0.002 0.031 -0.001 0.015 0.000 0.008 0.000 0.001
0.4 0.1 -0.010 0.042 -0.009 0.047 0.000 0.027 -0.003 0.016 0.000 0.008 0.000 0.001
0.4 0.4 -0.040 0.057 -0.001 0.045 0.001 0.037 0.000 0.015 0.000 0.010 0.000 0.001

50 0.0 0.0 0.014 0.026 -0.001 0.022 0.001 0.014 0.000 0.004 0.000 0.002 0.000 0.000
0.1 0.1 -0.016 0.027 -0.001 0.021 0.000 0.015 -0.001 0.007 0.000 0.002 0.000 0.001
0.4 0.1 0.024 0.026 -0.010 0.023 0.000 0.014 0.001 0.007 0.000 0.002 0.000 0.001
0.4 0.4 0.001 0.035 0.000 0.023 0.001 0.017 0.000 0.009 0.000 0.002 0.000 0.001

100 0.0 0.0 -0.003 0.011 0.000 0.010 0.000 0.013 0.000 0.007 0.000 0.003 0.000 0.001
0.1 0.1 -0.001 0.012 -0.001 0.010 0.001 0.014 0.000 0.007 0.000 0.003 0.000 0.001
0.4 0.1 -0.003 0.011 -0.001 0.010 -0.001 0.013 0.001 0.008 0.000 0.003 0.000 0.001
0.4 0.4 -0.002 0.015 0.000 0.011 0.000 0.016 0.000 0.006 0.000 0.003 0.000 0.001

Word 25 0.0 0.0 0.003 0.045 -0.003 0.057 0.000 0.040 0.000 0.025 -0.001 0.059 -0.002 0.022
0.1 0.1 0.014 0.049 -0.002 0.053 -0.001 0.042 0.000 0.019 -0.001 0.059 0.001 0.016
0.4 0.1 0.024 0.046 -0.019 0.060 0.001 0.040 -0.009 0.023 -0.001 0.058 -0.011 0.020
0.4 0.4 -0.023 0.062 -0.001 0.066 0.000 0.048 0.000 0.018 0.001 0.067 0.000 0.017

50 0.0 0.0 -0.017 0.025 -0.001 0.033 0.000 0.012 0.000 0.010 0.000 0.014 0.000 0.005
0.1 0.1 -0.002 0.026 -0.001 0.028 0.000 0.012 0.000 0.011 0.000 0.014 0.000 0.004
0.4 0.1 0.023 0.025 -0.006 0.032 0.000 0.012 -0.005 0.011 0.000 0.014 -0.002 0.005
0.4 0.4 -0.017 0.032 0.000 0.033 -0.001 0.013 0.000 0.010 0.000 0.015 0.000 0.004

100 0.0 0.0 0.000 0.014 0.000 0.017 0.000 0.009 0.000 0.006 0.000 0.003 0.000 0.001
0.1 0.1 0.005 0.015 0.000 0.014 0.000 0.009 0.000 0.004 0.000 0.003 0.000 0.001
0.4 0.1 0.006 0.014 -0.001 0.016 0.000 0.009 0.000 0.005 0.000 0.003 0.000 0.001
0.4 0.4 0.001 0.017 0.000 0.015 0.000 0.010 0.000 0.004 0.000 0.003 0.000 0.001
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An empirical illustration

We use the European patent citation flow data described in Fischer et al. (2010) to
illustrate how the proposed model works in a real data environment in comparison
to the Poisson and the Negative Binomial gravity model specifications. Europe
comprises n = 112 areal units, generally the NUTS-2 regions of the countries
Germany (38 regions), France (21 regions), Italy (20 regions), the Netherlands (12
regions), Belgium (11 regions), Austria (8 regions), and the NUTS-0 regions of
Luxembourg and Switzerland.

The explanatory variables matrix contains an origin-specific variable measured
in terms of the log-number of high-technology patents in the knowledge-producing
region in the time period 1985-1997, a destination-specific variable measured in
terms of the log-number of high-technology patents in the knowledge-absorbing
region in the time period 1990-2002, and a separation variable measured in terms
of great circle distances (in km) between the economic centres of the regions33.
We employ a binary first-order contiguity matrix implemented in row-standardized
form to represent the neighborhood structure.

