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The Two-Moment Decision Model with Additive

Risks

Abstract: With multiple additive risks, the mean-variance approach and the expected-

utility approach of risk preferences are compatible if all attainable distributions belong

to the same location-scale family. Under this proviso, we survey existing results on the

parallels of the two approaches with respect to risk attitudes, the changes thereof, and

the comparative statics for simple, linear choice problems under risks. In mean-variance

approach all effects can be couched in terms of the marginal rate of substitution between

mean and variance. We provide some simple proofs of some previous results. We apply

the theory we stated or developed in our paper to study the behavior of banking firm and

study risk taking behavior with background risk in the mean-variance model.

Key Words : Mean-variance model; location-scale family; background risk; multiple

additive risks; expected-utility approach

JEL Classification : C0, D81, G11

1 Introduction

In mean-variance (MV) or (µ, σ)-analysis, preferences over random distributions of, say,

consumption or wealth are represented by functions that depend only on the mean and

the variance (or standard deviation) of consumption or wealth. In addition to being an

intuitive tool in the analysis of decision making under uncertainty, MV preferences are

a perfect substitute for the classical expected utility (EU) approach if all attainable dis-

tributions belong to a location-scale family (Meyer, 1987). Then, risk attitudes (such

as risk aversion, prudence etc.) originally formulated in the EU-approach have conve-

1



nient analogues in terms of MV preferences (see, e.g., Meyer, 1987; Lajeri-Chaherli, 2002;

2005; Eichner and Wagener, 2003a). Moreover, as argued by Meyer (1987) and others,

the location-scale property is satisfied in a wide range of univariate economic decision

problems. Such problems, encompassing portfolio selection (Fishburn and Porter, 1976),

competitive firm behavior (Sandmo, 1971), co-insurance (Meyer, 1992), export production

(Broll et al., 2006), bank (Broll et al., 2015), and others, can then be studied equivalently

both in terms of the EU- and the MV-approach.

In their simplest form, preferences and choices under risk are analyzed under the

assumption that there is only a single source of uncertainty, a “direct” risk. The –

probably more relevant – case of multiple risks has only recently found more attention

in MV analysis. Inspired by studies on the effects of (additive) background risks on risk-

taking under the EU-hypothesis (see, e.g., Eeckhoudt et al., 1996; Caballé and Pomansky,

1997), Wong and Ma (2008) or Eichner and Wagener (2003b; 2009) analyze quasi-linear

decision problems where the MV-decision maker has faced both a direct, controllable risk

and an exogenous background risk. Eichner and Wagener (2011) study linear portfolio

choices with several risky assets. In these studies, the different risks are additive, i.e., final

wealth or consumption emerges as a linear combination of multiple random variables.1

In this paper we survey previous studies on MV preferences in the presence of several

additive risks (capturing, but not being confined to, the case of a direct risk plus a back-

ground risk). Such a linear setting is particularly suited to draw parallels between the EU-

and the MV-approach since the location-scale property often prevails and MV- and EU-

approach can be considered as perfect substitutes. Compared to the EU-approach, where

the analysis of background uncertainty is quite complex, MV-analysis with its simple

two-parameter utility functions has the advantage that all risk attitudes or comparative

statics can be couched in terms of marginal rates of substitution between risk and return,

1EU-studies with multiplicative background risks include, e.g., Franke et al. (2006).
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represented, respectively, by the variance/standard deviation and the mean.

A key feature of the two-parameter structure (in combination with additively con-

nected risks) is that it ensures that risk attitudes that have been studied for univariate

sources of risks are bequeathed also to the multiple-risks scenario. We demonstrate this

in the following way: we start from formal parallels between EU- and MV-approach,

relating, e.g., to absolute and relative risk aversion, prudence, temperance and their

monotonicity properties in univariate settings (Section 2) and then show that the at-

tending MV-concepts (in terms of marginal rates of substitution between risk and return)

are preserved with several additive risks (Section 3). In Section 3, we apply these re-

sults to study comparative statics of optimal risk-taking in the presence of (dependent)

background risks.

Most studies on additive (background) risks both in the EU- and the MV-framework

suppose that all risks are independently distributed (for exceptions, see Tsetlin and Win-

kler, 2005, or Eichner and Wagener, 2012). A particular advantage of MV-preferences is,

however, that risk attitudes and comparative statics with dependent random variables can

be dealt with relatively easily, due to the fact that the variance (or standard deviation) as

a measure of riskiness reduces – and limits – all dependence structures to just linear ones.

