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1 Introduction 

 

Much of the recent interest in intelligent GI analysis stems from the 

growing realization of the limitations of parametric models as vehicles 

for exploring patterns and relationships in data rich, but theory poor 

environments, and from the consequent hope that these limitations may 

be overcome by the judicious use of methods that avoid too great reliance 

on specific parametric models (see Fischer 2001). There is a considerable 

variety of non-parametric methods in the modern literature of 

mathematical statistics. In this paper we focus attention on the neural 

network modelling approach that has gained increasing recognition due 

to its intuitive appeal and considerable potential for application. The 

novelty about neural networks lies in their ability to model non-linear 

processes with few – if any – a priori assumptions about the nature of the 

data-generating process. This is particularly useful in GIS environments 

where we generally do not have control over data generation. The size, 
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noise, diversity and dimensionality of typical data sets make formal 

problem specification difficult. 

This contribution is intended as a convenient resource for GIScholars 

interested in a more fundamental view of the neural network modelling 

approach. We discuss some important issues that are central for 

successful application development. But it would be impossible to 

provide a comprehensive treatment and to consider all the different 

neural network models in a single paper. We limit the scope to 

feedforward neural networks, the leading example of neural networks. 

Feedforward network models have a lot to offer and we use appropriate 

statistical arguments to gain important insights into the problems and 

properties of this network approach. 

The paper is organized as follows. The next section continues to 

provide the context in which neural network modelling is considered by 

introducing relevant concepts of probability fundamental for this type of 

modelling. Neural networks, of the kind considered here, can be viewed 

as a very general framework for non-linear function approximation where 

the form of the mapping is governed by a number of adjustable 

parameters. For example, in the case of regression problems, it is the 

regression function that we wish to approximate. The network inputs are 

the explanatory variables, and the weights the regression parameters. 

Neural networks that have a single hidden layer architecture with N 

input nodes and a single output are described in some detail in Section 3. 

They represent a rich and flexible class of universal approximators. 

Section 4 discusses the notion of network performance and shows a way 

how to choose the best approximation and, moreover, formalizes the 

requirement that a network model shows good generalization (out-of-

sample) performance. 

Given a sufficiently complex network (that is, sufficiently many 

hidden units in a single hidden network model) the role of network 

learning is to find suitable values for network weights to approximate the 

particular function relevant for a given application. Section 5 defines 

network learning as an optimization problem and briefly reviews two 

alternative approaches to network learning: Gradient descent based local 
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search and global search. The latter is expected to allow the network to 

escape from local minima during learning. 

Motivated by the desire to obtain distributional results for the 

approximation that rely neither on large scale sample size nor on artificial 

data-generating assumptions, Section 6 shows how bootstrapping pairs 

estimation provides an unconditional bootstrap distribution and can give 

trustworthy estimates even if the model is wrong. One of the most 

important factors in the success of a practical application of neural 

networks is the search for an appropriate technique for determining 

network complexity. Section 7 addresses this issue and provides insights 

into current best practice to optimize complexity so to perform well on 

generalization tasks. 

Section 8 discusses the standard approach for assessing the 

generalization (out-of-sample) performance of a neural network and 

suggests the use of bootstrapping to overcome the problem of static data 

splitting. Finally, Section 9 contains some concluding remarks. The 

references included are intended to provide useful pointers to the 

literature rather than a complete record of the historical development of 

the field. 

 
  

2 Background 

 
To start we must specify the context in which neural network modelling 

is considered. We assume that a sequence {Zu=(Yu, Xu)} of independent 

identically distributed (iid) random (N+1)x1 vectors [ ]N ∈  generates 

observations on targets (Yu) and inputs (Xu) for the phenomenon of 

interest. In forecasting problems, for example, Yu is a variable that we 

wish to forecast on the basis of a set of N variables Xu which may itself 

contain past values of Yu. 

