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Abstract 

A novel rough set approach is proposed in this paper to discover classification 

rules through a process of knowledge induction which selects optimal decision rules 

with a minimal set of features necessary and sufficient for classification of real-valued 

data. A rough set knowledge discovery framework is formulated for the analysis of 

interval-valued information systems converted from real-valued raw decision tables. 

The optimal feature selection method for information systems with interval-valued 

features obtains all classification rules hidden in a system through a knowledge 

induction process. Numerical examples are employed to substantiate the conceptual 

arguments.  

 

Keywords: Classification; Interval-valued information systems; Knowledge discovery; 

Knowledge reduction; Rough sets 

                                                                                  

 

1. Introduction 

The discovery of non-trivial, previously unknown, and potentially useful 

knowledge from databases is important in the processing and utilization of 
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voluminous information. A basic issue of a rule-based system is the determination of a 

minimal set of features (and feature values) and the optimal set of consistent rules for 

classification or inference. All of this has to be achieved with data available. The 

theory of rough sets, proposed by Pawlak [28], has recently been used to analyze data 

sets for such a purpose. This theory is an extension of classical set theory for the study 

of systems characterized by insufficient and incomplete information, and has been 

demonstrated to be useful in fields such as pattern recognition, machine learning, and 

automated knowledge acquisition [14,27,30-32,46,48]. Rough-set data analysis uses 

only internal knowledge, avoids external parameters, and does not rely on prior model 

assumptions such as probabilistic distribution in statistical methods, membership 

function in fuzzy sets theory, and basic probability assignment in Dempster-Shafer 

theory of evidence [7,33]. Its basic idea is to unravel an optimal set of decision rules 

from an information system (basically a feature-value table) via an objective 

knowledge induction process which determines the necessary and sufficient features 

constituting the rules for classification.  

Classical definitions of lower and upper approximations, sometimes called 

Pawlak's rough approximations, were originally introduced with reference to an 

indiscernibility relation which is assumed to be an equivalence relation (reflexive, 

symmetric and transitive) [28,29]. This model is useful in the analysis of data 

presented in terms of complete information systems and complete decision tables. 

Pawlak's rough approximations may be generalized to nonequivalence relations 

[10,16,37,38,41,43,47,49]. The extensions of Pawlak's rough set model may be used 

in reasoning and knowledge acquisition in incomplete decision tables [5,8,11,18-22]. 

A more general definition of lower and upper approximations, called fuzzy lower and 

upper approximations, can be defined by using fuzzy relation and may be applied to 

fuzzy information systems [2,6,9,15,17,26,42,44,45]. 

When the rough set approach is used to unravel decision rules from a given 

information system, two types of decision rules may be derived. Based on the lower 

approximation of a decision class, certain information can be discovered and certain 
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rules can be derived, whereas by using the upper approximation of a decision class, 

uncertain or partially certain information may be discovered and possible rules 

induced. Various approaches
①
 using rough set theory have been proposed to discover 

decision rules from data sets taking the form of decision tables [3,8,11,13,15,17-25, 

34-40,45,50,51]. 

Whilst conventional rough set models may be constructed for the analysis of 

categorical data, real-world problems often involve real-valued attributes 

characterizing objects of interest. In the classification of remotely-sensed images, for 

example, spectral bands whose gray values may be interpreted to be continuous are 

generally used to give spectral signatures to pixels constituting objects. Under such a 

situation, the Pawlak rough set model may generate an unacceptably large number of 

equivalence classes resulting in too many classification rules. Though the rules may 

be more deterministic with reference to the training data set, their generalization 

ability will most likely be rather low since perfect match of attribute values in real 

numbers is generally difficult. To make the identified classification rules more 

comprising and practical, a preprocessing step which can transform the real-numbered 

attribute values into a sufficiently small number of meaningful intervals is thus 

necessary. 

Most of the current methods focus on the discretization of continuous attribute 

values by dividing the range of real numbers into a certain number of partitioning 

intervals [1,4,12]. Essentially, the methods transform an attribute with real values into 

an attribute with discrete real-valued intervals. It is, however, difficult or controversial 

to decide on the cut-off points separating the intervals. To circumvent such a problem, 

other conversion methods, such as more sophisticated statistical procedures, may be 

                                                        
①

 Greco et al. (1999), Grzymala-Busse (1991), and Kryszkiewicz (1998,1999) extended the 

rough set model to reason in incomplete information systems with missing values. Lingras and Yao 

(1998) employed two different generalizations of rough set models to generate plausibilistic rules with 

incomplete databases instead of probabilistic rules generated by a Pawlak's rough set model with 

complete decision tables, while other researchers such as Hong et al. (2000), Korvin et al. (1998), and 

Wu et al. (2003), used rough set models to handle fuzzy and quantitative data. 
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employed to preprocess a real-valued information system into an interval-valued 

information system. Once the conversion is done, the corresponding knowledge 

induction method needs to be investigated. 

In this paper, a novel rough set approach for discovering classification rules from 

an interval- valued information system is proposed. The approach involves the 

transformation of real-valued information into interval-valued information, and the 

formulation of a knowledge induction procedure to identify optimal classification 

rules with a minimal set of features necessary and sufficient for classification with 

continuous attribute values.  

To facilitate our discussion, we first present some basic notions of information 

systems and decision tables in the section that follows. New concepts of 

misclassification rate related to interval-valued information systems are then 

introduced in Section 3. Section 4 serves to discuss the α -tolerance relations, while 

in Section 5 and Section 6 we continue with the concept of α -classification 

reduction and induction of optimal decision rules, respectively. We then conclude the 

paper with a summary of the proposed approach and pointing to some conclusions. 