As we show, background risks do not pose significant analytical problems for the MV ap-

proach within its linear confines, neither for risk attitudes nor for comparative statics of

changes in the distribution and even in the dependence structure of direct and background

risks. In Sections 3 and 4 we fully characterize these features. Moreover, with the help of

the analogies between MV- and EU-approach reported in Section 2 all MV-features can

be related to results for EU-preferences. Although the results in Section 4 are actually

Propositions 1 and 2 in Eichner and Wagener (2009), our contribution here is to simplify

the related proofs and embed them into a comprehensive framework to make them easier

to understand. As a new illustration, we apply the results obtained in Section 4 to study
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the risk-taking behavior of a banking firm with background risk in the MV model.

A frequent source of concern with respect to MV analysis is the role of higher-order

derivatives of the (µ, σ)-function, the attending indifference maps or, once compatibility

with the EU-approach is assumed, of the underlying von-Neumann-Morgenstern (vNM)

utility index; such derivatives of general order n will also appear in Section 2. For the

EU-approach, studies on higher-order moments and on higher-order risk measures indeed

reveal close relations between high-order risk changes or dominance relations and higher-

order derivatives of von-Neumann-Morgenstern utility (see Chan et al. 2016 or Niu et al.

2017 for surveys). The MV framework is, by construction, confined to changes in the

first two moments. Still, concepts of (vNM) risk preferences that involve higher-order

derivatives can, in many ways, be translated into two-parameter parlance; this is simply

due to the fact that the signs of higher-order derivatives (and their combinations) convey

more and different things than just preferences towards high-order changes in risk. For

example, already Lajeri and Nielsen (2000) show that for mean-variance analysis with

normal distributions, the corresponding utility function is concave if and only if the agent

has decreasing prudence. Lajeri-Chaherli (2002) presents an economic interpretation for

the quasi-concavity of a mean-variance utility function and finds that quasi-concavity

plus decreasing risk aversion is equivalent to proper risk aversion, as coined by Pratt and

Zeckhauser (1987) in the expected utility framework. Wagener (2002) demonstrates how

prudence, risk vulnerability, temperance and some related concepts can be meaningfully

formulated in terms of two-moment, mean-standard deviation preferences. Eichner and

Wagener (2003) show the equivalence of decreasing absolute prudence in the expected

utility framework and the concavity of utility as a function of mean and variance. Wa-

gener (2003) finds that in the two-parameter approach, a number of plausible comparative

statics already emerges under the assumption of decreasing absolute risk aversion. More-

over, risk vulnerability, temperance and standardness imply, appropriately transferred
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to the mean-variance framework, the plausible effect that risk taking will be reduced if

background risks increase. Lajeri-Chaherli (2004) assumes that the agent expects two

independent, risky incomes in the future and focusses on his precautionary saving mo-

tive or equivalently consumption behavior at time zero. She finds that this framework

allows for the definition of new concepts, called proper prudence, standard prudence and

precautionary vulnerability. Eichner and Wagener (2004) show that relative risk aversion

being smaller than one and relative prudence being smaller than two emerge as preference

restrictions that fully determine the optimal responses of decisions under uncertainty to

certain shifts in probability distributions. They characterize the magnitudes of relative

risk aversion and relative prudence in terms of the two-parameter approach. They also

demonstrate that this characterization is instrumental in obtaining comparative static

results in the two-parameter setting. Eichner (2008) transfers the concept of risk vul-

nerability to mean variance preferences, showing that it is equivalent to the slope of the

mean-variance indifference curve being decreasing in mean and increasing in variance. He

also shows that mean-variance vulnerability links the concepts of decreasing absolute risk

aversion, risk vulnerability, properness, and standardness. These concepts are character-

ized in terms of mean-variance indifference curve properties and in terms of absolute risk

measures. The general equivalences presented in Section 2 are instrumental in deriving

these and potentially other relations between EU- and MV preferences (without leaving

the linear domain).

The remainder of the paper is organized as follows: Section 2 sets up the formal

framework of mean-variance preferences and their relations to the EU-approach. In that

framework, Section 3 then studies the impact of additive risks on the shapes of indifference

curves and measures for risk attitudes. Section 4 analyzes the comparative statics of

changes in risk parameters in a generic linear decision problem with additive background

uncertainty. An application to the banking firms’ risk taking behavior is also given in this
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section. Section 5 concludes.

