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Abstract

This paper examines the optimal environmental policy in a mixed oligopoly

when pollution accumulates over time. Specifically, we assume quantity compe-

tition between several private firms and one partially privatized firm. The optimal

emission tax is shown to be independent of the weight the privatized firm puts on

social welfare. The optimal tax rule, the accumulated stock of pollution, firms’

production paths and profit streams are identical irrespective of the public firm’s

ownership status.
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Introduction

In recent years, the theoretical analysis of environmental policy under imperfect com-

petition has received large attention(see Requate , 2005, for an excellent survey). A

first strand of the literature focuses on the regulation of flow pollutants. In this con-

text, it has been shown that the optimal tax policy should be designed so as to balance

two effects of taxation. On the one hand, taxation increases social welfare by reduc-

ing polluting emissions and thus environmental damage. But, on the other hand, it

is harmful because it induces private firms to reduce their already suboptimal output

level. This trade-off was first disclosed by Buchanan (1969) and then formally studied

by Barnett (1980) and Misiolek (1980). They found that the optimal tax is less than

marginal external damage under monopolistic competition. Ebert (1991), Katsoulacos

and Xepapadeas (1996) and Lee (1999) proved that this result remains valid under

oligopoly. However, when additional externalities are taken into account (such as en-

dogenous entry, Katsoulacos and Xepapadeas , 1995, or inter-firm externalities Yin ,

2003), the optimal tax rate may exceed marginal damage.

A second strand of the literature examines the regulation of stock pollutants. Since

pollution accumulation generates present as well as future damages, inter temporal ex-

ternalities must be taken into account in analysing the optimal environmental policy.
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A natural way to do this is to model the interaction between the regulator and the in-

dustry as a Stackelberg differential game with the regulator as the leader. Building

on the literature on efficiency-inducing taxation1, Benchekroun and Van Long (1998)

studied corrective taxation for polluting oligopolists. They showed that there exists a

time-independent tax rule that induces firms to follow the socially optimal production

path. The parameters of the optimal markovian tax rule depend on whether firms use

open-loop or closed-loop strategies. However, in both cases, the tax rule exhibits in-

tuitively appealing properties. First, since the tax rule is time independent, it satisfies

strong time-consistency requirements; i.e., subgame perfectness. Therefore, even if the

government is unable to commit to the entire time-path of taxation, the announced tax

rule is credible and cannot be manipulated by the firms. Second, the tax rate is increas-

ing in the pollution stock. Thus, it conforms with the idea that the marginal rate of

taxation should increase as the environmental problem becomes more stringent.

When the market is competitive enough, a pollution tax is always optimal. However,

as a result of the tradeoff between pollution (which generates environmental damages)

and market power (which reduces social welfare because of higher prices and lower

output), it may be optimal to subsidize production in the initial time period when there

are just a few firms and the stock of pollution is low. Furthermore, and quite surpris-

ingly, it may still be optimal to subsidize production when the laissez-faire output level

exceeds the socially optimal one at all points of time. The reason for this is simple. A

reduction in current industrial production induces positive intertemporal externalities

in the form of reduced future environmental damages. In order to capture these posi-

tive externalities, the corrective tax rule may consist initially in a subsidy that decreases

as industry output increases and turns into a tax when the stock of pollution becomes

large. In that case, the progressive nature of the corrective tax system provide firms

with an incentive to reduce their current outputs in order to keep the benefits of the

subsidy and postpone the coming of the tax.

Most analyses of the regulation of polluting firms have assumed private firms2. This

assumption ignores an important feature of a number of regulatory settings: the active

role of public and (partially) privatized firms as providers of goods and services. As

a result of the process of market liberalization in Western Europe (through which pri-

vate firms are allowed into markets that were previously monopolized by state-owned

enterprises) and of the transition process in the countries comprising the former So-

viet Union, Eastern Europe and Asia (of which privatizing state-owned enterprises is

an essential part), mixed market structures are becoming increasingly common. Ac-

tually, public firms compete with private firms in many highly polluting sectors such

as energy supply, transportation, iron and steel, chemicals and petrochemicals. They

are responsible for releasing large amounts of toxic compounds that accumulates in the

environment causing present as well as long-term environmental damages. Thus, the

issue of the environmental regulation of mixed markets deserves important considera-

tion.

The purpose of this paper is to analyse efficiency-inducing taxation when the market is

served by private and public (or partially privatized) providers. In this connection, we

would like to address two questions. First, we want to understand how the mixed mar-

ket structure affects the design of the optimal corrective tax. Second, we are interested

in the welfare effect of privatization when optimal taxation is used before and after
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privatization. With these purposes in mind, we introduce a partially privatized firm in

the model studied by Benchekroun and Van Long (1998). In line with the literature on

mixed oligopolies, we assume that firms with different ownership structures differ in

their aims. Since the privatized firm is partly privately owned and partly state-owned,

it cannot be assumed to be either exclusively profit oriented or exclusively welfare ori-

ented. Rather, its objective should reflect the different interests of its public and private

shareholders. Following Bös (1991) and Matsumura (1998) we describe the payoff

function of the privatized firm as a weighted average of social welfare and its own

profit3; i.e., f = (1−θ)w+θπ . In this formulation, the weight θ ∈ [0,1] measures the

extent of privatization.