 

2. Information systems and decision tables 

The notion of an information system provides a convenient basis for the 

representation of objects in terms of their attributes. Without loss of generality, let us 

assume 1-ary attributes. A complete information system S  may then be defined as a 

pair ( )AU , , where U  is a nonempty finite set of, say n  objects
②
, { }nxxx ,,, 21 2 , 

called the universe of discourse, and { }maaaA ,,, 21 2=  is a nonempty finite set of 

m  attributes, such that aVUa →:  for any Aa∈ , i.e., aVxa ∈)( . aV  is called the 

domain of attribute a .  

                                                        
②

 In a remote sensing context, the objects of interest are pixels and the attributes spectral bands. Note 

that in hyperspectral classification there are hundreds of spectral bands that might be used. 
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If the precise values of some of the attributes in an information system are not 

known, i.e., missing or known only partially, then such a system is called an 

incomplete information system and still can be denoted without any confusion by 

( )AU , . Such a situation can be described by a set-valued information system in which 

the attribute value function a  is defined as a mapping from U  to the power set of 

aV . For example, the missing values ( )xa  can be represented by the set of all 

possible values for the attribute, i.e., ( ) aVxa = ; and if ( )xa  is known partially, for 

instance, if we know that ( )xa  is not aVcb ∈, , then the value ( )xa  is specified as 

{ }cbVa ,− . 

A decision table is an information system { }( )dAUS ,= , where d , Ad ∉ , is 

a complete attribute called a decision, and A  is termed the conditional attribute set. 

If ( )AU ,  is a complete information system, then { }( )dAU ,  is referred to as a 

complete decision table. If ( )AU ,  is an incomplete information system, then 

{ }( )dAU ,  is referred to as an incomplete decision table. We can treat the decision 

attribute as a kind of classifier on the universe of objects given by an expert or a 

decision-maker. In machine learning, decision tables are called sets of training 

examples. 

Without loss of generality, we assume that { }IVd ,,2,1 2= . We can observe that 

the decision d  determines a partition of the universe of discourse, 

{ } { }d

I

dd

d XXXUxxdU ,,,:][/ 21 2=∈= , 

where ( ){ }ixdUxX
d

i =∈= : , Ii ,,2,1 2= . The set d

iX  is termed the i -th 

decision class of decision table { }( )dAUS ,= . Thus i  may be regarded as the 

label of the class d

iX . 
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For an information system ( )AUS ,= , one can describe relationships between 

objects through their attribute values. With respect to an attribute subset AB ⊆ , a 

binary equivalence relation BR  may be defined as 

Uyx ∈, , ( ) ( ) ( ) BayaxaRyx B ∈∀=⇔∈ ,, . 

BR  is referred to as the relation with respect to B  derived from information system 

S , and we call ( )BRU ,  the Pawlak approximation space with respect to B  induced 

from S . With relation B , two objects are considered to be indiscernible if and only 

if they have the same value on each Ba∈ . Based on the approximation space 

),( BRU , one can derive the lower and upper approximations of an arbitrary subset 

X  of U . They are defined as 

( ) { }XxUxXB B ⊆∈= ][: , and ( ) { }∅≠∈= XxUxXB B ][: , respectively, 

where { }BB RyxUyx ∈∈= ),(:][  is the B -equivalence class containing x . The pair 

( ) ( )( )XBXB ,  is the representation of X  in the Pawlak approximation space ( )BRU , , 

or is referred to as the Pawlak rough set of X  with respect to ( )BRU , . Based on the 

lower and upper approximations of the decision classes d

iX  ( Ii ,,2,1 2= ) with 

respect to ( )ARU ,  in the decision table { }( )dAU , , it is easy to unravel all of the 

certain and possible decision rules [29]. 

Given a number of facts, generalization can be performed in many different 

directions [14]. In order to extract interesting rules from databases, learning should be 

directed by background knowledge. For example, in the classification of remotely 

sensed images, land covers such as vegetation species can exhibit individual spectral 

signatures in a number of spectral bands. One can classify vegetation covers 

according to the gray levels in the corresponding bands. The task is to select a smaller 

number of spectral bands such that they have the same classification ability as the 
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prespecified set which often contains more than sufficient bands. The mining of 

classification rules thus needs to be performed in real-valued databases. Real-valued 

data are in fact a very common information source in real-life problems. Remote 

sensing application is just a typical example. 

If the values of each attribute in an information system are real numbers, then 

such a system is commonly called a real-valued information system in the rough set 

literature. If data are real-valued, then the conventional Pawlak rough-set model may 

yield a very large number of equivalence classes which will eventually unravel a very 

large number of classification rules in the knowledge induction process. Having too 

many classification rules, however, may give a more deterministic result in the 

training data, but their generalization capability will be substantially hampered. This 

is simply due to the difficulty in having a perfect match of attribute values in real 

numbers in the condition parts of the rules. Thus, to mine rules which are more 

encompassing and general, it is pertinent to first convert the real-valued information 

system into an interval-valued information system so that attributes in the mined rules 

are interval-valued in nature. 

An interval-valued information system is a pair ( )AUK ,= , where 

{ }IuuuU ,,, 21 2=  is a nonempty finite set of classes and { }maaaA ,,, 21 2=  is a 

nonempty finite set of attributes, such that ( ) ],[ k

i

k

iik
ulua = , k

i

k

i ul < , for all 

Ii ,,2,1 2=  and mk ,,2,1 2= . To obtain an interval-valued information system, we 

can employ methods such as discretization or other more sophisticated statistical 

procedures. Discretization may be based on experience or specification of arbitrary 

cut-off points. Statistical methods, on the other hand, may be based on the capturing 

of data variation under some probability density functions depicting the attributes. For 

example, it makes good statistical sense to specify an interval such as σµ 2±  (µ : 

mean, σ : standard deviation) under, say, normal distribution. Similar methods can be 

used for other probability density functions fitting the data. It should be noted that the 
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statistical method is just employed for data conversion whenever appropriate. The 

rough-set knowledge induction approach suggested in this contribution has absolutely 

no bearing on any statistical arguments. 