2 MV preferences and EU-approach

2.1 General

Suppose that Y, Z . . . are random variables that denote final wealth, consumption, or

any other valued, cardinal outcome. Denote by FY , FZ , . . . the distribution functions

of, respectively, Y, Z, . . .. A decision maker who behaves in accordance with the von

Neumann-Morgenstern consistency properties then assesses lotteries (= risk distribu-

tions) by their expected utility. Specifically, lottery Z is weakly preferred to lottery

Y if EFZ
u(s) ≥ EFY

u(s), where

EFu(s) =

∫ +∞

−∞

u(s)dF (s)

and u : R → R is a strictly increasing utility index. Without much loss in generality we

shall assume that u is a smooth function such that u′ > 0 everywhere.

Let Y0 be a “seed” random variable with zero mean, unit variance and distribution

function F0. The location-scale family DY0
generated by Y0 is then given by2

DY0
= {Y |Y = µY + σY Y0, σY > 0, −∞ < µY < ∞}. (1)

The distribution FY of Y ∈ DY0
is FY (y) = F0((y − µY )/σY ); the mean and standard

deviation of Y are µY and σY , respectively.

Following Meyer (1987), the expected utility of any lottery Y ∈ DY0
can then be

written as a function merely of the mean and the standard deviation of Y :

EFY
u(y) =

∫ +∞

−∞

u(µY + σys) dF0(s) =: U(σY , µY ). (2)

2We note that the seed distribution F0 itself might change. For the third-order change, the results

have been discussed in some studies, see, for example, Chiu (2010) and Eichner and Wagener (2011a).
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If, in a decision problem, all attainable lotteries come from a location-scale family D ⊂

DY0
, the expected utility framework and two-parameter, mean-variance functions are,

thus, equivalent representations of preferences under risk.

For a location-scale family D ⊂ DY0
, denote by M ⊆ R++ × R with M = {(σ, µ)|µ +

σY0 ∈ D} the set of attending distribution parameters.

2.2 Parallels

It is evident from (2) that u(y) is increasing for all y if and only if U(σ, µ) is increasing

in µ for all (σ, µ) ∈ M . Furthermore, the following relationships hold for all n ∈ N:3

u(n+1)(y)
<

>
0 ∀y

⇐⇒
∂n+1U(σ, µ)

∂µn+1

<

>
0 ∀(σ, µ) ∈ M (3)

⇐⇒
∂nU(σ, µ)

∂σ∂µn−1

<

>
0 ∀(σ, µ) ∈ M (4)

⇐⇒
∂n+1U(σ, µ)

∂µn+1
·
∂n+1U(σ, µ)

∂σ2∂µn−1
−

(
∂n+1U(σ, µ)

∂σ∂µn

)2
>

<
0 ∀(σ, µ) ∈ M. (5)

From (3), the monotonicity properties of U with respect to µ are reflected by the mono-

tonicity properties of u with respect to y. Analogous equivalences exist for Uµ and u′,

and so forth. Eq. (4) shows that u(n)(y) is equal in sign to the (n− 1)-st derivative of Uσ

with respect to µ. Finally, (5) identifies the curvature properties of ∂n−1U/∂µn−1 as being

determined by the curvature of u(n−1)(y) (i.e., the monotonicity of u(n+1)). For n = 1, (4)

and (5) already appear in Meyer (1987) who shows that U(σ, µ) is strictly decreasing in

σ and concave in (σ, µ) if and only if u′′(y) < 0 everywhere.4

3Also see Eichner and Wagener (2005). For (smooth) functions f and integers n ∈ N0, f
(n)(y) denotes

the n-th order derivative of f(y); by convention f (0)(y) ≡ f(y). In multivariate functions, subscripts

denote partial derivatives.
4We only report results where the curvature of vNM-functions is uniform. Recent advances in decision

theory under risk focus on S-shaped or reverse S-shaped utility functions (Levy and Levy, 2004; Wong

and Chan, 2008). Broll et al. (2010) or Egozcue et al. (2011) studied the properties of (µ, σ)-indifference

curves with reverse S-shaped utility functions.
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For n ≥ 1 define by

Cn(u) =

{

(σ, µ)

∣
∣
∣
∣

∂n−1U(σ, µ)

∂µn−1
≡ u

}

(6)

the u-level set for ∂n−1U(σ,µ)
∂µn−1 . Here, C1(u) is the familiar (σ, µ)-indifference curve at utility

level u. Similarly, C2(u) comprises all (σ, µ)-combinations where a marginal increase in µ

gives the same additional utility u, etc.