We take the unknown function of interest to be the conditional 

expectation of Yu, given Xu, E(Yu | Xu). Whenever E(Yu | Xu) exists and this 

is the case for E(Yu)< ∞, it can be represented solely as a function of Xu, 

that is g(Xu)=E(Yu | Xu) for some mapping g:ℜN→ℜ (White 1989a). When 
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Yu can assume a continuum of values, g(Xu) gives the expected value for 

Yu given that Xu= xu. We may also write 
 

( )u u uY X ε= +g  (1) 

 

where ( | )u u u uY E Y Xε ≡ − is a random error with conditional expectation 

zero given Xu. When the relationship between Yu and Xu is deterministic, 

uε is zero given any realization of Xu; otherwise, 
uε is non-zero with 

positive probability (White 1990). 

Our problem is to approximate (estimate, learn) the mapping g from a 

realization of the sequence {Zu} or in other words to construct an 

estimator ĝ  of g from a realization of {Zu}. For this purpose we consider 

the output functions of single hidden layer feedforward networks in the 

section that follows. 

Before doing so we should note that in practice we observe a 

realization of only a finite part of the sequence {Zu}, a training sample of 

size U: {zu=(yu, xu): u=1, ..., U}. Because g is an element of a space, say 

G, of functions, we have essentially no hope of learning g in any 

complete sense from a sample of finite size. Nevertheless, it is possible to 

approximate g to some degree of accuracy using a sample of size U, and 

to construct increasingly accurate approximations with increasing U 

(White 1990). 

 

 

3 Feedforward Neural Networks 

 

Feedforward neural networks consist of elementary processing units 

[elements or nodes], organized in layers (see Figure 1). The networks are 

termed feedforward because they do not contain feedback loops. This 

guarantees that the network outputs can be calculated as explicit 

functions of the inputs and weights. The layers between the input and the 

output layer are termed hidden. The number of input units N is 

determined by the application. The topology or architecture of a network 

refers to the topological arrangement of the network connections. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 A feedforward network for approximating the unknown mapping g(.):ℜN→ℜ where 

ˆ ( )y nety=  is the network forecast for the input vector (x1, …, xN), 
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For concreteness and simplicity, we consider single hidden layer neural 

network models with N input nodes, H hidden nodes and a single output 

node in this contribution as shown in Figure 1. Given an input vector 

x=(x1, …, xN) the output of this kind of network is given by a function 

:H

Νφ ℜ ℜ× → .W The weight (parameter) space W is a compact subset 

of pℜ  (p integer) such that for each , ( , . ) :Hx xφ ℜ→W  is continuous 

and for each 1( , ..., ) , ( . , ) : N

p Hw w w wφ ℜ ℜ= ∈ →W  is measurable. 

Network weights are, thus, restricted to lie in a compact set W of 

finite  dimension p where p indicates the total number of weights. This 

requirement for network output functions is satisfied by 

 

00 0 1

1 1

( , ) ( ( ))
H N

h hn n

h n

H x w w w w xφ y ϕ
= =

= +∑ ∑  (2) 

where 0 1( , )w w w=  is the p-dimensional vector of network weights. 

0 00 01 0( , ,..., )Hw w w w=  contains the hidden to output weights and 

1 10 1( ,..., )Hw w w=  with 
1 1 1 1( , ..., )

h h hNw w w=  the input to hidden units. N 

denotes the number of input nodes and H the number of hidden nodes. 

Note that H is an unambiguous descriptor of the dimensionality p of the 

weight vector: p=(N+2)H+1. The function φ is explicitly indexed by H in 

order to indicate the dependence. ϕ represents a non-linear hidden unit 

transfer function and y a linear or non-linear output transfer function, 

both continuously differentiable of order 2 on ℜ.  

