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Abstract

This article compares centralized with disconnected markets in which n > 2 agents trade two

perfectly divisible goods. In a multi-goods uniform-price double auction (centralized market)

traders can make their demand for one good contingent on the price of the other good. In-

terlinking demands across goods is - by design - not possible when each good is traded in

separate, single-good uniform-price double auctions (disconnected market). Here, agents are

constrained in the way they can submit their joint preferences. I show for a class of models

that equilibrium allocations and efficiency of centralized and disconnected markets neverthe-

less coincide when the total supply of the goods is known or perfectly correlated. This suggests

that disconnected markets perform as well as centralized markets when the underlying uncer-

tainty that governs the goods’ market prices is perfectly correlated.

Keywords: Disconnected markets, divisible goods, multi-unit double auctions, trading

JEL classification: D44, D47, D82, G14

Modern economies consist of markets with different structures. Some markets are centralized.

They offer multiple goods within the same platform. Some others are disconnected in that only

one good is sold or traded per platform. Notably, many goods can be purchased or traded in either

centralized or disconnected markets. Different spectrum frequencies are auctioned in a centralized

(=combinatorial) auction, as in the FCC auction, yet also in disconnected (=non-combinatorial)

auctions. Mineral rights, oil and gas royalties, dairy products and aquarian animals are each offered

in global, online platforms,1 but can also be purchased in separate markets that sell only milk, not

butter, or only one species of fish, for instance. Another example are financial securities, which

are in the focus of this article. Traditionally, different securities are traded in separate markets,

one for each security. Most financial markets, such as over-the-counter-markets, or the New York

Stock Exchange are in this sense disconnected. Some more recent exchanges, on the other hand, let

customers place “contingent orders”, “whose execution depend upon the execution and/or price

of another security”.2 In such a centralized market participants are allowed make the demand for

one good contingent on another. In other words, agents can ask and offer packages of the goods.

Interlinking preferences across goods is by design not possible when each good is traded in a dis-

connected market. A dealer who bids for the 3-month German bond, for example, cannot make his

∗Original version: February 1, 2017. For helpful discussions and comments, I thank Robert Wilson, Mohammad

Akbarpour, Peter Cramton, Songzi Du, Darrell Duffie, David K. Levine, Paul Milgrom and all participants of his

seminar, as well as of Stanford’s theory and market design seminars.
†European University Institute, milena.wittwer@eui.eu.
1Examples of such platforms are: TheMinearlAuction, Global Dairy Trade, Aquabid.
2Definition from http://www.investopedia.com/terms/c/contingentorder.asp. For more detailed explana-

tion of contingent orders and related “advanced trading types” see https://www.fidelity.com/learning-center/

trading-investing/trading/conditional-order-types.

1

http://www.investopedia.com/terms/c/contingentorder.asp
https://www.fidelity.com/learning-center/trading-investing/trading/conditional-order-types.
https://www.fidelity.com/learning-center/trading-investing/trading/conditional-order-types.


choice contingent on the price of the 1-year French bond. More generally, agents are constrained

in the way they can display their joint preferences for the goods when markets are disconnected.

They cannot freely maximize their gains from trade. Intuitively, the degree of efficiency is bound

to hinge on the market’s structure (centralized or disconnected). I show that this need not be the

case. When the residual supplies of the goods are perfectly correlated the equilibrium allocation

of disconnected markets is identical to the allocation of a centralized market. My counter-intuitive

finding suggests that the market structure may be irrelevant when the underlying uncertainty that

governs the strategic pricing process for each good is perfectly correlated. Extending this result

to large markets in which agents are price-takers shows that disconnected markets can be fully

efficient.

The irrelevance result provides guidance for the design of markets. While new technology has made

it feasible to centralize separated markets, integrating them remains challenging for policy mak-

ers. They face national and institutional constraints. What is more, centralization often requires

cross-border collaboration, further complicating the integration process. In general, combining

disconnected markets involves some cost: some are transitory (like learning costs to adapt to a

new system), some others are permanent. Existing ownership structures have to be broken. Mar-

ket makers who centralize the system (intermediaries) take away parts of the total surplus, and

might even distort the outcome by their strategic manipulations. My irrelevance result suggests

when it is not worthwhile to pay these costs, because such policy intervention would have no or

negligible effects on both the volume of trade and efficiency; or when we can expect advantages

of separation, such as cross-market competition that can reduce trading fees and stimulate inno-

vation, to dominate its disadvantages. It also helps one to understand why some markets remain

disconnected even though centralization has long become technologically feasible. The markets

of equity and fixed income securities are good examples. These are identical products which are

traded in dozens of trading venues, none with dominating market shares. Why does the market

structure not converge towards centralization? My result suggests a simple answer. The gains

from market integration are not high enough to force changes in the existing market structure,

because the fundamentals that drive the price for these identical products are highly correlated.

In the model, n > 2 agents, each with an independent private type, have joint-preferences over two

perfectly divisible goods of potentially random exogenous total supply. These goods are traded

in either a centralized or disconnected market. The later consists of two standard uniform-price

double auctions which are run simultaneously for each good. In each auction agents submit de-

mand schedules specifying a price for each quantity they demand or supply. The market clears at

the price where aggregate demand meets aggregate supply, and each agent buys or sells what he

demanded or offered at this price. When the market is centralized an agent is allowed to bid for

bundles. More precisely, the rules of the standard uniform-price double auction are extended to

allow the demand for one good to depend on the price of the other good. Holding all other rules

of the game fixed allows me to focus on the effect of centralizing disconnected markets. If I were

to compare the separate uniform-price auctions to some other combinatorial auction, I would no

longer be able to separate the effect of centralization from those coming from changes of other rules
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of the transaction. The Irrelevance Theorem for markets with strategic agents (n < ∞), and its

extension to large markets (n → ∞), then builds on a comparison of the traded equilibrium quan-

tities across market structures. These are the allocations of the unique symmetric, linear ex-post

equilibria, whenever they exist, and of the corresponding Bayesian Nash Equilibrium otherwise.

My research topic fits into the literature that compares the performance of decentralized, or frag-

mented, markets with centralized markets. Decentralized markets are typically studied in (i) search

(ii) bargaining or (iii) network models. Most contributions highlight different types of inefficien-

cies in decentralized markets. Using search theory, Miao (2006), for instance, shows that social

welfare improves with monopolistic market making (i); Elliott and Nava (2015) argue in favor of

centralized clearinghouses to resolve pervasive inefficiencies of disconnected matching markets (ii);

while Elliott (2015) extends Kranton and Minehart (2001)’s pioneering network model of trade to

quantify the efficiency losses (iii). In setting up an auction model, I take a different perspective on

decentralized markets than previous studies (i-iii). It highlights a different aspect of decentraliza-

tion, namely that demand for a good offered in one market cannot be made contingent on the price

of another good. To avoid confusion, I call such a market disconnected, rather than decentralized.

It consists of simultaneous multi-unit auctions. Therewith my work relates to a growing literature

put forward by computer scientists. Motivated by Bikhchandani (1999), who warned that “simul-

taneous sealed bid auctions are likely to be inefficient under incomplete information” (p. 212),

they quantify the efficiency of simultaneous auctions of heterogeneous goods by computing the

“price of anarchy” (=the maximum ratio between the social welfare under an optimal allocation

and the welfare at an equilibrium). While, most work concentrates on single-item auctions (e.g.

Feldman et al. (2015a)), Syrgkanis and Tardos (2013) show that m simultaneously run uniform-

price auctions achieve “at least” e−1
4e

≈ 0.158 of the expected optimal effective welfare.3 Malamud

and Rostek (2014)’s findings are orthogonal to this literature. In independent work, they develop a

framework that is similar to mine to study the potential of decentralizing the exchange of financial

securities to improve efficiency.5 They show that it can be strictly welfare improving to break up a

centralized structure, modeled as a multi-asset uniform-price double auction. In their model, any

change in market structure affects efficiency.

Coming from many different directions and using a wide variety of techniques, all of these articles

agree that social welfare in centralized and decentralized markets differs. My Irrelevance Theorem

goes against this broad consensus. Even though it is specific to particular applications, it is in

the spirit of famous general theorems that tell us when “market structure” in different formats

is irrelevant: Sah and Stiglitz (1987) and Dasgupta (1988) establish conditions under which the

number of firms (=market structure) does not matter for technological innovation; Modigliani and

Miller (1958) prove that the financial structure of the firm (=market structure) does not neces-

sarily matter for the creation of value; Weber (1983) shows that the realized price of any auction

game that sells identical objects (=market structure) is the realized price of the previous auction;

3Feldman et al. (2015b) suggest that such inefficiency washes out in the limit as markets grow large. This is

a different environment than studied in this paper, where strategic pricing decisions of individual agents have an

impact on the outcome.

3



and Vickery (1961) proves that some rules of the auction (=market structure) are irrelevant for

the seller’s expected revenue. Building on the Revenue Equivalence Theorem, Biais (1993) then

demonstrates that centralized and fragmented markets with risk-averse agents who compete for a

single market order (=market structure) may give rise to the same expected ask (bid) price.

My main methodological contribution belongs to the literature on multi-unit auctions of perfectly

divisible goods. I rely on existing research on multi-unit auctions with perfectly divisible goods,

so called “share auctions”.4 Share auctions were introduced by Wilson (1979) for single-sided

transactions, and closely relate to Klemperer and Meyer (1989), Kyle (1989), Vives (2011), Rostek

and Weretka (2012)’s work on uniform-price double auctions. More specifically, I draw on insights

by Du and Zhu (2012), whose framework has been used in other articles in the finance literature,

so for instance by Duffie and Zhu (2016). They make assumptions on the traders’ utility functions

that allow them to solve for ex-post equilibria of an isolated uniform-price double auction, as well

as a multi-assets double auction. My ex-post equilibria are derived based on the same assumptions.

This literature typically considers an auction in isolation neglecting possible interconnections across

auction markets. While we have some understanding of how agents behave in multi-unit auctions

that trade or sell either one good, or multiple goods within the same transaction, the existing

published literature is - to the best of my knowledge - silent about strategic incentives of agents

that participate in separate multi-unit auctions that offer related goods.5 My necessary optimality

condition for the Bayesian Nash Equilibrium of this complex game holds for a broad class of utili-

ties and any differentiable distribution functions and enables me to explain the strategic incentives

that lie behind the equilibrium. Moreover, it has a straight-forward extension to the other most

frequently used (sealed-bid) multi-unit auction format, the pay-as-bid auction.

The remainder of the article is structured as follows. Having set-up the model in section 1, section

2 explains the bidding incentives of strategic agents based on first-order conditions (Lemma 1, 2),

and provides existence as well as uniqueness results for symmetric, linear equilibria (Proposition 1,

2). A comparison of the equilibrium allocations across market structures leads to the Irrelevance

Theorem stated in section 3. Before concluding in section 5, I extend the result to large markets

with price-taking agents in section 4. All proofs are given in the appendix. Random variables will

be denoted in boldboldbold throughout the article.

4Similar to the frequent assumption in the literature on single-unit auctions that the set of available prices is

dense, the assumption of perfect divisibility is a continuous approximation of a discrete set of quantities - which

across economic disciplines has long been recognized as a valuable alternative when discrete problems are intractable

(Woodward (2015)). With imperfect divisibility of goods or buyers who can submit only a maximal amount of bids

the analysis becomes more complex due to discontinuities and rationing. This has been demonstrated recently by

Hortaçsu and McAdams (2010) and Kastl (2011, 2012).
5Independent to my own work Malamud, Rostek and Yoon are currently working on a related paper.
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1 Framework

n > 2 agents trade two perfectly divisible goods, indexed m = 1, 2, in a centralized market or

disconnected market.6 The centralized market is modeled as a multi-good uniform-price double

auction, the disconnected market consist of two separate single-good uniform-price double auctions

which are run simultaneously. The total, exogenous supply in each market, {Q1Q1Q1,Q2Q2Q2} may random

and potentially correlated:
(

Q2Q2Q2

Q2Q2Q2

)

∼

((

µ1

µ2

)

, σ2

(

1 ρ

ρ 1

))

.

Assuming V ar(Q1Q1Q1) = V ar(Q2Q2Q2) ≡ σ2 creates symmetric market conditions across goods. Relaxing

this assumption complicates the algebraic derivations without bringing further insights. Setting

σ = 0 and µm = Qm with |Qm| < ∞ leaves us with total supply quantities that are commonly

known to all traders. When Qm = 0 there is no exogenous supply.

Each agent has private information. He draws a private type si, which captures individual pref-

erences or personal evaluations of risk. If the agent is part of a large financial institution, it may

also reflect orders from individual customers. For simplicity it is only one-dimensional, and iid:

sisisi ∼ (µs, σ
2
s) iid across i and Q1Q1Q1,Q2Q2Q2.

By using a framework of independent private values, I break with the traditional view according to

which the demand of financial securities is driven by common values. While the price of a security

stabilizes in the long run, so that its value is common to all agents, it fluctuates a lot in the short

run. In a fast moving financial market, individual factors might, therefore, explain demand more

adequately. Empirical evidence for this view is provided by Hortaçsu and Kastl (2012) with data

from single-sided treasury auctions.

Notice that I have not specified any particular distribution. In fact, all of my main results will

hold for arbitrary distributions that are commonly known among agents, have differentiable dis-

tribution functions and fulfill the few specifications that I have mentioned so far. This stands in

contrast to most of the related literature, which imposes the normal distribution so as to derive

linear equilibria (e.g. Kyle (1989), Vives (2011), Rostek and Weretka (2012)). In this particular

regard, my works is more general.

All agents submit a pair of differentiable demand functions, denoted {xi,1(·, si), xi,2(·, si)} in the

disconnected and {x̄i,1(·, ·, si), x̄i,2(·, ·, si)} in the centralized market, which are decreasing in their

first argument. Each demand schedule specifies how much the agent is willing to buy 0 < qm or sell

qm < 0 at what price(s). Only finite quantity offers qm ∈ [q
m
, qm], −∞ < q

m
< 0 < qm < ∞, are

accepted. This is a purely technical assumption. It rules out that the market clears at infinitely

high or low prices - an event that can theoretically occur when either the types or the total supply

6With n = 2 agents the non-existence of equilibria has long been recognized in the literature when marginal

utility is decreasing (e.g. Kyle (1989) from Ausubel et al. (2014), Du and Zhu (2016)).
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have unbounded support. With bounded supports, bounding the demand becomes unnecessary.

xi,m(·, si) : R → [q
m
, qm] for m = 1, 2 in disconnected auctions (1)

x̄i,m(·, ·, si) : R
2 → [q

m
, qm] for m = 1, 2 in centralized auction (1)

Demand functions map from price(s) into the space of quantities. When analyzing equilibrium

behavior, it will be more intuitive to work with bidding functions: bi,m(·, si), b̄i,m(·, ·, si). These

are inverse demands, specifying a price per quantity/ies.