Elements in Cn(u) can be characterized in terms of marginal rates of substitution: For

n ≥ 1 define

Sn(σ, µ) := −
∂nU(σ, µ)

∂σ∂µn−1

/
∂nU(σ, µ)

∂µn
. (7)

Here, S1 is the marginal rate of substitution between µ and σ for utility function U ;

likewise Sn is the marginal rate of substitution between µ and σ for ∂n−1U(σ,µ)
∂µn−1 . Then the

level sets Cn(u) can be represented as curves with slopes

dµ

dσ

∣
∣
∣
∣
(σ,µ)∈Cn(u)

= Sn(σ, µ). (8)

For vNM-function utility indexes u, the class of absolute measures of risk attitudes in

the EU-approach is defined by

An(y) := −
u(n+1)(y)

u(n)(y)
(9)

(y ∈ R, n ∈ N). A1 is the Arrow-Pratt measure of absolute risk aversion (Lajeri and

Nielsen, 2000; Ormiston and Schlee, 2001), whileA2, A3, A4 are, respectively, the measures

of absolute prudence (Kimball, 1990), absolute temperance (Eeckhoudt et al., 1996) and

edginess (Lajeri-Chaherli, 2004). Analogously, relative measures of risk attitude can be

constructed: for y, z ∈ R and n ∈ N set

Rn(y, z) := −z ·
u(n+1)(y + z)

u(n)(y + z)
. (10)
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For n = 1 this yields the index of partial relative risk aversion as introduced by Menezes

and Hanson (1970). R2 and R3 are, respectively, the indices of partial relative prudence

(Choi et al., 2001) and partial relative temperance (Honda, 1985).

Meyer (1987, Property 5) shows that the MRS S1 is the two-parameter equivalent of

the Arrow-Pratt measure A1 of absolute risk aversion. For higher values of n, similar

analogies were derived in Eichner and Wagener (2005). In particular, as can be inferred

from (3) and (4), if expected utility approach and two-parameter approach are compatible,

then for all n ∈ N

An(y) ≥ 0 ∀y ⇐⇒ Sn(σ, µ) ≥ 0 ∀(σ, µ) ∈ M. (11)

For n = 1, the relationship between (11) and (5) has already been noted in Tobin (1958)

or Meyer (1987):

• if u′′(y) < 0 < u′(y) for all y, then (σ, µ)-indifference curves are strictly convex

upward in σ, µ)-space: the compensation in term of µ needed for an increase in

uncertainty is always positive and increases in the level of uncertainty (risk aversion);

• if u′(y), u′′(y) > 0 for all y, then (σ, µ)-indifference curves are concave downward: µ

needs to be reduced to compensate for an increase in uncertainty, and this reduction

decreases in the level of uncertainty (risk-seeking attitude);

• if u′(y) > 0 = u′′(y) for all y, then (σ, µ)-indifference curves are parallel to the σ-axis

(risk neutrality).

Similarly interpretations arise for n > 1. E.g., for n = 2, a prudent and risk-averse

decision maker (u′′′ > 0 > u′′) faced with an increase in uncertainty will require an increase

in µ to keep his marginal utility from µ constant.
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Interestingly, analogies extend to monotonicity properties as well: for all n ∈ N,

A′

n(y)
>

<
0 ∀y ⇐⇒

∂Sn(σ, µ)

∂µ

>

<
0 ∀(σ, µ) ∈ M ; (12)

∂Rn(y, z)

∂z
≥ 0 ∀y ⇐⇒

∂Sn(σ, µ)

∂σ
≥ 0 ∀(σ, µ) ∈ M. (13)

In the case n = 1, the result just reported means that risk aversion for (σ, µ)-utility

functions (as measured by S1) (i) decreases [increases] in µ if the underlying vNM-index

exhibits decreasing [increasing] absolute risk aversion and (ii) increases [decreases] in σ if

the vNM-index exhibits increasing [decreasing] partial relative risk aversion. As Menezes

and Hanson (1970) argue, if one wants R1 to be monotone in z everywhere, then this

is only compatible with A1 > 0 if R1 strictly increases. Hence, ∂S/∂σ < 0 can then at

most be a local property. Moreover, decreasing absolute risk aversion (A(y) > 0 > A′(y))

implies that S(σ, µ) is decreasing in σ (see Eichner and Wagener, 2005).

The cases n > 1 are analogous to n = 1, lifting relationships between partial relative

measures of risk attitudes for vNM-functions and to higher orders.