It should, however, be noted that, unlike the discretization methods by which the 

interval-valued attribute value interval set ( ){ }Uuua iik ∈:  forms a partition of the 

set for the same attribute ka , the interval-valued attribute set obtained by statistical 

methods may have non-empty intersection for distinct classes in the universe of 

discourse. This is rather natural, because, for example, the gray values of different 

vegetations under the same band may have strong spectral affinity. 

Example 1. Table 1 depicts an interval-valued information system about 10 

species of vegetations. { }1021 ,,, uuuU 2=  is the universe of discourse which 

comprises 10 vegetation classes, { }54321 ,,,, aaaaaA =  the set of attributes (spectral 

bands) , the attribute value ( )
jk ua  an interval ],[ k

i

k

i ul  where 

{ }0,2max k

i

k

i

k

il σµ −= ， { }255,2min k

i

k

i

k

iu σµ += , 

obtained by including all real-valued data points that fall within σµ 2±  under the 

normal distribution. Hence, we can transform the raw data set into an interval-valued 

information system as shown by Table 1. 

  

Table 1 to be placed about here 

 

In the sections that follow, we propose some concepts and formulate a 

framework for mining classification rules in interval-valued information systems. 
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3．Misclassification rates 

We start to introduce some concepts for the modeling of uncertainty in 

interval-valued information systems. Let ( )AUK ,=  be an interval-valued 

information system. Denote for any Iji ≤,  with ji ≠  and mk ≤  

{ }
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α  

where k

ijα  is the probability that objects in class iu  are misclassified into class ju  

according to attribute ka . It is the length of the intersection of ],[ k

i

k

i ul  and ],[ k

j

k

j ul  

divided by the length of the interval ],[ k

i

k

i ul . If 0=k

ijα , then objects in class iu  

will not be misclassified into the class ju  according to attribute ka . If 1=k

ijα  ― 

note that ],[],[ k

j

k

j

k

i

k

i ulul ⊆  in such a case ― objects in class iu  will be completely 

misallocated to class ju  according to attribute ka . It should be pointed out that 

k

ji

k

ij αα =  does not hold in general.  

Define 

{ }mk
k

ijij ≤= :min αα , 

where ijα  is the error that objects in class iu  being misclassified into class ju  in 

the system K . Moreover define 

{ }ijIjiji ≠≤= ,:max αα , 

where iα  may be called the permissible misclassification rate that objects in class 

iu  being discerned (separated) from other classes in the system K . Finally, define 

the maximal mutual classification error between classes iu  and ju , according to 
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attribute ka , as 

{ }k

ji

k

ij

k

ij ααβ ,max= , 

where k

ji

k

ij ββ = . If 0=k

ijβ , then we can distinguish classes iu  and ju  completely 

by using attribute ka , while if 10 << k

ijβ , we can distinguish these classes up to a 

mutual classification error k

ijβ . But if 1=k

ijβ , we cannot distinguish the two classes 

at all. 

    Let us continue to define the permissible misclassification rate between classes 

iu  and ju  in the system K  as 

k

ij
mk

ij ββ
≤≤

=
1
min . 

Then ― if αβ ≤ij , there must exist an attribute ka  such that, by using ka , within 

the permissible misclassification rate α  ― the two classes iu  and ju  can be 

separated. If 0=ijβ , they can be distinguished completely. If 1=ijβ , they cannot be 

separated in the system K . If 10 << ijβ , they can possibly be separated to a certain 

extent. 

For a given permissible misclassification rate α , if αβ ≤ij , then there exists an 

attribute Aak ∈  such that, the classes iu  and ju  can be separated. If αβ >ij , 

then there is no attribute in A  such that with the permissible misclassification rate, 

iu  and ju  can be separated. In such a case, we claim that the two classes iu  and 

ju  cannot be distinguished in the system within α .  

Define  

{ }ijmjiji ≠≤= ,:max ββ , Ii ≤ . 
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iβ  is called the permissible misclassification rate such that class iu  can be 

separated from other classes in the system, that is, if αβ ≤i , within the given 

classification error α , the class iu  can be discerned.  

Define, moreover, the minimal permissible misclassification rate such that all 

classes can be pairwise separated in the system as 

{ }jiIjIiij ≠≤≤= ,,:max ββ . 

That is, if αβ ≤ , then within the given misclassification rate α , any pair of classes 

in the system can be separated. In such a case, all classification rules derived from the 

system are consistent in the sense of α . If αβ > , within the given classification 

error α , classes cannot be pairwise distinguished.  

 

Table 2 to be placed about here 

 

Example 2.  The classification errors for the information system described in 

Table 1 are displayed in Table 2. For example, 19.016 =α  means that the error of 

having objects in class 1u  misclassified into class 6u  is 0.19, from which we can 

find a spectral band (e.g., 5a ) such that the rate of misallocating objects from class 

1u  to class 6u  will not be more than 0.19. On the other hand, 13.061 =α  means 

that the error of having objects from class 6u  misallocated to class 1u  is 0.13. It is 

obvious that 64.01 =α  which means that the permissible misclassification rate of 

separating objects in class 1u  from other classes in the system is 0.64; and 03 =α  

implies that there must exist some spectral bands such that, by using these bands, 
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objects in class 3u  can be unmistakenly distinguished from other classes. 