We obtain an irrelevance result that might seem counter-intuitive at first glance. Namely,

we find that the optimal linear markovian tax rule which decentralizes the social opti-

mum as an open-loop Nash equilibrium of the differential oligopoly game is indepen-

dent of θ , the degree of privatization of the public firm. Thus, the optimal environmen-

tal policy tells us that technologically identical firms must be taxed the same whatever

their ownership status. Furthermore, this result is robust to changes in the informa-

tion structure of the differential oligopoly game considered4. Indeed, the optimal tax

rule remains independent of the extent of privatization if we assume that oligopolists

use closed-loop strategies. Turning to the welfare effects of privatization, we prove

that welfare is unchanged by privatization when the optimal tax rule is used. This re-

sult stems directly from the fact that the social optimum is independent of θ and thus

unique.

Our irrelevance result suggests that mixed oligopolies and private oligopolies should

not differ substantially in terms of economic and environmental performance if pol-

lution charge programs are correctly designed. This result seems consistent with ex-

perience and empirical evidence which indicate that the economic and environmental

consequences of privatization reforms are mixed and vary substantially across sectors

and countries5. Privatization conveys promises of increased productive efficiency and

more efficient use of resources, improved access to capital markets and greater invest-

ments in cleaner technologies, better management practices and easier access to mar-

kets for environmentally friendly goods and services. However, it also involves costs.

For example, the decrease in supply as a result of the exercise of increased market

power may result in a larger economic deadweight loss. In most cases analysed to date,

the quality of environmental regulations and commercial pressure have been playing a

preeminent role in the successes and failures of privatization reforms. Environmental

tax exemptions or lax environmental regulations have resulted in poor environmental

performance, whatever the ownership structure of the industry (e.g., Lovei and Gentry

, 2002).

This paper contributes to the literature on the interaction between privatization policy

and other policy instruments. Starting with White (1996) a number of irrelevance

results has been established in the context of static mixed oligopoly models. In the

linear-quadratic case, Poyago-Theotoky (2001) showed that the optimal output sub-

sidy is identical and profits, output and social welfare are also identical irrespective of

whether (i) a public firm moves simultaneously with n private firms or (ii) it acts as

a Stackelberg leader or (iii) all firms, public and private, behave as profit maximizers.

Myles (2002) extended this result to general inverse demand and cost functions and
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Sepahvand (2004) to mixed markets open to foreign competition. Claude and Hin-

driks (2006) proved that the irrelevance result suggested by White (1996) remains

valid when partial privatization is explicitly allowed. When several private firms with

profit objectives compete with one partially privatized firm maximizing a weighted av-

erage of social welfare and its own profit, the optimal subsidy is identical irrespective

of the weight the privatized firm puts on social welfare. The unicity of the social opti-

mum implies that profits, output levels and social welfare are also identical irrespective

of whether (i) the partially privatized firm moves simultaneously with n private firms

or (ii) it acts as a Stackelberg leader or (iii) all firms, public and private, behave as

profit maximizers. This paper shows that a similar irrelevance result obtains when

production generates polluting emissions which accumulate over time and the optimal

environmental tax rule is used to regulate pollution. To the best of our knowledge, it is

the first irrelevance result obtained in an explicitly dynamic regulatory setting.

The remainder of this paper is organized as follows. Section 1 describes the basic

model and characterizes the social optimum. Optimal corrective tax rules are derived

for open-loop and closed-loop mixed markets in sections 3 and 4, respectively. Section

5 concludes the paper.

1 The model

Consider a mixed market consisting of one public firm (indexed by 0) and n identical

private firms (indexed by 1,2, ...,n). Market competition takes place à la Cournot-Nash

over the continuous time period [0,∞[. In each period, firms face a downward sloping

inverse demand function p = P(Q) where Q ≡ ∑
n
i=0 qi with qi denoting the quantity

produced by firm i. Let the total cost function of firm i be Ci(qi) with Ci(0) = 0,

C′
i(qi) > 0 and C′′

i (qi) ≥ 0. We assume that technology is identical across private

firms; i.e., Ci(q) = C1(q),∀q > 0 and ∀i = 1,2, . . . ,n. However, we leave open the

possibility of a cost-asymmetry between public and private firms by assuming that

C0(q)≥C1(q), ∀q > 0. There is no capacity constraint and entry by additional firms is

supposed to be effectively blocked.

Production of good q generates polluting emissions, which accumulates over time in

the ambient environment. Without loss of generality, we assume that firm i’s level of

polluting emission is ei = qi. Furthermore, no pollution abatement technology is avail-

able so that firms can only reduce emissions by reducing output. Assuming a constant

rate of decay, the dynamics of the accumulated stock of pollution S is described by

dS(t)

dt
≡ Ṡ(t) = Q(t)−δS(t), S(0) = S0 ≥ 0, (1)

where the coefficient δ > 0 reflects the environment’s self-cleaning capacity and S0 is

the initial size of the pollution stock.

The welfare of society at time t depends on the current vector of production decisions

q(t) = (q0(t),q1(t), . . . ,qn(t)) and the current stock of pollution S(t). It is measured by

the sum of consumers’ and producers’ surplus less environmental damages. At time t
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social welfare is given by

w(t) =

q0(t)+∑
n
i=1 qi(t)

∫

0

P(u)du−C0(q0(t))−
n

∑
i=1

Ci(qi(t))−D(S(t)), (2)

where the damage function D(.) measures the economic loss resulting from the current

stock of pollution S(t). It is assumed that the function D(S) satisfies the following re-

strictions: D(0) = 0, D′(0) = 0, and D′(S) > 0, D′′(S) > 0,∀S > 0. Furthermore, we

assume that P(0) > C′
i(0),∀i = 0,1, . . . ,n.

In an ideal regulatory setting where the environmental regulator has direct control

over the production level of each firm, it can achieve the social optimum by choos-

ing time-paths of production for each firm so as to maximize social welfare. Let

r denote the social rate of discount. The optimal allocation of production q∗(t) =
(q∗0(t),q

∗
1(t), . . . ,q

∗
n(t)) is found by solving

max
q(t)≥0

W =
∫ ∞

0
w(t)e−rtdt, (3)

subject to the stock dynamics described by Equation (1).