Once all agents have submitted their demands, the market for each good, say 1, clears at price p∗1
where aggregate demand meets total supply.

xi,1(p
∗
1, si) = Q1 −

∑

j 6=i xj,1(p
∗
1, sj) in disconnected auctions (2)

x̄i,1(p̄
∗
1, p̄

∗
2, si) = Q1 −

∑

j 6=i x̄j,1(p̄
∗
1, p̄

∗
2, sj) in centralized auction (2)

Each agent then buys or sells what he asked for at this price, abbreviated by q∗i,1 ≡ xi,1(p
∗
1, si) and

q̄∗i,1 ≡ x̄i,1(p̄
∗
1, p̄

∗
2, si). He makes a total payment of

TP (p∗1, p
∗
2, q

∗
i,1, q

∗
i,2) ≡ p∗1q

∗
i,1 + p∗2q

∗
i,2 in disconnected auctions (3)

TP (p̄∗1, p̄
∗
2, q̄

∗
i,1, q̄

∗
i,2) ≡ p̄∗1q̄

∗
i,1 + p̄∗2q̄

∗
i,2 in centralized auction (3)

In order to determine the optimal strategy, each agent maximizes his net payoff. It is defined as

the total utility the agent receives from the goods minus his total payment. Owning quantities

q1, q2, type si receives a utility of

U(q1, q2, si) =
∑

m=1,2

{

siqm −
1

2
λq2m

}

− δq1q2 with λ > 0, |δ| ≤ λ, λ+ δ > 0. (4)

This utility function is simple and intuitive:7 From winning amount qm the agent obtains a

marginal value si. Holding an “inventory” qm of the illiquid asset is costly for the trader. He

pays a cost of 1
2
λq2m. It may be related to regulatory capital or collateral requirements, or repre-

sent an expected cost of being forced to raise liquidity by quickly disposing of remaining inventory

into an illiquid market (Duffie and Zhu (2016)). When δ 6= 0, the utility function displays an

additional factor: δq1q2. Its meaning is best understood by analyzing the agent’s partial utility of

qm
∂U(q1, q2, si)

∂qm
= si − λqm − δq−m for m = 1, 2;−m 6= m. (5)

This partial utility is the agent’s “true marginal willingness to pay” for a quantity qm given that

he obtains quantity q−m. It decreases in the amount of good m (λ > 0), and decreases or increases

7In the relatively sparse literature that considers multiple assets, one often finds this utility function expressed

in its matrix notation

U(q1, q2, si) =
(

si si
)

·

(

q1

q2

)

−
1

2

(

q1 q2
)

∆

(

q1

q2

)

where ∆ ≡

(

λ δ

δ λ

)

Furthermore, related literature that only consider a single asset, frequently assumes a quadratic cost 1
2λq

2
m (see

Vives (2011), Rostek and Weretka (2012), Duffie and Zhu (2016) and others).
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in the quantity of the other good −m depending on the sign of δ. This parameter measures the

relation across goods. Whenever δ > 0 the agent is willing to pay less for any given amount qm,

the more he purchases of good −m. The goods are substitutes. They are perfect substitutes when

δ = λ. Then the marginal utility decreases by the same amount regardless of which good the agent

purchases. On the other hand, when δ < 0, the agent values the same quantity qm more, the more

he owns of the other good −m. In this case, goods are complements. Setting δ = 0 I could shut

down any interconnection between goods to be back to the case of an isolated auction. However,

this case is uninteresting. With no relation between the goods there are no strategic effects across

goods. The allocation of the centralized and disconnected market trivially coincides. I therefore

focus on δ 6= 0 throughout the article.

It is the simple functional form of the utility function that makes the model tractable. In particu-

lar, a linear marginal willingness to pay with deterministic slope coefficients gives rise to a linear

equilibrium. My optimality conditions for the Bayesian Nash Equilibrium in the simultaneous

double auctions (Lemma 4), however, holds for any utility function that is twice differentiable and

has continuous cross-partial derivatives.

Definition 1. In the disconnected market, a pure-strategy BNE is a pair {b∗i,1(·, si), b
∗
i,2(·, si)} that

maximizes expected total surplus for all ∀i ∈ I.

max
bi,1(·,si),bi,2(·,si)

E[U(q∗i,1q∗i,1q∗i,1, q
∗
i,2q∗i,2q∗i,2, si)]− E[TP (p∗1p

∗
1p
∗
1, p

∗
2p
∗
2p
∗
2, q

∗
i,1q∗i,1q∗i,1, q

∗
i,2q∗i,2q∗i,2)] with p∗mp

∗
mp
∗
m = b∗i,m(q

∗
i,mq∗i,mq∗i,m, si) for m = 1, 2.

The definition for the centralized market is analogous, with the difference that both functions now

depend on both quantities, i.e. {b̄∗i,1(·, ·, si), b̄
∗
i,2(·, ·, si)}.

Given linear true marginal willingness to pay, it is natural to look for BNE that are linear. “Lin-

ear equilibria are tractable, particularly in the presence of private information, have desirable

properties like simplicity, and have proved to be very useful as a basis for empirical analysis”

(Vives (2011), p. 1920). Studying them is the standard in the related, theoretic literature (e.g.

Kyle (1989), Vives (2011), Rostek and Weretka (2012), Du and Zhu (2012), Malamud and Ros-

tek (2014)). Support comes from the empirical literature on single-sided multi-unit auction by

Hortaçsu (2002). Using data from Turkish treasury auctions he shows that linear demands fit

actual bidding behavior quite closely. Since all agents are (ex-ante) symmetric and derive utility

from both goods, I will solve for symmetric, linear BNE in which all agents are active in both

markets (Proposition 1 and 2).

I will be particularly interested in ex-post equilibria. Such equilibria are Bayesian Nash equilib-

ria which are robust in the sense that no agent wishes he would have chosen differently once all

uncertainty resolves. This is because every agent would choose the same strategy even if he could

observe the private types of all of his competitors and the total amount for sale. Nobody regrets

his choice ex-post. This implies that we do not need to worry about strategic effects of a secondary

(or after) market. Such markets are prominent in particular in the finance sector. Anticipating of

such effects could ruin the equilibrium when taken into account.
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Definition 2. An ex post equilibrium is a profile of strategies such that there exists no profile of

types or total supply for which some agent would have an incentive to deviate.

2 Equilibria

I now state, compare and explain the equilibrium strategies in the different environments. I start

by describing how traders choose their equilibrium demand schedules. Understanding how choices

are made lays the ground for the Irrelevance Theorem. Since equilibria will be linear, I derive

the intuition for this case. More precisely, I give necessary conditions that characterize a linear

Bayesian Nash Equilibrium. It is ex-post optimal in the centralized market, and the disconnected

auctions when total supply is deterministic. More general optimality conditions for a (not neces-

sarily linear) BNE in the disconnected auctions are given in Lemma 4 in Appendix I. These hold

under very mild assumptions on the functional form of the utility.

I begin by explaining bidding incentives in the disconnected market, say auction 1. To explain the

the agent’s bidding incentives for good 1, let all other agents j 6= i play the equilibrium strategies

{b∗j,1(·, sj), b
∗
j,1(·, sj)}. Assume agent i, himself, behaves in auction 2 as he will in equilibrium

b∗i,2(·, si). He knows that this makes him win q∗i,2q∗i,2q∗i,2, implicitly characterized by market clearing

q∗i,2q∗i,2q∗i,2 = Q2Q2Q2 −
∑

j 6=i

xj,2(ppp
∗
2, sjsjsj) with ppp∗2 = b∗i,2(q

∗
i,2q∗i,2q∗i,2, si) (2)

However, since both auctions take place simultaneously and the bidder neither knows the types

of his competitors s−is−is−i nor the total supply Q2Q2Q2 ex-ante, he does not know how much he will win

in auction 2, when choosing his strategy in auction 1. In that auction, he takes the submitted

demand schedules of all others as given. What count for his choice is not the total, but the residual

supply

RSi,1RSi,1RSi,1(p1) = Q1Q1Q1 −
∑

j 6=i

x∗
j,1(p1, sjsjsj) in price-quantity space (6)

q1 = Q1Q1Q1 −
∑

j 6=i

x∗
j,1(p

RS
i,1pRS
i,1pRS
i,1 (q1)) in quantity-price space (7)

It is continuous and upward-sloping by the assumption that all bidding functions are continuous

and decreasing. Moreover, since s−is−is−i and Q1Q1Q1 are random, the residual supply is random. This

makes it difficult for the agent. If he knew the realization of the supply, he would simply pick the

point on the residual supply curve that maximizes his net payoff. To determine his optimal price

offers, he goes through all possible realizations of the residual supply curve for good 1, pRS
i,1 (q1).

The optimal bid-offer b∗i,1(q1, si) equates its expected marginal utility with its expected marginal

payment and clears the market: pRS
i,1 (q1) = b∗i,1(q1, si). Hereby, the agent takes the best guess about

how much he will obtain in the other auction, by taking the conditional expectation. Lemma 1

summarizes.
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Lemma 1. A linear BNE with bidding functions b∗i,1(·, si), b
∗
i,2(·, si) that are strictly decreasing in

quantity must satisfy b∗i,m(qm, si) = pRS
i,m(qm), and

E

[

∂U(qm, q
∗
i,−mq∗i,−mq∗i,−m, si)

∂qm

∣

∣

∣

∣

qm

]

= E

[

∂TP (pRS
i,m(qm), p

∗
−mp∗−mp∗−m, qm, q

∗
i,−mq∗i,−mq∗i,−m)

∂qm

∣

∣

∣

∣

∣

qm

]

(8)

for all qm and m = 1, 2,−m 6= m.

The bidding behavior in the centralized market is different. In search for the optimal strategy, the

agent now goes through all possible pairs of realizations of residual supply curves {p̄RS
i,1 (q1, q2), p̄

RS
i,2 (q2, q1)}.

Say a particular pair realizes and that offering prices {b̄∗i,1(q1, q2, si), b̄
∗
i,2(q2, q1, si)} makes agent i

win {q1, q2}. For each bid-offer to be optimal it must be that marginal utility from winning the

bid, that is winning qm, must equate the marginal payment for both goods m = 1, 2, and clear

both markets simultaneously: b̄∗i,1(q1, q2, si) = p̄RS
i,1 (q1, q2), b̄

∗
i,2(q2, q1, si) = p̄RS

i,2 (q2, q1). Lemma 2

summarizes.

Lemma 2. A linear BNE with two bidding functions b̄∗i,1(·, ·, si), b̄
∗
i,2(·, ·, si), that are strictly de-

creasing in the first argument, must satisfy b̄∗i,1(q1, q2, si) = p̄RS
i,1 (q1, q2), b̄

∗
i,2(q2, q1, si) = p̄RS

i,2 (q2, q1)

and

[

∂U(q1, q2, si)

∂qm

]

=

[

∂TP (p̄RS
i,1 (q1, q2), p̄

RS
i,2 (q2, q1), q1, q2)

∂qm

]

(9)

for all q1, q2 and m = 1, 2.

Lemma 1 and 2 give necessary conditions for linear BNE. They help us understand the strategic

considerations that drive the equilibrium bidding choice, if such equilibria exist. The next two

propositions establish their functional form, and provide existence and uniqueness results. Propo-

sition 1 continues with the centralized market. It is a variant of Du and Zhu (2012)’s Proposition 3.8

Proposition 1. There exists a linear BNE in which traders submit

b̄∗m(qm, q−m, si) = si −

(

n− 1

n− 2

)

{λqm + δq−m} for m = 1, 2,−m 6= m. (10)

It is the unique symmetric ex-post equilibrium, in which all submit linear functions in both markets.

8When the agent has a type with a common value component: γsi + κ
∑

j 6=i sj with γ + (n− 1)κ = 1, and total

supply quantities are fixed, i.e. E[QmQmQm] = Qm for m = 1, 2, σ = 0, Du and Zhu (2012) show that there is an ex-post

equilibrium in which traders submit

b̄∗m(qm, q−m, si) = si −

(

n− 1

nγ − 2

)

{λqm + δqm − κQm} for m = 1, 2;−m 6= m (38)

It can be shown that Lemma 2 carries over to that case, replacing E[QmQmQm] = Qm for m = 1, 2 in formula (14).

9



In equilibrium each agent shades his true marginal willingness to pay ∂U(q1,q2,si)
∂qm

= si−λqm−δq−m.

He can influence the market-clearing price with positive probability. In the optimum all traders use

their individual market power by shading bids for higher quantities more strongly. Similar to an

oligopolist they reduce their demand. This strategic behavior is well-understood in the literature

for multi-unit auctions that sell one divisible good to agents with multi-unit demand (see Ausubel

et al. (2014)). It carries over to double auctions with multiple goods where the true demand is

multi-dimensional.

The equilibrium strategy in a centralized market is very similar to the one in a disconnected

market in which the residual supply curves are perfectly correlated across goods. Before analyzing

this case, let me formally define what this condition means. To do so, it helps to have a better

understanding of each residual supply curve. Given all other agents j 6= i play linear strategies of

the following form
x∗
j,m(pm, sj) = om + amsj − cmpm with om, am ∈ R, cm > 0 (11)

it is linear:

RSi,m(pm,Zi,mZi,mZi,m) = Zi,mZi,mZi,m − (n− 1)om + (n− 1)cmpm (12)

with Zi,mZi,mZi,m ≡ QmQmQm − am
∑

j 6=i

sjsjsj. (13)

Definition 3. (i) Fix p1, p2. The residual supply quantities at those prices are perfectly correlated

iff Zi,1Zi,1Zi,1 and Zi,2Zi,2Zi,2 are. (ii) The residual supply curves are perfectly correlated iff the residual supply

quantities are for all prices.