 

Table 3 to be placed about here 

 

Table 3 shows the permissible misclassification rates for different classes in the 

interval-valued information system described in Example 1. For instance, 

38.085 =β  implies that the permissible misclassification rate between classes 8u  

and 5u  is 0.38. 88.025 =β  indicates that 2u  and  5u  are very similar and, thus, 

very hard to distinguish. 8β  shows a permissible misclassification rate of 49.0  for 

separating class 8u  from other classes, while 88.0=β  implies that the minimal 

permissible misclassification rate for pairwise separation of all classes is 0.88 in this 

example.  

 

4. α - tolerance relations 

This section continues to define α -tolerance relations in an interval-valued 

information system crucial for the search of the minimal number of features and the 

notion of attribute reducts to be discussed in the next section. 

Let ( )AUK ,=  be an interval-valued information system. For a given 

permissible misclassification rate ]1,0[∈α  and an attribute subset AB ⊆ ，we 

define a binary relation, denoted by α
BR , on U  as: 

( ){ }BaUUuuR k

k

ijjiB ∈∀>×∈= ,:, αβα . 

Two classes iu  and ju  have relation α
BR  if and only if they cannot be separated 
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by the attribute set B  under the misclassification rate a . We call α
BR  the 

α -tolerance relation with respect to B . 

Obviously, α
BR  is reflexive and symmetric, but it may be not transitive. Thus, 

α
BR  is a tolerance relation which satisfies 

{ }b
Bb

B RR
∈

= α . 

Denote { }αα
BB RvuUvuS ∈∈= ),(:)(  which is called the α -tolerance class of 

u  with respect to α
BR  or B . )(uSv B

α∈  if and only if u  and v  cannot be 

distinguished according to attributes in B  within the misclassification rate α . It is 

easy to see that 10 ≤≤≤ γα  implies γα
BB RR ⊆ , )()( uSuS BB

γα ⊆ , for all AB ⊆  

and Uu∈ . 

Example 3. It should be noted that αβ >k

ij  for all Aak ∈  iff αβ >ij . If we 

consider the interval-valued information system given by Table 1 and assume that a 

permissible misclassification rate 2.0=α  is given, then we can obtain from Table 3 

the Boolean matrix corresponding to 2.0

AR  as follows: 







































=

1000001000

0100000000

0010010010

0001000001

0000100000

0010010010

1000001000

0000000100

0010010010

0001000001

2.0

AR  

Consequently,  

{ }717

2.0

1

2.0 ,)()( uuuSuS AA == , { }8528

2.0

5

2.0

2

2.0 ,,)()()( uuuuSuSuS AAA === ,  
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{ }33

2.0 )( uuS A = , { }10410

2.0

4

2.0 ,)()( uuuSuS AA == , { }66

2.0 )( uuS A = , { }99

2.0 )( uuS A = .  

Hence under the given permissible misclassification rate 2.0=α , classes 3u , 6u , 

and 9u  can be separated from other classes, and any one of the remaining classes 

cannot be discerned from others. 

 

5. α -classification reduction and α -classification core 

One fundamental aspect of rough set theory involves the search for particular 

subsets of attributes which provide the same information for classification purposes as 

the full set of available attributes. Such subsets are called attribute reducts. To acquire 

concise decision rules from systems, knowledge reduction is, thus, necessary. Many 

types of attribute reducts and decision results have been proposed in the rough set 

literature. For example, Kryszkiewicz [20] has established static relationships among 

conventional types of knowledge reduction in inconsistent complete decision tables. 

Zhang et al. [50] have introduced a new kind of knowledge reduction, called a 

maximum distribution reduct, which preserves maximum decision rules. Mi et al. [25] 

have proposed approaches to knowledge reduction based on variable precision rough 

set model. In this section, we study knowledge reduction in interval-valued 

information systems which can be used in the construction of optimal classification 

rules from the interval-valued information systems. 

Let ),( AUK =  be an interval-valued information system, with ]1,0[∈α  and 

AB ⊆ . If αα
AB RR = , then B  is called an α -classification consistent set in K . If 

B  is an α -classification consistent set, { }bB −  is not an α -classification 

consistent set in K  for all Bb∈ , i.e. αα
AbB RR ≠− }{ , then B  is termed an 

α -classification reduct in K . The set of all α -classification reducts in K  is 

denoted by )(Kre
α . The intersection of all α -classification reducts is called the 
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α -classification core in K . 

If )()( uSuS AB

αα = , then B  is called an α -classification consistent set of u  in 

K . If B  is an α -classification consistent set of u  in K , { }bB −  is not an 

α -classification consistent set of u  in K  for all Bb∈ , i.e. )()(}{ uSuS AbB

αα ≠− , 

then B is called an α -classification reduct of u  in K . The set of all 

α -classification reducts of u  in K  is denoted by )(ure
α . The intersection of all 

α -classification reducts of u  is called the α -classification core of u  in K . 

An α -classification consistent set in K  is a subset of the attribute set that 

preserves the α -tolerance classes of all classes, while an α -classification reduct is a 

minimal α -consistent set that preserves the α -tolerance relation and, consequently, 

leads to the same classification in the sense of α . The remaining attributes are then 

redundant, and their removal does not affect the classification in the sense of α .  

Let define the α -discernibility set of the two classes iu  and ju  in K  as 

{ }αβα ≤∈= k

ijkij AaD : ， ji ≠ , and ∅=α
iiD  for all Ii ,,2,1 2= . 