Table 3 summarizes the parameter estimates of the three models, with the esti-
mates of the SPGM in the first, the Poisson MLE estimates in the second and the
Negative Binomial MLE estimates in the third column. Both MLE models show
only highly significant coefficients. Larger stocks of high-tech patents in the origin
and destination regions are associated with larger patent citation flows between
regions, with somewhat higher coefficents in the Negative Binomial model. Ge-
ographical distance impedes regional interaction measured by the patent citation
flows. Again, the impeding impacts of the deterrence measures are much more
distinct in the Negative Binomial model.

For the SPGM, given in the first column, we also find highly statistically signif-
icant parameters for the origin, destination and origin-destination variables. The
size of the coefficient is comparable to that of the Poisson MLE model, given in
the second column of Table 3. The coefficient on the origin-destination variable
of the SPGM is negative and highly statistically significant. However, geographic
distance has a much smaller impact on the patent citation flows compared to
the other two models. The coefficient in the SPGM is -0.249 compared to -0.313
(Poinsson MLE) and -0.588 (Negative Binomial).

The sizeable reductions in the parameter estimates of the spatial deterrence
variable might be due to the positive and statistically significant destination-based
spatial lag parameter34. These results connect to the early findings of Cliff et al.
(1974), Curry et al. (1975) or Griffith and Jones (1980). To some extent, the
destination-based spatial lag captures similar spatial patterns as the spatial impe-
dence measure. This argument becomes more intuitive given the definition of the
spatial lag parameter and the underlying neighborhood structure. The destination-

18



Table 3: Estimation results for patent citation flows in Europe
Spatial Poisson Poisson Negative Binomial
gravity model+ MLE++ MLE++

Constant -8.965 *** -9.356 *** -8.367 ***
(0.852) (0.236) (0.167)

Origin variable 0.774 *** 0.825 *** 0.863 ***
(0.042) (0.015) (0.011)

Destination variable 0.771 *** 0.794 *** 0.827 ***
(0.042) (0.015) (0.009)

Geographic distance -0.249 *** -0.313 *** -0.588 ***
(0.023) (0.019) (0.017)

Destination-based dependence 0.132 * - -
(0.075) - -

Origin-based dependence 0.074 - -
(0.061) - -

R2 (pseudo-R2) 0.83 (0.81) (0.29)
RMSE+++ 10.21 12.73 121.23
Pseudo Log-Likelihood - -24772.33 -16102.67

+ Estimated with heteroscedasticity-robust 2NLS. The spatial lag parameters ρo and ρd are
taken from the first stage, whereas the remaining parameter estimates and statistics are derived
from the second stage.
++ Maximum likelihood estimation with robust standard errors.
+++ RMSE denotes root mean squared error of ŷ (predicted outome).
Standard errors of coefficients are in brackets. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at
90%, 95% and 99% confidence levels.
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based lag parameter means that a patent citation flow from an origin region, say
r, to a destination region j is positively correlated with a flow from origin r to a
neighboring region of j, say j′. The neigbourhood in our application is defined by
means of contiguity, i.e. j and j′ share a border and can be assumed to be close
to each other, since our spatial units are NUTS-2 regions. Thus the distance from
r to j and r to j′ will be somewhat similar. Given that distance between regions
deters patent citation flows between them, flows to more (less) distant regions and
their neighbors will be smaller (larger) and, thus, positively correlated.

Concerning model selection criteria, the SPGM cannot be directly compared
to the conventional Poisson and Negative Binomial gravity models. As a matter
of fact, the model with spatial autocorrelation incorporates two additional param-
eters: the spatial lags ρo and ρd. Thus, measures of model fit that can be applied
to all three models must yield better results for the Poisson model with spatial
autocorrelation, by definition. This can be seen, for example, by the root mean
squared error (RMSE) statistics in Table 3. Other model information criteria
like the adjusted R2 or the Log-Likelihood are not defined for all three types of
models. Still, given the difference in the point estimate of the origin-destination
variable and the statistically significant destination-based spatial lag, a paramet-
rically richer model like the spatial autoregressive (SAR) Poisson Gravitiy Model
(SPGM) might be preferred compared to more restricted models like the Poisson
or the Negative Binomial gravity model.