The hidden transfer function ϕ(.) is characteristically specified as a 

function belonging to the family  

 

{ ( ), , { }}, , , ; ,N
Ox r s t x r s tℜ ℜ ℜΓ γ γ= ∈ ∈ −= ∈  (3) 

 

with 

 
1( ) (1 exp )x r s t xγ −= + + . (4) 

 

When r=s=1 and t=-1 the asymmetric sigmoid is obtained which is the 

most commonly used hidden layer transfer function. The specification of 

the output unit transfer function requires some specific care because 
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different types of transfer functions are appropriate for different cases. In 

regression contexts, for example, linear or quasi-linear output transfer 

functions are useful, while a generalization of the logistic sigmoid 

transfer function known as normalized exponential or softmax transfer 

function is appropriate in the case of classification problems involving 

mutually exclusive classes. 

Models of the form (2) represent a rich and flexible class of 

approximators. It is now well established that neural networks of the type 

(2) with linear output and sigmoid hidden layer transfer functions can 

approximate any continuous function g uniformly on compacta, provided 

that sufficiently many hidden units are available (Cybenko 1989, 

Funahashi 1989, Hecht-Nielsen 1989, Hornik et al. 1989). These results 

establish single hidden layer feedforward network models as a class of 

universal approximators. 

 

 

4 Network Performance 

 

If we view (2) as generating a family of approximations – as w ranges 

over W – to some specific empirical phenomenon relating inputs x to 

some y, then we need a way to pick a best approximation from this 

family. 

The goodness of an approximation can be evaluated using a 

performance function, say π, that measures how well the model output 

given by ( , )H x wφ  matches the target y corresponding to given inputs x. 

The performance ( , ( , ))Hy x wπ φ  should be zero when target and model 

output match and positive otherwise. A measure of overall network 

performance is given by the unconditional expectation of the random 

quantity ( , ( , )),HY X wπ φ  formally expressed as 

 

( ) ( , ( , )) ( )

[ ( , ( , ))]

u H u

H

L w y x w d z

E Y X w

π φ ν

π φ

=

=
∫  (5) 
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with w∈W and π a suitably chosen function. We call L(w) the expected 

performance [loss] function of the neural network. It is worth noting that 

the function depends only on the weights w, and not on particular 

realizations  y and x. These have been averaged out. This averaging is 

done in the integral representation defining L. The integral is a Lebesque 

integral taken over RN+1. The second expression reflects the fact that 

averaging ( , ( , ))Hy x wπ φ  over the joint distribution X and Y [that is,ν] 

provides the mathematical expectation E(.) of the random performance 

( , ( , ))HY X wπ φ  (see White 1989a). 

Choosing w to solve min{L(w): w∈W} results in a network model 

that produces the smallest average performance, given an input randomly 

drawn from the operating environment. This provides a way to choose 

the best approximation and formalizes the requirement that the model 

generalizes well, that is, performs well on an out-of-sample sample 

(White 1989a). 

Because Equation (2) can only approximate the empirical 

relationship between X and Y, it produces an inherently misspecified 

model. This implies that the solution arg min{L(w): w∈W}, say w
*, 

depends on the choice of both π and ν. Thus, π has to be carefully chosen 

to embody the desired network performance and the target-input pair (y, 

x) must be drawn from the true operating environment. Otherwise, w
* 

indexes a suboptimal network model (White 1989b). 

Let us consider learning based on least squares performance, the 

leading example of learning: 

 
2( , ( , )) ( ( , ))u H u u H uY X w Y X wπ φ φ= − . (6) 

 

Least squares learning has the goal to find a solution w* that minimizes 

the expected performance function L(w): 

 
2min ( ) min [( ( , )) ]u H u

w w
L w E Y X wφ

∈ ∈
= −

W W
. (7) 
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Note that w
* indexes a mean squared error-optimal approximation        

φH( . , w
*) to the unknown function g (White 1989a). In practice, we 

consider least squares learning over a training set of size U. Let ˆ
Uw  

denote the solution to the problem 

 

2

1

1
min ( ) min ( ( , ))

U

U u H u
w w

uU
L w y x wφ

∈ ∈
=

 
= − 

 
∑

W W
 (8) 

 

where ( )UL w  is the average least squares performance of the network 

over the training sample of size U, by construction. The discrepancy 

between the "best" approximating model ( )*

H x, wφ  and ˆ( )H Ux, wφ  

expresses the magnitude of the lack of fit due to sampling variation. It 

depends on the data and the estimation procedure used to solve the 

optimization problem. In general its expectation increases with the 

dimensionality of the weight vector. Obviously, it can not be computed, 

unless the underlying function g(x) is known. 