Then α
ijD  consists of a set of attributes separating classes iu  and ju  with a 

misclassification rate being not greater than α . Define, moreover, the 

α -discernibility matrix 

{ }IjiDij ,,2,1,: 2==Μ αα  

and let 

{ }∅≠=Μ ααα
ijij DD :0 . 

Then we can use the following theorem to determine an α -classification consistent 

set according to the α -discernibility matrix. 

Theorem 1.  Let ),( AUK =  be an interval-valued information system, 
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]1,0[∈α , then AB ⊆  is an α -classification consistent set in K , i.e. αα
AB RR = , iff 

∅≠DB  , α
0Μ∈∀D . 

Proof.  “⇒ ” Suppose that αα
AB RR = . If α

0Μ∈D , then by definition of α
0Μ , 

there exist Iji ≤≤ ,1  with ji ≠  such that ∅≠= α
ijDD . By definition of α

AR  

we can see then that ( ) α
Aji Ruu ∉, . Since αα

AB RR = , we have ( ) α
Bji Ruu ∉, , which 

implies that there exists an attribute Bak ∈  such that αβ ≤k

ij , that is, α
ijk Da ∈ . 

Hence ∅≠∈ DBak  . 

“⇐” Assume that ∅≠DB  , α
0Μ∈∀D . If by contradiction αα

AB RR ≠ , then 

we know from αα
BA RR ⊆  that αα

BA RR ⊂ . Thus, there exists ( ) α
Bji Ruu ∈,  such that 

( ) α
Aji Ruu ∉, . By ( ) α

Aji Ruu ∉,  we see that ∅≠α
ijD . Then there exists Aak ∈  

such that αβ ≤k

ij . Hence α
ijk Da ∈ , from which we can conclude that αα

0Μ∈ijD . 

Since by assumption ∅≠α
ijDB  , there exists Bal ∈  such that α

ijl Da ∈ . This 

means αβ ≤l

ij . Hence ( ) α
Bji Ruu ∉, , which contradicts ( ) α

Bji Ruu ∈, . Therefore 

αα
AB RR = .▌ 

Remark. According to Theorem 1, we can see that AB ⊆  is an 

α -classification reduct in K  iff B is the minimal set satisfying ∅≠DB  , 

α
0Μ∈∀D . 

Theorem 2. Let ),( AUK =  be an interval-valued information system, 

]1,0[∈α , then Aak ∈  is an element of α -classification core in K  iff there exists 

α
0Μ∈D  such that { }kaD = . 

Proof. “⇒ ” Assume that Aak ∈  is an element of the α -classification core in 

K . Let 
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{ }DaD kk ∈Μ∈=Μ :0

αα . 

If card 2)( ≥D  for all α
kD Μ∈ , define 

{ }( )k
D

aDB −=
Μ∈ α

0

 . 

It is easy to see that 

∅≠DB  , α
0Μ∈∀D . 

By Theorem 1 we know that B  is an α -classification consistent set in K . Then 

there exists BC ⊆  such that C  is an α -classification reduct in K . Clearly, 

Cak ∉ , this contradicts ka  being an element of the α -classification core in K . 

“⇐” Suppose that there exists α
0Μ∈D  such that { }kaD = . Then there exist 

Iji ≤≤ ,1  with ji ≠  such that { }kij aD =α . By definition, we have αβ ≤k

ij  and 

αβ >l

ij  for all kl ≠  with ml ≤≤1 . Consequently, ( ) { }
α

kaAji Ruu −∈,  and 

( ) α
Aji Ruu ∉, . It follows that  

{ }
αα
AaA RR

k
≠− . 

Note that ka  is an element of the α -classification core in K  iff { }
αα
AaA RR

k
≠− . 

Therefore, ka  is an element of the α -classification core in K .▌ 

 

Table 4 to be placed about here 

 

Example 4. In the information system described in Table 1 and under the given 

permissible misclassification rate of 2.0=α , the discernibility sets are obtained as 

shown in Table 4. Since αα
jiij DD = , for simplicity, we only list α

ijD ’s with 
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Iij <<≤1 . According to Theorem 1 and Theorem 2, it can easily be shown that the 

0.2-classification reducts in the system are the two sets: { 1a , 3a , 4a , 5a } and 

{ 2a , 3a , 4a , 5a }; and the 0.2-classification core is { }543 ,, aaa . 

Reduct computation can also be translated into the computation of prime 

implicants of a Boolean function. It has been shown by Skowron and Rauszer 32  that 

the problem of finding reducts of a given Pawlak (complete) information system may 

be solved as a case in Boolean reasoning. The idea of Boolean reasoning is to 

represent a problem with a Boolean function and to interpret its prime implicants
③
  

as solutions to the problem. This approach is very useful to the calculation of reducts 

of classical information systems. We will generalize this approach to interval-valued 

information systems here. It should be pointed out that we are interested in implicants 

of monotone Boolean functions only, i.e. functions constructed without negation. 

Let ),( AUK =  be an interval-valued information system. An α -discernibility 

function α
Kf  for the interval-valued information system K  is a Boolean function of 

m  Boolean variables maaa ,,, 21 2 corresponding to the attributes maaa ,,, 21 2  

respectively, and defined as follows: 

( ) { }αααα
021 :,,, Μ∈∨∧= ijijmK DDaaaf 2 , 

where α
ijD∨  is the disjunction of all variables a  such that α

ijDa∈ , while ∧  

denotes conjunction. 

Theorem 3. Let ),( AUK =  be an interval-valued information system. Then an 

attribute subset AB ⊆  is an α -classification reduct in K  iff k
Ba

a
k∈
∧  is a prime 

implicant of the α -discernibility function α
Kf .  