Lemma 3 tells us when the residual supply curves are perfect correlated in the current framework,

in which all agents have one private type and participate in both markets.

Lemma 3. The residual supply curves are perfectly correlated iff σ = 0 or ρ = 1 and a1 = a2.

When the total amount for sale is known to all agents (σ = 0), the only random source that shifts

the residual supply is
∑

j 6=i sjsjsj. Since it is common to both curves, they are perfectly correlated.

On the other hand, with perfectly correlated exogenous supply (ρ = 1), the residual supply curves

are perfectly correlated when the type’s coefficient am is the same across markets. The following

proposition shows that this is the case in equilibrium.8

Proposition 2. Let the residual supply curves be perfectly correlated across markets.

(i) In a linear BNE, in which all are active in both markets, traders submit for m = 1, 2,−m 6= m

b∗m(qm, si) = b̄∗m(qm, qm, si) +

(

δ

n

)

(µm − µ−m). (14)

(ii) Its existence is guaranteed when total supply is deterministic (σ = 0, µm = Qm for m = 1, 2).

Then it is the unique symmetric ex-post equilibrium, in which all submit linear functions in both

markets.

10



In a disconnected auction, the price offer for good m can - by design - not depend on the amount

the agents has of good −m. The agent is forced to substitute q−m in b̄∗m(qm, q−m, si) by qm. This

means that he can no longer interlink his submitted demands explicitly. What he can do however,

is to make his submitted demand in market m dependent on the expected total supply of the other

market, µ1, µ2. This allows the agent to implicitly interlink his submitted demand across markets,

even though the market rules prevent him from explicitly connecting his preferences.

Notably, the equilibrium is linear, even though its underlying optimality condition given in Lemma

1 (with quadratic utility) hinges on a conditional expectation, E
[

q∗i,−mq∗i,−mq∗i,−m

∣

∣ qm
]

, which are typically

not linear. The solution is independent of any particular distribution, because i’s winning quantity

in market −m is a linear function of i’s winning quantity in market m when the residual supply

curves are perfect correlated. As a result, both conditional expectations are linear. Now, one

might wonder how agents behave in a disconnected market in which the residual supply curves are

not perfectly correlated. Without linear mapping between the equilibrium winning quantities of

both auctions, an appropriate distributional assumptions is needed to ensure that the conditional

expectation of the winning quantity of the other auction is a linear function. Only then there can

be a linear equilibrium. Here I choose the standard distribution used in the literature, the normal

distribution. Otherwise, I keep the same distributional assumptions, i.e. sisisi ∼ N(µs, σ
2
s), iid and

(

Q2Q2Q2

Q2Q2Q2

)

∼ N

((

µ1

µ2

)

, σ2

(

1 ρ

ρ 1

))

.

Proposition 3. Define ρi(α) ≡ ρσ2+α2(n−1)σ2
s

σ2+α2(n−1)σ2
s
. Let |ρi(α)δ| ≤ λ. In a symmetric BNE in which all

are active in both markets, traders submit for m = 1, 2,−m 6= m

β∗
m(qm, si) = ǫ(α) + αsi − γ(α)qm with α = 1− δα

(

1

n

)

(n− 1)[1− ρi(α)] (15)

γ(α) =

(

n− 1

n− 2

)

(

λ+ δρi(α)
)

ǫ(α) = δ

(

1

n

)

[

(ρi(α)µm − µ−m) + α(n− 1)µs[1− ρi(α)]
]

When the residual supply curves are not perfectly correlated, the agent no longer knows exactly

how much he will win in the other auction −m conditional on winning a particular amount in

m. The best he can do is to exploit the correlation across residual supplies, that is - by market

clearing - his winning quantities (Lemma 1). This is the reason for which the correlation ρi(α)

of winning quantities, or equivalently of residual supplies, now plays a key role in his choice.

Otherwise, the strategy is very similar to the one under perfect correlation. This becomes trans-

parent when comparing the coefficients of the linear functions of Proposition 2 and 3 (see Figure 1).

Not surprisingly, the function form of the BNE under the normal distribution coincides with Propo-

sition 2 when winning quantities are perfectly correlated, ρi(α) = 1. The later was derived for

arbitrary distributions for the case in which residual supply curves - and therewith winning quan-

tities - are perfectly correlated. It does not otherwise.

Corollary 1. ρi(α) = 1 iff β∗
m(qm, si) = b∗m(qm, si).

11



Figure 1: b∗m(qm, si) = ǫ+ αsi − γqm with

Prop. 2: perf. corr. Prop. 3: w/o perf. corr.

ǫ = δ
(

1
n

)

[µm − µ−m] ǫ = δ
(

1
n

) [

ρi(α)µm − µ−m + (1− ρi(α))α(n− 1)µs

]

α = 1 α = 1− δα
(

1
n

)

(n− 1)(1− ρi(α))

γ =
(

n−1
n−2

)

(λ+ δ) γ =
(

n−1
n−2

)

(

λ+ δρi(α)
)

3 Irrelevance Theorem

A comparison of the equilibrium allocations across market structures leads to the Irrelevance The-

orem. It is counter-intuitive. In the centralized market, traders with joint preferences over the

goods for sale are allowed to bid for bundles and can therewith jointly maximize their total sur-

plus. Instead, in a disconnected market, their demand schedule can only depend on the price of

the security traded in that market. By design of the transaction, agents are always constrained

in the way they can display their preferences. One would therefore expect that the equilibrium

allocation of the centralized market must differ from the one of the disconnected market.

Irrelevance Theorem. The equilibrium allocation {q∗i,1, q
∗
i,2}

n
i=1 of symmetric, linear equilibria in

centralized and disconnected markets coincide if the residual supply curves are perfectly correlated

across goods.

To understand why the market structure can be irrelevant recall the intuition that was laid out

to explain equilibrium behavior. While preferences are two-dimensional a the submitted demand

is one-dimensional in a disconnected auction. The agent picks an optimal point on each possible

supply curve, taking the expectation of what will happen in the other market (condition (8)). On

the contrary, in the centralized auction the agent is free to pick a pair of points on each pair of

realizations of residual supply curves (condition (9)). In choosing how much he trades of one good

the agents knows exactly how much he will trade of the other good. There is no need to take an

expectation. This means that the trader can make a relatively “better informed” decision in the

centralized market, unless the residual supply curves are perfectly correlated. In my set-up where

all traders participate in both markets, this case occurs either with fixed (σ = 0) or random but

perfectly correlated total supply (ρ = 1). Then a realization of the residual supply curve of good

1, which corresponds to some optimal choice for good 1, maps one-to-one to some realization of

the curve of good 2, which in turn corresponds to an optimal choice in auction 2. Conditional on

observing the realization in auction 1, the agent knows exactly how much he will win in the other

auction 2. The inherent constraint that he faces in an disconnected auction becomes irrelevant.

He deals with the same amount of uncertainty in either market structure. As a consequence, he

trades as much as he does in the centralized market.

12



This intuition should generalize to many other environments that are not considered on a formal

level. Say there are some underlying uncertainties about good m. So far they come from iid

private information of the competitors s−is−is−i, and random exogenous total supply QmQmQm, but they

could also come from affiliated or common values of strategic agents, or from noise traders, etc.

The key is that, for given strategies of the other agents, these underlying uncertainties aggregate

to some random variable Zi,mZi,mZi,m that governs the residual supply for good m: RSi,m(pm,Zi,mZi,mZi,m).
9

In such a more general setting, I expect the equilibrium allocation of the disconnected and the

centralized market to coincide not only when Zi,1Zi,1Zi,1 and Zi,2Zi,2Zi,2 are perfectly correlated, but more

generally when they move one-to-one. This is a weaker condition than perfect correlation, as it

allows the realizations of both variables to be interlinked by some deterministic function f(·) that

is not necessarily linear: Zi,2Zi,2Zi,2 = f(Zi,1)Zi,1)Zi,1). Perfect correlation, instead, defines a linear relation:

Zi,2Zi,2Zi,2 = r+ gZi,1Zi,1Zi,1 with g±
√

V ar(Zi,2Zi,2Zi,2)

V ar(Zi,1Zi,1Zi,1)
and r = E[Zi,2Zi,2Zi,2]− gE[Zi,1Zi,1Zi,1]. Without it, equilibria will no longer

be linear. While it is mathematically much more challenging to solve for non-linear equilibria, my

intuition does not rely on linearity. I therefore conjecture that the market structure is irrelevant

whenever residual supply curves move one-to-one.

3.1 Welfare Implications

The equivalence between equilibrium quantities has important implications for the total amount

traded and efficiency. Since all agents trade the same quantities across market structures, the

aggregated amount of trade is equivalent. Furthermore, either market structure achieves the same

level of welfare:

W ∗ ≡
∑

i

λiU(q∗i,1, q
∗
i,2, si) ,with type-specific welfare weight λi,

is independent of whether the market is centralized or disconnected. Due to strategic demand

reduction the outcome under either market structure is inefficient. This is a well-known weakness

of uniform-price auctions with strategic bidders (see Ausubel et al. (2014)): Agents with high (low)

valuations obtain less (more) than what would be efficient because they shade more (less) at the

market-clearing price. The more market participants, the lower the impact of each individual agent,

the lower the incentives to reduce demand strategically. In the limit, as n → ∞, the individual

impact on the market’s outcome vanishes completely. The inefficiency washes out. The following

section shows that disconnected markets give rise to the fully efficient allocation when residual

supply curves are perfectly correlated across goods (Irrelevance Theorem for large markets).

4 Large Market

So far, I have considered markets in which agents behave strategically. They take their individual

effect on the clearing price into account when setting their demand schedules. When markets are

large, each agent has a negligible effect on the market’s outcome. He is a price-taker. By sending

9Recall: In the above set-up with with linear equilibria, x∗
i,m(pm, si) = om+amsi− cmpm this aggregate random

variable was Zi,mZi,mZi,m ≡QmQmQm − am
∑

j 6=i sjsjsj .
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the number of market participants n → ∞, I can reproduce a world of perfect competition, shut-

ting down strategic behavior. In the limit, all agents become price-takers. Alternatively, I could

determine “price-taking equilibria”, as in Vives (2011). Those are equilibria, in which agents are

price-takers by assumption. With quadratic utility the following equilibria are the unique price-

taking equilibria.

Corollary 2. Let n → ∞, m = 1, 2,−m 6= m. The price-taking agents choose

(i) In the centralized market

b∗m(qm, q−m, si) =

[

∂U(q1, q2, si)

∂qm

]

= si − δqm − λq−m (16)

(ii) In the disconnected market

b∗m(qm, si) = lim
n→∞

E

[

∂U(qm, q
∗
i,−mq∗i,−mq∗i,−m, si)

∂qm

∣

∣

∣

∣

qm

]

= si − (δ + λ)qm under perf. corr. (17)

In the centralized market, all agents submit their true marginal willingness to pay: si−λqm−δq−m.

The outcome is fully efficient as a result. Strategic demand reduction no longer distorts the allo-

cation of quantities. The Irrelevance Theorem for large markets reveals that disconnected markets

can be fully efficient.

Irrelevance Theorem (Large Markets). When agents are price-takers, the allocation of discon-

nected markets coincides with the fully efficient allocation of the centralized market as long as

residual supply curves are perfectly correlated across goods.

This finding contradicts a common understanding among economists according to which a social

planner would never choose to separate markets when agents have joint preferences over goods.

In fact, if there is only a negligible cost to centralize disconnected markets, a social planner would

refrain from breaking up the existing market structure, in case the uncertainty that governs the

market price of each good is perfectly correlated across markets. Intuitively, there is enough

information in each disconnected market to achieve first-best.

5 Conclusion

I provide a novel Irrelevance Theorem. It shows under which conditions strategic traders with joint

preferences over bundles of goods trade the exact same amount in disconnected and centralized

markets. Only in the later they can freely represent their true two-dimensional preferences. I argue

that the inherent constraint that agents face in a disconnected market is non-binding whenever

the underlying uncertainty that drives pricing decisions is perfectly correlated across markets. In

that case there is no informational differences that could lead to differences in allocations of the

two market structures. Large disconnected markets, in which agents are price-takers, turn out to

be fully efficient.
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Besides broad significance for the design of trading markets, my findings could have concrete policy

implications. Recently Budish et al. (2015) proposed to reform high-frequency trading markets.

They advocate to replace the continuous limit order book which causes an inefficient race in high-

frequency trading with frequently held batch uniform-price double auctions. Their model only has

one good and thus abstracts from strategic substitution, or arbitrage effects across markets. Such

effects could in principle have adverse consequences on the equilibrium dynamics. My irrelevance

result tells us when we do not have to care about cross-market effects. It should, however, be

used with caution in the evaluation of real-life markets. Rather than representing any particular

market as realistically as possible, my model should be taken as insightful theoretic benchmark. It

points to an important extreme case, highlighting one particular factor. Other factors should not

be forgotten, when evaluating the performance of real-life markets which are much more complex

than any theoretic model. In this regard, my irrelevance theorem is similar to other irrelevance

statements, including the most influential ones. It tells us what we have to care about, or more

broadly, what goes wrong when the condition under which the theorem holds is violated. Typically,

those conditions are extreme. In my case it is perfect correlation of residual supply. Other irrele-

vance theorems build on other knife-edge assumptions, so are zero transaction costs, for instance,

necessary for allocation of resources to be invariant to the assignment of private property rights

(Coase Theorem).

In future work, I aim to generalize the Irrelevance Theorem to apply in more environments, in-

cluding those that give rise to non-linear, potentially asymmetric equilibria. As as starting point,

I would like to enrich the framework in letting agents have two-dimensional types with a common

value component, and study effects of asymmetric market participation. In addition, my general

first-order conditions of the disconnected auctions serve as theoretic foundation for a related empir-

ical project of mine. In collaboration with Jason Allen and Jakub Kastl I structurally estimate the

interdependencies in primary dealer’s demand for government securities with different maturities

in pay-as-bid auctions.
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Appendix

The appendix is split into two parts. Appendix I (pp. 1-10) states and proves general necessary

optimality conditions for disconnected markets that hold for non-linear equilibria and many utility

functions (Lemma 4). Appendix II (pp. 11-27) has all proofs corresponding to formal statements

given in the main text.

