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ABSTRACT 

Many applications require constraining arrays of numbers to controls in one or two dimensions.  Example applications 
include survey estimates, disclosure avoidance, input-output tables, and population and other estimates and 
projections.  If the results are allowed to take on any nonnegative values, raking (a.k.a. scaling) solves the problem in 
one dimension and two-way iterative raking solves it in two dimensions. Each of these raking macros has an option 
for the user to output a dataset containing the rakes. The problem is more complicated in one dimension if the data 
can be of any sign, the so-called “plus-minus” problem, as simple raking may produce unacceptable results.  This 
problem is addressed by generalized raking, which preserves the structure of the data at the cost of a nonunique 
solution.  Often, results are required to be rounded so as to preserve the original totals.  The Cox-Ernst algorithm 
accomplishes an optimal controlled rounding in two dimensions.  In one dimension, the Greatest Mantissa algorithm 
is a simplified version of the Cox-Ernst algorithm. 

Each macro contains error control code.  The macro variable &errorcode is made available to the programmer to 

enable error trapping. 

DISCLAIMER 

This report is released to inform interested parties of research and to encourage discussion.  The views expressed on 
methodological and technical issues are those of the author and not necessarily those of the U.S. Census Bureau. 

INTRODUCTION  

Survey estimation, demographic work and disclosure avoidance often require constraining arrays of numbers to 
controls in one or two dimensions.  For example, subnational population projections may be constrained to a national 
projection.  Another example is fine-grained data being constrained to coarser-grained data of greater precision.  The 
final data in every case should preserve, in some way, the structure of the original data.  In one dimension, this 
means that if one initial data element is greater than another, then the transformed elements should preserve this 
relationship.  Optimally, the ratios between elements should be preserved, but this can only be done in the specific 
case of controlling a vector whose nonzero elements are of the same sign as the control value, with the result left 
unrounded.  Controlled rounding then destroys the ratios, but preserves the order up to elements whose rounded 
values are identical.  The effect on the ratios depends on the magnitudes of the initial data elements and unit of 
rounding.  The effect of controlled rounding on these ratios in vectors with large elements relative to the unit of 
rounding is minimal.  On the other hand, initial vectors with elements about the same magnitude as the unit of 
rounding will find these ratios greatly perturbed.  “Generalized raking” (Coleman, 2006a) of a vector of mixed sign to 
zero or a control of opposite sign to the nonzero data preserves the order of the original elements, while destroying 
the ratios.  The two-dimensional equivalent of raking minimizes a function that measures the distortion from the 
original matrix. 

One-dimensional raking multiplies a vector of data by the ratio of the control to the sum of the initial data.  Damage to 
the structure of the original data is avoided only when the control is of the same sign as the nonzero initial data.  
When the data are of mixed sign or the control is zero or has the opposite sign of the nonzero data, generalized 
raking takes a weighted average of the ordinarily raked data and the projection of the original data onto the 
hyperplane defined by the control.  The result, except in the cases of a zero control or zero initial sum, is nonunique.  
Generalized raking has several advantages over the earlier Akers-Siegel (1965) procedure: a continuous 
transformation using arithmetic operations is used instead of separate rakes for positive and negative data.  It easily 
handles zeroes in the data.  There is never any need to arbitrarily shift and then rake the data, when it is impossible 
to apply the Akers-Siegel procedure to the original data.   

Two-dimensional raking, a.k.a. “iterative proportional fitting,” the “RAS algorithm,” and other names, is a much-
rediscovered method for constraining a nonnegative matrix to positive row and column controls.  The sums of the row 
and column controls (or “marginals”) must be equal for it to work.  It proceeds by alternately raking row data to row 
controls and column data to column controls until convergence.  It minimizes a function that measures the distortion 
of the data.  The result is unique.  A sufficient condition for feasibility is that the original matrix be positive.  When this 
is not attained, an algorithm based on linear programming can be used to determine feasibility.  Some practical 
guidance for handling zeroes and “low” (i.e., values too low to be reported) is given to speed convergence.  This 
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procedure does not generalize to three or more dimensions: a positive array with positive marginals can still be 
infeasible (Cox, 2003). 