Turning to the issue of over- and underdispersion, it can be seen from Table
3 that the Log-Likelihood of the Negative Binomial model is larger than that of
the non-spatial Poisson model. This indicates that the spatially unfiltered data is
overdispersed. However, as both spatial lags in the SPGM turn out to be positive
(with one being significant), Figure 2 suggests that the data is located in the
underdispersion region. Connecting these two results suggests that the spatially
unfiltered data is highly overdispersed.

Conclusions

We introduce a Poisson gravity model with spatial dependence in the dependent
(flow) variable. Previous methods for modeling discrete flow variables: (i) did not
adequately account for the zero flows problem; (ii) fail to account for the violation
of the independence of flow assumption; or (iii) model the spatial dependence in
the error term rather than in the dependent flow variable and, thus, misinterpret
the resulting parameter estimates. The model described in this paper cirumvents
such deficiencies.

We start by augmenting a standard Poisson gravity model by introducing
origin- and destination-based spatial lags in a way suggested by LeSage and Pace
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(2008). We show that the model can be estimated within a 2NLS framework, yield-
ing an estimator that does not rely on strict distributional assumptions of the DGP
such as the Poisson or Negative Binomial distribution, given that the first moment
of the model is correctly specified. The estimator is heteroscedasticity-robust; i.e.,
it can account for over- or underdispersion in data which often is experienced in
empirical research.

Because the SAR Poisson gravity model (SPGM) belongs to the family of
spatial autoregressive models, the effect of the explanatory variables on the de-
pendent variable has to include the indirect effects arising from spatial feedback
effects (see LeSage and Pace 2009). Due to the specification of the model, the
parameter estimates can be interpreted as the implied total impact effects without
further calculation. As a consequence of the flexibility of the estimator, the model
interpretation also is valid for all distributional assumptions of the model.

We conducted Monte Carlo experiments for the distributional assumptions of
(i) the observable (flow) variable being Poisson, and (ii) the spatially filtered vari-
able being Poisson distributed. The results indicate that our SPGM estimator
shows virtually no bias in the parameter estimates, even for small sample sizes.
Furthermore, bias in mean and standard deviation of the parameters decreases
with increasing sample size, thus indicating convergence toward the true parame-
ter values.

Finally, the SPGM is illustrated using patent citation data. The results of
our model indicate significant destination-based spatial dependence. Compared to
conventional (non-spatial) Poisson and Negative Binomial models, the size of the
coefficient for the spatial separation variable decreases substantially. This result
might hint towards common spatial influences reflected by both, the spatial lag
parameters and the variable used as an origin-destination separation measure.
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Notes

1The term gravity model comes from the Newtonian analogy for the models. In view of
the enormous interest generated by gravity models, a host of different theoretical approaches
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proposed for these models is not surprising. Wilson (1970) provides a motivation for spatial
interaction models based on entropy-maximizing theory, Sen and Smith (1995) propose a choice-
theoretical foundation, Niedercorn and Bechdolt (1969) derive the model from utility maximiza-
tion, while Fischer and Reismann (2002) use the concept of neural computing. For a discussion,
see Fischer and Reggiani (2004) or Sheppard (1978), among others.

2Origin-destination variables take the form of deterrence functions in some separation mea-
sure. At relatively large scales of geographical inquiry this might be simply the great circle
distance separating an origin from a destination area (region), measured in terms of the distance
between their respective centroids. In other cases, it might be transportation or travel time, cost
of transportation, perceived travel time, or any other sensible measure such as political distance,
language distance or cultural distance measured in terms of nominal or categorical attributes.

3For a detailed discussion of models see, for example, Haworth and Vincent (1979). The log-
additive approach assumes a lognormal distribution of the error term. If this assumption holds,
then the resulting ordinary least squares (OLS) estimator is the best linear unbiased estimator
(BLUE). If the log of the error term is identical, independent and not normal-distributed then
the OLS estimator is still unbiased and in general considered a very ’reasonable’ estimator by
most textbooks. However, two assumptions are really vital for transforming the nonlinear data
generating process to a log-linear data generating process: First, the error term has to enter
the model in a multiplicative way. Second, none of the realizations of the dependent variable is
zero. If the second assumption is violated, the logarithm is not defined, and hence the zero flows
problem arises.

