
Munich Personal RePEc Archive

Neural Networks. A General Framework

for Non-Linear Function Approximation

Fischer, Manfred M.

Vienna University of Economics and Business

2006

Online at https://mpra.ub.uni-muenchen.de/77776/

MPRA Paper No. 77776, posted 21 Mar 2017 15:11 UTC

Version 1 - 20-04-2006

Neural Networks
A General Framework for Non-Linear Function

Approximation

MANFRED M. FISCHER

Institute for Economic Geography and GIScience

Vienna University of Economics and Business Administration

1 Introduction

Much of the recent interest in intelligent GI analysis stems from the

growing realization of the limitations of parametric models as vehicles

for exploring patterns and relationships in data rich, but theory poor

environments, and from the consequent hope that these limitations may

be overcome by the judicious use of methods that avoid too great reliance

on specific parametric models (see Fischer 2001). There is a considerable

variety of non-parametric methods in the modern literature of

mathematical statistics. In this paper we focus attention on the neural

network modelling approach that has gained increasing recognition due

to its intuitive appeal and considerable potential for application. The

novelty about neural networks lies in their ability to model non-linear

processes with few – if any – a priori assumptions about the nature of the

data-generating process. This is particularly useful in GIS environments

where we generally do not have control over data generation. The size,

2 Manfred M. Fischer

noise, diversity and dimensionality of typical data sets make formal

problem specification difficult.

This contribution is intended as a convenient resource for GIScholars

interested in a more fundamental view of the neural network modelling

approach. We discuss some important issues that are central for

successful application development. But it would be impossible to

provide a comprehensive treatment and to consider all the different

neural network models in a single paper. We limit the scope to

feedforward neural networks, the leading example of neural networks.

Feedforward network models have a lot to offer and we use appropriate

statistical arguments to gain important insights into the problems and

properties of this network approach.

The paper is organized as follows. The next section continues to

provide the context in which neural network modelling is considered by

introducing relevant concepts of probability fundamental for this type of

modelling. Neural networks, of the kind considered here, can be viewed

as a very general framework for non-linear function approximation where

the form of the mapping is governed by a number of adjustable

parameters. For example, in the case of regression problems, it is the

regression function that we wish to approximate. The network inputs are

the explanatory variables, and the weights the regression parameters.

Neural networks that have a single hidden layer architecture with N

input nodes and a single output are described in some detail in Section 3.

They represent a rich and flexible class of universal approximators.

Section 4 discusses the notion of network performance and shows a way

how to choose the best approximation and, moreover, formalizes the

requirement that a network model shows good generalization (out-of-

sample) performance.

Given a sufficiently complex network (that is, sufficiently many

hidden units in a single hidden network model) the role of network

learning is to find suitable values for network weights to approximate the

particular function relevant for a given application. Section 5 defines

network learning as an optimization problem and briefly reviews two

alternative approaches to network learning: Gradient descent based local

 Neural Networks 3

search and global search. The latter is expected to allow the network to

escape from local minima during learning.

Motivated by the desire to obtain distributional results for the

approximation that rely neither on large scale sample size nor on artificial

data-generating assumptions, Section 6 shows how bootstrapping pairs

estimation provides an unconditional bootstrap distribution and can give

trustworthy estimates even if the model is wrong. One of the most

important factors in the success of a practical application of neural

networks is the search for an appropriate technique for determining

network complexity. Section 7 addresses this issue and provides insights

into current best practice to optimize complexity so to perform well on

generalization tasks.

Section 8 discusses the standard approach for assessing the

generalization (out-of-sample) performance of a neural network and

suggests the use of bootstrapping to overcome the problem of static data

splitting. Finally, Section 9 contains some concluding remarks. The

references included are intended to provide useful pointers to the

literature rather than a complete record of the historical development of

the field.