Appendix I: General opt. condition for discon. market

The goal of this section is to state and prove the necessary condition for a BNE in the disconnected

market which consists of a set of two bidding functions {b∗i,1(·, si), b
∗
i,2(·, si)}

n
i=1, or equivalently de-

mand functions {x∗
i,1(·, si), x

∗
i,2(·, si)}

n
i=1, that are differentiable and strictly decreasing in quantities,

respectively prices (Lemma 4).

This condition holds for a broad class of utility functions. More precisely, I require U(·, ·, s1) to be

twice differentiable with continuous cross-partial derivatives. For convenience I denote10

µ1(q1, q2, si) ≡
∂U(q1, q2, si)

∂q1
, µ2(q2, q1, si) ≡

∂U(q1, q2, si)

∂q2
, µ(q1, q2, si) ≡

∂2U(q1, q2, si)

∂q1∂q2

Remark: Twice differentiability is enough to give a necessary condition, but it is not enough

to guarantee that there is a function that satisfies this condition point-wise, and is a maximum

not minimum. While I do not make this claim here, I nevertheless would like to comment on

additional assumptions that would be needed. For one, the partial derivative must be decreasing

so that the solution can maximize the objective function. Second, recall that solution is assumed

to be differentiable and strictly decreasing in quantity. The first property can only be fulfilled

if all distribution functions are differentiable. The latter is more complicated. It will depend on

the shape of the partial derivative and the conditional distribution of the clearing-price quantity,

denoted q∗i−mq∗i−mq∗i−m . The later in turn hinges on the particular distribution of the types and the total

supply quantities. Formally, E
[

µm(qm, q
∗
i−mq∗i−mq∗i−m, si)|qm

]

< 0 for m = 1, 2,−m 6= m.

The necessary condition (Lemma 4) will be stated using the joint and marginal distribution over

i’s clearing price quantities. Before stating the lemma, let me define this distribution. To do so,

it helps to recall the definition of i’s clearing-price quantity in auction m, q∗i,mq∗i,mq∗i,m. It is for m = 1, 2

implicitly defined by market clearing

q∗i,mq∗i,mq∗i,m = QmQmQm −
∑

j 6=i

x∗
j,m(p

∗
mp
∗
mp
∗
m, sjsjsj) with p∗mp

∗
mp
∗
m = bi,m(q

∗
i,mq∗i,mq∗i,m, si) (2)

It is the (random) point on the (random) strictly increasing residual supply curve at price p∗mp
∗
mp
∗
m =

bi,m(q
∗
i,mq∗i,mq∗i,m, si). Its support, [q∗

i,m
, q∗i,m]. It depends on the bid-offer for this amount. The maximal

10By Schwarz’s Theorem, the cross-partial derivative is symmetric, i.e. ∂2U(q1,q2,si)
∂q2∂q1

= ∂2U(q1,q2,si)
∂q1∂q2

∂2U(q1,q2,si)
∂q2∂q1

≡

µ(q1, q2, si).
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possible support is given by the maximal amounts one agent can sell |q
m
| and buy qm in the market

by the rules of the transaction:

[q∗
i,m

, q∗i,m] ⊆ [q
m
, qm] for any bi,m(·, si).

Definition 4. Define the joint distribution over i’s clearing price quantities as the probability

that agent i receives at most quantity q1 and at most quantity q2 when bidding bi,1(q1, si) =

p1, bi,2(q2, si) = p2 as

Gi(q1, q2, p1, p2) ≡ Pr
(

q∗i,1q∗i,1q∗i,1 ≤ q1 and q∗i,2q∗i,2q∗i,2 ≤ q2
)

(18)

Analogously, define the marginal distribution of i’s clearing price quantity in market m = 1, 2 by

Gi
m(qm, pm) = Pr

(

q∗i,mq∗i,mq∗i,m ≤ qm)
)

(19)

And the conditional distribution

Gi
2|1(q2, p2|q1, p1) = Pr

(

q∗i,2q∗i,2q∗i,2 ≤ q2
∣

∣q∗i,1q∗i,1q∗i,1 ≤ q1). (20)

I denote the corresponding joint and marginal density functions by gi, gim and gi2|1, and oftentimes

abbreviate bi,m(qm, si) = bi,m.

Lemma 4. A BNE with pairs of strictly decreasing, differentiable bidding functions must for all

qm,m = 1, 2 satisfy

E

[

∂U(qm, q
∗
i,−mq∗i,−mq∗i,−m, si)

∂qm

∣

∣

∣

∣

qm

]

− b∗i,m(qm, si) = −qm





∂Gi
m(qm,b∗i,m(qm,si))

∂qm

∂Gi
m(qm,b∗i,m(qm,si))

∂pm



 (21)

(ii) When b∗−1
i,m (·, si) = x∗

i,m(·, si) is additive separable in si the necessary condition can be stated as

E

[

∂U(qm, q
∗
i,−mq∗i,−mq∗i,−m, si)

∂qm

∣

∣

∣

∣

qm

]

− b∗i,m(qm, si) = +qm

[

∂RSi,m(b
∗
i,m(qm, si))

∂pm

]−1

(22)

Proof of Lemma 4

The proof involves lengthly algebraic derivations. To not get lost in the equations, I lay out the

core of the argument in the next section.

5.1 The Core of the Argument

Taking behavior of all others as given, agent i chooses two bidding functions b∗i,1(·, si), b
∗
i,2(·, si)

that maximize his objective function:

V(bi,1(·, si), bi,2(·, si)) ≡ E

[

U(q∗i,1q∗i,1q∗i,1, q
∗
i,2q∗i,2q∗i,2, si)−

∑

m=1,2

q∗i,mq∗i,mq∗i,mp
∗
mp
∗
mp
∗
m

]

(V)
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By definition of an equilibrium there cannot be another pair of functions different from {b∗i,1(·, si), b
∗
i,2(·, si)}

which generates a higher payoff for agent i:

{b∗i,1(·, si), b
∗
i,2(·, si)} ∈ arg max

bi,1(·,si),bi,2(·,si)
V(bi,1(·, si), bi,2(·, si)) (JM)

Since {b∗i,1(·, si), b
∗
i,2(·, si)} must be the solution to i’s maximization problem each function must

solve the agent’s maximization problem holding fixed the other:

⇒ b∗i,m(·, si) ∈ arg max
bi,m(·,si)

O(bi,m(·, si)) (M)

with O(bi,m(·, si)) ≡ V(bi,m(·, si), b
∗
i,−m(·, si)) (O)

for m = 1 or 2 and m 6= −m. Otherwise there would be another pair of functions that would

generate a higher payoff for the agent, so that {b∗i,1(·, si), b
∗
i,2(·, si)} could not be the solution of the

joint maximization problem (JM).

The rest of the prove derives the first-order condition of maximization problem (M). It is compli-

cated for two main reasons. First we are maximizing over a function, not just a point. Second the

objective function is the expected value of the agent’s total surplus, which depends non-trivially

on the bidding function we are trying to determine. Techniques of calculus of variation can be

used to solve the optimization. The first step is to ex-press the objective function O(bi,m(·, si)) in

a format that explicitly states its dependence of the slope of the bidding function:

Auxiliary Lemma 1. Denote ḃi,m(qm, si) =
∂bi,m(qm,si)

∂qm
.

O(bi,m(·, si)) =

∫ qm

q
m

F(qm, bi,m(qm, si), ḃi,m(qm, si))dqm (O)

F(·, ·, ·) that is is continuous in its three arguments and has continuous partial derivatives with

respect to the second and third, and takes the following form

F(q1, bi,1(q1, si), ḃi,1(q1, si)) ≡
[

µ1(q1, q2, si)− bi,1(q1, si)− q1ḃi,1(q1, si)
]

[1−Gi
1(q1, bi,1)]

−

∫ q
2

q
2

µ(q1, q2, si)[1−Gi(q1, q2, bi,1, bi,2)]dq2 + const (F)

Section 5.2 proves this auxiliary lemma. Section 5.3 then solves maximization problem (M). In

a nutshell, its solution b∗i,m(·, si) is then characterized by the Euler Equation. It is known in the

literature of variational calculus (e.g. Kamien and Schwartz (1993), pp. 14-16):

Fbi,m(qm, b
∗
i,m(qm, si), ḃ

∗
i,m(qm, si)) =

d

dqm
Fḃi,m

(qm, b
∗
i,m(qm, si), ḃ

∗
i,m(qm, si))

where Fbi,m , and Fḃi,m
denotes the partial derivative of F(·, ·, ·) w.r.t. the second and third ar-

gument. Rearranging the Euler Equation will give rise to the optimality condition of the lemma

4.
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5.2 Proof of Auxiliary Lemma 1

Section 5.2.1 re-expresses the bidder’s objective function V . In a second step I fix function

bi,2(·, si) = b∗i,2(·, si) to obtain O(bi,m(·, si)) =
∫ qm
q
m

F(qm, bi,m(qm, si), ḃi,m(qm, si), si)dqm and show

that F(·, ·, ·) has the claimed properties (section 5.2.2).

Several times throughout the proof, I will rely on the Fundamental Theorem of Calculus and

Fubini’s Theorem. The first applies because all functions are integrable w.r.t. q1 × q2 and all

integrals take finite values. Here I am relying on the assumption that no bidder can supply

or demand infinite amounts which bounds the quantity space [q
m
, qm] for m = 1, 2, and thus

avoids complications due to unboundedness. Similarly, Fubini’s Theorem is valid whenever applied

because the function inside integrals will be defined on the closed interval [q
m
, qm] for m = 1 or 2.

Moreover it is continuous since I am assuming that all involved functions are differentiable.

5.2.1 Step 1: Simplifying V

The simplification of i’s objective involves several rounds of integration by parts. The goal is to

express everything in everything in terms of distribution functions, rather than densities. I start

with the expected utility.

(a) Re-expressing the expected utility

Using the introduced distribution of i’s clearing-price quantities, the expected utility is

E [U(qqq∗1, qqq
∗
2, si)] =

∫ q∗
2

q∗
2

∫ q∗
1

q∗
1

U(q1, q2, si)g
i(q1, q2, bi,1, bi,2)dq1dq2

Now, since i’s clearing-price quantity depends on what price he offers for this amount, its support

depends on the bid choice. This is inconvenient because will want to determine the optimal bid

choice. Luckily there is a clever way around this complication. Since for a given bid choice,

gim(qm, bi,m(qm, si)) = gi(q1, q2, bi,1(q2, si), bi,2(q2, si)) = 0 for qm /∈
[

q∗
m
, q∗m

]

, m = 1 or 2, I can

extend the bounds of the integrals. They are then independent of i’s bid choice.

E [U(qqq∗1, qqq
∗
2, si)] =

∫ q
2

q
2

∫ q
1

q
1

U(q1, q2, si)g
i(q1, q2, bi,1, bi,2)dq1dq2

In the first round of the simplification, integrate the inner integral by parts, taking the derivative

of U(q1, q2, si) and integrating gi(q1, q2, bi,1, bi,2) w.r.t. q1.

∫ q
2

q
2

∫ q
1

q
1

U(q1, q2, si)g
i(q1, q2, bi,1, bi,2)dq1dq2 =

∫ q
2

q
2



U(q1, q1, si)

∫ q1

q
1

gi(q1, q2, bi,1, bi,2)dq1

∣

∣

∣

∣

∣

q1=q
1

q1=q
1



 dql

−

∫ q
2

q
2

[

∫ q
1

q
1

[

µ1(q1, q2, si)

∫ q1

q
1

gi(q1, q2, bi,1, bi,2)dq1

]

dq1

]

dq2

4



Evaluate the first term at its bounds of integration. Since
∫ q

1

q
1

gi(q1, q2, bi,1, bi,2) = 0 and
∫ q

1

q
1

gi(q1, q2, bi,1, bi,2) =
∫ q∗i,1
q∗
i,1

gi(q1, q2, bi,1, bi,2) = gi(q2, bi,2) by definition of a marginal distribution we obtain

=

∫ q
2

q
2

U(q1, q2, si)g
i
2(q2, bi,2)dq2

−

∫ q
2

q
2

[

∫ q
1

q
1

[

µ1(q1, q2, si)

∫ q1

q
1

gi(q1, q2, bi,1, bi,2)dq1

]

dq1

]

dq2

I label the first term by A and the second by B.

A) Consider term A and integrate by parts w.r.t. q2

A =

∫ q
2

q
2

U(q1, q2, si)g
i
2(q2, bi,2)dq2 = U(q1, q2, si)G

i
2(q2, bi,2)

∣

∣

q
2

q
2

−

∫ q
2

q
2

µ2(q2, q2, si)G
i
2(q2, bi,2)dq2

Since Gi
2(q2, bi,2) = 1 and Gi

2(q2, bi,2) = 0 for all bi,2, this is

A = U(q1, q2, si)−

∫ q
2

q
2

µ2(q2, q2, si)G
i
2(q2, bi,2)dq2 (A)

B) Now consider term B. Applying Fubini’s Theorem, I can revert the order of integration of the

two outer integrals:

B =

∫ q
1

q
1

[

∫ q
2

q
2

[

µ1(q1, q2, si)

∫ q1

q
1

gi(q1, q2, bi,1, bi,2)dq1

]

dq2

]

dq1

In the following I simplify the inner integral (corresponding to dq2) by parts, repeating the same

exercise as of the very first step. I integrate
∫ q1

q
1

gi(q1, q2, bi,1, bi,2)dq1 and take the derivative of

µ1(q1, q2, si) w.r.t. q2.