When the row and column controls are given in ranges whose sums overlap, the requirement that the two sets of 
controls have the same sum can be relaxed.  The Range-RAS algorithm can be used to constrain the data so that the 
sum constraints are satisfied.  It is very similar to the RAS algorithm, with the difference lying in how the rakes are 
computed. 

The Cox-Ernst (1982) controlled rounding algorithm for matrices assures that integers are unchanged and 
nonintegers are rounded to one of their closest integers.  A cost to rounding up is defined and minimized.  Because of 
its complexity, this algorithm is not described in detail.  This cost is decreasing in the remainder, so that it is less 
costly to round up 0.9 than 0.1.  For vectors, the Greatest Mantissa algorithm (Coleman, 2006b) performs controlled 
rounding by rounding up numbers in order of their mantissas (a.k.a. remainders).  This simplification of the Cox-Ernst 
algorithm is simple to describe and program. 

Constraining data creates both benefits and costs.  Estimates, by definition, contain error.  Estimates may be 
constrained to enhance data usability or provide disclosure avoidance at the cost of changing variances.  This cost 
may be offset by correcting anomalies that may be present in the data.  Rounding can be used to enhance 
presentation by reflecting expected precision, whether in monetary units such as dollars and cents (and not fractional 
cents) or in numerical units such as thousands and millions. 

After each algorithm’s description is given, the SAS macro call is displayed.  The macros themselves are in the 
accompanying file POS131.Coleman.zip. 

SOME DEFINITIONS 

Raking: Multiplicatively constraining data to a control.  In two dimensions, this is an 
iterative process.  Also known as “scaling” in the mathematical literature. 

Rounding: Changing a number to a multiple of a prespecified value.  For example, changing 
a fractional number to an integer. 

Conventional Rounding: The ordinary definition of rounding: changing a number to its closest multiple of a 
prespecified value. 

Unconventional Rounding: Rounding a number to a multiple of a prespecified value other than the closest 
one.  This is, in effect, an “incorrect” rounding. 

Controlled Rounding: Rounding data to add up to a control. 

NOTATION 

ONE DIMENSION 

All operations are performed on the n element vector x�⃑ = (𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑛𝑛).  The resulting, transformed vector is denoted as 
x�⃑ ′ = (𝑥𝑥1′ , … , 𝑥𝑥𝑛𝑛′ ).  The control value is c.  The sum of the elements of  x�⃑  is denoted as b.  Let H be the hyperplane 

defined by the constraint 𝑐𝑐 = ∑ 𝑥𝑥𝑖𝑖′𝑛𝑛𝑖𝑖=1 .  Let ⌊𝑦𝑦⌋ be the greatest integer less than or equal to y.  𝑚𝑚 = 𝑦𝑦 − ⌊𝑦𝑦⌋ is the 
mantissa or fractional part of y. 

TWO DIMENSIONS 

The original matrix is denoted by A = �𝑎𝑎𝑖𝑖𝑖𝑖�  with m rows and n columns.  The vectors of row and column controls are 

denoted by u�⃑ = (𝑢𝑢1, … ,𝑢𝑢𝑛𝑛)′ and v�⃑ = (𝑣𝑣1, … , 𝑣𝑣𝑛𝑛), respectively.  The convergence or tolerance criterion is denoted by 
tol. 

SAS NOTES 

All macro file names are the same as the macro names in lowercase.  All macros (except helpers) require SAS 
Interactive Matrix Language ®.  One helper macro is %EXPANDNAMES, which generates sequentially numbered 

variables.  An example usage is %EXPANDNAMES(DEMO,2011,2013), which returns the string “DEMO2011 

DEMO2012 DEMO2013”.  The other macro is %NUMOBS(dsn=,n=), a variant of a macro created by Tyndall (2007, 

4).  This macro returns the number of observations in data set dsn in the global macro variable specified by n. 

Each one-dimensional macro has required arguments: 

• dsin:   Input data set.  

• dsout:   Output data set 
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• ctrldsin:   Control data set 

and either 

• var:    Variables to be controlled, separated by blanks 

• ctrlvar:    Control variables, separated by blanks 

or 

• varstem:    Stem of sequentially numbered variables 

• ctrlvarstem:   Stem of controls, same numerical sequence 

• first:    First number 

• last:    Last number 

The macros have optional arguments.  The macros that do not do BY-group processing have an option idvar to list 

variables to copy from the input data set to the output data set.  Its main use is to identify observations.  Macros with 
BY-groups dispense with idvar and require the mandatory arguments byvar and byvar2: 

• byvar:   BY-variables common to both input and control data sets 

• byvar2:   BY-variables unique to input data set 

The combination of &byvar and &byvar2 uniquely identifies an observation. 