But it can be shown that as the size of the training sample, U, tends to 

infinity, ( )UL w converges to ( )L w and ˆ
Uw to *

w . For an analytical proof 

see White (1989a). Sussmann (1992) and Chen et al. (1993) provide 

conditions sufficient to ensure uniqueness of w
* in a suitable W for 

specific network configurations. 

 

 

5 Network Learning Procedures 

 

In the previous section we have seen that the objective of network 

learning [parameter estimation] is to find w* to minimize ( )L w , given an 

appropriately chosen neural network. The fact that w
* is unknown 

prevents us from calculating ( )L w
*  directly. But ˆ

Uw  consistently 

estimates w
* so that the learning process reduces to solve the 

optimization problem (27.8). This is precisely the problem of non-linear 
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squares regression so that the solution to the problem, ˆ
Uw , is a non-linear 

least squares estimator1. 

Now consider, how the optimization problem (8) can be solved in 

real world situations. In general, we look for a global solution to what is 

characteristically a highly non-linear optimization problem. Computing 
ˆ

Uw  by means of solving the system of normal equations can be 

analytically intractable for non-linear models with more than a few 

parameters. Thus, iterative procedures are generally used. Two broad 

types of procedures can be distinguished: Local and global search 

procedures. 

The most prominent local search procedures are gradient descent 

techniques. These can be thought to transfer the minimization problem 

(8) into an associated system of first-order ordinary differential 

equations2 which can be written in compact matrix form (see Cichocki 

and Unbehauen, 1993) as 

 

( , ) ( )w U

dw
w s L w

ds
µ= − ∇  (9) 

 

with 

 

1 , ...,

T

pdwdwdw

ds ds ds

 
=  
 

 (10) 

 

                                                 
1 But note that ˆ

Uw  is increasingly downward biased with increasing H. The bias 

arises because the observations for ( , )
u u

X Y are used in arriving at ˆ
Uw .  

2 In order to improve the properties one might use a system of higher-order 
ordinary differential equations leading to second-order learning algorithms 
[such as Davidson-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS)] and conjugate gradient algorithms [such as Fletcher-Reeves, 
Polak-Ribiere and Powell's algorithms]. For a review see Press et al. (1992).  
Unfortunately many of the published comparisons between these algorithms in 
the field of network learning have used their own implementations without 
documenting the precise procedures used. 
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where ( )w UL w∇  represents the gradient operator of ( )UL w  with respect 

to the p-dimensional parameter vector w. ( , )w sµ  denotes a p p×  

positive definite symmetric matrix with entries depending on time s and 

the vector ( )w s . 

In order to find the desired vector ˆ
Uw  that minimizes the loss 

function ( )UL w  we need to solve the system of ordinary equations (9)-

(10) with initial conditions. The minima of ( )UL w  are determined by the 

following trajectory of the gradient system with 

 
ˆ lim ( ).

s
w w s

→∞
=  (11) 

 

But it is important to note that we are concerned only with finding the 

limit rather than determining a detailed picture of the whole trajectory 

( )w s  itself. In order to illustrate that the system of differential equations 

given by (9)-(10) is stable let us determine the time derivative of the 

average least squares performance function 

 

[ ]
1

( ) ( ) ( ) 0
p

TU U k
w U w U

k k

dL L w
L w w,s L w

ds w s
µ

=

∂ ∂
= = − ∇ ∇ ≤

∂ ∂∑  (12) 

 

under the condition that the matrix ( )w,sµ  is symmetric and positive 

definite. Relation (12) guarantees under appropriate regularity conditions 

that the loss function decreases in time and converges to a stable local 

minimum as s →∞ . When / 0dw ds =  then this implies ( ) 0w UL w∇ =  

for the system of differential equations. Thus, the stable point coincides 

either with the minimum or with the inflection point of 
UL  (see Cichocki 

and Unbehauen, 1993). 