4The term ’hierarchical’ in Bayesian statistics refers to models with two or more levels of
random variables or models with latent variables.

5The term Poisson gravity model (see Flowerdew and Aitkin 1982; Bailey and Gatrell 1995)
might be misleading, since it does not assume the dependent variable to be Poisson distributed.
Note that in the model of Fischer and Griffith (2008) the equidisperion property (i.e. mean
equals variance) does not hold if the spatial autocorrelation parameter is different from zero.

6This approach combines parametric and nonparametric models. For instance, the eigenvector
spatial filtering approach in Griffith (2003) eliminates the spatial autocorrelation by nonpara-
metric methods. These filters can then be used in parametric regression models.

7In this paper, we consider only the unconstrained gravity model version. See Davies and
Guy (1987) for singly- and doubly-constrained versions corresponding to the family of gravity
models identified in Wilson (1971).

8For a more detailed discussion of the link between the exponential model and the multiplica-
tive form, see Fischer and Wang (2011, pp. 53-59).

9Note that we consider a log-additive gravity model with a power deterrence function. Thus,
the mean parameter µi is logarithmically linked to a linear combination of the logged origin-
specific and destination-specific characteristics and the logged distances between origins and des-
tinations. Accordingly, the coefficient estimates reflect elasticity responses of origin-destination
flows to the various origin, destination, and origin-destination characteristics.

10The restriction that the variance equals the mean in a Poisson specification usually is called
equidispersion (see Cameron and Trivedi 1998, p.4).

11Note that Z = (ιN Xd Xo D) and β = (α γd γo δ)′.
12Thus, the total number of parameters for the model is K = K1 +K2 +K3 + 1.
13We do not consider the third type of spatial dependence of LeSage and Pace (2008) in flows

which would be present if observed flows from an origin region r to a destination region j are
negatively or positively correlated with flows from regions neighboring the origin region r to
regions neighboring the destination region j, say flows from regions r′ and r′′ to regions j′ and
j′′, which they label origin-to-destination dependence.
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14From an econometric perspective, other normalisation procedures, such as the maximum
absolute eigenvalue normalisation, also are possible.

15We focus on an econometric solution to the problem of including spatial autocorrelation in the
data generating process (DGP). However, a spatially autocorrelated (at least in an econometric
sense) Poisson data generating process may not exist from a statistical point of view, because a
spatially autocorrelated variable has non-integer outcomes. One possibility for a Poisson process
that has some properties of a spatially autocorrelated process would be to generate a Poisson
distributed vector with the mean (I−ρdWd−ρoWo)

−1 exp(Xβ). Such a ’statistical’ DGP would
share the same interpretation as our proposed econometric DPG, and our nonlinear least squares
estimation framework could be applied to it as well without any modifications. However, because
exp(Xβ) is by construction positive, only negative spatial autocorrelation parameters can assure
a non-negative mean which is required, per definition, for a Poisson distribution outcome.

16We assume that the inverse of (IN − ρdW
′

d − ρoW
′

o) exists.
17The terms overdispersion and underdispersion refer to E[y] < V ar[y] and E[y] > V ar[y],

respectively. Two types of overdispersion might exist in a data generating process. First, the
data can be overdispersed, as often is found in empirical discrete data sets. The second type can
be observed if the data are spatially autocorrelated. The estimator proposed in this paper deals
with both types of overdispersion. Therefore, we do not distinguish between the two throughout
the paper.

18Darker colours at the lower left of the graph indicate underdispersion, whereas brighter
colours at the upper right indicate overdispersion. The specific colour does not matter (if, for
instance, the paper is viewed in gray tones), because we know which combination of values of ρo
and ρd lead to over- or underdispersion.

19Similar to linear models, the interpretation of the model parameters does not depend on
the underlying distributional assumptions of the model. Therefore, we outline the interpretation
of the model for a more general model class, covering all models with strictly positive mean
realisations.

20The explanatory variable matrix Z is already logged and therefore Eq. (21) represents the
elasticities and not semi-elasticities. Additionally, µ is always strictly positive, by construction,
and therefore log(E[y]) is well defined.