In actual practice however the environmental regulator lacks the authority to enforce

the social optimum directly. Therefore, we assume that it seeks to implement the social

optimum indirectly by relying on fiscal policy. Following Benchekroun and Van Long

(1998), we suppose that the regulator uses linear Markov tax rules to regulate pollution.

Namely, we assume that each firm is charged a tax τi[S(t)] per unit of output, where

the unit tax depends only on the current pollution stock S(t).
The timing of the environmental regulation game is as follows. Prior to market com-

petition, the regulator announces the markovian tax scheme τ(S) = (τ0(S), τ1(S), . . . ,

τn(S)) that will be applicable to the firms. Then, firms engage in Cournot competition

at each subsequent instant of time t ∈ [0,∞[ taking as given the tax policy followed by

the regulator.

In the remainder of this section, we define firms’ objective functions, specify the infor-

mation structure of the dynamic oligopoly game and state the problem that the envi-

ronmental regulator must solve to characterize the optimal tax scheme.

The polluting oligopoly

Let us assume that the environmental regulator imposes a tax τi(S) on each unit of

pollution produced by firm i (i = 0,1,2, . . . ,n). Then, firm i’s instantaneous profit level

is

πi(t) = P[qi +Q−i(t)]qi −Ci[qi(t)]− τi[S(t)]qi(t), (4)

where Q−i(t) ≡ −qi(t)+ ∑
n
i=0 qi(t). In this paper we abstract from agency problems

between the regulator, private shareholders and the management of the public firm in

order to concentrate on the difference between private and public firms’ objectives. Pri-

vate firms are considered to be profit maximizers while the privatized firm is assumed

to behave differently. Following Bös (1991), we assume that the privatized firm’s ob-
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jective reflects the conflicting interests of its public and private shareholders. A natural

way to formalize this idea is to assume that the privatized firm’s instantaneous objective

is a weighted average of social welfare and its own profit

f0(t) = (1−θ)w(t)+θ π0(t), (5)

where θ ∈ [0,1]. In this formulation, the weight (1−θ) describes the extent to which

the government is able to control the behavior of the public firm through the shares

that it has retained 6. If θ = 1 the privatized firm behaves as a private oligopolist;

i.e., it is exclusively profit oriented. If θ = 0 the privatized firm behaves as a welfare-

maximizing public firm and strictly adheres to the objective of the environmental regu-

lator. In the remainder of this paper θ is assumed to be exogenously given and readily

observable by the firms.

Firms long-term objectives are as follows. Each private firm i seeks to maximize its

aggregated profit, defined as the value Πi of its stream of discounted short-run profits:

Πi =
∫ ∞

0
πi(t)e

−rtdt. (6)

By contrast, the privatized firm seeks to maximize the value F0 of its stream of dis-

counted short-run payoffs:

F0 =
∫ ∞

0
f0(t)e

−rtdt. (7)

The specific sets of strategies that are available to the firms depend on the informa-

tion structure of the game. In this paper we restrict our attention to open-loop and

closed-loop information structures. Under an open-loop information structure, firms

are unable to observe the current state of the game. Consequently, they condition their

strategies only on time. Namely, each firm i (i = 1, . . . ,n) uses an open-loop strategy;

i.e., a decision rule of the form qi(t) = φi(t). By contrast, under a closed-loop infor-

mation structure, firms are able to observe the current state of the game and use this

information to revise their strategies at each point of time. Each firm i (i = 1, . . . ,n)
uses a closed-loop strategy; i.e., a decision rule of the form qi(t) = φi(S(t)). Whatever

the information structure considered, the relevant equilibrium concept for the analysis

of the dynamic oligopoly game is the Nash equilibrium. Let us recall that an open-loop

(closed-loop) Nash equilibrium is a profile of open-loop (closed-loop) strategies that

are mutual best responses.

The environmental regulator

At a prior stage the environmental regulator determines the system of linear Markov tax

rules τ(S) = (τ0(S), . . . ,τn(S)) to regulate pollution. Having determined firms’ optimal

behaviors in the oligopoly subgame, it selects the tax scheme τ(S) so as to maximize
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social welfare. Formally, the optimal tax scheme τ̂e(S) is obtained by solving

max
τ(S)

W e =
∫ ∞

0
we(t)e−rtdt, (8)

s.t. Ṡ(t) = Q(t)−δS(t),S(0) = S0 ≥ 0,q(t) ≥ 0. (9)

where the superscript e ∈ {ol,cl} indicates whether variables are evaluated at the open-

loop or closed-loop Nash equilibrium of the underlying dynamic oligopoly game. Note

that taxes appear in expression (8) both as a revenue for the state and as an expenditure

for the firms. Thus, the direct effect of taxation on social welfare is zero. However,

taxation has an indirect effect on aggregated social welfare through its effect on firms’

equilibrium output levels.

2 The Social Optimum

Before analysing the environmental regulation game, it is useful to characterize the

social optimum where firms can be directly controlled by the regulator. This solution

provides a relevant benchmark against which the outcome of the environmental regula-

tion game will be evaluated. It can be obtained by solving the infinite-horizon optimal

control problem (3) with the stock of pollution S(t) as state variable and individual

output levels qi(t) as control variables. First we derive the necessary and sufficient

conditions for optimality. Second we characterize the steady state solution.