The speed of convergence to the minimum depends on the choice of 

the entries of ( , )w sµ . Different choices for µ  implement different 

specific gradient based search procedures: In the simplest and most 

popular procedure, known as gradient descent or steepest descent, the 

matrix ( , )w sµ  is reduced to the unity matrix multiplied by a positive 

constant η  that is called the learning parameter. It is interesting to note 

that the vectors /dw ds  and ( )w UL w∇  are opposite vectors. Hence, the 
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time evaluation of ( )w s  will result in the minimization of ( ( ))L w s  as 

time s goes on. The trajectory ( )w s  moves along the direction which has 

the sharpest rate of decrease and is called the direction of steepest 

descent. 

The discrete-time version of the procedure can be written in vector 

form as 

 

( 1) ( ) ( ) ( ( ))w Uw s w s s L w sη+ = − ∇  (13) 

 

with ( ) 0sη ≥ . The parameter ( )sη  is called learning rate and determines 

the length of the step to be taken in the direction of the gradient of 

( ( ))UL w s . It is important to note that ( )sη  should be bounded in a small 

range to ensure stability of the algorithm. Note that the sometimes 

extreme local irregularity ('roughness', 'ruggedness') of the function 

( ( ))UL w s  over W may require the development and use of appropriate 

modifications of the standard procedure given by Equation (13). 

The technique of backpropagation popularized in a paper by 

Rumelhart, Hinton and Williams (1986) can be used for evaluating the 

derivatives of the loss function ( )UL w . This technique provides a 

computationally efficient procedure for evaluating such derivatives that 

are used to calculate the adjustments to be made to the weights3. It 

corresponds to a propagation of gradient errors backwards through the 

network. The reader may consult Bishop (1995) for details concerning 

the specifics of implementation. 

Global Search Procedures. Although computationally efficient, 

gradient based minimization procedures, such as backpropagation of 

gradient errors, may lead only to local minima of ( )UL w  that happen to 

be close to the initial search point (0)w . As a consequence, the quality of 

the final solution of the learning problem is highly dependent on the 

selection of the initial conditions. Global search procedures are expected 

                                                 
3 On-line versions may be more effective than batch versions when U is very 

large, since the batch procedure requires auxiliary memory to accumulate the 
local updates. But the batch version provides a better estimate of the gradient 
components and avoids a mutual interference of the weight changes caused by 
different patterns. 
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to lead to optimal or 'near-optimal' parameter configurations by allowing 

the network model to escape from local minima during training. Genetic 

algorithms and the Alopex procedure [a correlation-based procedure] are 

attractive candidates4. 

The success of global search procedures in finding a global minimum 

of a given function such as ( )UL w  over w ∈ W hinges on the balance 

between an exploration process, a guidance process and a convergence-

inducing process (see Hassoun, 1995). The exploration process gives the 

search a mechanism for sampling a sufficiently diverse set of parameters 

w in W. The Alopex procedure, for example, performs an exploration 

process that is stochastic in nature. The guidance process is an implicit 

process that evaluates the relative quality of search points and utilizes 

correlation guidance to move towards regions of higher quality solutions 

in the parameter space. Finally, the convergence-inducing process 

ensures the convergence of the search to find a fixed solution ˆ .Uw  The 

convergence-inducing process implemented in ALOPEX is realized 

effectively by a parameter T, called temperature in analogy to the 

simulated annealing procedure, that is gradually decreased over time. The 

dynamic interaction among these three processes is responsible for giving 

the Alopex search procedure its global optimizing character. 