B =

∫ q
1

q
1

[

µ1(q1, q2, si)G
i(q1, q2, bi,1, bi,2)

∣

∣

q2=q
2

q2=q
2

−

∫ q
2

q
2

µ(q1, q2, si)G
i(q1, q2, bi,1, bi,2)dq2

]

dq1

Again the first term simplifies, now using that for any bi,2, bi,1, G
i(q2, q2, bi,1, bi,2) = Gi

1(q1, bi,1) and

Gi(q1, q2, bi,1, bi,2) = 0. I obtain

B =

∫ q
1

q
1

µ1(q1, q2, si)G
i
1(q1, bi,1)dq1 −

∫ q
2

q
2

µ(q1, q2, si)G
i(q1, q2, bi,1, bi,2)dq2 (B)

Combining A - B, the expected utility reads with m = 1, 2,−m 6= m

E [U(qqq∗1, qqq
∗
2, si)] =−

∑

m

∫ qm

q
m

µm(qm, q−m, si)G
i
m(qm, bi,m)dqm

+

∫ q
2

q
1

∫ q
2

q
2

[

µ(q1, q2, si)G
i(q1, q2, bi,1, bi,2)

]

dq2dq1 + U(q1, q2, si)

5



Applying the Fundamental Theorem of Calculus one can re-express the expression as

E [U(qqq∗1, qqq
∗
2, si)] = +

∑

m

∫ qm

q
m

µm(qm, q−m, si)[1−Gi
m(qm, bi,m)]dqm

−

∫ q
2

q
1

∫ q
2

q
2

µ(q1, q2, si)[1−Gi(q1, q2, bi,1, bi,2)]dq2dq1 − U(q
1
, q

2
, si) (EU)

(b) Re-expressing the expected payments

Let me label the expected payment in auction m by

E
[

Bi,m(q
∗
i,mq∗i,mq∗i,m)
]

= E[q∗i,mq∗i,mq∗i,mp
∗
mp
∗
mp
∗
m] = E

[

q∗i,mq∗i,mq∗i,mbi,m(q
∗
i,mq∗i,mq∗i,m, si)

]

Using the distribution of i’s clearing price quantities, extending the integral in the same way as

above we have

E
[

Bi,m(q
∗
i,mq∗i,mq∗i,m)
]

=

∫ qm

q
m

qmbi,m(qm, si)g
i
m(qm, bi,m)dqm

Integrating by parts we obtain

E
[

Bi,m(q
∗
i,mq∗i,mq∗i,m)
]

= qmbi,m(qm, si)G
i
m(qm, bi,m)

∣

∣

qm

q
m

−

∫ qm

q
m

[qmbi,m(qm, si)]
′ Gi

m(qm, bi,m)dqm

Since Gi
m(qm, bi,m) = 1, Gi

m(qm, bi,m) = 0 for all bi,m this simplifies to

E
[

Bi,m(q
∗
i,mq∗i,mq∗i,m)
]

=

∫ qm

q
m

[qmbi,m(qm, si)]
′ [1−Gi

m(qm, bi,m)]dqm

E
[

Bi,m(q
∗
i,mq∗i,mq∗i,m)
]

=

∫ qm

q
m

[

bi,m(qm, si) + qm

(

∂bi,m(qm, si)

∂qm

)]

[1−Gi
m(qm, bi,m)]dqm (EBm)

→ The objective function

Combining (EU) -
∑

m (EBm) the objective function

V(bi,1(·, si), bi,2(·, si)) ≡ E

[

U(q∗i,1q∗i,1q∗i,1, q
∗
i,2q∗i,2q∗i,2, si)−

∑

m=1,2

q∗i,mq∗i,mq∗i,mp
∗
mp
∗
mp
∗
m

]

(V)

can be written as

V(bi,1(·, si), bi,2(·, si)) =

+
∑

m

∫ qm

q
m

µm(qm, q−m, si)−

[

bi,m(qm, si) + qm

(

∂bi,m(qm, si)

∂qm

)]

[1−Gi
m(qm, bi,m)]dqm

−

∫ q
1

q
1

∫ q
2

q
2

µ(q1, q2, si)[1−Gi(q1, q2, bi,1, bi,2)]dq2dq1 − U(q
1
, q

2
, si) (V)
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5.2.2 Step 2: Deriving F

For notational convenience set m = 1,−m = 2. The other auction is analogous.

Fix bi,2(·, si) = b∗i,2(·, si) and recall that

O(bi,1(·, si)) ≡ V(bi,1(·, si), b
∗
i,2(·, si)) (O)

and denote
(

∂bi,m(qm,si)

∂qm

)

= ḃi,m(qm, si) for m = 1, 2.

A straightforward mathematical manipulation rearranges (V) with bi,2(·, si) = b∗i,2(·, si) to

O(bi,1(·, si)) =

∫ q
1

q
1

F(q1, bi,1(q1, si), ḃi,1(q1, si))dq1 (O)

with

F(q1, bi,1(q1, si), ḃi,1(q1, si)) ≡
[

µ1(q1, q2, si)− bi,1(q1, si)− q1ḃi,1(q1, si)
]

[1−Gi
1(q1, bi,1)]

−

∫ q
2

q
2

µ(q1, q2, si)[1−Gi(q1, q2, bi,1, bi,2)]dq2 + const (F)

where11

const ≡

[

1

q1 − q
1

](

∫ q
2

q
2

[

µ2(q2, q1, si)− b∗i,2(q2, si)− q2ḃ
∗
i,2(q2, si)

]

[1−Gi
2(q2, b

∗
i,2)]dq2 − U(q

1
, q

2
, si)

)

This leaves us with the claimed functional form of F . This function is continuous in its three

arguments, and has continuous partial derivatives with respect to the second and third because

bi,1(·, si), bi,2(·, si) as well as all distribution functions are differentiable, and the the utility function

has continuous partial and cross-partial derivatives by assumption.

This completes the proof of the auxiliary lemma.

5.3 Solving Maximization Problem (M)

The proof derives the necessary condition of the following maximization problem, where

max
bi,1(·,si)

∫ q
2

q
1

F(q1, bi,1(q1, si), ḃi,1(q1, si))dq1

Since F is continuous in its three arguments and has continuous partial derivatives with respect

to the second and third it is a standard problem of variational calculus. Its solution b∗i,1(·, si) :

[q
1
, q1] → R must satisfy the Euler Equation for all quantity points q1 ∈ [q

1
, q1]:

Fbi,1(q1, b
∗
i,1(q1, si), ḃ

∗
i,1(q1, si)) =

d

dq1
Fḃi,1

(q1, b
∗
i,1(q1, si), ḃ

∗
i,1(q1, si)) (23)

11To obtain the constant, I have extended the integral
∫ q

1

q
1

dq1, to also go over the part of the objective function that

are independent of q1. It is the part in round brackets in const. To undo the integration I divide by [q1−q
1
] =

∫ q
1

q
1

dq1.
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The remainder of the proof derives this condition and rearranges it to become the statement of

the lemma.

Let me abbreviate Fbi,1 ≡ Fbi,1(q1, b
∗
i,1(q1, si), ḃ

∗
i,1(q1, si)) and Fḃi,1

= Fḃi,1
(q1, b

∗
i,1(q1, si), ḃ

∗
i,1(q1, si)).

Recalling

F(q1, bi,1(q1, si), ḃi,1(q1, si)) ≡

[

µ1(q1, q2, si)− bi,1(q1, si)− q1

(

∂bi,1(q1, si)

∂q1

)]

[1−Gi
1(q1, bi,1)]

−

∫ q
2

q
2

µ(q1, q2, si)[1−Gi(q1, q2, bi,1, b
∗
i,2)]dq2 + const (F)

The two partial derivatives evaluated at the solution are

Fbi,1 =

[

µ1(q2, q2, si)− b∗i,1(q1, si)− q1

(

∂b∗i,1(q1, si)

∂q1

)]

(−1)

(

∂Gi
1(q1, b

∗
i,1)

∂bi,1

)

− [1−Gi(q1, q2, b
∗
i,1, b

∗
i,2)]

−

∫ q
2

q
2

µ(q1, q2, si)(−1)

(

∂Gi(q1, q2, b
∗
i,1, b

∗
i,2)

∂bi,1

)

dq2 (24)

And

Fḃi,1
= −q1[1−Gi

1(q1, b
∗
i,1)] (25)

The total derivative evaluated at the solution is therefore

d

dq1
Fḃi,1

= −[1−Gi
1(q1, b

∗
i,1)]− q1

[

(−1)

(

∂Gi
1(q1, b

∗
i,1)

∂q1

)

+ (−1)

(

∂Gi
1(q1, b

∗
i,1)

∂bi,1

)

(

∂b∗i,1(q1, si)

∂q1

)

]

(26)

The Euler Equation is given by (24) = (26). Simplifying it gives

[

µ1(q1, q2, si)− b∗i,1(q1, si)
]

(−1)

(

∂Gi
1(q1, b

∗
i,1)

∂bi,1

)

+

∫ q
2

q
2

µ(q1, q2, si)

(

∂Gi(q1, q2, b
∗
i,1, b

∗
i,2)

∂bi,1

)

dq2 = q1

(

∂Gi
1(q1, b

∗
i,1)

∂q1

)

Apply the Fundamental Theorem of Calculus to replace

µ1(q1, q2, si) =

∫ q
2

q
2

µ(q1, q2, si)dq2 + µ1(q2, q2, si)

I rearrange this necessary condition to to obtain

µ1(q1, q2, si)−

∫ q
2

q
2

µ(q1, q2, si)



1−

(

∂Gi(q1,q2,b∗i,1,b
∗
i,2)

∂bi,1

)

(

∂Gi
1
(q1,b∗i,1)

∂bi,1

)



− b∗i,1(q1, si) = −q1





∂Gi
1
(q1,b∗i,1)

∂q1

∂Gi
1
(q1,b∗i,1)

∂bi,1





Using



1−

(

∂Gi(q1,q2,b∗i,1,b
∗
i,2)

∂bi,1

)

(

∂Gi
1
(q1,b∗i,1)

∂bi,1

)



 = 1−Gi
2|1(q2, b

∗
i,2|q1, b

∗
i,1)

8



The condition becomes (now no longer abbreviating b∗i,m ≡ b∗i,m(qm, si))

µ1(q1, q2, si)−

∫ q
2

q
2

µ(q1, q2, si)
[

1−Gi
2|1(q2, b

∗
i,2(q2, si)|q1, b

∗
i,1(q1, si))

]

− b∗i,1(q1, si) = −q1





∂Gi
1
(q1,b∗i,1(q1,si))

∂q1

∂Gi
1
(q1,b∗i,1(q1,si))

∂bi,1(q1,si)





Integrating by parts, using Gi
2|1(q2, b2(q2, si)|q1, b1(q1, si)) = 1 and Gi

2|1(q2, b2(q2, si)|q1, b1(q1, si)) =

0 for any bids at any points, shows that the first two terms are the conditional expectation of the

partial utility. Denoting bi,1(q1, si) = p1 following the notation of definition 4 of i’s distribution

function we obtain

E

[

∂U(q1, q
∗
2q
∗
2q
∗
2, si)

∂q1

∣

∣

∣

∣

q1

]

− b∗i,1(q1, si) = −q1





∂Gi
1
(q1,b∗i,1(q1,si))

∂q1

∂Gi
1
(q1,b∗i,1(q1,si))

∂p1



 (21)

This completes the proof of (i) of the lem.

To prove the second part of the lemma, assume that the demand function x∗
i,m(·, si) is additively

separable in the type si, that is, take the following form

x∗
i,m(pm, si) = η∗i,m(si) + y∗i,m(pm) for m = 1, 2. (27)

with y∗i,m(·) being differentiable and strictly decreasing. The following shows how optimality con-

dition (21) can be expressed as

E

[

∂U(q1, q
∗
i,2q∗i,2q∗i,2, si)

∂q1

∣

∣

∣

∣

q1

]

− b∗i,1(q1, si) = +q1

[

∂RSi,1(b
∗
i,1(q1, si))

∂p1

]−1

(22)

in that case. This is because the slope of the residual supply is deterministic with additively

separability in the type. Given all other players choose such an equilibrium strategy x∗
j,m(·, sj) of

form (27), this residual supply takes the following form

RSRSRSi,1(p1) = Q1Q1Q1 −
∑

j 6=i

η∗j,1(sjsjsj)−
∑

j 6=i

y∗j,1(p1) (28)

To simplify the RHS of condition (21) recall

Gi(q1, p1) ≡ Pr(q∗i,1q∗i,1q∗i,1 ≤ q1) (29)

Gi(q1, p1)
(2)
= Pr

(

Zi,1Zi,1Zi,1 ≤ q1 +
∑

j 6=i

y∗j,1(p1)

)

(30)

with random variable Zi,1Zi,1Zi,1 ≡ Q1Q1Q1 −
∑

j 6=i η
∗
j,1(sjsjsj). Denote its distribution by FZi,1

and its density

fZi,1
. Then

Gi(q1, p1) =FZi,1

(

q1 +
∑

j 6=i

y∗j,1(p1)

)

(31)

9



Using this new random variable, the partial derivative of Gi are

∂Gi
1(q1, p1)

∂q1
= fZi,1

(

q1 +
∑

j 6=i

y∗j,1(p1)

)

(32)

∂Gi
1(q1, p1)

∂p1
= fZi,1

(

q1 +
∑

j 6=i

y∗j,1(p1)

)

(

∂
∑

j 6=i y
∗
j,1(p1)

∂p1

)

Since
(

∂RSi,1(b1(q1,si))

∂p1

)

(28)
= −

(

∂
∑

j 6=i y
∗
j,1(p1)

∂p1

)

this is

∂Gi
1(q1, p1)

∂p1
= −fZi

(

q1 +
∑

j 6=i

y∗j,1(p1)

)

(

∂RSi,1(p1)

∂p1

)

(33)

Dividing (32) by (33) and evaluating both expressions at p1 = b∗i,1(q1, si) we obtain the following

simplified necessary condition

E

[

∂U(q1, q
∗
−mq∗−mq∗−m, si)

∂q1

∣

∣

∣

∣

q1

]

− b∗i,1(q1, si) = +q1

[

∂RSi,1(b
∗
i,1(q1, si))

∂p1

]−1

(22)

10



Appendix II: Proofs for the Main Text

6 Proof of Lemma 1

Lemma 1 follows from lemma 4, part (ii) because a linear function is additively separable in si.

The condition in that case is

E

[

∂U(q1, q
∗
−mq∗−mq∗−m, si)

∂q1

∣

∣

∣

∣

q1

]

− p1 = q1

[

∂RSi,1(p1)

∂p1

]−1

and p1 = b∗i,1(q1, si) (22)

The following shows that the RHS of the necessary condition can be expressed as conditional expec-

tation of the partial derivative of the total payment evaluated at market clearing, E
[

∂TP (pRS
i,1 (q1),p∗2p

∗
2

p∗
2
,q1,q

∗
i,2
q∗i,2q∗i,2)

∂q1

∣

∣

∣
q1

]

.