The current value Hamiltonian for this problem is defined as 7

Hr =
∫ Q

0
P(u)du−C0(q0)−

n

∑
i=1

Ci(qi)−D(S)+λr (Q−δS) (10)

where λr denotes the costate (or adjoint) variable associated with Ṡ. Assuming inte-

rior solutions, the maximum principle implies the following necessary and sufficient

optimality conditions

∂Hr

∂qi

= 0, −λr = P(Q)−C′
i(qi), ∀i = 0, . . . ,n, (11)

along with the adjoint equation

λ̇r = λrr−
∂Hr

∂S
= λr(r +δ )+D′(S), (12)

the dynamic process of pollution accumulation (1) and the transversality condition

lim
t→∞

e−rtλr(t)S(t) = 0. (13)

From the short-run optimality conditions (11), the costate variable λr is negative: it

can be interpreted as the shadow cost of the accumulated pollution stock. Furthermore,
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solving these conditions yields

C′
i(qi) = C′

j(q j), ∀i = 0,1, . . . ,n. (14)

Optimality requires that the aggregate output be produced at least cost. Therefore, op-

timality requires that marginal costs of the last unit of output be equal across firms.

Using (11) and (14) to eliminate the social shadow cost from (12), we obtain the fol-

lowing system of equations

P′(Q)Q̇−C′′
i (qi)q̇i = (r +δ )[P(Q)−C′

i(qi)]−D′(S), ∀i = 0,1, . . . ,n. (15)

We now look for a steady state solution to the dynamical system defined by (1) and (15),

i.e., a vector (Ŝ∞, q̂∞
0 , q̂∞

1 , . . . , q̂∞
n ) such that the pollution stock S and individual output

levels (q0,q1, . . . ,qn) do not change over time. The steady state solution is obtained by

setting Ṡ = 0, and q̇i = 0,∀i = 0,1, . . . ,n in the system (1) and(15), summing over all

i and solving for (Ŝ∞, q̂∞
0 , q̂∞

1 , . . . , q̂∞
n ). There exists a unique optimal steady state stock

of pollution and industry output level and it is defined by:

(q̂∞
0 +

n

∑
i=1

q̂∞
i ) = Q̂∞ = δŜ∞ (16)

where Ŝ∞ satisfies the following equation

P(δ Ŝ∞) = C′
i(q̂

∞
i )+

D′(Ŝ∞)

r +δ
(17)

and the respective share of each firm in the steady state industry output is given by the

condition C′
i(q̂

∞
i ) = C′

j(q̂
∞
j ), ∀i, j(i 6= j) ∈ {0,1, . . . ,n}.

Condition (17) establishes that the socially optimum output should be chosen so that

marginal benefits equal marginal production costs plus the present value of marginal

external damages. It can be clearly seen from above that firms’ ownership structure is

immaterial from the point of view of the social planner. Indeed, social optimality re-

quires exclusively that allocative efficiency and cost efficiency conditions be satisfied.

The optimal control rule can be expressed as a function of the optimal level of accu-

mulated pollution S. The so-called feedback control rule Q̂(S) determines the current

optimal aggregate level of production Q as a function of the current stock of pollution.

As an illustration, we consider the following linear-quadratic specification of the model

with linear inverse demand, quadratic damage cost and quadratic production costs

P(Q) = α −βQ, D(S) =
γ

2
S2, C0(q0) =

c0

2
q2

0, Ci(qi) =
c1

2
q2

i ,∀i 6= 0, (18)

where α , β , γ , c0 and c1 are positive constants. The steady-state is

Ŝ∞ =
α(r +δ )

γ +δ (r +δ )(β + c0c1/(nc0 + c1))
and Q̂∞ = δ Ŝ∞. (19)
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The feedback control rule Q̂(S) is

Q̂(S) = Q̂∞ +(ρe +δ )[S− Ŝ∞] = (ρe +δ )S−ρeŜ∞, (20)

where ρe is the negative root of the characteristic equation

ρ2 − rρ − Jγ − rδ −δ 2 = 0, with J =
1

(β + c0c1/(c1 +nc0))
. (21)

Finally, we have

q̂0(S) =
c1

(nc0 + c1)
Q̂(S), q̂i(S) =

c0

(nc0 + c1)
Q̂(S), ∀i 6= 0. (22)

3 Open-loop mixed oligopoly

In this section we assume that firms are unable to revise their production paths once

they have made their choices; i.e., we assume an open-loop information structure. An

open-loop Nash equilibrium is a profile of open-loop strategies such that no firm wishes

to revise its strategy choice given the strategy choices of its rivals. From this definition,

it follows that each private firms i (i = 1, . . . ,n) chooses its time-path of production

qi(.) so as to solve (6) taking as given the production paths of all other players and

the tax rule τi(S). Similarly, the partially privatized firm chooses the time path of

production q0(.) which solves problem (5) taking as given the production paths of all

other players and the tax rule τ0(S). Under an open-loop information structure, current

value Hamiltonians for the firms are given by

Hi = πi +λi (qi +Q−i −δS) , ∀i = 1, . . . ,n, (23)

H0 = (1−θ)W +θπ0 +λ0(q0 +Q−0 −δS). (24)

The open-loop Nash equilibrium requires that the optimality conditions of the (n +
1) optimal control problems hold simultaneously. Assuming interior solutions, the

necessary conditions for optimality are given by

∂Hi

∂qi

= P′(Q)qi +P(Q)−C′
i(qi)− τi(S)+λi = 0, ∀i 6= 0, (25)

∂H0

∂q0
= P(Q)−C′

0(q0)+λ0 +θ
[

−τ0(S)+q0P′(Q)
]

= 0, (26)

λ̇i = λir−
∂Hi

∂S
= λi(r +δ )+ τ ′i (S)qi, ∀i 6= 0, (27)