2 Background

To start we must specify the context in which neural network modelling

is considered. We assume that a sequence {Zu=(Yu, Xu)} of independent

identically distributed (iid) random (N+1)x1 vectors []N ∈฀ generates

observations on targets (Yu) and inputs (Xu) for the phenomenon of

interest. In forecasting problems, for example, Yu is a variable that we

wish to forecast on the basis of a set of N variables Xu which may itself

contain past values of Yu.

We take the unknown function of interest to be the conditional

expectation of Yu, given Xu, E(Yu | Xu). Whenever E(Yu | Xu) exists and this

is the case for E(Yu)< ∞, it can be represented solely as a function of Xu,

that is g(Xu)=E(Yu | Xu) for some mapping g:ℜN→ℜ (White 1989a). When

4 Manfred M. Fischer

Yu can assume a continuum of values, g(Xu) gives the expected value for

Yu given that Xu= xu. We may also write

()u u uY X ε= +g (1)

where (|)u u u uY E Y Xε ≡ − is a random error with conditional expectation

zero given Xu. When the relationship between Yu and Xu is deterministic,

uε is zero given any realization of Xu; otherwise,
uε is non-zero with

positive probability (White 1990).

Our problem is to approximate (estimate, learn) the mapping g from a

realization of the sequence {Zu} or in other words to construct an

estimator ĝ of g from a realization of {Zu}. For this purpose we consider

the output functions of single hidden layer feedforward networks in the

section that follows.

Before doing so we should note that in practice we observe a

realization of only a finite part of the sequence {Zu}, a training sample of

size U: {zu=(yu, xu): u=1, ..., U}. Because g is an element of a space, say

G, of functions, we have essentially no hope of learning g in any

complete sense from a sample of finite size. Nevertheless, it is possible to

approximate g to some degree of accuracy using a sample of size U, and

to construct increasingly accurate approximations with increasing U

(White 1990).

3 Feedforward Neural Networks

Feedforward neural networks consist of elementary processing units

[elements or nodes], organized in layers (see Figure 1). The networks are

termed feedforward because they do not contain feedback loops. This

guarantees that the network outputs can be calculated as explicit

functions of the inputs and weights. The layers between the input and the

output layer are termed hidden. The number of input units N is

determined by the application. The topology or architecture of a network

refers to the topological arrangement of the network connections.

Figure 1 A feedforward network for approximating the unknown mapping g(.):ℜN→ℜ where

ˆ ()y nety= is the network forecast for the input vector (x1, …, xN),

00 01

H

h hh
net w w O

=
= +∑ is the total input to the output unit; O1, ..., ON are the

outputs of the hidden units calculated as Oh= ϕ(neth) and 11

N

h hn nn
net w x

=
=∑

ˆ ∑00 0

=1

= = (+)
H

h

h

hy ψ(net) ψ w w O

Network Architecture EquationsNetwork Architecture Equations

input vector2x

ŷ

OHOhO1

Nx-1Nx1x

01w 0hw 0Hw

1HNw

... ...

...

00w

111w

Bias

()= 1 Nx x x, ...,

() ∑ 1

1

N

hn

n

h h nnet w xO
=

= =ϕ

6 Manfred M. Fischer

For concreteness and simplicity, we consider single hidden layer neural

network models with N input nodes, H hidden nodes and a single output

node in this contribution as shown in Figure 1. Given an input vector

x=(x1, …, xN) the output of this kind of network is given by a function

:H

Νφ ℜ ℜ× → .W The weight (parameter) space W is a compact subset

of pℜ (p integer) such that for each , (, .) :Hx xφ ℜ→W is continuous

and for each 1(, ...,) , (. ,) : N

p Hw w w wφ ℜ ℜ= ∈ →W is measurable.

Network weights are, thus, restricted to lie in a compact set W of

finite dimension p where p indicates the total number of weights. This

requirement for network output functions is satisfied by

00 0 1

1 1

(,) (())
H N

h hn n

h n

H x w w w w xφ y ϕ
= =

= +∑ ∑ (2)

where 0 1(,)w w w= is the p-dimensional vector of network weights.