Global – as opposed to local – search procedures should be used in 

learning problems where reaching the global optimum is at premium. The 

price one pays, however, is increased computational requirements. The 

intrinsic slowness of such procedures is mainly due to the slow but 

crucial exploration process. This may motivate the development of a 

hybrid approach that uses global search to identify regions of the 

parameter space containing local minima and gradient information to 

actually find them (Fischer, 2002). 

Iterative – no matter whether local or global – procedures need both a 

starting point and a stopping rule. The starting point is usually taken to be 

a random set of weights. Some care is needed that they are not taken to 

                                                 
4 See Fischer and Leung (1998), and Fischer and Reismann (2002b) for an 

illustration of these procedures in the context of neural spatial interaction 
modelling. 
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be too large in order to avoid that the sigmoid hidden units start with 

outputs very near to zero or one. The issue of when to stop learning is 

important. Many ad hoc rules have been proposed. One which seems 

popular is to have an independent validation set, and training is stopped 

when the loss function on the validation set starts to rise. It is also not 

uncommon to use the test set rather than a validation set as the use of a 

validation set is viewed wasteful. 

 

 

6 Bootstrap Estimation 

 

Resampling techniques can be used for estimating standard errors and 

confidence intervals for the model parameters ˆ
Uw , when {Zu} is a 

sequence of iid random variables. The term resampling is used to include 

bootstrapping, jackknifing, cross-validation and their variants. These are 

techniques primarily used for non-parametric estimation of statistical 

error. In contrast to Monte Carlo simulations bootstrapping and 

jackknifing do not require a priori specification of the data-generating 

mechanism. The estimates of bootstrapping and cross-validation are 

asymptotically equivalent. Bootstrapping loosely related to jackknifing is 

conceptually simpler and more straightforward for the required 

computations (Efron 1982). 

The bootstrap pairs approach5 is an intuitive way to apply the 

bootstrap notion to neural network models. The basic idea of this 

approach is to draw a large number, say B, of random samples of size U 

with replacement from {( , ) : 1, ..., }U

u uz y x u U= = , compute ˆ
Uw  for 

each of the B bootstrap training samples, and use the resulting empirical 

distribution of the ˆ*b

Uw  as an estimate of the sampling of the distribution 

of ˆ
Uw . Implementing the approach involves the following steps (Fischer 

and Reismann 2002a): 

 

                                                 
5 This approach is called bootstrapping pairs in contrast to residuals 

bootstrapping that treats the model residuals as the sampling units and creates a 
bootstrap sample by adding residuals to the model fit. In this latter case 
bootstrapping distribution is conditional on the actual observations. 
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(i) Use the original sample {( , ) : 1, ..., }.U

u uz y x u U= =  

 

(ii) Draw an iid bootstrap sample * *{( , ) : 1, ..., }U*b b b

u uz y x u U= = of size U 

with replacement from the original sample. 

 

(iii) Use this bootstrap sample to compute a new parameter vector ˆ*b

Uw  by 

solving (8) with U*b
z replacing U

z : 

 

 { }ˆ arg min ( ) :*b *b *b p

U Uw L w w ℜ= ∈ ⊆W  (14) 

 

where p is the number of parameters. ( )*b

UL w  is the average least 

squares performance of the network over the bootstrap sample of size 

U given by  

 

 * 21
2

1

( ) ( ( , )) .
U

*b b *b *b

u H uU

u

L w y x wφ
=

= −∑  (15) 

 

(iv) Replicate step (ii)-(iii) many times, say B=100 or B=1,000. 

 

(v) Take the bootstrap parameter estimates ˆ*b

Uw  (b=1, ..., B) to estimate 

the standard derivation [the root mean squared error] of the 

estimation as follows 

 
1

2
* * 21

1
1

ˆ ˆ ˆ( ( ))
B

b

B U UB

b

w wσ °−
=

 
= − 
 

∑  (16) 

 

where  
 

* *1

1

ˆ ˆ( ) .
B

b

U UB

b=

w w° = ∑  (17) 

 

(vi) Use the bootstrap of the parameter estimates to obtain a (1-2α) non-

parametric central confidence interval ˆ ˆ[ ( ), (1 )]U Uw wα α− for the 
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'true' value of the parameter estimate where ˆ ( )Uw α  and ˆ (1 )Uw α−  

are the 100α and 100(1-α) percentiles of the bootstrap estimation, 
B

UΞ , of ˆ*b

Uw  (b=1, ..., B). 