                                                        
③

 An implicant of a Boolean function f  is any conjunction of literals such that for each valuation v  

of variables, the value of the function f  under v  is also true if these literals are true under v . A 

prime implicant is a minimal implicant. 
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Proof. “⇒ ”. Assume that AB ⊆  is an α -classification reduct in K . By 

Theorem 1 we have 

∅≠α
ijDB  , for all αα

0Μ∈ijD . 

We claim that Bb∈∀  there must exist αα
0Μ∈ijD  such that }{bDB ij =α . In fact, 

if ( ) 2card ≥α
ijDB   for all αα

0Μ∈ijD  with α
ijDb∈ , let }{' bBB −= . Then by 

Theorem 1 we can see that 'B  is an α -classification consistent set in K , which 

contradicts that B  is an α - classification reduct. It follows that B∧  is a prime 

implicant of the α -discernibility function α
Kf .  

“⇐”. If B∧  is a prime implicant of the α -discernibility function α
Kf . Then 

∅≠α
ijDB   for all αα

0Μ∈ijD , and moreover, Bb∈∀ , there exists αα
0Μ∈ijD  such 

that }{bDB ij =α . Consequently, { }bB −  is not an α -classification consistent set 

in K . Thus we conclude that B is an α -classification reduct. ▌ 

From the above theorem, we know if  

( ) { } 





 ∧∨=Μ∈∨∧=

== q

l

p

s

q

t

l
ijijmK aDDaaaf

11
021 :,,, αααα 2 , 

where 
q

l

p

s

q
a

1=
∧ , tl ≤ , are all the prime implicants of the α -discernibility function 

α
Kf , then { }

lpl sqaB
q

≤= : , tl ≤ , are all the α -classification reducts in K . 

In what follows, we shall write ka  instead of ka  without any confusion. 

Example 5. In the interval-valued information system given in Table 1 and, 

under the given classification error 2.0=α , we obtain the Boolean function:  

( ) =521

2.0 ,,, aaaf K 2 ( ) ( ) ( )5435521354321 aaaaaaaaaaaaa ∨∨∧∧∨∨∧∧∨∨∨∨  

( )5421 aaaa ∨∨∨∧ ( )21 aa ∨∧ ( ) ( ) 454343 aaaaaa ∧∧∧∧∨∧ . 
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After simplification (using the absorption laws) we obtain the prime implicants 

representation of the Boolean function as: 

( ) =521

2.0 ,,, aaaf K 2 ( ) 54321 aaaaa ∧∧∧∨  

( ) ( )54325431 aaaaaaaa ∧∧∧∨∧∧∧= . 

Hence there are two 0.2-classification reducts in the system: { }5431 ,,, aaaa  and 

{ }5432 ,,, aaaa . 

If we instead construct a Boolean function by restricting the conjunction to run 

over only column i  (instead of over all columns) in the α -discernibility matrix, we 

then set the so-called i  α -discernibility function, denoted by α
if .  That is, 

( ) { } )(,,,
0:

21
αα

αα ij
Dj

mi Daaaf
ij

∨∧=
Μ∈

2 , Ii ,,2,1 2= . 

The set of all prime implicants of function α
if determines the set of all 

α -classification reducts of iu  in K . These α -classification reducts reveal the 

minimum amount of information needed to discern class iu  from all other classes 

which are not included in the α -tolerance classes of iu . We summarize this into the 

following theorem without proof. 

Theorem 4. Let ),( AUK =  be an interval-valued information system, Uui ∈ . 

Then an attribute subset AB ⊆  is an α -classification reduct of iu  in K  iff 

k
Ba

a
k∈
∧  is a prime implicant of the i  α -discernibility function α

if . 

Example 6. Under the given permissible misclassification rate 2.0=α , we can 

obtain the Boolean function with respect to iu , for 10,,2,1 2=i . The 

α -classification reduct of each class can then be calculated as follows. 

Since  
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( ) =521

2.0

1 ,,, aaaf 2 { } )( 2.0

1
: 01

j
Dj

D
j

∨∧
Μ∈ αα

 

( ) ( ) ( ) 535435521354321 aaaaaaaaaaaaaaa ∧=∨∨∧∧∨∨∧∧∨∨∨∨= , 

{ }53 ,aa  is the unique 2.0 -classification reduct of 1u . 

Similarly, since 

( ) =521

2.0

2 ,,, aaaf 2 { } )( 2.0

2
: 02

j
Dj

D
j

∨∧
Μ∈ αα

 

( ) ( ) ( ) 2121542154321 aaaaaaaaaaaaa ∨=∨∧∨∨∨∧∨∨∨∨= , 

there are two 0.2-classification reducts of 2u  in the system: { }1a  and { }2a .  

Likewise,  

( )521

2.0

3 ,,, aaaf 2 53 aa ∧= , { }{ }533

2.0 ,)( aaure = , 

( ) 3521

2.0

4 ,,, aaaaf =2 , { }{ }34

2.0 )( aure = , 

( ) 21521

2.0

5 ,,, aaaaaf ∨=2 , { } { }{ }215

2.0 ,)( aaure = , 

( ) ( ) ( )54325431521

2.0

6 ,,, aaaaaaaaaaaf ∧∧∧∨∧∧∧=2 ,  

{ } { }{ }543254316

2.0 ,,,,,,,)( aaaaaaaaure = , 

( ) ( ) ( ) ( )533231521

2.0

7 ,,, aaaaaaaaaf ∧∨∧∨∧=2 , 

 { } { } { }{ }5332317

2.0 ,,,,,)( aaaaaaure = , 

( ) 4521

2.0

8 ,,, aaaaf =2 , { }{ }48

2.0 )( aure = , 

( ) 53521

2.0

9 ,,, aaaaaf ∧=2 , { }{ }539

2.0 ,)( aaure = , 

( ) 5521

2.0

10 ,,, aaaaf =2 , { }{ }510

2.0 )( aure = . 
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6. Induction of classification rules 

After an α -classification reduct α
B  of class iu  has been calculated, 

classification knowledge corresponding to iu  hidden in the interval-valued 

information system may be discovered and expressed in the form of a 

α -classification rule of the following kind: 

If ],[)( k

i

k

ik ulxa ∈  for all α
Bak ∈ , then object x  should be 

classified into one of the classes in )( iB uS
α  within a permissible 

misclassification rate α . 