All raking macros (except generalized raking) have an optional rakes= argument to specify a data set to hold the 

rakes.  The rake variables are sequentially numbered rake1-raken, where n is the number of variables.  Macro 

variables &idvar (if specified) or &byvar and &byvar2 are placed on these data sets. 

The two-way raking macros have the following optional arguments: 

• missingok:   When set to ‘Y’, missing values in the input matrix are accepted and set to 0. 

• maxit:    Maximum iterations.  Default is 100. 

RAKING 

Raking, or scaling, “multiplicatively” controls data to controls.  In one dimension, when the control and nonzero data 
are of the same sign, this is the ordinary rake which is simple multiplication.  When one or both of these assumptions 
do not hold, the generalized rake, which is a weighted sum of the ordinary rake and the orthogonal projection to the 
control hyperplane is used.  In two dimensions, when the marginals are fixed and equal the same sum, the two-way 
rake is used.  When the marginals are in ranges, the Range-RAS algorithm is used. 

ONE DIMENSION 

One dimension is equivalent to individual SAS variables.  The simplest problem occurs when the control and nonzero 
input data are of the same sign.  In addition to being solved by a simple multiplication (the ordinary rake) with a 
unique solution, the results satisfy several desirable properties.  When the restriction on signs is removed, the 
generalized rake is used at the costs of a nonunique solution and loss of the ratio property: the ratios of the input data 
are not preserved. 

Raking when Control and Nonzero Input Data are of Same Sign (Ordinary Rake) 

The ordinary rake simply multiplies every element 𝑥𝑥𝑖𝑖 by 𝑐𝑐 𝑏𝑏⁄ : 

           𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖 𝑐𝑐𝑏𝑏 .                                                                                (1)            

This is simple to program.  The sufficient condition is that the nonzero elements of x�⃑  be of the same sign as c. 

Consider raking the vector (1, 2, 3, 4) to sum to 20.  The original vector sums to 10, so the rake factor is 20/10 = 2.  
Multiplying each element of the original vector by 2 produces the raked vector (2, 4, 6, 8). 

The ordinary rake is monotonic and preserves the structure of the data in both order and ratio.  That is, 

     𝑐𝑐 >< 𝑏𝑏 ⇒ 𝑥𝑥𝑖𝑖′ >< 𝑥𝑥𝑖𝑖     ∀𝑥𝑥𝑖𝑖 ≠ 0    (monotonicity),   (2) 

     𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑖𝑖 ⇒ 𝑥𝑥𝑖𝑖′ > 𝑥𝑥𝑖𝑖′    ∀𝑖𝑖 ≠ 𝑗𝑗      (order),    (3) 



SAS® Macros for Constraining Arrays of Numbers, continued SESUG 2015 
 

4 

and 𝑥𝑥𝑖𝑖′𝑥𝑥𝑖𝑖′ =
𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖      ∀𝑥𝑥𝑖𝑖 ≠ 0     (ratio).                                                           (4)             

Monotonicity means that all nonzero data are shifted in the same direction as the change in their sum.  The order 
property means that the ranking of the data is preserved.  When the sign restrictions are relaxed, the ratio property 
must be lost to preserve the other two. 

The SAS macro call is 
%RAKE(dsin=,dsout=,ctrldsin=,var=,ctrlvar=,idvar=,first=,last=,varstem=, 

ctrlvarstem=,rakes=); 

Note:  %RAKE is written with the assumption that all data are nonnegative.  If negative data are encountered, a 

warning will be written to the output, &errorcode will be set to a negative value and the macro will run normally. 