 

The rationale underlying the bootstrap approach is simple. We want an 

estimate of the accuracy of ˆ
Uw and like to use ( )σ σ Θ=  where ( ) .σ  is 

some agreed upon functional that measures accuracy. Θ is the true 

probability distribution giving rise to the sample {( , ) : 1, ..., }u uY X u U= . 

We do not know Θ, so instead we estimate ˆ ( )ΒB Uσ σ Ξ= . Β
UΞ  is 

supposed to describe closely the empirical cumulative distribution 

function ˆ
UΘ , in other words ˆˆ ( )B

B Uσ σ Θ≈ . Asymptotically, this means 

that as U tends to infinity, the estimate ˆ
Bσ  tends to ˆ( )B

Uσ Θ . But for finite 

samples there will be deviations in general. 
 

 

 

7 Network Complexity 

 

In the preceding sections we have considered learning procedures for 

feedforward neural networks of fixed complexity [that is, H suitably 

chosen]. Despite the great flexibility which such models can afford in 

their ability to approximate arbitrary mappings, they are nevertheless 

fundamentally limited. In particular, feedforward networks will provide 

only partial approximations to arbitrary mappings g. This performance 

can be quite poor. A network model, for example, that is too complex 

(relative to the sample size U) learns too much, but generally performs 

poorly on generalization tasks, while a network that is too simple will 

have a large bias and smooth out some of the underlying structure in the 

data. This highlights the need to appropriately select the complexity of 

the model in order to achieve the best generalization (out-of-sample) 

performance (Bishop 1995). 

Both the theoretical and practical sides of the problem have been 

studied intensively and a vast variety of techniques have been suggested 

to perform this task. There is no space left to review these procedures. 

The reader is referred to Fischer (2000). Most approaches view selecting 
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the number of hidden units for a training set of given size as a process 

consisting of a series of steps that are performed independently: 

 

(i) The first step consists of choosing a specific parametric 

representation that is oversized in comparison to the size of the 

training set used. 

 

(ii) Then in the second step either a performance function such as 

LU(w) [possibly including  a regularization term6] is chosen 

directly, or in a Bayesian setting, prior distribution on the elements 

of the data-generation process (noise, model parameter, regularizer, 

etc.) are specified from which a performance function is derived. 

 

(iii) Utilizing the performance function specified in (ii), the training 

process is started and continued until a convergence criterion is 

satisfied. The resulting parametrization of the given model 

architecture is then placed in a pool of model candidates from 

which the final model will be chosen. 

 

(iv) To avoid overfitting, model complexity has to be limited. Thus, the 

next step usually consists of modifying the network model 

architecture [for example, by pruning weights] or the penalty term 

[for example, by changing its weighting in the performance 

function] or the Bayesian prior distributions. The last two 

modifications then lead to a modification of the performance 

function. This establishes a new framework for the training process 

that is then restarted and continued until convergence, yielding 

another model for the pool. 

 

                                                 
6 In this case in Equation (8) is modified by replacing LU(w)  through 

2
( )UL w wµ+ where (0, )µ ∈ ∞  controls the degree of regularization, i.e. the 

extent to which the weight decay term influences the form of the solution to the 

minimization problem. The effect of the weight decay term is to reduce the 

variability of the fit, at the cost of bias. 
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This process is iterated until the pool is assumed to contain a reasonable 

diversity of the model candidates that are then compared with each other. 

The model with the best performance on a test set is selected. The 

methods employed for training may be very sophisticated, while the 

choice and modification of the network model architecture and 

performance function is generally ad hoc, or directed by a search 

heuristic in practice. 