λ̇0 = λ0r−
∂H0

∂S
= λ0(r +δ )+θτ ′0(S)q0 +(1−θ)D′(S), (28)

together with (1) and the (n+1) transversality conditions

lim
t→∞

e−rtλi(t)S(t) = 0, ∀i = 0,1, . . . ,n. (29)
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Using (25) to eliminate the shadow cost λi from (27) the following conditions obtain,

P′′Q̇ qi +P′q̇i +P′Q̇−C′′
i q̇i − τ ′i Ṡ = (r +δ )[P′qi +P−C′

i − τi]− τ ′i qi, (30)

∀i = 1, . . . ,n where P = P(Q), C′
i = C′

i(qi) and τi = τi(S). Similarly, from (26) and

(28), the following condition obtains

C′′
0 q̇0 −P′Q̇+θ

[

τ ′0Ṡ−P′′Q̇q0 −P′q̇0

]

= (1−θ)D′ +θτ ′0q0

+(r +δ )
[

C′
0 −P+θ

(

τ0 −P′q0

)]

(31)

We proceed with the stability analysis of the system defined by (30) and (31) together

with (1). We look for a steady state solution where the stock of pollution S(.) and indi-

vidual output decisions q = (q0(.),q1(.), . . . ,qn(.)) remain constant over time. Steady

state conditions for an open-loop Nash equilibrium are obtained by setting Q̇ = 0 and

q̇0 = q̇1 = · · · = q̇n = 0 in (30) and (31). It comes that the open-loop Nash equilibrium

steady state pollution stock S∞
ol must satisfy the following system of (n+1) equations

(r +δ )(C′
i −P) = (P′qi − τi)(r +δ )− τ ′i qi, ∀i = 1, . . . ,n, (32)

(r +δ )(C′
0 −P)+D′ = θ

[

(P′q0 − τ0)(r +δ )− τ ′0q0 +D′
]

. (33)

where arguments have been omitted for sake of brevity.

Now we are in a position to study how the environmental regulator can decentralize

the social optimum as an open-loop Nash equilibrium of the dynamic game played by

the firms. The regulator designs the tax scheme τ(S) so that firms optimality condi-

tions match the socially optimal conditions. To begin with, we restrict our attention to

open-loop Nash equilibrium conditions. First we derive the condition that τi(S) must

satisfy in order to induce a given private firm i to behave in accordance with the social

optimum. By comparison of (30) with (15) the following condition obtains

τ ′i Ṡ−P′′Q̇qi −P′q̇i − (r +δ )(τi −P′qi)+D′− τ ′i qi = 0 (34)

where arguments have been omitted to save space. Second we derive the correspond-

ing condition for an optimal regulation of the partially privatized firm. Comparing

conditions (31) and (15) yields

τ ′0Ṡ−P′′Q̇q0 −P′q̇0 − (r +δ )
(

τ0 −P′q0

)

+D′− τ ′0q0 = 0. (35)

Now, we proceed by considering steady state conditions for an open-loop Nash equi-

librium. From section 2, we know that (r +δ )(C′
i −P(δ Ŝ∞))+D′(Ŝ∞) = 0. Therefore,

conditions (32) and (33) rewrites as

P(δ Ŝ∞) = C′
i + τi(Ŝ

∞)+qi(Ŝ
∞)

[

τ ′i (Ŝ
∞)

(r +δ )
−P′(δ Ŝ∞)

]

, (36)

∀i = 0, . . . ,n. The profile of markovian tax rules τ(S) must satisfy conditions (34) and

(35) and τ(Ŝ∞) must satisfy the n + 1 steady state conditions for an open-loop Nash

equilibrium (36). Clearly, these conditions are independent of θ . We thus obtain the
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irrelevance result stated in the following proposition:

Proposition 1 When the environmental regulator uses efficiency inducing taxation in

order to regulate a polluting oligopoly, the optimal linear-Markov taxation scheme, the

time-path of pollution accumulation, firms’ time-paths of production and profit streams

are identical irrespective of whether i) all (n+1) firms behave as profit maximizers or

ii) a partially privatized firm competes in quantities with n private firms.

Remark 1 Let us observe the formal relationship that relates the long-run optimal

tax to the optimal corrective policy that would obtain in a static setting. Assuming

an unitary emission output ratio, environmental damage can be writen as a function

of the aggregate industry output so that social welfare becomes W =
∫ Q

0 P(u)d u −

∑
n
i=0 Ci(qi)−D(Q) and the socially optimal allocation is now determined by

P(Q)−C′
i(qi)−D′(Q) = 0, ∀i = 0,1, . . . ,n. (37)

Suppose that firms are charged a tax τi per unit of emissions so that firm i’s tax bill is

τiqi. Under Cournot competition, the firms’ first order conditions are then given by

P(Q)−C′
0(q0)− (1−θ)D′(Q)+θ [−τ0 +P′(Q)q0] = 0, (38)

P(Q)+P′(Q)qi −C′
i(qi)− τi = 0, ∀i = 1,2, . . . ,n. (39)

Straightforward comparisons of the firms first-order conditions with the social optimum

reveal that the optimal tax is

τi = D′(Q)+P′(Q)qi, ∀i = 0,1, . . . ,n. (40)

A similar expression could have been derived from equation (36) by writing off the

actualisation parameter (r = 0), assuming that polluting emissions are instantaneously

assimilated by the environment (δ = 1) and replacing the tax rule τi(S) by a per unit

tax τi. It is important to note that proposition 1 not only shows that the optimal tax

rule is independent of θ at the steady state–as intuitions from the static model would

suggest–but also, and more surprisingly, all over the planning period.