To see this, we just have to invert the residual supply curve. It is linear and strictly increasing by

assumption, so that its inverse is defined:
[

∂RSi,1(p1)

∂p1

]−1

=
[

∂pRS
i,1 (q1)

∂q1

]

. Now, by market clearing the

bid-offer must lie on the residual supply: p1 = pRS
i,1 (q1). Taking p1 = pRS

i,1 (q1) on the RHS necessary

condition (22) becomes

E

[

∂U(q1, q
∗
2q
∗
2q
∗
2, si)

∂q1

∣

∣

∣

∣

q1

]

= pRS
i,1 (q1) + q1

[

∂pRS
i,1 (q1)

∂q1

]

and pRS
i,1 (q1) = b∗i,1(q1, si) (36’)

Notice that this condition is analogous to (36) in the centralized market. Now, by definition of the

total payment, TP (pRS
i,1 (q1), p

∗
2p
∗
2p
∗
2, q1, q

∗
i,2q∗i,2q∗i,2) ≡ q1p

RS
i,1 (q1) + q∗i,2q∗i,2q∗i,2p

∗
2p
∗
2p
∗
2, so that the RHS is

E

[

∂U(q1, q
∗
2q
∗
2q
∗
2, si)

∂q1

∣

∣

∣

∣

q1

]

=

[

∂TP (pRS
i,1 (q1), p

∗
2p
∗
2p
∗
2, q1, q

∗
i,2q∗i,2q∗i,2)

∂q1

]

and pRS
i,1 (q1) = b∗i,1(q1, si) (34)

As we have seen the RHS is independent of p∗2p
∗
2p
∗
2, q

∗
i,2q∗i,2q∗i,2. We can, but don’t have to take the conditional

expectation also on the RHS. Both writings are equivalent.

E

[

∂U(q1, q
∗
2q
∗
2q
∗
2, si)

∂q1

∣

∣

∣

∣

q1

]

= E

[

∂TP (pRS
i,1 (q1), p

∗
2p
∗
2p
∗
2, q1, q

∗
i,2q∗i,2q∗i,2)

∂q1

∣

∣

∣

∣

∣

q1

]

and pRS
i,1 (q1) = b∗i,1(q1, si) (8)

7 Proof Lemma 2

Assume the equilibrium bidding functions (inverse demand functions), {b̄∗i,1(·, ·, si), b̄
∗
i,2(·, ·, si) are

for all i linear that are strictly decreasing in the first argument. Their inverses, the demand func-

tions are {x̄∗
i,1(·, ·, sj), x̄

∗
i,2(·, ·, si)}}.

The prove derives the necessary condition of a linear ex-post equilibrium. Since all ex-post equi-

libria are (by definition) BNE, it is a necessary condition of a linear BNE.

11



Take the perspective of agent i and fix a profile of private types (s1, ..., sn) and total supply quanti-

ties (Q1, Q2). Assume that all other agents play their equilibrium strategy {x̄∗
i,j(·, ·, sj), x̄

∗
i,2(·, ·, sj)}.

Agent i trades against two fixed residual supply curves

RSi,m(pm, p−m) = Qm −
∑

j 6=i

x̄∗
j,m(pm, p−m, sj)

His task is to pick an optimal point on each curve. In other words, he chooses a price that lies on

this residual supply curve in each market. Denoting, ~si ≡
(

si si
)′
, ~q ≡

(

q1 q2
)′
, ~p ≡

(

p1 p2
)′
,

and ~RSi(~p) ≡
(

RSi,1(p1, p2) RSi,2(p2, p1)
)′
, the agent solves the following maximization problem

max
~p

π(~p, ~si) = max
~p

{U(~q, ~si)− ~p′ · ~q} with ~q = ~RSi(~p) (35)

Inserting the assumed form of the utility function (4) in matrix notation, the agent’s maximization

problem reads

max
~p

π(~p, ~si) = max
~p

{

(~si − ~p)′ · ~RSi(~p)−
1

2
~RSi(~p)

′∆ ~RSi(~p)

}

with ∆ ≡

(

λ δ

δ λ

)

The optimal prices ~p∗ must fulfill the first-order condition

0 =− ~RSi(~p
∗) +

(

∂ ~RSi(~p
∗)

∂~p

)′
(

~si − ~p∗ −∆ ~RSi(~p
∗)
)

(FOC)

and clear the market: ~RSi(~p
∗) = ~x∗

i (~p
∗, si).

The condition given in the main text is stated in terms bidding functions ~b∗i (~q, si) (with quantities

as independent variables), instead of demand functions ~x∗
i (~p

∗, si) (with prices as independent vari-

ables). To derive the optimality condition of the lemma, let me re-state the first-order condition.

To do so, recall that ~pRS
i (~q) denotes the residual supply curve in the price-quantity space. By the

chain-rule and basic rules of matrix transposition and inversion:

[(

∂RSi(~p
∗)

∂~p

)′]−1

=

(

∂pRS
i (~q)

∂~q

)′

at ~p∗ = pRS
i (~q)

Then, reverting prices and quantities in the agent’s strategy, ~p∗ = ~b∗i (~q, si) with ~q ≡ ~x∗
i (~p

∗, si), in

addition to
(

∂U(~q,si)
∂~q

)′

= ~si −∆~q, the (FOC) rearranges to

(

∂U(~q, si)

∂~q

)′

= ~pRS
i (~q) +

(

∂~pRS
i (~q)

∂~q

)′

~q at ~pRS
i (~q) = ~b∗i (~q, si) (36)

Equivalently,

(

∂U(q1,q2,si)
∂q1

∂U(q1,q2,si)
∂q2

)

=

(

p̄RS
i,1 (q1, q2)

p̄RS
i,2 (q2, q1)

)

+





∂p̄RS
i,1 (q1,q2)

∂q1

∂p̄RS
i,2 (q2,q1)

∂q1
∂p̄RS

i,1 (q1,q2)

∂q2

∂p̄RS
i,2 (q2,q1)

∂q2





(

q1
q2

)

at ~pRS
i (~q) = ~b∗i (~q, si)

12



For market m = 1 we have
(

∂U(q1, q2, si)

∂q1

)

= p̄RS
i,1 (q1, q2) + q1

(

∂p̄RS
i,1 (q1, q2)

∂q1

)

+ q2

(

∂p̄RS
i,2 (q2, q1)

∂q1

)

at p̄RS
i,1 (q1, q2) = b̄∗i,1(q1, q2, si)

By definition of total payment, TP (p1, p2, q1, q2) ≡ q1p1 + q2p2, this is

(

∂U(q1, q2, si)

∂q1

)

=

[

∂TP (p̄RS
i,1 (q1, q2), p̄

RS
i,2 (q2, q1), q1, q2)

∂q1

]

at p̄RS
i,1 (q1, q2) = b̄∗i,1(q1, q2, si) (9)

The analogous equation must hold for m = 2.

8 Proof of Proposition 1

The proof is analogous to Du and Zhu (2012)’s proof of proposition 3. There are two key differences.

First I consider an environment of independent private values. To replicate it in Du and Zhu

(2012)’s proof, set α = 1, β = 0. Secondly, I allow total supply to be random, while Du and Zhu

(2012) assume that the total amount for sale is fixed. To account for this difference it suffices to

let agent i go through all possible realizations of the residual supply instead of all realization of

type profiles of his competitors s−i in Du and Zhu (2012)’s proof. The algebra remains unchanged,

which is why I do not reproduce the proof here. The reader is referred to Du and Zhu (2012) pp.

26-27. They derive the following unique equilibrium that fulfills the first-order condition (9) of

Lemma 7 in a guess and verify approach.

x̄∗
m(pm, p−m, si) =

(

1

λ2 − δ2

)(

n− 2

n− 1

)

[λ(si − pm)− δ(si − p−m)] as demand (37)

b̄∗m(qm, q−m, si) = si −

(

n− 1

n− 2

)

{λqm + δq−m} as bidding function (38)

It is the unique solution that solves the FOC (9).

To prove existence it is straightforward to show that the second-order condition is satisfied as long

as ∆ is positive semi definite. It is by assumption λ > 0, |δ| < λ in my set-up.

9 Proof of Lemma 3

The goal is to show that Corr(Zi,1Zi,1Zi,1,Zi,2Zi,2Zi,2) = ±1 iff σ = 0 or ρ = 1 and a1 = a2. Determining the

correlation, this is easy to see. By definition

Corr(Zi,1Zi,1Zi,1,Zi,2Zi,2Zi,2) ≡
Cov(Zi,1Zi,1Zi,1,Zi,2Zi,2Zi,2)

√

V ar(Zi,1Zi,1Zi,1)V ar(Zi,2Zi,2Zi,2)
with

Cov(Zi,1Zi,1Zi,1,Zi,2Zi,2Zi,2) = Cov(Q1Q1Q1,Q1Q1Q1)− a1a2(n− 1)2V ar(sisisi) ; V ar(Zi,mZi,mZi,m) = V ar(QmQmQm) + a2m(n− 1)2V ar(sisisi)
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since Cov
(

QmQmQm,
∑

j 6=i sjsjsj

)

= 0 by the assumption that total supply is independent of types. Re-

placing V ar(Q1Q1Q1) = σ2
1, V ar(Q2Q2Q2) = σ2

2, V ar(sisisi) = σ2
s , Corr(Q1Q1Q1,Q2Q2Q2) = ρ, the correlation becomes

Corr(Zi,1Zi,1Zi,1,Zi,2Zi,2Zi,2) =
ρσ2 + a1a2(n− 1)2σ2

s
√

[σ2 + a21(n− 1)2σ2
s ] [σ

2 + a22(n− 1)2σ2
s ]

(39)

From here we easy that the correlation can only be perfect if σ = 0 or ρ = 1 and a1 = a2.

10 Proof of Proposition 2

The proposition consists of two statements. (i) gives the equilibrium function that agents choose if

there is a symmetric, linear BNE (proof in section 10.2). (ii) says that such an equilibrium exists

and is the unique symmetric, linear ex-post equilibrium if total supply is deterministic (proof in

section 10.3).

10.1 Core of the argument

To derive the function of an equilibrium, I follow a guess and verify approach. I guess that there

is an linear equilibrium, in which all bidders submit a strategy of the following form for m = 1, 2

with cm > 0:

x∗
m(pm, si) = om + amsi − cmpm in terms of prices (40)

b∗m(qm, si) =

(

om
cm

)

+

(

am
cm

)

si −

(

1

cm

)

qm in terms of prices (41)

if residual supply curves are perfectly correlated, i.e.

Zi,mZi,mZi,m ≡ QmQmQm − am
∑

j 6=i

sjsjsj (13)

are perfectly correlated (definition 3). Hereby I rely on the following alternative definitions of

perfect correlation.12

Definition 5. Zi,1Zi,1Zi,1 is perfectly correlated with Zi,2Zi,2Zi,2 iff Zi,2Zi,2Zi,2 = r + gZi,1Zi,1Zi,1 where

g ≡ ±

√

V ar(Zi,2Zi,2Zi,2)

V ar(Zi,1Zi,1Zi,1)
= ±

√

σ2 + a22(n− 1)2σs

σ2 + a21(n− 1)2σs

(42)

and

r ≡ E[Zi,2Zi,2Zi,2]− gE[Zi,1Zi,1Zi,1] = (µ2 − gµ1)− (n− 1)µs(a2 − ga1) (43)
12The variance and expectation of Zi,mZi,mZi,m can easily be computed from the primitives

(

Q2Q2Q2

Q2Q2Q2

)

∼

((

µ1

µ2

)

, σ2

(

1 ρ

ρ 1

))

and sisisi ∼ (µs, σ
2
s), iid across i and w.r.t. Q1Q1Q1,Q2Q2Q2.

in combination with Zi,mZi,mZi,m’s definition (13).
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The proof of statement (i) relies on on the first-order conditions as stated in Lemma 4 with

b∗i,m(·, si) = b∗m(·, si)∀i. Each condition characterizes i’s best responds in market m to all others

choosing the guessed linear function (40), given that he himself plays as in equilibrium in the other

market −m. Now, for the guessed strategy to constitute a symmetric equilibrium, it must be

optimal for i to choose also it in responds to his competitors playing it. Using the assumption that

residual supply curves are perfectly correlated, which pins down a (deterministic) linear mapping

between i’s winning quantity in market m and −m, I can determine the equilibrium coefficients

{om, am, cm} by matching the coefficients of i’s best responds to the linear guess. This gives the

unique function that agents choose in a symmetric, linear BNE, in which all are active in both

markets.

To prove statement (ii), I then verifies that this candidate is an ex-post equilibrium if total supply

is deterministic, i.e. with σ = 0, µm = Qm for m = 1, 2.

10.2 Proof of (i)

Agent i’s optimal choice in market m as responds to all others choosing the guessed equilibrium

strategy, and given he plays as in equilibrium in the other market −m, is characterized by his

first-order condition. It is specified in Lemma 4 part (ii), with b∗i,m(·, si) = b∗m(·, si)∀i for m =

1, 2,−m 6= m:

E

[

∂U(qm, q
∗
i,−mq∗i,−mq∗i,−m, si)

∂qm

∣

∣

∣

∣

qm

]

− b∗m(qm, si) = qm

[

∂RSm(b
∗
m(qm, si))

∂pm

]−1

(22)

With linear partial utility ∂U(qm,q−m,si)
∂qm

= si − λqm − δqm, and given all others playing the linear

strategy (40), it simplifies to

si − λq1 − δE
[

q∗i,2q∗i,2q∗i,2
∣

∣ q1
]

− b∗1(q1, si) = q1

[

1

(n− 1)c1

]

(22.1’)

si − λq2 − δE
[

q∗i,1q∗i,1q∗i,1
∣

∣ q2
]

− b∗2(q2, si) = q2

[

1

(n− 1)c2

]

(22.2’)

The RHS depends on the conditional expectation of i’s winning quantity in the other auction.

It looks as if the solution will depend on particular distribution functions; but it does not! The

reason is that i’s winning quantity in market 2 is a (linear) function of i’s winning quantity in

market 1 (and vice versa) when Zi,1Zi,1Zi,1,Zi,2Zi,2Zi,2 are perfectly correlated. In other words, simultaneous

market clearing and perfect correlation imply that we can ex-press q∗i,2q∗i,2q∗i,2 as a function of q∗i,1q∗i,1q∗i,1 (and

vice versa). The conditional expectations E
[

q∗i,−mq∗i,−mq∗i,−m

∣

∣ qm
]

are, thus, independent of the particular

distribution, both linear functions of qm. The following derives this linear function. With it I then

can solve for the coefficients of the guessed linear equilibrium.