If the cardinality of )( iB uS
α  is one, that is, { }iiB uuS =)(α , then the rule is 

regarded as certain in the sense of α . In such a case, the class iu  can be discerned 

from other classes under the permissible misclassification rate α . A certain 

α -classification rule can then be derived and represented as: 

If ],[)( k

i

k

ik ulxa ∈  for all α
Bak ∈ , then object x  should be classified 

into class iu  within the permissible misclassification rate α . 

Obviously, with the increase of permissible misclassification rate, more certain 

rules from the system may be derived. If the cardinality of )( iB uS
α  is not one, then 

the corresponding classification rules are referred to as uncertain or possible. A certain 

0-classification rule is called a completely certain classification rule. In such a case, 

the corresponding class can be discerned without error. 

Now we define two measures that reflect the separation accuracy of classes 

under a permissible misclassification rate. separated-α accuracy of the 

interval-valued information system K  is defined as follows: 
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( ){ }
I

IiuSi iA

1
,1:

∑
≤=

=
α

αη . 

That is, the α -separated accuracy is the ratio of the number of classes which can be 

correctly classified within the permissible misclassification rate α  to the total 

number of classes.  

The pairwise separated accuracy under the permissible misclassification rate α  

in the system K , denoted by αγ , is defined as follows: 

( ){ }

∑

∑
−

=

∅≠≤<≤
=

1

1

,1:,

1

I

i

DIjiji

i

ij
α

αγ . 

It is easy to verify 

10 ≤≤≤ βα ⇒ αβ ηη ≥ , αβ γγ ≥ . 

Thus, the greater the permissible misclassification rate, the higher is the (pairwise) 

separated accuracy. 

Example 7. In the information system given by Table 1, within the given 

permissible misclassification rate 2.0=α , and based on the α -classification reduct 

of each class provided in Example 6, all certain and uncertain classification rules 

hidden in the interval-valued information system can be discovered and expressed as 

follows: 

Within the permissible misclassification rate 2.0=α , the certain decision rules 

are: 

1r )( 3u : If ]27.10,23.7[)(3 ∈xa  and ]79.2,06.2[)(5 ∈xa , then x  should be 

classified into class 3u . 

2r )( 6u : If ]43.3,29.2[)(1 ∈xa , ]81.8,71.6[)(3 ∈xa , ]23.4,30.3[)(4 ∈xa , and 
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]84.3,01.3[)(5 ∈xa , then x  should be classified into class 6u . 

'2r )( 6u : If ]48.3,60.2[)(2 ∈xa , ]81.8,71.6[)(3 ∈xa , ]23.4,30.3[)(4 ∈xa , and 

]84.3,01.3[)(5 ∈xa , then x  should be classified into class 6u . 

3r )( 9u : If ]31.5,83.3[)(3 ∈xa  and ]34.2,72.1[)(5 ∈xa , then x  should be 

classified into class 9u . 

Within the permissible misclassification rate 2.0=α , the uncertain decision 

rules are: 

4r )( 1u : If ]23.7,32.5[)(3 ∈xa  and ]12.3,54.2[)(5 ∈xa , then x  should be 

classified into 1u  or 7u . 

5r )( 2u : If ]75.4,37.3[)(1 ∈xa , then x  should be classified into 2u  or 5u  or 8u . 

'5r )( 2u : If ]85.4,43.3[)(2 ∈xa , then x  should be classified into 2u  or 5u  or 8u . 

6r )( 4u : If ]93.3,59.2[)(3 ∈xa , then x  should be classified into 4u  or 10u . 

7r )( 5u : If ]35.5,46.3[)(1 ∈xa , then x  should be classified into 2u  or 5u  or 8u . 

'7r )( 5u : If ]11.5,37.3[)(2 ∈xa , then x  should be classified into 2u  or 5u  or 8u . 

8r )( 7u : If ]07.3,22.2[)(1 ∈xa  and ]05.7,37.4[)(3 ∈xa , then x  should be 

classified into 1u  or 7u . 

'8r )( 7u :If ]32.3,43.2[)(2 ∈xa  and ]05.7,37.4[)(3 ∈xa , then x  should be classified 

into 1u  or 7u . 

''8r )( 7u : If ]05.7,37.4[)(3 ∈xa  and ]20.3,39.2[)(5 ∈xa , then x  should be 

classified into 1u  or 7u . 
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9r )( 8u : If ]91.6,44.4[)(4 ∈xa , then x  should be classified into 2u  or 5u  or 8u . 

10r )( 10u : If ]84.1,10.1[)(5 ∈xa , then x  should be classified into 4u  or 10u . 

The 2.0 -separated accuracy 2.0η  in the information system described in Table 

1 is 0.3 and 45/402.0. =γ . It can easily be computed that 1.00 =η , 45/340 =γ , 

5.05.0 =η , 45/425.0 =γ , 19.0 =η , 19.0 =γ .  

We can see that although the pairwise separated accuracy under a permissible 

misclassification rate α  is high, the α -separated accuracy may be low. In general, 

αα γη ≥ . 