Raking Data of Mixed Sign (Generalized Rake) 

The idea behind the generalize rake is to perturb the ordinary rake so as to preserve the order property.  The 
generalized rake is a weighted average of the ordinary rake and the orthogonal projection of x�⃑  onto H: 𝑥𝑥𝑖𝑖′ = 𝑤𝑤 𝑐𝑐𝑏𝑏 𝑥𝑥𝑖𝑖 + (1 − 𝑤𝑤)(𝑥𝑥𝑖𝑖) +

𝑐𝑐 − 𝑏𝑏𝑛𝑛      ∀𝑖𝑖                                                     (5)            

The value of w is determined heuristically.  𝑤𝑤 = 1 reproduces the ordinary rake.  𝑤𝑤 = 0 is the pure orthogonal 
projection, the only feasible solution for b or 𝑐𝑐 = 0.  The heuristic should aim to produce a high (but not the highest, 
as this leads to a corner solution) value of 𝑤𝑤 < 1 to produce an acceptable trade-off between the two pure 𝑤𝑤 = {0,1} 
solutions.  A practical way to do this is to start with 𝑤𝑤 = 1 and decrement w by 0.1 until the order conditions (3) are 
satisfied.  By starting with 𝑤𝑤 = 1, the ordinary rake solution is not ignored when it is feasible.  Allowing w to equal 0 

provides insurance against missing the solution when 𝑐𝑐 = 0.   It is possible for w to be negative, when b and c are of 
opposite sign. 

Consider again the problem of raking (1, 2, 3, 4).  This time, let the control total be −10.  The ordinary rake uses a 
rake factor of −1, which simply changes the signs of the original data and reverses their order.  The generalized rake 
using the heuristic above selects 𝑤𝑤 = 0.4 to produce the final vector (−2.8, −2.6, −2.4, −2.2). 

The generalized rake avoids many of the weaknesses of the Akers-Siegel (1965) procedure, at the cost of always 
having a nonunique solution when both 𝑏𝑏, 𝑐𝑐 ≠ 0 (Coleman, 2006a).  Further research may be able to refine the 
algorithm to provide a unique solution given tuning parameter inputs. 

The generalized rake strengthens the monotonicity condition (2) to 

 𝑐𝑐 >< 𝑏𝑏 ⇒ 𝑥𝑥𝑖𝑖′ >< 𝑥𝑥𝑖𝑖     ∀𝑥𝑥𝑖𝑖    (monotonicity).   (2a) 

Condition (2a) allows the generalized rake to operate on zero data.  Of course, if any zero data represent true zeroes, 
they should be removed before raking. 

The SAS macro call is 

%GENRAKE(dsin=,dsout=,ctrldsin=,var=,ctrlvar=,idvar=,first=,last=,varstem=, 

ctrlvarstem=); 

The rakes= option is not supported, as it is not clear what rakes mean in this context. 

TWO DIMENSIONS 

The problem of controlling data in two dimensions has been in the literature since at least 1937 (Schneider and 
Zenios, 1990, 444).  The original method of controlling positive data to positive marginals is considered first.  
Bregman (1967) gave it an optimality interpretation.  Censor and Zenios (1979) loosened the constraints so that data 
can be controlled to ranges instead of scalar vectors, albeit without an optimality interpretation.  This is a special case 
of the Constrained RAS (KRAS) algorithm (Lenzen, Gallego and Wood, 2009 and Temurshoev, Miller and 
Bouwmeester, 2013).  The KRAS algorithm is not covered because of its complexity and remaining defects 
(Temorshoev et al., 2013). 

Two-Way Raking 

The two-way rake, a.k.a. the RAS Algorithm and Iterative Proportional Fitting, inter alia, alternately rakes rows and 
columns to their respective controls (or “marginals”).  All elements of the initial matrix A must be nonnegative.  The 
sum of the row controls must equal the sum of the column controls.  The algorithm can be described as follows:  

Step 0.  (Initialization)  Set 𝑘𝑘 = 0 and A0 = A. 
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Step 1.  (Row Raking)  For 𝑖𝑖 = 1,2, … ,𝑚𝑚 define 𝜌𝜌𝑖𝑖𝑘𝑘 = 𝑢𝑢𝑖𝑖 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖⁄ , where 𝑢𝑢𝑖𝑖 is the marginal for row i.  Define 

matrix B by the elements 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑖𝑖𝑘𝑘𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘   for 𝑖𝑖 = 1,2, … ,𝑚𝑚 and 𝑗𝑗 = 1,2, … ,𝑛𝑛. 