To express i’s winning quantity in one market as function of the other, I first the closed form

solution of i’s equilibrium winning quantity in the guessed linear equilibrium ((40), resp. (41)).
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By definition he wins in m = 1, 2

q∗i,mq∗i,mq∗i,m = QmQmQm −
∑

j 6=i

x∗
m(p

∗
mp
∗
mp
∗
m, sjsjsj) with p∗mp

∗
mp
∗
m = b∗m(q

∗
i,mq∗i,mq∗i,m, si) (2)

Inserting the assumed linear functional forms (40) for j 6= i

x∗
m(pm, si) = om + amsi − cmpm (40)

and (41) for i

b∗m(qm, si) =

(

om
cm

)

+

(

am
cm

)

si −

(

1

cm

)

qm (41)

and solving for q∗i,mq∗i,mq∗i,m gives

q∗i,2q∗i,2q∗i,2(QmQmQm, s−is−is−i) = am

(

1−
1

n

)

si +
1

n

[

QmQmQm − am
∑

j 6=i

sjsjsj

]

(44)

By definition of Zi,mZi,mZi,m

q∗i,mq∗i,mq∗i,m(Zi,mZi,mZi,m) = am

(

1−
1

n

)

si +
1

n
Zi,mZi,mZi,m for m = 1, 2 (45)

Consider m = 2. Since Zi,1Zi,1Zi,1 and Zi,2Zi,2Zi,2 are perfectly correlated we can replace Zi,2Zi,2Zi,2 = r + gZi,1Zi,1Zi,1

q∗i,2q∗i,2q∗i,2(Zi,1Zi,1Zi,1) = a2

(

1−
1

n

)

si +
1

n
{r + gZ1Z1Z1} (46)

Zi,1Zi,1Zi,1 in turn is a function of q∗i,1q∗i,1q∗i,1. This is because in equilibrium both markets must clear simulta-

neously. Formally, agent i must win

q∗i,1q∗i,1q∗i,1(Zi,1Zi,1Zi,1) = a1

(

1−
1

n

)

si +
1

n
Zi,1Zi,1Zi,1 (45)

in market 1.

⇔
1

n
Zi,1Zi,1Zi,1(q

∗
i,1q∗i,1q∗i,1) = q∗i,1q∗i,1q∗i,1 − a1

(

1−
1

n

)

si (47)

Inserting (47) into (46) leaves us with

q∗i,2q∗i,2q∗i,2(q
∗
i,1q∗i,1q∗i,1) = a2

(

1−
1

n

)

si +
1

n
r + g

[

q∗i,1q∗i,1q∗i,1 − a1

(

1−
1

n

)

si

]

q∗i,2q∗i,2q∗i,2(q
∗
i,1q∗i,1q∗i,1) = [a2 − ga1]

(

1−
1

n

)

si + gq∗i,1q∗i,1q∗i,1 +
1

n
r (48)

An analogous argument, now using Zi,1Zi,1Zi,1 =
Zi,2Zi,2Zi,2−r

g
, instead of Zi,2Zi,2Zi,2 = r + gZi,1Zi,1Zi,1, gives

q∗i,1q∗i,1q∗i,1(q
∗
i,2q∗i,2q∗i,2) =

[

a1 −
1

g
a2

](

1−
1

n

)

si +
1

g
q∗i,2q∗i,2q∗i,2 −

1

n

r

g
(49)
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Having expressed each winning quantity as a function the other, we can solve for the equilibrium

candidate based on the first-order conditions.

With (49) and (48) the first-order conditions (22.1’) and (22.2’) rearrange to

b∗1(q1, si) = −δ
1

n
r +

[

1− δ[a2 − ga1]

(

1−
1

n

)]

si −

[

λ+ δg +
1

(n− 1)c1

]

q1 (22.1’)

b∗2(q2, si) = +δ
1

n

r

g
+

[

1− δ

[

a1 −
1

g
a2

](

1−
1

n

)]

si −

[

λ+ δ
1

g
+

1

(n− 1)c2

]

q2 (22.2’)

(22.1’) characterizes the agent’s optimal bid price for quantity q1 in market 1, given all others

choose according to the equilibrium strategy and he behaves as in equilibrium in the other market.

(22.2’) is the analogous for market 2.

Now, for the guessed strategy to be indeed an equilibrium, it must be optimal for agent i to choose

in both markets choose according to the guess, i.e.

b∗1(q1, si) =

(

o1
c1

)

+

(

a1
c1

)

si −

(

1

c1

)

q1 (41.1)

b∗2(q2, si) =

(

o2
c2

)

+

(

a2
c2

)

si −

(

1

c2

)

q2 (41.2)

The equilibrium candidate can therefore be determined by matching coefficients of (22.1’) and

(22.2’) with (41.1) and (41.2). Matching the coefficients of q1, then q2, and thereafter of si for

market 1 followed by market 2 gives

[

λ+ δg +
1

(n− 1)c1

]

=
1

c1
⇒ c1 =

(

n− 2

n− 1

)(

1

λ+ δg

)

(50)

[

λ+ δ
1

g
+

1

(n− 1)c2

]

=
1

c2
⇒ c2 =

(

n− 2

n− 1

)

(

1

λ+ δ 1
g

)

(51)

[

1− δ[a2 − ga1]

(

1−
1

n

)]

=
a1
c1

⇒ a1(a2, c1) = c1

(

n− δa2 (n− 1)

n− δgc1 (n− 1)

)

(52)

[

1− δ

[

a1 −
1

g
a2

](

1−
1

n

)]

=
a2
c2

⇒ a2(a1, c2) = c2

(

n− δa1 (n− 1)

n− δ 1
g
c2 (n− 1)

)

(53)

Solving (50), (51), (52), (53) with g as defined

g = ±

√

σ2 + a22(n− 1)2σs

σ2 + a21(n− 1)2σs

(42)

pins down the solution. Since g nontrivially depends on a1, a2, it is an ugly system of equations.

Instead of solving it by brute force, I guess that the solution is symmetric with a1 = a2 6= 0, and

verify that it is indeed.
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According to auxiliary lemma 2 stated below a1 = a2 6= 0 ⇔ g = 1. Now, when g = 1,

c1 = c2 = c =

(

n− 2

n− 1

)(

1

λ+ δ

)

With c1 = c2 and g = 1, the conditions for a2(a1, c) and a1(a2, c) become perfectly symmetric.

a2(a1, c) = c

(

n− δa1 (n− 1)

n− δc (n− 1)

)

a1(a2, c) = c

(

n− δa2 (n− 1)

n− δc (n− 1)

)

This implies that the solution is indeed symmetric, a1 = a2, as I have guessed.

Now it is easy to solve for a. Just insert a1 = a2 = a, g = 1, c1 = c2 = c into the condition:

a = c

(

n− δa (n− 1)

n− δc (n− 1)

)

a [n− δc (n− 1)] = c [n− δa (n− 1)]

a [n− δc (n− 1) + cδ (n− 1)] = cn

⇒ a =
cn

n
= c =

(

n− 2

n− 1

)(

1

λ+ δ

)

6= 0since n > 2, λ+ δ > 0. (54)

Finally, with g = 1 and a1 = a2, we know from Definition 5

r
(43)
= (µ2 − gµ1)− (n− 1)µs(a2 − ga1) = µ2 − µ1 (55)

Inserting (54), (55) and g = 1 into (22.1), (22.2) leaves us with the following equilibrium candidate

for m = 1, 2,m 6= −m

b∗m(qm, si) = si −

(

n− 1

n− 2

)

(λ+ δ) qm + δ

(

1

n

)

(µm − µ−m) (14)

Since n > 2, δ + λ > 0 it is strictly decreasing in quantity and can be inverted. The submitted

demand in equilibrium is

x∗
m(pm, si) =

(

n− 2

n− 1

)(

1

λ+ δ

){

si − pm + δ

(

1

n

)

(µm − µ−m)

}

(14b)

This function is the unique function that satisfies the necessary condition of a symmetric, linear

BNE. It holds under perfectly correlated residual supply curves.

Auxiliary Lemma 2. a1 = a2 6= 0 ⇔ g = 1.

Proof. Let g = 1. By definition (42)

1 =

√

σ2 + a22(n− 1)2σs

σ2 + a21(n− 1)2σs

⇔ 1 =
σ2 + a22(n− 1)2σs

σ2 + a21(n− 1)2σs

⇔ a22 = a21 ⇔ a2 = a1
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Now let a1 = a2 = a 6= 0. The following shows that it cannot be that Corr(Zi,1Zi,1Zi,1,Zi,2Zi,2Zi,2) takes value

−1. Then it follows immediately from the definition (42) that

g =

√

σ2 + a2(n− 1)2σs

σ2 + a2(n− 1)2σs

= 1

So let me how that the correlation between Corr(Zi,1Zi,1Zi,1,Zi,2Zi,2Zi,2) 6= −1 when a1 = a2 6= 0. To do so, I

first find an expression for this correlation. Recall that

Corr(Zi,1Zi,1Zi,1,Zi,2Zi,2Zi,2) =
ρσ2 + a1a2(n− 1)2σ2

s
√

[σ2 + a21(n− 1)2σ2
s ] [σ

2 + a22(n− 1)2σ2
s ]

(39)

The following shows by contradiction that the correlation cannot be −1.

−1 =
ρσ2 + a2(n− 1)2σ2

s

[σ2 + a2(n− 1)2σ2
s ]

−1
[

σ2 + a2(n− 1)2σ2
s

]

= ρσ2 + a2(n− 1)2σ2
s

σ2(1 + ρ) = −2a2(n− 1)2σ2
s

The LHS is strictly negative since a 6= 0, while the lowest value of the LHS is 0 since ρ ≥ −1. The

equation cannot hold.

10.3 Proof of (ii)

Let total supply be deterministic, i.e. σ = 0, µm = Qm for m = 1, 2. Since all agents participate

in both markets and each has only one private type, this gives us perfect correlation between the

residual supply curves.

To show that the equilibrium candidate is an ex-post equilibrium, I will show that the agent has no

incentive to deviate, after observing the types of the others and the realized total supply (ex-post).

The idea of the proof is simply. For some fix profile of private types (s1, ..., sn), and total supply

quantities Q1, Q2, I show that agent i has no profitable deviation from the equilibrium candidate

if all others play this strategy {x∗
1(·, sj), x

∗
2(·, sj)}. I do so by solving his maximization problem

for this fixed realization of types and total quantities. More precisely I show that the equilibrium

guess satisfies the first and second order condition of this ex-post maximization. It is analogous to

the centralized market of section 7, with the important difference that demands (bid-offers) now

depend on just the price (quantity) of the market at hand. Since strategies are one-dimensional, I

refrain from using the matrix notation as I did for the centralized market.

Take the perspective of agent i. Knowing (s1, ..., sn), and total supply quantities Q1, Q2 agent i

trades against two fixed residual supply curves

RSi,m(pm) = Qm −
∑

j 6=i

x∗
m(pm, sj) for m = 1, 2. (56)
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His task is to pick an optimal point on each curve. In other words, he chooses a price that

lies on this residual supply curve in each market. He does so maximizing his payoff of winning

{q1, q2} = {RSi,1(p1), RSi,2(p2)} at prices {p1, p2}.

max
p1,p2

π(p1, p2, si) = max
p1,p2

{

U(q1, q2, si)−
∑

m=1,2

pmqm

}

with qm = RSi,m(pm) for m = 1, 2 (57)

Inserting the assumed form of the utility function (4) the agent’s maximization problem reads

max
p1,p2

π(p1, p2, si) = max
p1,p2

∑

m=1,2

{

(si − pm)RSi,m(pm)−
1

2
λ (RSi,m(pm))

2

}

− δRSi,1(p1)RSi,2(p2)

(MP)

10.3.1 Verifying the FOC

For market 1 the first-order condition is

0 =− xi,1(p
∗
1, si) +

(

∂RSi,1(p
∗
1)

∂p1

)

(si − p∗1 − λxi,1(p
∗
1, si)− δxi,2(p

∗
2, si)) (FOC)

where I have already used that markets must clear at the optimum, i.e. RSi,m(p
∗
m) = xi,m(p

∗
m, si)

for m = 1, 2. Since both markets must clear simultaneously. Only if he chooses

x∗
i,2(p

∗
2, si) = x∗

i,1(p
∗
1, si) +

1

n
(Q2 −Q1) (48’)

market 2 can clear. This constraint is identical to condition (48) with a1 = a2, g = 1, r = Q2−Q1.
13

Inserting the equilibrium candidate,

x∗
i,1(p

∗
1, si) = c

[

si − p∗1 + δ
1

n
(Q1 −Q2)

]

with c =

(

n− 1

n− 2

)

(λ+ δ) (14b)

13With deterministic total supply, the condition can also be derived in a different way: Insert the the sum over

the types of all others

∑

j 6=i

sj =

[

a1
(

1− 1
n

)

si +
1
n
Q1 − x1(p

∗
1, si)

a1

]

⇔ x1(p
∗
1, si) ≡ q∗i,1

(44)
= a1

(

1−
1

n

)

si +
1

n



Q1 − a1
∑

j 6=i

sj



 (58)

into

x2(p
∗
2, si) ≡ q∗i,2

(44)
= a2

(

1−
1

n

)

si +
1

n



Q2 − a2
∑

j 6=i

sj



 (59)

Impose a1 = a2 (as in equilibrium) and we obtain

x2(p
∗
2, si) = x1(p

∗
1, si) +

1

n
(Q2 −Q1) (49’)
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and the constraint that both markets must clear simultaneously (48’) into (FOC) it is easy to

verify that the candidate fulfills this first-order condition:

0 =− c

[

si − p∗1 + δ
1

n
(Q1 −Q2)

]

+ (n− 1)c

(

si − p∗1 − λc

[

si − p∗1 + δ
1

n
(Q1 −Q2)

]

− δc

[

si − p∗1 + δ
1

n
(Q1 −Q2)

]

− δ
1

n
(Q2 −Q1)

)

Simplifying
[

si − p∗1 + δ
1

n
(Q2 −Q1)

]

[c+ λc(n− 1)c+ δc(n− 1)c] = (n− 1)c

[

si − p∗1 − δ
1

n
(Q1 −Q2)

]

[1 + (n− 1)c(λ+ δ)] = (n− 1)

At the solution with c =
(

n−2
n−1

) (

1
λ+δ

)

0 = 0

10.3.2 Verifying the SOC

To verify that the found strategy is indeed a maximum I verify the second order condition. The

agent has no profitable deviation if

1.
∂2π(p∗

1
,p∗

2
,si)

∂2pm
< 0 for m = 1, 2

2. |H(p∗1, p
∗
2, si)| ≡

∣

∣

∣

∣

∣

∂2π(p∗
1
,p∗

2
,si)

∂2p1

∂2π(p∗
1
,p∗

2
,si)

∂p1p2
∂2π(p∗

1
,p∗

2
,si)

∂p2p1

∂2π(p∗
1
,p∗

2
,si)

∂2p2

∣

∣

∣

∣

∣

> 0

The following shows that the second order condition is fulfilled for any large number of agents iff

n > 2 and |δ| ≤ λ, λ+ δ > 0. Both holds by assumption.