0 00 01 0(, ,...,)Hw w w w= contains the hidden to output weights and

1 10 1(,...,)Hw w w= with
1 1 1 1(, ...,)

h h hNw w w= the input to hidden units. N

denotes the number of input nodes and H the number of hidden nodes.

Note that H is an unambiguous descriptor of the dimensionality p of the

weight vector: p=(N+2)H+1. The function φ is explicitly indexed by H in

order to indicate the dependence. ϕ represents a non-linear hidden unit

transfer function and y a linear or non-linear output transfer function,

both continuously differentiable of order 2 on ℜ.

The hidden transfer function ϕ(.) is characteristically specified as a

function belonging to the family

{ (), , { }}, , , ; ,N
Ox r s t x r s tℜ ℜ ℜΓ γ γ= ∈ ∈ −= ∈ (3)

with

1() (1 exp)x r s t xγ −= + + . (4)

When r=s=1 and t=-1 the asymmetric sigmoid is obtained which is the

most commonly used hidden layer transfer function. The specification of

the output unit transfer function requires some specific care because

 Neural Networks 7

different types of transfer functions are appropriate for different cases. In

regression contexts, for example, linear or quasi-linear output transfer

functions are useful, while a generalization of the logistic sigmoid

transfer function known as normalized exponential or softmax transfer

function is appropriate in the case of classification problems involving

mutually exclusive classes.

Models of the form (2) represent a rich and flexible class of

approximators. It is now well established that neural networks of the type

(2) with linear output and sigmoid hidden layer transfer functions can

approximate any continuous function g uniformly on compacta, provided

that sufficiently many hidden units are available (Cybenko 1989,

Funahashi 1989, Hecht-Nielsen 1989, Hornik et al. 1989). These results

establish single hidden layer feedforward network models as a class of

universal approximators.

4 Network Performance

If we view (2) as generating a family of approximations – as w ranges

over W – to some specific empirical phenomenon relating inputs x to

some y, then we need a way to pick a best approximation from this

family.

The goodness of an approximation can be evaluated using a

performance function, say π, that measures how well the model output

given by (,)H x wφ matches the target y corresponding to given inputs x.

The performance (, (,))Hy x wπ φ should be zero when target and model

output match and positive otherwise. A measure of overall network

performance is given by the unconditional expectation of the random

quantity (, (,)),HY X wπ φ formally expressed as

() (, (,)) ()

[(, (,))]

u H u

H

L w y x w d z

E Y X w

π φ ν

π φ

=

=
∫ (5)

8 Manfred M. Fischer

with w∈W and π a suitably chosen function. We call L(w) the expected

performance [loss] function of the neural network. It is worth noting that

the function depends only on the weights w, and not on particular

realizations y and x. These have been averaged out. This averaging is

done in the integral representation defining L. The integral is a Lebesque

integral taken over RN+1. The second expression reflects the fact that

averaging (, (,))Hy x wπ φ over the joint distribution X and Y [that is,ν]

provides the mathematical expectation E(.) of the random performance

(, (,))HY X wπ φ (see White 1989a).

Choosing w to solve min{L(w): w∈W} results in a network model

that produces the smallest average performance, given an input randomly

drawn from the operating environment. This provides a way to choose

the best approximation and formalizes the requirement that the model

generalizes well, that is, performs well on an out-of-sample sample

(White 1989a).

Because Equation (2) can only approximate the empirical

relationship between X and Y, it produces an inherently misspecified

model. This implies that the solution arg min{L(w): w∈W}, say w
*,

depends on the choice of both π and ν. Thus, π has to be carefully chosen

to embody the desired network performance and the target-input pair (y,

x) must be drawn from the true operating environment. Otherwise, w
*

indexes a suboptimal network model (White 1989b).