Step 2.  (Column Raking)  For 𝑗𝑗 = 1,2, … ,𝑛𝑛 define 𝜎𝜎𝑖𝑖𝑘𝑘 = 𝑣𝑣𝑖𝑖 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖⁄ , where 𝑣𝑣𝑖𝑖 is the marginal for column j.  

Define matrix A𝑘𝑘+1 by the elements 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘+1 = 𝜎𝜎𝑖𝑖𝑘𝑘𝑏𝑏𝑖𝑖𝑖𝑖  for 𝑖𝑖 = 1,2, … ,𝑚𝑚 and 𝑗𝑗 = 1,2, … ,𝑛𝑛. 

Step 3.  (Convergence Test)  Compute 𝑚𝑚𝑎𝑎𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 = max𝑖𝑖,𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘+1 − 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘 �.  If 𝑚𝑚𝑎𝑎𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 <then output A𝑘𝑘+1 and 

stop. 
Step 4.  Replace 𝑘𝑘 with 𝑘𝑘 + 1 and return to Step 1. 

It does not matter whether rows or columns are raked first (Bregman, 1967). 

The value of tol should be less than the roundoff criterion, if any.  For data that are to be rounded to integers, I like to 
use 0.1. 

This algorithm can be troubled by the presence of zeroes, which can produce infeasibility.  Fagan and Greenberg 
(1984) describe a procedure to determine the feasibility of the problem.  A simpler method is to replacezeroes with 
small values, such as 1e-7.  The end result will “steal” an insignificant amount from the positive entries.  The output is 
then compared to the input to see if recoded zero cells have changed significantly.  This indicates that the initial 
problem is infeasible.  If feasible, the “stolen” data become irrelevant if the data are to be rounded afterwards.  

Some data sets, such as those in the Bureau of Economic Analysis’s Regional Economic Information System (REIS), 
come with “low” values suppressed, but included in summations.  Any value that is flagged as low should be replaced 
with a small, nontrivial value less than the threshold for suppressing low values.  For example, REIS values below 5 
are flagged and replaced by zeroes.  Replacing these values with 1 creates a good starting point.  Moreover, this 
replacement may be necessary for a feasible solution to exist. 

This problem is a type of matrix balancing problem.  See Schneider and Zenios (1990) for a discussion of these 
problems.  Bacharach (1970,79–80) proved that the solution is the unique nonnegative matrix Y that minimizes the 

information gain  ∑ 𝑦𝑦𝑖𝑖𝑖𝑖�ln�𝑦𝑦𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖𝑖𝑖⁄ � − 1�𝑖𝑖,𝑖𝑖,𝑎𝑎𝑖𝑖𝑖𝑖>0 .  (The constant 1 is arbitrary, but convenient.)  Bregman (1967) proved, 

for feasible problems, that the sequence {A𝑘𝑘} always converges to Y.  Schneider and Zenios (1990) provide additional 
results and some examples. 

The SAS macro call is 
%RAKE2WAYS(dsin=,dsout=,rowctrlds=,var=,varstem=,rowctrlvar=,colctrlds=, 

colctrlvar=,idvar=,tol=,first=,last=,colctrlvarstem=,rakes=); 

The required arguments to specify the marginals are: 

• rowctrlds:   Row control data set 

• rowctrlvar: Row control variable name 

• colctrlds:   Column control variable data set 

• colctrlvar:   Column control variables (if &VAR is specified) 

  or 

• colctrlvarstem: Column control variable name stem (if &VARSTEM is specified).  

Argument tol is an optional convergence tolerance.  Its default value is 0.1. 

The Range-RAS Algorithm 

When the marginals are in ranges whose sums overlap, the Range-RAS algorithm (Zenios and Censor, 1991) can 
control a matrix so that the sum of each row and column lies within its permitted range.  The Range-RAS algorithm 
reduces to the RAS algorithm when each marginal is single-valued.  Similar to two-way raking, all elements of the 
initial matrix A must be nonnegative. 

Before describing the algorithm, define the middle function as mid(𝑎𝑎, 𝑏𝑏, 𝑐𝑐), which returns the element in the middle 
(i.e., second-largest, equivalently, second-smallest.) 