 

7. Summary and conclusions 

In this paper we have developed a general framework for mining of classification 

rules in interval-valued information systems. In the approach, an interval-valued 

information system is first converted from a real-valued decision table by means of a 

statistical method. Useful concepts related to rough set data analysis in interval-valued 

information systems have been proposed subsequently. The concept of 

α -misclassification rate is employed to compare different classes of objects. Under a 

given permissible misclassification rate ,α tionclassifica-α reducts and 

α -classification core can be calculated. This is very important in classification tasks 

involving a large number of features, e.g. spectral bands in hyperspectral 

classification problems. After an effective reduction of dimensions has been achieved, 

minimal feature sets determining the classification can be found and knowledge 

hidden in the systems can be unraveled and expressed in the form of α -classification 

rules. Such an extension of rough set theory enables rough set models to analyze 

effectively real-valued data commonly encountered in real-life applications. The 

implementations of such a knowledge discovery system in other application domains 

remain to be investigated in further studies.  
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Table 1 

An interval-valued information system 

 1a  2a  3a  
4a  5a  

1u  ]86.2,17.2[  ]96.2,45.2[  ]23.7,32.5[  ]95.3,21.3[  ]12.3,54.2[  

2u  ]75.4,37.3[  ]85.4,43.3[  ]47.10,24.7[  ]77.5,00.4[  ]70.4,24.3[  

3u  ]70.2,83.1[  ]98.2,78.1[  ]27.10,23.7[  ]07.4,96.2[  ]79.2,06.2[  

4u  ]12.2,35.1[  ]09.2,42.1[  ]93.3,59.2[  ]62.2,87.1[  ]32.2,67.1[  

5u  ]35.5,46.3[  ]11.5,37.3[  ]28.10,37.6[  ]70.5,76.3[  ]28.5,41.3[  

6u  ]43.3,29.2[  ]48.3,60.2[  ]81.8,71.6[  ]23.4,30.3[  ]84.3,01.3[  

7u  ]07.3,22.2[  ]32.3,43.2[  ]05.7,37.4[  ]68.3,66.2[  ]20.3,39.2[  

8u  ]04.4,51.2[  ]12.4,52.2[  ]26.11,12.7[  ]91.6,44.4[  ]65.4,06.3[  

9u  ]00.2,24.1[  ]91.1,35.1[  ]31.5,83.3[  ]01.3,13.2[  ]34.2,72.1[  

10u  ]72.1,00.1[  ]82.1,10.1[  ]65.5,58.3[  ]53.2,67.1[  ]84.1,10.1[  
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Table 2 

The classification errors for information system described in Table 1 

ijα  1 2 3 4 5 6 7 8 9 10 

1 1 0 0 0 0 0.19 0.64 0 0 0 

2 0 1 0 0 0.88 0.035 0 0.49 0 0 

3 0 0 1 0 0 0 0 0 0 0 

4 0 0 0 1 0 0 0 0 0.07 0.26 

5 0 0.68 0 0 1 0 0 0.31 0 0 

6 0.13 0.05 0 0 0 1 0.16 0 0 0 

7 0.47 0 0 0 0 0.13 1 0 0 0 

8 0 0.43 0 0 0.38 0 0.08 1 0 0 

9 0 0 0 0.07 0 0 0 0 1 0.19 

10 0 0 0 0.17 0 0 0 0 0.16 1 
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Table 3 

The permissible misclassification rates for the information system described in Table 1 

ijβ  1 2 3 4 5 6 7 8 9 10 

1 1 0 0 0 0 0.19 0.64 0 0 0 

2 0 1 0 0 0.88 0.05 0 0.49 0 0 

3 0 0 1 0 0 0 0 0 0 0 

4 0 0 0 1 0 0 0 0 0.07 0.26 

5 0 0.88 0 0 1 0 0 0.38 0 0 

6 0.19 0.05 0 0 0 1 0.16 0 0 0 

7 0.64 0 0 0 0 0.16 1 0 0 0 

8 0 0.49 0 0 0.38 0 0.08 1 0 0 

9 0 0 0 0.07 0 0 0 0 1 0.19 

10 0 0 0 0.26 0 0 0 0 0.19 1 
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Table 4 

The 2.0 -discernibility set for the information system given by Table 1 

 1u  2u  3u  
4u  5u  6u  7u  8u  9u  10u  

1u            

2u  
1a 2a 3a  

4a 5a  

         

3u  3a  
1a 2a 4a  

5a  

        

4u  
1a 2a 3a  

4a 5a  

1a 2a 3a  

4a 5a  
3a 4a  

       

5u  1a 2a 5a  
 

1a 2a 5a  
1a 2a 3a  

4a 5a  
 

     

6u  5a  
1a 2a  5a  

1a 2a 3a  

4a 5a  1a 2a  
     

7u   
1a 2a 3a  

4a 5a  
3a  

1a 2a 3a  

4a 5a  

1a 2a 4a  

5a  3a  
    

8u  3a 4a 5a  
 

4a 5a  
1a 2a 3a  

4a 5a  

 

4a  
3a 4a  

5a  

   

9u  
1a 2a 3a  

4a 5a  

1a 2a 3a  

4a 5a  
3a 4a  3a  

1a 2a 3a  

4a 5a  

1a 2a 3a  

4a 5a  

1a 2a  

5a  

1a 2a 3a  

4a 5a  
 

 

10u  
1a 2a 3a  

4a 5a  

1a 2a 3a  

4a 5a  

1a 2a 3a  

4a 5a  

 
1a 2a 3a  

4a 5a  

1a 2a 3a  

4a 5a  

1a 2a  

4a 5a  

1a 2a 3a  

4a 5a  
5a  

 

 