Let us consider learning based on least squares performance, the

leading example of learning:

2(, (,)) ((,))u H u u H uY X w Y X wπ φ φ= − . (6)

Least squares learning has the goal to find a solution w* that minimizes

the expected performance function L(w):

2min () min [((,))]u H u

w w
L w E Y X wφ

∈ ∈
= −

W W
. (7)

 Neural Networks 9

Note that w
* indexes a mean squared error-optimal approximation

φH(. , w
*) to the unknown function g (White 1989a). In practice, we

consider least squares learning over a training set of size U. Let ˆ
Uw

denote the solution to the problem

2

1

1
min () min ((,))

U

U u H u
w w

uU
L w y x wφ

∈ ∈
=

 
= − 

 
∑

W W
 (8)

where ()UL w is the average least squares performance of the network

over the training sample of size U, by construction. The discrepancy

between the "best" approximating model ()*

H x, wφ and ˆ()H Ux, wφ

expresses the magnitude of the lack of fit due to sampling variation. It

depends on the data and the estimation procedure used to solve the

optimization problem. In general its expectation increases with the

dimensionality of the weight vector. Obviously, it can not be computed,

unless the underlying function g(x) is known.

But it can be shown that as the size of the training sample, U, tends to

infinity, ()UL w converges to ()L w and ˆ
Uw to *

w . For an analytical proof

see White (1989a). Sussmann (1992) and Chen et al. (1993) provide

conditions sufficient to ensure uniqueness of w
* in a suitable W for

specific network configurations.

5 Network Learning Procedures

In the previous section we have seen that the objective of network

learning [parameter estimation] is to find w* to minimize ()L w , given an

appropriately chosen neural network. The fact that w
* is unknown

prevents us from calculating ()L w
* directly. But ˆ

Uw consistently

estimates w
* so that the learning process reduces to solve the

optimization problem (27.8). This is precisely the problem of non-linear

10 Manfred M. Fischer

squares regression so that the solution to the problem, ˆ
Uw , is a non-linear

least squares estimator1.

Now consider, how the optimization problem (8) can be solved in

real world situations. In general, we look for a global solution to what is

characteristically a highly non-linear optimization problem. Computing
ˆ

Uw by means of solving the system of normal equations can be

analytically intractable for non-linear models with more than a few

parameters. Thus, iterative procedures are generally used. Two broad

types of procedures can be distinguished: Local and global search

procedures.

The most prominent local search procedures are gradient descent

techniques. These can be thought to transfer the minimization problem

(8) into an associated system of first-order ordinary differential

equations2 which can be written in compact matrix form (see Cichocki

and Unbehauen, 1993) as

(,) ()w U

dw
w s L w

ds
µ= − ∇ (9)

with

1 , ...,

T

pdwdwdw

ds ds ds

 
=  
 

 (10)

1 But note that ˆ

Uw is increasingly downward biased with increasing H. The bias

arises because the observations for (,)
u u

X Y are used in arriving at ˆ
Uw .

2 In order to improve the properties one might use a system of higher-order
ordinary differential equations leading to second-order learning algorithms
[such as Davidson-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS)] and conjugate gradient algorithms [such as Fletcher-Reeves,
Polak-Ribiere and Powell's algorithms]. For a review see Press et al. (1992).
Unfortunately many of the published comparisons between these algorithms in
the field of network learning have used their own implementations without
documenting the precise procedures used.

 Neural Networks 11

where ()w UL w∇ represents the gradient operator of ()UL w with respect

to the p-dimensional parameter vector w. (,)w sµ denotes a p p×

positive definite symmetric matrix with entries depending on time s and

the vector ()w s .

In order to find the desired vector ˆ
Uw that minimizes the loss

function ()UL w we need to solve the system of ordinary equations (9)-

(10) with initial conditions. The minima of ()UL w are determined by the

following trajectory of the gradient system with

ˆ lim ().

s
w w s

→∞
= (11)

But it is important to note that we are concerned only with finding the

limit rather than determining a detailed picture of the whole trajectory

()w s itself. In order to illustrate that the system of differential equations

given by (9)-(10) is stable let us determine the time derivative of the

average least squares performance function

[]
1

() () () 0
p

TU U k
w U w U

k k

dL L w
L w w,s L w

ds w s
µ

=

∂ ∂
= = − ∇ ∇ ≤

∂ ∂∑ (12)

under the condition that the matrix ()w,sµ is symmetric and positive

definite. Relation (12) guarantees under appropriate regularity conditions

that the loss function decreases in time and converges to a stable local

minimum as s →∞ . When / 0dw ds = then this implies () 0w UL w∇ =

for the system of differential equations. Thus, the stable point coincides

either with the minimum or with the inflection point of
UL (see Cichocki

and Unbehauen, 1993).