The Range-RAS algorithm proceeds as below: 

Step 0.   (Initialization)  Set 𝑘𝑘 = 0 and A0 = A.  Set initial row rakes 𝜌𝜌𝑖𝑖0 = 1, 𝑖𝑖 = 1, … ,𝑚𝑚. Set initial column 

rakes 𝜎𝜎𝑖𝑖0 = 1, 𝑗𝑗 = 1, … ,𝑛𝑛. 

Step 1.   (Row Raking)  For 𝑖𝑖 = 1, 2, … ,𝑚𝑚 define �̅�𝜌𝑖𝑖𝑘𝑘 = 𝑢𝑢�𝑖𝑖 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖⁄   and 𝜌𝜌𝑖𝑖𝑘𝑘 = 𝑢𝑢𝑖𝑖 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖⁄ .  Compute ∆𝜌𝜌𝑖𝑖𝑘𝑘 =

mid(𝜌𝜌𝑖𝑖𝑘𝑘 ,𝜌𝜌𝑖𝑖𝑘𝑘 , �̅�𝜌𝑖𝑖𝑘𝑘).  Define matrix B by the elements 𝑏𝑏𝑖𝑖𝑖𝑖 = ∆𝜌𝜌𝑖𝑖𝑘𝑘𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘   for 𝑖𝑖 = 1,2, … ,𝑚𝑚 and 𝑗𝑗 = 1,2, … ,𝑛𝑛. 

Step 2.   (Update Row Rakes)  For 𝑖𝑖 = 1, 2, … ,𝑚𝑚 set 𝜌𝜌𝑖𝑖𝑘𝑘+1 = 𝜌𝜌𝑖𝑖𝑘𝑘 ∆𝜌𝜌𝑖𝑖𝑘𝑘� . 
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Step 3.   (Column Raking)  For 𝑗𝑗 = 1, 2, … ,𝑛𝑛 define 𝜎𝜎�𝑖𝑖𝑘𝑘 = �̅�𝑣𝑖𝑖 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖⁄   and 𝜎𝜎𝑖𝑖𝑘𝑘 = 𝑣𝑣𝑖𝑖 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖⁄ .  Compute ∆𝜎𝜎𝑖𝑖𝑘𝑘 =

mid(𝜎𝜎𝑖𝑖𝑘𝑘 ,𝜎𝜎𝑖𝑖𝑘𝑘,𝜎𝜎�𝑖𝑖𝑘𝑘).  Define matrix A𝑘𝑘+1 by the elements 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘+1 = ∆𝜎𝜎𝑖𝑖𝑘𝑘𝑏𝑏𝑖𝑖𝑖𝑖  for 𝑖𝑖 = 1,2, … ,𝑚𝑚 and 𝑗𝑗 = 1,2, … ,𝑛𝑛. 

Step 4.   (Update Column Rakes)  For 𝑗𝑗 = 1, 2, … ,𝑛𝑛 set 𝜎𝜎𝑖𝑖𝑘𝑘+1 = 𝜎𝜎𝑖𝑖𝑘𝑘 ∆𝜎𝜎𝑖𝑖𝑘𝑘� . 

Step 5.   (Convergence Test)  Compute 𝑚𝑚𝑎𝑎𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 = max𝑖𝑖,𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘+1 − 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘 �.  If 𝑚𝑚𝑎𝑎𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 < 𝑡𝑡𝑡𝑡𝑡𝑡 then output A𝑘𝑘+1 
and stop. 
Step 6.  Replace 𝑘𝑘 with 𝑘𝑘 + 1 and return to Step 1.. 

Since the Range-RAS algorithm is a variant of the RAS algorithm, it shares its difficulties with zeroes.  It has the 
same objective function. 

The SAS macro call is 
%RRAS(dsin=,dsout=,var=,minrowctrlds=,minrowctrlvar=,mincolctrlds=,mincolctrlvar=, 

maxrowctrlds=,maxrowctrlvar=,maxcolctrlds=,maxcolctrlvar=,idvar=,tol=,missingok=, 

maxit=,first=,last=,varstem=,mincolctrlvarstem=,maxcolctrlvarstem=,rakes=); 

The control arguments are 

• minrowctrlds:   Minimum row control data set 

• mincolctrlds:   Minimum row control data set 

• maxrowctrlds:   Maximum row control data set 

• maxcolctrlds:   Maximum row control data set 

• minrowctrlvar:   Minimum row control variable 

• maxrowctrlvar:   Maximum row control variable 

and either 

• mincolctrlvar:   Minimum column control variables 

• maxcolctrlvar:   Maximum column control variables 

or 

• mincolctrlvarstem:   Minimum column control variable stem 

• maxcolctrlvarstem:   Maximum column control variable stem 

The other arguments have the same definitions as for %RAKE2WAYS. 