Finally note that a heuristic reason why feedforward networks of type 

(2) might work well with modest numbers of hidden units in real world 

application domains is that the hidden layer allows a projection onto a 

subsequence of RN of much lower dimensionality, within which the 

approximation can be carried out. In this aspect feedforward neural 

network models share many of the properties of projection pursuit 

regression. 

 

 

8 Assessing the Generalization Performance 

 

The standard approach for assessing the generalization (out-of-sample) 

performance of a neural network is data splitting. This method simulates 

learning [training] and generalization by partitioning the data set into 

three data sets: a training set, a validation set and a testing set. The 

training set is used for parameter estimation only. The validation set for 

determining the stopping point before overfitting occurs and for selecting 

architectural parameters such as H. The generalization performance of 

the model is tested on the test set using an appropriate performance 

criterion such as described in Section 5. Note that the validation set must 

be different from the test set for the assessed performance to be valid. 

It is common practice to use random splits of the data. The simplicity 

of this approach is appealing. But recent experience has found this 

approach to be very sensitive to the specific splitting of the data. To 

overcome this problem – and a potential problem of scarce data for 

example in a spatial interaction context – Fischer and Reismann (2002a) 

suggest to use the bootstrapping pairs approach with replacement as 

outlined in the previous section. This approach combines the purity of 
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splitting the data into three disjoint data sets with the power of a 

resampling technique and allows us to get a better statistical picture of 

the generalization performance of the model. 

The idea behind this approach is to generate B pseudo-replicates of 

the training sets 1U *b
z , validation sets 2U *b

z  and testing sets 3U *b
z , then to 

estimate resampled weights ˆ*b

Uw  on each training bootstrap sample 1U *b
z  

as described in the previous section, to stop training on the basis of the 

associated validation set 2U *b
z   and to test out-of-sample performance on 

the test bootstrap sample 3U *b
z . In this bootstrap world, the empirical 

bootstrap distribution of the performance measure can be estimated, 

pseudo-errors can be computed, and used to approximate the distribution 

of the real errors. The approach is appealing, but characterized by very 

demanding computational intensity in real world contexts (see Fischer 

and Reismann 2002b for an application). 

 

 

9 Concluding Remarks 

 

Learning from examples, the problem for which neural networks were 

designed to solve, is one of the crucial research topics in artificial 

intelligence in these days. A possible way to formalize learning from 

examples is to assume the existence of a function representing the set of 

examples and, thus, enabling to generalize. This may be called function 

reconstruction from sparse data or function approximation. Single hidden 

layer feedforward networks with linear output and sigmoid hidden layer 

transfer functions can approximate any continuous function g uniformly 

on compacta, by increasing the size of the hidden layer. There are also 

some results on the rate of approximation [that is, how many hidden units 

are required to approximate to a specified accuracy], but as always with 

such results they are no guide to how many units might be needed in any 

application development. Despite of that, failures in applications can 

usually be attributed to inadequate learning [for example, the presence of 

overfitting or underfitting] and/or inadequate complexity of the network 

model [that is, inadequate numbers of hidden units]. Parameter 

estimation and a suitably chosen number of hidden units are, thus, of 
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crucial importance for the success of real world neural network 

applications. 

Neural network modelling will gain further acceptance in GIScience, 

as its usefulness becomes apparent in a diversity of application domains. 

There is no doubt in mind that neural network modelling may satisfy two 

roles in GIScience: as a statistical device to identify relationships in large 

and complex spatial data sets, and as a way to come to grips with unclear 

or fuzzy data. In the first instance, neural networks are gaining 

acceptance as spatial interaction approximators and as classifiers of 

remotely sensed pixel data; and in the second instance, data that in past 

years have been disregarded because of their inconclusive nature are 

being evaluated using neural modelling approaches. This trend is likely 

to continue, given the mountains of data now being amassed, but also 

because the methods are tied directly to the new technology that allows 

for computationally intensive analysis. 
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