3 Additive risks and risk attitudes

3.1 General

How does the addition of risks (e.g., via background uncertainty in one’s investment)

affect risk-attitudes? Specifically, if an additive uncertainty B, also measured in terms

of final wealth, changes returns on a risky activity from X to Y = X + B, how are risk

preferences affected? To ensure transferability to the EU-approach, we require that the

location-scale framework still applies and make the following

Assumption 3.1 Let X0 and B0 be two seed variables with attending location-scale

families DX0
and DB0

. Then the set of all Y = X +B with X ∈ DX0
and B ∈ DB0

forms

a location-scale family DY0
with seed Y0.
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We note that in Assumption 3.1 Y0 may not be equal to X0 +B0. Under Assumption 3.1

we have Y = X +B = µX + µB + σXX0 + σBB0, implying that µY = µX + µB and σY =

√

σ2
X + σ2

B + 2σXB, where the covariance between X and B, σXB = ρσXσB measures the

linear dependence of X and B; ρ ∈ (−1, 1) denotes (Pearson’s) correlation coefficient.

Denote by FXB(x, b) the joint distribution of (X,B).

Assumption 3.1 will, e.g., be satisfied if X0 is equal in distribution as B0, both are

independent, andX0 adheres to a stable distribution; X0+B0 then even inherits the type of

distribution. Moreover, if both X0 and B0 are elliptically distributed (but not necessarily

identically or independently), then so is their sum (Fang et al., 1990, Theorem 2.16).5 This

encompasses, e.g., that X0, B0 ∼ N(0, 1) such that X+B ∼ N
(
µX+µB,

√

V ar(X +B)
)
;

the same holds if X0 and B0 are gamma-distributed with equal scale parameter.

Assumption 3.1 allows for dependence between the two random variables. While inde-

pendence is routinely assumed in the EU-literature on background risks, the MV-approach

can quite easily cater for dependent background risks. In fact, if we were assuming inde-

pendence, then for elliptical distributions Assumption 3.1 essentially confines the analysis

to X and B both being Gaussian (Fang et al., 1990, Theorem 4.11).

Under Assumption 3.1, the expected utility from random variable Y = X +B can be

represented by

EFY
u(y) = E[u(X +B)] =

∫
∞

−∞

u(µY + σY s) dF0(s) =: U(σY , µY ), (14)

where F0(s) is the distribution function of the seed variable Y0. If X and B were inde-

pendent, the density of X + B can be obtained by taking the convolution of X and B;

otherwise not. In (14), U(σY , µY ) in (14) represents expected utility in two-parameter,

mean-standard deviation form.

5Chamberlain (1983) argues that this is the only relevant case such that mean-variance-approach and

expected utility are isomorphic.
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The impact of (greater) additive uncertainty on risk attitudes can now be studied

by help of our previous observations. Assumption 3.1 essentially implies that all risk

attitudes (and their monotonicity properties) in the absence of background uncertainty

remain unchanged if background risks are added.

3.2 Changes in location parameters

Taking the partial derivative with respect to µB or µX captures the effects of a shift in

risks. They are identical to the standard wealth or income effects that arise when some

exogenous, non-risky wealth changes. In particular, from (12), for k = X,B,

∂Sn(σ, µX + µB)

∂µk

>

<
0 ∀(σ, µ) ∈ M ⇐⇒ A′

n(y)
>

<
0 ∀y. (15)

Hence, a higher expected return on any risk makes decision makers more [less] risk-

averse if absolute risk aversion is increasing [decreasing] in income (n = 1). It makes

them more [less] prudent if absolute prudence rises [diminishes] with income (n = 2); and

similar for higher degrees.

3.3 Changes in scale parameters

The variance of final wealth is given by

σ2
Y = σ2

X + σ2
B + 2ρσXσB. (16)

In this decomposition, we can separate changes in the marginal distributions of X and

B from changes in their dependence structure, represented by ρ. In fact, in the realm of

elliptical distributions, where MV analysis is most appropriate, the Pearson correlation

coefficient adequately captures how and how strongly X and B hang together (Landsman

and Tsanakas, 2006).

The partial derivatives with respect to σB or σX capture the effects of changes in the
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riskiness of the single risks B or X. Observe that

∂Sn

(√

σ2
X + σ2

B + 2ρσXσB, µ
)

∂σk

=
∂σY

∂σk

·
∂Sn (σY , µ)

∂σY

=
σ2
k + σXB

σY σk
︸ ︷︷ ︸

(i)

·
∂Sn (σY , µ)

∂σY
︸ ︷︷ ︸

(ii)

(17)

Hence, the effect of an increase in σk (for k = X,B) on risk attitudes depends (i) how

that change affects overall riskiness σY and (ii) the risk attitude proper.