CONTROLLED ROUNDING 

All of the controlled rounding presented is based on the Cox-Ernst algorithm, which seeks to 1) preserve integers and 
2) minimize unconventional roundings.  It does this by assigning a cost to rounding up, which increases in the 
distance between the original, unrounded data and their upwardly rounded values.  It then minimizes the total cost of 
rounding.  Cox and Ernst developed their algorithm for matrices.  The Greatest Mantissa algorithm is a specialization 
to vectors (i.e., individual variables). 

TWO DIMENSIONS:  THE COX-ERNST ALGORITHM 

The Cox-Ernst algorithm is a type of transportation model (Causey, Cox and Ernst, 1985).  Macro %CONTROLROUND 

is an adaptation of the SAS Institute’s implementation of a transportation model (SAS Institute, n.d.).  The PROC 
OPTMODEL call has been modified by including constraints to preserve zeroes (i.e., zero-restriction) and to bound 
the output by 0 and 1 to assure that every input cell is rounded to a nearest integer.  Sands (2003) explains the Cox-
Ernst algorithm to SAS users. 

The SAS macro call is 
%CONTROLROUND(dsin=,dsout=,var=,idvar=,first=,last=,varstem=,roundoff=); 

roundoff is an optional argument that tells %CONTROLROUND to round off to the nearest integral multiple of the 

value specified.  The default is 1, to round off to integers. 

%CONTROLROUND calls PROC OPTMODEL’s linear program solver.  In SAS version 9.2, the dual simplex algorithm is 

used, possibly resulting in roundoff errors that result in an incorrect solution.  In later versions, the network simplex 
algorithm is called to avoid these errors at the cost of increased memory usage.  Invoking SAS with the -MEMSIZE 
option may be required. 
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ONE DIMENSION:  THE GREATEST MANTISSA ALGORITHM 

The Greatest Mantissa Algorithm (Coleman, 2006b) consists of taking each element of x�⃑  and subtracting the largest 
integer to obtain the mantissa.  That is, 𝑚𝑚𝑖𝑖 = 𝑥𝑥𝑖𝑖 − ⌊𝑥𝑥𝑖𝑖⌋, where ⌊∙⌋ is the floor() function.  Then, assume that the 

difference between the control and the sum of the largest integers is 𝑘𝑘 = 𝑐𝑐 − ∑ ⌊𝑥𝑥𝑖𝑖⌋𝑛𝑛𝑖𝑖=1 .  The algorithm then rounds up 
the 𝑥𝑥𝑖𝑖 corresponding to the 𝑘𝑘 largest 𝑚𝑚𝑖𝑖. 
Ties may occur during this procedure:  that is, the 𝑘𝑘th largest mantissa may be shared by multiple 𝑥𝑥𝑖𝑖.  Thus, the user 
has to implement a tie-breaking procedure. 

The Greatest Mantissa Algorithm is a one-dimensional simplification of the Cox-Ernst (1982) controlled rounding 
algorithm.  In one dimension, this simplifies to assigning a cost to rounding up mantissas, 𝑐𝑐(𝑚𝑚𝑖𝑖), where 𝑐𝑐′(𝑚𝑚𝑖𝑖) < 0, 
and exists for all 0 < 𝑚𝑚𝑖𝑖 < 1.  The exact form of 𝑐𝑐 is irrelevant.  Zeroes may not be rounded up.  Theorem 1 of 
Coleman (2006b) shows that the cost of rounding is minimized by rounding up the largest mantissas.  The signs of 
the data do not matter, so it is applicable to vectors of negative or mixed sign. 