The second derivative of maximization problem (MP) for m = 1 is

∂2π(p1, p2, si)

∂2p1
= −

(

∂RSi,1(p1)

∂p1

)

+

(

−1− λ
∂RSi,1(p1)

∂p1

)(

∂RSi,1(p1)

∂p1

)

At the solution

∂2π(p∗1, p
∗
2, si)

∂2p1
= −(n− 1)c+ (−1− λ(n− 1)c) (n− 1)c

= −(n− 1)c {1 + [1 + λ(n− 1)c]}

= −(n− 1)c [2 + λ(n− 1)c]

= −

(

n− 2

λ+ δ

)[

2 + λ

(

n− 2

λ+ δ

)]

= −

(

n− 2

λ+ δ

)(

2δ + λn

λ+ δ

)

< 0 holds since n > 2 and |δ| ≤ λ, λ+ δ > 0.
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The cross-partial derivative is

∂2π(p1, p2, si)

∂p1p2
= −δ

(

∂RSi,1(p1)

∂p1

)(

∂RSi,2(p2)

∂p2

)

At the solution

∂2π(p∗1, p
∗
2, si)

∂p1p2
= −δ(n− 1)2c2

By symmetry of the problem, the hessian therefore is

H(p∗1, p
∗
2, si) =

∣

∣

∣

∣

−(n− 1)c [2 + λ(n− 1)c] −δ(n− 1)2c2

−δ(n− 1)2c2 −(n− 1)c [2 + λ(n− 1)c]

∣

∣

∣

∣

The determinant of the hessian matrix is

Det(H(p∗1, p
∗
2, si)) > 0 ⇔ {(n− 1)c [2 + λ(n− 1)c]}2 − δ2(n− 1)4c4 > 0

Since (n− 1)c > 0

⇔ [2 + λ(n− 1)c]2 > δ2(n− 1)2c2

Taking the square root

⇔ [2 + λ(n− 1)c] > δ(n− 1)c

⇔ 2 > (δ − λ)(n− 1)c

At the solution

⇔ 2 >

(

δ − λ

λ+ δ

)

(n− 2)

We know n > 2 (since n > 2). Then this condition holds independent of how many agents there

are as long as |δ| ≤ λ, and λ+ δ > 0.

11 Proof of Proposition 3

The proof is analogous to the proof of Lemma 2. I follow a guess and verify strategy, guessing that

the equilibrium will take the following form

β∗
m(qm, si) = ǫm + αmsi − γmqm

Under the linear guess and with the quadratic utility function, FOC (22) reads

si − λqm − δE[q∗i,−mq∗i,−mq∗i,−m|qm]− βm(qm, si) =

[

qm
(n− 1) 1

γm

]

(60)

Under the distributional assumption
(

Q2Q2Q2

Q2Q2Q2

)

∼ N

((

µ1

µ2

)

, σ2

(

1 ρ

ρ 1

))

and sisisi ∼ N(µs, σ
2
s), iid across i and

Q1Q1Q1,Q2Q2Q2, one can determine an expression for E[q∗i,−mq∗i,−mq∗i,−m|qm]. The first step is to determine the joint
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distribution of q∗i,1q∗i,1q∗i,1, q
∗
i,2q∗i,2q∗i,2. As each is a linear transformation of normally distributed independent

variables, q∗i,mq∗i,mq∗i,m = 1
n

[

QmQmQm − αm

∑

j 6=i sjsjsj + (n− 1)αmsi

]

, they are jointly normally distributed:

(

q∗i,1q∗i,1q∗i,1
q∗i,2q∗i,2q∗i,2

)

∼ N

((

µqi
1

µqi
2

)

,

(

σ2
qi
1

ρiσqi
1

σqi
2

ρiσqi
1

σqi
2

σ2
qi
2

))

with for m = 1, 2,−m 6= m

µqim
≡

(

1

n

)

{µm + αm(n− 1)[si − µs]}

and

σqim
≡

(

1

n

)

√

α2
m(n− 1)σ2

s + σ2

and

ρi ≡
αmα−m(n− 1)σ2

s + ρσ2

√

[α2
m(n− 1)σ2

s + σ2][α2
−m(n− 1)σ2

s + σ2]

Jointly normal random variables have a linear conditional expectation of the following form

E[q∗i,−mq∗i,−mq∗i,−m|qm] = µqi−m
+ ρi

(

σqi−m

σqim

)

(

qm − µqim

)

. (61)

Inserting the expression E[q∗i,−mq∗i,−mq∗i,−m|qm] into the FOC, (60), and rearranging gives

β∗
m(qm, si) = Em(αm, α−m) + Am(αm, α−m)si − Cm(αm, α−m, γm)qm with

Em(αm, α−m) = −δ

(

1

n

)[

[µ−m − α−m(n− 1)µs]−

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

[µm − αm(n− 1)µs]

]

Am(αm, α−m) = 1− δ

(

1

n

)

(n− 1)

[

α−m −

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

αm

]

Cm(αm, α−m, γm) =

[

(n− 1) 1
γm

λ+ 1

(n− 1) 1
γm

]

+ δ

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

In the symmetric equilibrium we must have

Em(αm, α−m) = ǫm (62)

Am(αm, α−m) = αm (63)

Cm(αm, α−m, γm) = γm (64)

for both markets. In this symmetric environment, it can be shown that the solution must be

symmetric: ǫ1 = ǫ2 = ǫ, α1 = α2 = α, γ1 = γ1 = γ. Here I use a short-cut and simply impose

symmetry. Denote the correlation of the winning quantities as

ρi(α) ≡
ρσ2 + α2(n− 1)σ2

s

σ2 + α2(n− 1)σ2
s

(65)
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The equilibrium parameter then must solve

E(α) = ǫ ⇔ ǫ(α) = −δ

(

1

n

)

[

[µ−m − α(n− 1)µs]− ρi(α)[µm − α(n− 1)µs]
]

(62)

A(α) = α ⇔ α = 1− δ

(

1

n

)

(n− 1)α
[

1− ρi(α)
]

(63)

C(α, γ) = γ ⇔ γ =

[

(n− 1) 1
γ
λ+ 1

(n− 1) 1
γ

]

+ δρi(α) ⇔ γ(α) =

(

n− 1

n− 2

)

(

λ+ δρi(α)
)

(64)

Slightly rearranging the expressions for the equilibrium coefficients, this gives the functional form

of the proposition:

β∗
m(qm, si) = ǫ(α) + αsi − γ(α)pm with α = 1− δα

(

1

n

)

(n− 1)[1− ρi(α)] (15)

γ(α) =

(

n− 1

n− 2

)

(

λ+ δρi(α)
)

ǫ(α) = δ

(

1

n

)

[

[ρi(α)µm − µ−m] + α(n− 1)µs[1− ρi(α)]
]

12 Proof of Corollary 2

(i) Centralized market

Recall the optimality condition of Lemma 2

[

∂U(q1, q2, si)

∂qm

]

=

[

∂TP (p̄RS
i,1 (q1, q2), p̄

RS
i,2 (q2, q1), q1, q2)

∂qm

]

at p̄RS
i,1 (q1, q2) = b̄∗i,1(q1, q2, si) (9)

In its proof I have shown that for m = 1 the condition is equivalent to

[

∂U(q1, q2, si)

∂q1

]

= p̄RS
i,1 (q1, q2) + q1

(

∂p̄RS
i,1 (q1, q2)

∂q1

)

+ q2

(

∂p̄RS
i,2 (q2, q1)

∂q1

)

at p̄RS
i,1 (q1, q2) = b̄∗i,1(q1, q2, si)

Given all others choose a linear strategy

x∗
m(pm, p−m, si) = ōm + ām − c̄mpm − ēmp−m with ēm 6= c̄m > 0

We can equivalently write

[

∂U(q1, q2, si)

∂q1

]

= b̄∗i,1(q1, q2, si) + q1

(

1

n− 1

)(

c̄2
c̄1c̄2 − ē1ē2

)

− q2

(

1

n− 1

)(

ē2
c̄1c̄2 − ē1ē2

)

Sending n → ∞ the last two terms disappear, and we obtain the statement of the corollary. The

existence result of proposition 1 carries over.
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(ii) Disconnected markets

The proof is analogous to showing (i). Given linear strategies

x∗
m(pm, si) = om + amsi − cmpm with cm > 0

For m = 1, the necessary condition of Lemma 1 can be written as

E

[

∂U(q1, q
∗
i,2q∗i,2q∗i,2, si)

∂q1

∣

∣

∣

∣

q1

]

= b∗i,1(q1, si) + q1

(

1

n− 1

)(

1

c1

)

Sending n → ∞, the last term vanishes. The condition becomes

lim
n→∞

E

[

∂U(q1, q
∗
i,2q∗i,2q∗i,2, si)

∂q1

∣

∣

∣

∣

q1

]

= b∗i,1(q1, si)

With perfect correlation we know from proposition 2, that this is b∗i,1(q1, si) → b̄∗i,1(q1, q1, si) =

si − (δ + λ)qm as n → ∞. The existence result of this proposition carries over.

13 Proof of the Irrelevance Theorem

Proving the Irrelevance theorem based on the functional form of the linear equilibria of the propo-

sitions is straightforward. It suffices to compare the winning quantities in these ex-post equilibria.

Those are the quantities, the bidder demands at the clearing prices.

In the disconnected market, the market clears

Qm =
∑

i

x∗
m(p

∗
m, si)

Qm = nom + a
∑

i

si − ncp∗m with a = c =

(

n− 1

n− 2

)(

1

λ+ δ

)

, om =
δ

n
(µm − µ−m)

⇒ p∗m =
om
c

+

(

1

n

)

∑

i

si −
1

c

Qm

n
(66)

This makes agent i win x∗
m(si, p

∗
m) ≡ q∗i,m

x∗
m(si, p

∗
m) = om + asi − cp∗m

= om + asi − c

[

om
c

+

(

1

n

)

∑

i

si −
1

c

Qm

n

]

⇒ q∗i,m =

(

n− 1

n− 2

)(

1

λ+ δ

)

[

si −
1

n

∑

i

si

]

+
Qm

n
(67)
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In the centralized market, the markets clear

Q1 =
∑

i

x̄∗
1(p̄

∗
1, p̄

∗
2, si)

Q2 =
∑

i

x̄∗
2(p̄

∗
2, p̄

∗
1, si)

where both functions are defined in (37) with γ = 1, κ = 0. Solving this system of equations for

the clearing prices gives for m = 1, 2,−m 6= m

p̄∗m =
∑

i

si −

(

n− 1

n− 2

)(

1

n

)

{λQm + δQ−m} (68)

Evaluating both submitted demand functions at the clearing prices determines how much agent i

wins in equilibrium:

q̄∗i,m ≡ x̄∗
m(p

∗
m, p

∗
−m, si) =

(

n− 2

n− 1

)(

1

λ+ δ

)

[

si −
1

n

∑

i

si

]

+
Qm

n
(69)

Both winning quantities (67) and (69) we see that they coincide.

14 Proof of the Irrelevance Theorem for Large Markets

To show that the allocation of the linear equilibria is under both market structures fully efficient

given perfectly correlated residual supply curves as n → ∞ I compare the agent’s winning quantity

in equilibrium to the efficient allocation {qei,1, q
e
i,2}

n
i=1 as n → ∞.

We already know how much the agent wins in either linear equilibrium when n < ∞ (see section

13, proof of the Irrelevance Theorem). Sending n → ∞ gives

lim
n→∞

q∗i,m = lim
n→∞

{

(

n− 1

n− 2

)(

1

λ+ δ

)

[

si −
1

n

∑

i

si

]

+
Qm

n

}

(67)

Since types are iid by assumption, I can apply the law of large numbers to obtain

lim
n→∞

q∗i,m =

(

1

λ+ δ

)

(si − µs) (70)

It is straightforward to show that this is efficient solution. For any n, the efficient solution

{qei,1, q
e
i,2}

n
i=1 solves

max
{qi,1,qi,2}ni=1

∑

i

U(qi,1, qi,2, si) s.t.
∑

i

qi,1 = Q1 and
∑

i

qi,2 = Q2
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with U(qi,1, qi,2, si)
(4)
=
∑

m

{

siqi,m − λ
2
q2i,m
}

− δqi,1qi,2. Denoting the Lagrange multipliers by γ1, γ2
the efficient allocation is characterized by

si − λqei,1 − δqei,2 + γ1 = 0 ∀i

si − λqei,2 − δqei,1 + γ2 = 0 ∀i

in addition to the binding feasibility constraints Q1 =
∑

i q
e
i,1, Q2 =

∑

i q
e
i,2. Solving for qei,1 and

qei,2 gives

qei,m =

(

1

λ+ δ

)

(

si −
1

n

∑

i

si

)

+
1

n
Qm for m = 1, 2.

Applying the law of large numbers as above, we see that the solution coincides with the equilibrium

allocation under either market structure:

lim
n→∞

qei,m =

(

1

λ+ δ

)

(si − µs)
(70)
= lim

n→∞
q∗i,m for m = 1, 2.
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