As for (i), an increase in either σX or σB does not necessarily increase V ar(X + B);

increases in marginal risks may well be beneficial in the MV-framework. This reflects

that for the variance (or standard deviation) as a risk measure increases in the marginal

risk-ordering for that measure are not preserved under linear combinations of dependent

random variables. Increases in σk will only raise σY if σXB > −σ2
k. This is the case if

(but not only if) X and B are independent or positively correlated.6

As for effect (ii) in (17), condition (13) applies. In particular for all n, if ∂σY /∂σk > 0,

then for k = X,B,

∂Sn

(√

σ2
X + σ2

B + 2σXB, µ
)

∂σk

>

<
0 ∀(σ, µ) ∈ M ⇐⇒ R′

n(y, z)
>

<
0 ∀y. (18)

Hence, if a greater marginal riskiness makes total wealth riskier, this renders decision

makers more [less] risk-averse if relative risk aversion is increasing [decreasing] in income

(n = 1). It makes them more [less] prudent if relative prudence rises [diminishes] with

income (n = 2); and similar for higher degrees of n. In case a greater marginal riskiness

makes total wealth safer, the results are reversed.

3.4 Changes in the dependence structure

With the decomposition (16), an increase in ρ represents that X and B move more closely

together (with invariant marginals). An increase in ρ is detrimental to utility as it also

6For convex risk measures (such as the variance), this is a simple application of the condition of X

and B being “conditionally increasing” in Mueller and Scarsini (2001).
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increases σY . Hence, we can directly apply (13) again: For all n,

∂Sn

(√

σ2
X + σ2

B + 2ρσXσB, µ
)

∂ρ

>

<
0 ∀(σ, µ) ∈ M ⇐⇒ R′

n(y, z)
>

<
0 ∀y. (19)

The interpretation is as in the previous paragraph.

3.5 Compensatory changes in risks

Suppose that the riskiness changes: one of s = σX , σB, ρ varies by, say, ds > 0. Then the

compensatory change dµY that keeps the investor in Cn(u) is given by

∂σY

∂s
· Sn(σY , µY )

in (8). For n = 1 such compensatory changes have been studied, e.g., in Wong and Ma

(2008). With n = 1, (8) simply restates that risk-averse [risk-loving] individuals, who feel

better [or worse] upon an increase in riskiness or correlation (depending on the sign of

∂σY /∂s), can be compensated by an increase [decrease] in µY = µB+µX in the magnitude

of the MRS.

For n = 2, (8) captures that if a decision makers wishes to keep the marginal utility

from wealth unchanged in the wake of a more pronounced riskiness, this requires an

increase in µ if he is either risk-averse and prudent (u′′(y) < 0 < u′′′(y) for all y) or

risk-loving and imprudent (u′′(y) > 0 > u′′′(y) for all y) – and a decrease in µ otherwise.

4 Optimal decisions with additive risks

4.1 Set-up

It is well-known that changes in risk attitudes do not necessarily lead to the intuitively

expected changes in decision maker’s behavior. For example, somebody who becomes

more risk-averse upon a change in risk does not necessarily engage in less risky activities

upon that change in risk. Against that backdrop, it is informative to see how additive

risks affect risky choices in a generic decision problem.
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Suppose a risk-averse decision maker (with Uσ < 0 < Uµ) faces some exogenous risk B

with non-negative mean µB ≥ 0 and standard deviation σB ≥ 0 (where σB = 0 captures

the case of some non-random, exogenous wealth). In the presence of this “background

risk” he sets a variable α ∈ R that linearly increases his exposure to some risk X (with

µX , σX > 0). Letting the covariance of X and B to be σXB, we put all location and

scale parameters in the vector θ = (µX , σX , µB, σB, σXB) ∈ R
2
++ × R

2
+ × R for notational

convenience. Given θ, the decision maker maximizes her utility U(σY , µY ) with

µY = αµX + µB and σ2
Y = α2σ2

X + σ2
B + 2ασXB. (20)

This could represent, for example, a stylized portfolio choice or (mutatis mutandis) an

insurance problem with background uncertainty. From the first-order condition, we obtain

µX − S1(σY , µY )
∂σY

∂α
= 0 (21)

which implicitly defines the optimal choice α∗ = α∗(θ). Here, ∂σY

∂α
=

ασ2

X
+σXB

σY

. We will

henceforth assume that α denotes a risky activity in the sense that it marginally increases

the standard deviation of final wealth at its optimal level α∗. Over here, we assume that

∂σY

∂α∗
> 0 . (22)

The condition in (22) will automatically hold whenever X and B are non-negatively

correlated but not for negative values of σXB. Thus, we need to assume (22).

The signs of the comparative statics with respect to the distribution parameters in θ

are obtained by applying the implicit function theorem to (21), taking into account that

the SOC for α∗(θ) requires that the derivative of the left-hand side of (21) is negative.