The basic intuition for proposition 1 is simple. To begin with, we restrict our atten-

tion to the two limiting cases: the regulation of a private oligopoly and that of a pure

mixed oligopoly. The first is obtained by setting θ = 1 in the objective of the public

firm. In this case, the public firm is a profit maximizer and the problem boils down

to the regulation of a private polluting oligopoly. From Benchekroun and Van Long

(1998), we know that there exists an optimal tax rule which induces firms to follow the

socially optimal production path. The second is obtained by setting θ = 0. In this case,

the privatized firm maximizes aggregated social welfare. Corrective taxation does not

affect the output decision of the public firm directly; the tax only affects the behavior

of the public firm through its effect on private firms’ output levels. Now, suppose that

the regulator uses the tax rule obtained in the private oligopoly case to regulate the

pure mixed oligopoly. Then, private firms follow the optimal production path. Since

the public firm seeks to maximize social welfare, its best response to the behavior of

11



private firms is also to follow the socially optimal production path.

Now let us consider intermediate cases; i.e., θ ∈]0,1[. In these cases, the partially pri-

vatized firm deviates from strict welfare maximization. However, its behavior is not

exclusively profit oriented. Suppose that the regulator uses the tax rule obtained in the

private oligopoly case to regulate the mixed market. Now, corrective taxation affects

the behavior of the public firm directly since it appears in its profits. Public and private

owners of the public firm have an common interest in following the socially optimal

production path. Indeed, it would be the policy chosen by the public shareholders if

they were the unique owners of the privatized firm and the choice of private share-

holders if they were the unique owners of the privatized firm. As an illustration, we

characterize the linear-Markov tax policy in two special cases: first, under the assump-

tion that all firms (public and private) use the same technology; and second, under the

linear-quadratic specification introduced in section 2.

Identical Firms

Consider the special case where all firms are identical in costs and technology so that

Ci(qi) = C(qi),∀i = 0,1, . . . ,n. Productive efficiency requires that all firms choose

identical output levels at each instant of time: qi(t) = q(t),∀i = 0,1, . . . ,n. Let us

assume at the outset that technologically identical firms face the same tax treatment;

i.e., τi(S) = τ(S),∀i = (0,1, . . . ,n). By summing equations (34) and (35), we get:

(n+1)τ ′Ṡ−P′′Q̇Q−P′Q− (r +δ )
(

(n+1)τ −P′Q
)

+(n+1)D′− τ ′Q = 0 (41)

Substituting dŜ(t)/dt for Q̂(S)− δS and dQ̂(S)/dt for Q̂′(S)[Q̂(S)− δS] in equation

41 yields a first-order linear differential equation in τ which can be written as

τ(S)+A(S)τ ′(S) = B(S) (42)

where

A(S) =
((n+1)δS−nQ(S))τ ′(S)

(n+1)(r +δ )
(43)

B(S) = −
D′(S)

(r +δ )
−

Q(S)

(n+1)
P′ +

Q′(S)(Q(S)−δS)(P′ +Q(S)P′′)

(n+1)(r +δ )
(44)

Summing the n+1 equations (36) yields the boundary condition

P(δ Ŝ∞) = C′ + τ(Ŝ∞)+
δ Ŝ∞

(n+1)

[

τ ′(Ŝ∞)

(r +δ )
−P′(δ Ŝ∞)

]

. (45)

The optimal tax rule τ(S) is obtained as the general solution of equation (42):

τ(S) = K exp

[

∫ S

0
−A(u)du

]

+ τ p(S) (46)

where τ p(S) is a particular solution of (42) and K is a constant determined by (45).
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Linear-quadratic specification

Now, we proceed by solving for the optimal tax rule under the linear quadratic speci-

fication introduced in section 2 for which analytical solutions can be obtained. Under

linear demand, quadratic damage cost and quadratic production costs, the optimal tax-

ation scheme τ(S) = (η∗
0 +σ∗

0 S,η∗
1 +σ∗

1 S) is given by

σ∗
0 =

γ(1+βJK)

(r +δ )+K(δ +ρe)−ρe

,η∗
0 =

ρe [σ∗
0 (K −1)+Kβ (r−ρe)] Ŝ

∞

(r +δ )
(47)

σ∗
1 =

γ(1+βJL)

(r +δ )+L(δ +ρe)−ρe

,η∗
1 =

ρe [σ∗
1 (L−1)+Lβ (r−ρe)] Ŝ

∞

(r +δ )
(48)

where K = c1/(nc0 + c1), L = c0/(nc0 + c1) and J = 1/(β + c0K), decentralizes the

social optimum as an OLNE. Note that K = L if c0 = c1. Obviously, the optimal system

of tax rules requires that public and private firms be taxed the same if they use the same

technology. In this case, it equalizes partially privatized and private firms’ production.