21The likelihood for a multivariate Poisson distributed variable in our case is given by
∑

y∗∈M

N∏
i=1

exp(−µi)µi
y∗

i

y∗

i
! , with M = (IN − ρd,0Wd − ρo,0Wo) y. In order to calculate the likeli-

hood, recursive algorithms are needed, such as in Karlis and Meligkotsidou (2005). However,
these algorithms are much more computationally time consuming than the approach we suggest
in this paper.

22Again, we refer to both types of overdispersion that might be present in discrete data (first
type), and that is possible spatial autocorrelation (second type).

23A sufficient condition is |ρd,0|+ |ρo,0| ≤ 1.
24For instance, our estimator yields efficient results given a Poisson or Negative Binomial

distribution. However, our method is inefficient given distrubtions like Cauchy, which has no
finitely defined moments.

25This reflects only one of the necessary assumptions in order for the NLS estimator to be
consistent. For a detailed list of all assumptions, see Pötscher and Prucha (1997). Additionally,
for assumptions regarding least distance estimators in general, and NLS for spatial autoregressive
DGP in particular, see Jenish and Prucha (2012).

26Thus, X1, X2, D ∼ N (0, 1), with K1 = K2 = K3 = 1.
27The subscripts hi denotes high, lo low and zero no spatial autocorrelation.
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28The typical element in Wcont, wcont,r,j = 1 if regions j and r are contiguous, and wcont,r,j = 0
otherwise. This neighborhood structure corresponds to the case where regions are ordered along
a straight line (as in LeSage and Pace 2009, p. 9).

29The typical element in Word, word,r,j = 1 if region j is one of the six nearest neighbors of r,
and word,r,j = 0 otherwise.

30The optimization time increases with the density of the spatial weight matrix W .
31Computational time is based on a 3.3 GHz x86 machine with 8 GB of RAM running Matlab

7.11.0.
32The mean percentage bias for ρ0 is calculated accordingly.
33Intra-zonal distances were set to zero.
34Note that the size of this coefficient is not negligible given our parameter restriction that the

sum of both spatial lag coefficients is less than one.
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Appendix: Poisson distributions with different pa-

rameter values and spatial autocorrelation pat-

terns

To illustrate the impact of the magnitude of the β parameter on the distributional
form of y, consider the following experiment. We created realisations of Poisson
distributions with low (corresponding to β0,low) and high means (corresponding
to β0,high) with either no spatial autocorrelation (ρd,0 = ρo,0 = 0) or substantial
positive spatial autocorrelation (ρd,0 = ρo,0 = 0.4)35. For this simulation, we
used a simple first-order contiguity neighborhood matrix Wcont. Furthermore, we
chose a sample size of n = 100, corresponding to N = 10, 000 realisations from
y∗ ∼ P(exp(Zβ)) and its corresponding y = (IN − ρdWd − ρdWo)

−1y∗. Figure 3
portrays the resulting four graphs.
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Figure 3: Distribution of y for different means and spatial dependence levels
Remarks: n=100, W = Wcont.
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For ease of visual comparison, we restrict the horizontal axes of the four graphs
to a maximum value of 50. The upper parts of the figure, (a) and (b), show the
distribution plots of y for the case of no spatial autocorrelation for a Poisson
distribution with (a) a low mean β0,low = (0.5, 0.3,−0.7) and (b) a high mean
β0,high = (2.5, 1.5,−0.7), respectively. Sample means of the simulated distribu-
tions are given in brackets below of each figure. The highest five realisations of y
from a typical distribution of type (a) are between 25 and 30, whereas of type (b)
they are between 30,000 and 85,000. Still, both distributions show a high probabil-
ity of small realisations. Introducing spatial autocorrelation in the distributions,
shown in Fig. 3 (c) and (d), a rather different picture emerges. Due to the spatial
autocorrelation, the probability of very small realisations decreases significantly.
The sample mean of y for an underlying Poisson distribution with low mean in-
creases from (a) 1.5 to (c) 7, and for a distribution with high mean from (b) 104
to (d) 508, when spatial autocorrelation is present. The five largest realisations of
these typical distributions are between (c) 35 and 45, and (d) 45,000 and 95,000.
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