A common intuition for the comparative statics to come can be gained from interpreting

(21) geometrically: it defines the optimal choice, α, as a situation where the slope, S1, of a

decision maker’s (σY , µY )-indifference curve is equal to the slope, given by µX/(∂σY /∂α),

of the “opportunity locus”, which defines the marginal trade-off between the increases in
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return and in risk to which the choice problem (20) exposes the decision maker. Whether

and into what direction the optimal choice drifts when a parameter of the choice problem

varies then depends on whether the marginal rate of substitution between risk and return

varies relatively more strongly than the slope of the opportunity locus. This gives rise

to the elasticity considerations in eqs. (23) to (28) below. It also explains why the

comparative statics with respect to parameters related to the “endogenous”, direct risk

differ qualitatively from those for the exogenous background risk: the exposure to the

former is a chosen one (via α), the exposure to the latter cannot be avoided (but at best

be indirectly reduced, via a covariance effect). In essence, this makes the comparative

statics with respect to the background risk simpler – which is in marked contrast to the

EU-framework.

In full detail, the elasticity intuition for comparative statics in the MV framework is

developed in Eichner and Wagener (2009, pp. 1145ff), which also includes a discussion of

the differences between studying background risk in the MV model and in the conventional

expected utility model.

4.2 Changes in the background risk

For the background risk B we get:

∂α∗(θ)

∂µB

≥ 0 ∀θ ⇐⇒
∂S1

∂µY

≤ 0 ∀(σY , µY ) ∈ M ; (23)

∂α∗(θ)

∂σB

≤ 0 ∀θ ⇐⇒
∂σY

∂α

∂S1

∂σY

∂σY

∂σB

+ S1
∂(∂σY /∂α)

∂σY

∂σY

∂σB

≥ 0 (24)

⇐⇒
∂σY

∂α

∂S1

∂σY

− S1
∂σY

∂α

1

σY

≥ 0

⇐⇒
∂S1

∂σY

·
σY

S1

≥ 1 ∀(σY , µY ) ∈ M. (25)

Hence, from (23) a risk-averse decision maker increases risk-taking upon a shift in the

location of a dependent background risk if and only if his preferences exhibit decreasing

absolute risk-aversion (cf. (15)).
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He will reduce risk-taking in response to an increase in the scale of the background

risk if the elasticity of his risk aversion with respect to the riskiness of final wealth is

larger than one. Comparing (25) with (18) (for n = 1 and k = B) we observe: in order

that a greater background risk reduces risk-taking (∂α∗/∂σB < 0), it does not suffice that

the decision maker gets more risk averse; ∂S1/∂σB being positive is necessary, but not

sufficient for ∂α∗/∂σB to be negative.

4.3 Changes in the direct risk

The comparative statics with respect to the direct risk X are slightly more difficult to

characterize. They can be framed, however, in terms of the concepts of risk attitudes

introduced in Section 2:

∂α∗(θ)

∂µX

≥ 0 ∀θ ⇐⇒
∂S1

∂µY

·
µY

S1

≤ 1 ∀(σY , µY ) ∈ M ; (26)

∂α∗(θ)

∂σX

≤ 0 ∀θ ⇐⇒
∂S1

∂σY

·
σY

S1

≥ −1 ∀(σY , µY ) ∈ M. (27)

From (26) the decision-maker will increase risk-taking in response to an increase in

the expected return of his activity if the elasticity of his risk aversion with respect to

expected wealth is smaller than one. This condition has an expected-utility analogue,

too. As shown in Eichner and Wagener (2014), if EU- and MV-approach are compatible,

then the wealth elasticity of MV-risk aversion being smaller than one is equivalent to the

index of partial relative risk aversion, R1(a, y − a) (cf. (10)) being smaller than one for

all a > 0. Hadar and Seo (1990) and Dionne and Gollier (1992) have shown that this

condition characterizes the comparative static effects for first-order stochastic dominance

shifts in the returns to a risky activity – of which an increase in µX is the MV-analogue.

Condition (27) says that the decision-maker will decrease risk-taking in response to

an increase in the variance his activity if the elasticity of his risk aversion with respect

to wealth risk is larger than −1. Again this condition – which originally was derived in

Battermann et al. (2002) and Broll et al. (2006) – has an EU-analogue, viz. that the

17



index of partial relative risk prudence, R2(a, y−a) = −(y−a)u
′′′(y)
u′′(y)

(again cf. (10)) being

smaller than 2 for all a > 0 (Eichner and Wagener, 2005). Ormiston and Schlee (2001)

identify this as the condition that a mean-preserving spread in the returns to a risky

activity tempers risk-taking – of which an increase in σX is the MV-analogue here.