4 Closed-loop mixed oligopoly

The analysis of subsection 3 has confined itself to oligopolistic situations in which

firms make use of open-loop strategies. By focusing exclusively on open-loop solution

concepts, it excludes strategic interactions between firms through the evolution of the

state variable over time and the associated adjustment in controls. We now proceed by

considering the broader class of closed-loop strategies in order to prove that our irrel-

evance result is not contingent upon assumptions regarding the informational structure

of the game. Since optimality conditions for private firms are independent of θ , we

may restrict our attention to the behavior of the partially privatized firm. Now, each

firm assumes that the strategies used by its competitors are a function of the accumu-

lated stock. Accordingly, firm 0 chooses the output path q∗0(t) which maximizes its

discounted payoff F0 subject to (1) and its current value Hamiltonian is

H0 = (1−θ)

[

∫ q0+Q−0(S)

0
P(u)du−C0(q0)−

n

∑
i=1

Ci(φi(S))−D(S)

]

(49)

+θ [P(q0 +Q−0(S))q0 −C0(q0)− τ0(S)q0]+λ0 [q0 +Q−0(S)−δS]

where Q−0(S) = ∑
n
i=1 φi(S). Assuming interior solutions, the necessary and sufficient

conditions are

λ0 = (C′
0 −P)+θ

[

τ0 −q0P′
]

, (50)

λ̇0 = (1−θ)

[

n

∑
i=1

C′
iφ

′
i +D′−PQ′

−0

]

+θq0

[

τ ′0 −P′Q′
−0

]

(51)

+λ0

[

(r +δ )−Q′
−0

]

,
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and limt→∞ e−rtλ0(t)S(t) = 0, along with the dynamic process of pollution accumula-

tion (1). Assuming identical private firms and following the same steps as in section 3,

one obtains the following condition on τ∗0 (S):

Λ+Q′
−0

(

τ0 +(C′
i −P)

)

= 0 (52)

where Λ = τ ′0Ṡ−P′′Q̇q0 −P′q̇0 − (r +δ )(τ0 −P′q0)+D′− τ ′0q0 is the bracketed term

in (35). Again, we observe that this equation will be satisfied or not regardless of

the value of θ provided that it is different from zero. Following the same steps as in

section 3, it is straightforward to show that the corresponding steady state condition for

a closed-loop Nash equilibrium is independent of θ . The system of linear Markov tax

rules must satisfy a system of differential equations that is independent of θ and thus

the following proposition obtains:

Proposition 2 When the environmental regulator uses efficiency inducing taxation in

order to regulate a polluting oligopoly, the optimal linear-Markov taxation scheme, the

time-path of pollution accumulation, firms’ time-paths of production and profit streams

are identical irrespective of whether i) all (n+1) firms behave as profit maximizers or

ii) a partially privatized firm competes in quantities with n private firms.

As in section 4, the general characterization of the optimal markovian tax scheme for

the symmetric model and explicit solutions for the linear-quadratic model can be easily

derived8.

5 Conclusion

We considered efficiency-inducing taxation for a polluting mixed market in which a

partially privatized firm competes with private firms. The analysis of this paper pro-

vided some answers to hitherto neglected questions about the interaction between pri-

vatization and environmental taxation. Assuming that the partially privatized firm max-

imizes a weighted average of social welfare and its own profit, we proved that the op-

timal corrective tax scheme is independent of the weight the privatized firm puts on

its own profit; i.e., the extent of privatization. This result tells us that technologically

identical privatized and private firms should be taxed the same even if they have differ-

ent incentives to produce. It was shown that this conclusion holds with respect to the

regulation of both open-loop and closed-loop polluting oligopolies.

Turning to the welfare effect of privatization, we proved that social welfare is un-

changed by privatization when the optimal pollution tax rule is used. Actually, our

analysis showed that the optimal tax rule guides polluting oligopolists to achieve the

socially optimal production path. Since the social optimum is unique and the opti-

mal tax rule is independent of the extent of privatization, the same level of aggregate

welfare is achieved irrespective of the ownership status of the public firm.
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Notes

1See, for example, Bergstrom et al. (1981); Karp and Livernois (1992, 1994)

2An exception is Barcena-Ruiz and Garzon (2002) who examined effluent taxation in a

mixed oligopoly with a welfare maximizing public firm and several private firms.

3See also Sasaki and Wen (2001); Lee and Hwang (2003); Matsumura and Kanda (2005);

Sun, Zhang and Li (2005).

4As will be shown this result also holds in a static setting.

5For a recent survey of empirical studies of privatization, see Megginson and Netter , 2001.

Environmental implications of privatisation are extensively reviewed in Lovei and Gentry , 2002.

6Alternatively, this objective function can be interpreted in terms of strategic delegation (See

for example Vickers (1985) and Fershtman and Judd (1987)). In this second interpretation, the

government delegates the control of the public firm to a private manager and θ measures the

extent of the delegation

7We will omit the time argument t whenever this does not cause confusion.

8Detailed derivations are available upon request from the authors.

Appendix A

Social optimum in the linear-quadratic model

In this appendix we characterize the social optimum under the linear quadratic specification (18).

As a first step, we solve for the steady state level of the pollution stock. From (16) and (17), the

steady state level of pollutant stock is

Ŝ∞ =
(nc0 + c1)α(r +δ )

δ [(r +δ )(β (nc0 + c1)+ c0c1)]+ γ(nc0 + c1)
, (53)

Q̂∞ = δ Ŝ∞, q̂∞
0 =

c1

(nc0 + c1)
Q̂∞, q̂∞

1 =
c0

(nc0 + c1)
Q̂∞ (54)

We now proceed with the characterization of the unique trajectory which satisfies all necessary

conditions for optimality and ensures the convergence of S(t) to the steady state. Under the linear

15



quadratic specification, short run conditions (11) become

λr = −α +βQ+ ciqi = 0, ∀i = {0,1}. (55)

From proposition (1), we have c0q0 = c1q1. Accordingly, we have q0 = (c1/c0)q1, q0 = c1

nc0+c1
Q

and qi = c0

nc0+c1
Q. Then, using this piece of information, the system (55) reduces to a unique

equation

Q =
1

β +(c0c1)/(nc0 + c1)
(λr +α) (56)

which can be differentiated with respect to time to get

Q̇ =
1

β +(c0c1)/(nc0 + c1)
λ̇r. (57)