Table 1 shows an example of an unrounded vector with its conventional and controlled roundings and steps used to 
construct the controlled rounding.  The original vector sums to 26, as shown in the rightmost column.  Conventional 
rounding produces the vector shown immediately below.  This vector sums to 25, 1 less than the original total.  
Therefore, conventional rounding does not preserve this vector’s original sum and cannot be used when the sum has 
to be preserved.  The next rows show the operation of the greatest mantissa algorithm.  First, the integral parts are 
extracted.  Their sum is 24, 2 less than the original total.  Thus, two mantissas will have to be rounded up.  The 
mantissas are shown below the integral parts.  Their order of rounding is shown in the next row.  Element 1 is 
rounded up first, as its mantissa, 0.9, is the largest.  Element 5 has the second-largest mantissa, 0.4, so it is rounded 
up, too.  The final vector is shown as the “Controlled Rounding” in the bottom row.  This vector differs from the 
“Conventional Rounding” vector in element 5, which has been unconventionally rounded up.  This demonstrates the 
necessity of unconventionally rounding numbers in a controlled rounding. 

Element 1 2 3 4 5 6 Sum 

Original Vector 5.9 6.1 5.1 4.2 2.4 2.3 26 

Conventional Rounding 6 6 5 4 2 2 25 

Integral Parts 5 6 5 4 2 2 24 

Mantissas 0.9 0.1 0.1 0.2 0.4 0.3 2 

Order of Rounding Up 1    2   

Final Vector 6 6 5 4 3 2 26 

Table 1. Greatest Mantissa Algorithm Example 

The SAS macro call is  

%GMROUND(dsin=,dsout=,var=,idvar=,first=,last=,varstem=,seed=); 

Macro %GMROUND breaks ties using a two-stage procedure.  The first tie-breaker is the absolute value of the 

observation.  The second is the order of the observations.  If desired, the user may specify seed for random tie-

breaking.  This will cause global macro variable &iseed to be returned.  &iseed can then be used for later random 

number generation. 

RAKING AND ROUNDING 

Users often want to rake and round data.  For example, in demography, one is interested in whole people: fractional 
people do not exist.  Surveys may similarly require integral results. 

The macros for this are: 

One dimension: 

%RAKEANDGMROUND(dsin=,dsout=,ctrldsin=,var=,ctrlvar=,idvar=,first=,last=,varstem=, 

ctrlvarstem=,seed=,roundoff=,rakes=); 

Two dimensions: 

%RAKEANDROUND2WAYS(dsin=,dsout=,rowctrlds=,var=,rowctrlvar=,colctrlds=,colctrlvar=,

idvar=,tol=,first=,last=,varstem=,colctrlvarstem=,rakes=,missingok,roundoff=, 

maxit=); 

These macros’ arguments are the unions of the arguments of their respective raking and rounding macros.  Both 
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macros require uncommenting and altering the path in the first statement to include the appropriate rounding macro. 

BY-GROUP PROCESSING 

I have created four corresponding macros with BY-groups for raking with or without rounding.  Each macro replaces 
the optional argument &idvar with the required arguments &byvar and &byvar2. 

Ordinary rake: 

%RAKEBY(dsin=,dsout=,ctrldsin=,var=,ctrlvar=,first=,last=,varstem=,ctrlvarstem=, 

byvar=,byvar2=,rakes=); 

Round vectors: 

%GMROUNDBY(dsin=,dsout=,var=,first=,last=,varstem=,seed=,byvar=,byvar2=); 

Rake and round vectors: 

%RAKEANDGMROUNDBY(dsin=,dsout=,ctrldsin=,var=,ctrlvar=,first=,last=,varstem=, 

ctrlvarstem=,seed=,byvar=,byvar2=,rakes=); 

Rake and round matrices: 

%RAKEANDROUND2WAYSBY(dsin=,dsout=,rowctrlds=,var=,rowctrlvar=,colctrlds=, 

colctrlvar=,byvar=,byvar2=,tol=,first=,last=,varstem=,colctrlvarstem=,maxit=, 

roundoff=,rakes=); 

In addition to uncommenting the reference to %CONTROLROUND, %RAKEANDROUND2WAYSBY requires uncommenting 

the reference to %NUMOBS.   

CONCLUSION 

This paper has presented a variety of macros to control one- and two-dimensional data.  The macros themselves can 
be found at https://sourceforge.net/p/constrainingarrays/code/ci/master/tree/.  These macros should be considered 
works in progress, as they are subject to enhancements and revisions based on new knowledge.  Suggestions for 
improvements are welcome. 
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