4.4 Changes in the dependence between the direct risk and the

background risk

Now we turn to study the comparative statics with respect to the dependence between

the direct risk and the background risk. It can be framed in terms of the concepts of risk

attitudes introduced in Section 2:

∂α∗(θ)

∂σXB

≤ 0 ∀θ ⇐⇒
∂S1

∂σY

·
σY

S1

≥ 0 ∀(σY , µY ) ∈ M. (28)

Condition (28) says that the decision-maker will reduce risk-taking in response to an

increase in the covariance of the two risks if the elasticity of his risk aversion with respect

to wealth risk is larger than 0. Again, this condition has an EU-analogue, viz. that the

index of partial relative risk prudence, R2(a, y−a) = −(y−a)u
′′′(y)
u′′(y)

(again cf. (10)) being

smaller than 1 for all a > 0.

The above results are actually Propositions 1 and 2 in Eichner and Wagener (2009).

Our contribution is to simplify the related proofs and make them easier to access.

4.5 Application: a risk-taking bank with background risk

Recently, Broll et al. (2015) have investigated the banking firm and risk taking in a two-

moment decision model. In this section we add a background risk to this problem and

apply the results presented above to its comparative statics.

Consider a bank that decides on how many and which fiscal assets to hold. The bank

has the following balance sheet: α = K + D, where α is the amount of financial assets,

D is the quantity of deposits, and K is the stock of equity capital. We assume that short
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sales of the asset are forbidden, i.e., α ≥ 0. Moreover, there is a capital requirement,

imposing that K ≥ k · α for some k ∈ (0, 1). The risky return on financial assets is given

by random variable r̃.

The bank’s shareholders contribute equity capital with a required rate of return, rK ,

on their investment. The supply of deposits is perfectly elastic at an exogenous deposit

rate, rD. We suppose that rK > rD, implying that the capital requirement will bite:

kα = K. Moreover, the bank’s weighted average cost of capital (WACC) is then given

by rc := (1 − k)rD + krK . There are no fixed costs; the bank’s operating cost, C(α), is

increasing and convex; that is, C(0) = 0, C ′ > 0 and C ′′ ≥ 0 for all α. There is some

additive background risk B (e.g., from operations off the balance sheet).

Substituting the bank’s balance sheet constraint and the binding capital requirement

the bank’s shareholder get final wealth at date 1 of

Y = αX − C(α) +B,

where we set X := r̃ − rc. The bank chooses α such as to maximize the mean-variance

utility from Y . Clearly, with respect to risks, this is a problem within a linear distribution

class as in (20). We we can, thus, directly use the results presented earlier to arrive at is

comparative statics.

For changes in the background risk, conditions (23), (25) and (28) apply: the bank

will take in more risky assets in response to a higher expected background income if its

preferences exhibit decreasing absolute risk-aversion; its response to an increase in the

risk of background income or in the correlation between the risks on financial and other

incomes depends on the magnitude of the elasticity of its risk aversion with respect to σY .

For changes in the direct, financial risk, conditions (26) and (27) apply: the magnitude

of the elasticity of the bank’s risk aversion with respect to µY and σY determines whether

the bank holds more financial assets when, respectively, their expected return or their

riskiness increases.
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The interpretations of the above conditions are similar to the general cases and thus

are omitted here. By adopting the mean-variance approach, the effects of dependent

background risk on the banking firm’s risk taking can be easily structured and clearly

studied.

5 Concluding Remarks

With multiple additive risks, the mean-variance approach and the expected-utility ap-

proach of risk preferences are compatible if all attainable distributions belong to the same

location-scale family. For such scenarios, this paper presents parallels of the two ap-

proaches with respect to risk attitudes, the changes thereof, and the comparative statics

for simple, linear choice problems under risks.

Given that the preference functional in the MV approach only depends on mean and

variance, all effects depend on the monotonicity properties either of the utility function

itself or of the attending marginal rate of substitution between the two parameters. This

once again highlights the simplicity and convenience of the MV approach: all effects can

be framed in terms of risk-return trade-offs.

The MV approach provides a genuine and surprisingly rich framework for the economic

modeling of preferences and choice under risk. Still, many extensions can be envisioned,

both within and beyond the location-scale framework where equivalence with the EU-

approach prevails. Starting from the discussion offered in this paper, non-additive back-

ground risks or S-shaped vNM utilities appear to be promising topics. Last, we note that

after establishing a theoretical model, the next step is to develop an estimation and/or

hypothesis testing (see, for example, Leung and Wong, 2007) for the model. We leave the

estimation and testing of the model we developed in our paper in the future study.
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