Using the adjoint equation (12), we rewrite as follows

Q̇ =
1

β +(c0c1)/(nc0 + c1)
(λr(r +δ )+ γS) . (58)

Finally, substituting (53) into (58) gives

Q̇ =
1

β +(c0c1)/(nc0 + c1)

(

−α +

(

β +
(c0c1)

(nc0 + c1)

)

(r +δ )Q+ γS

)

. (59)

Therefore, the Hamiltonian differential system reduces to a system of first order linear differen-

tial equations

Ṡ(t) = Q(t)−δS(t), (60)

Q̇(t) = Q(t)(r +δ )+ γJS(t)−αJ, (61)

which can be rewritten as ẏ = Ay(t)+B where y(t) = (S(t),Q(t))′,

A =

(

−δ 1

γJ (r +δ )

)

and B =

(

0

−αJ

)

. (62)

The characteristic equation of (61) is defined by det(ρI−A) = 0 where I is the identity matrix:

−(J γ)− r δ −δ 2 − r ρ +ρ2 = 0 (63)

The roots of the characteristic equation are

ρe =
r−

√

r2 +4J γ +4r δ +4δ 2

2
, ρd =

r +
√

r2 +4J γ +4r δ +4δ 2

2
(64)

Note that these two roots are real and of opposite sign, confirming a saddle point solution. The

positive root ρd corresponds to a diverging branch of the saddle point and is ruled out by the

transversality condition. It follows that there exists a unique solution of the Hamiltonian system

that converges to the saddle point for every initial stock of pollution S0. This solution corresponds

to the negative root ρe.

On the basis of ρe we can proceed to the characterization of equilibrium quantities. The optimal

evolution of S is

Ŝ(t) = (S0 − Ŝ∞)eρet + Ŝ∞. (65)
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Since Q = Ṡ +δS, firms’ equilibrium strategies are

q̂0(t) =
c1

(nc0 + c1)

[

(S0 − Ŝ∞)(ρe +δ )eρet +δ Ŝ∞
]

, q̂1(t) =
c0

c1
q̂0(t) (66)

From (65) and (66) the socially optimal feedback control rule Q̂(S) is

Q̂(S) = Q̂∞ +(ρe +δ )[Ŝ− Ŝ∞] = (ρe +δ )Ŝ−ρeŜ∞, (67)

and

q̂0(S) =
c1

(nc0 + c1)
Q̂(S), q̂1(S) =

c0

(nc0 + c1)
Q̂(S). (68)

Markovian taxation in the open-loop linear-quadratic model

In this appendix, we extend the analysis conducted in Appendix 1 and solve for the optimal tax

scheme τ(S) = (τ0(S),τ1(S), . . . ,τ1(S)) in the open-loop scenario. With this intention in mind,

we prove that differential equations (34) and (35) have solutions of the form τi(S) = ηi +σiS. Re-

placing dS/dt by Q̂(S)−δS, dQ̂(S)/dt by Q̂′(S)(Q̂(S)−δS), q̂1(S) by (c0/(nc0 +c1))Q̂(S) and

q̂0(S) by (c1/(nc0 +c1))Q̂(S), we obtain two independent first order linear differential equations

τ0(S)+A0(S)τ ′0(S) = B0(S), (69)

τ1(S)+A1(S)τ ′1(S) = B1(S), (70)

where

A0(S) =
1

(r +δ )

[

δS + Q̂

(

c1

(nc0 + c1)
−1

)]

, (71)

B0(S) =
D′

(r +δ )
+

c1

(nc0 + c1)

[

P′Q̂−
1

(r +δ )

(

P′′Q̂+P′
)

Q̂′(Q̂−δS)

]

(72)

A1(S) =
1

(r +δ )

[

δS + Q̂

(

c0

(nc0 + c1)
−1

)]

, (73)

B1(S) =
D′

(r +δ )
+

c0

(nc0 + c1)

[

P′Q̂−
1

(r +δ )

(

P′′Q̂+P′
)

Q̂′(Q̂−δS)

]

(74)

Replacing τ0(S) by η0 +σ0S, τ1(S) by η1 +σ1S, and Q̂(S) by expression (20) and collecting all

terms that have S as a common factor, equations (69) and (70) can be rewritten as

r0(σ0,η0)S + s0(σ0,η0) = 0, (75)

r1(σ1,η1)S + s1(σ1,η1) = 0. (76)

where

r0(σ0,η0) =
(r +δ )η0 +ρe [σ0(1−K)+βK(ρe − r)] Ŝ∞

(r +δ )
(77)

r1(σ1,η1) =
(r +δ )η1 +ρe [σ1(1−L)+βL(ρe − r)] Ŝ∞

(r +δ )
(78)

s0(σ0,η0) =
[−γ +σ0(r +δ −ρe)+K (σ0 +β (r +δ −ρe))(δ +ρe)]S(t)

(r +δ )
(79)

s1(σ1,η1) =
[−γ +σ1(r +δ −ρe)+L(σ1 +β (r +δ −ρe))(δ +ρe)]S(t)

(r +δ )
(80)
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Each of these equations must be satisfied for all S ≥ 0. Accordingly, for the system of linear tax

rules τ(S) = (η∗
0 +σ∗

0 S,η∗
1 +σ∗

1 S, . . . ,η∗
1 +σ∗

1 S) to be a solution of (69-70), it must hold that

r0(σ
∗
0 ,η∗

0 ) = 0, s0(σ
∗
0 ,η∗

0 ) = 0, (81)

r1(σ
∗
1 ,η∗

1 ) = 0, s1(σ
∗
1 ,η∗

1 ) = 0. (82)

Solving this system we obtain the required expressions for τ∗0 (S) and τ∗1 (S).
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