The speed of convergence to the minimum depends on the choice of

the entries of (,)w sµ . Different choices for µ implement different

specific gradient based search procedures: In the simplest and most

popular procedure, known as gradient descent or steepest descent, the

matrix (,)w sµ is reduced to the unity matrix multiplied by a positive

constant η that is called the learning parameter. It is interesting to note

that the vectors /dw ds and ()w UL w∇ are opposite vectors. Hence, the

12 Manfred M. Fischer

time evaluation of ()w s will result in the minimization of (())L w s as

time s goes on. The trajectory ()w s moves along the direction which has

the sharpest rate of decrease and is called the direction of steepest

descent.

The discrete-time version of the procedure can be written in vector

form as

(1) () () (())w Uw s w s s L w sη+ = − ∇ (13)

with () 0sη ≥ . The parameter ()sη is called learning rate and determines

the length of the step to be taken in the direction of the gradient of

(())UL w s . It is important to note that ()sη should be bounded in a small

range to ensure stability of the algorithm. Note that the sometimes

extreme local irregularity ('roughness', 'ruggedness') of the function

(())UL w s over W may require the development and use of appropriate

modifications of the standard procedure given by Equation (13).

The technique of backpropagation popularized in a paper by

Rumelhart, Hinton and Williams (1986) can be used for evaluating the

derivatives of the loss function ()UL w . This technique provides a

computationally efficient procedure for evaluating such derivatives that

are used to calculate the adjustments to be made to the weights3. It

corresponds to a propagation of gradient errors backwards through the

network. The reader may consult Bishop (1995) for details concerning

the specifics of implementation.

Global Search Procedures. Although computationally efficient,

gradient based minimization procedures, such as backpropagation of

gradient errors, may lead only to local minima of ()UL w that happen to

be close to the initial search point (0)w . As a consequence, the quality of

the final solution of the learning problem is highly dependent on the

selection of the initial conditions. Global search procedures are expected

3 On-line versions may be more effective than batch versions when U is very

large, since the batch procedure requires auxiliary memory to accumulate the
local updates. But the batch version provides a better estimate of the gradient
components and avoids a mutual interference of the weight changes caused by
different patterns.

 Neural Networks 13

to lead to optimal or 'near-optimal' parameter configurations by allowing

the network model to escape from local minima during training. Genetic

algorithms and the Alopex procedure [a correlation-based procedure] are

attractive candidates4.

The success of global search procedures in finding a global minimum

of a given function such as ()UL w over w ∈ W hinges on the balance

between an exploration process, a guidance process and a convergence-

inducing process (see Hassoun, 1995). The exploration process gives the

search a mechanism for sampling a sufficiently diverse set of parameters

w in W. The Alopex procedure, for example, performs an exploration

process that is stochastic in nature. The guidance process is an implicit

process that evaluates the relative quality of search points and utilizes

correlation guidance to move towards regions of higher quality solutions

in the parameter space. Finally, the convergence-inducing process

ensures the convergence of the search to find a fixed solution ˆ .Uw The

convergence-inducing process implemented in ALOPEX is realized

effectively by a parameter T, called temperature in analogy to the

simulated annealing procedure, that is gradually decreased over time. The

dynamic interaction among these three processes is responsible for giving

the Alopex search procedure its global optimizing character.

Global – as opposed to local – search procedures should be used in

learning problems where reaching the global optimum is at premium. The

price one pays, however, is increased computational requirements. The

intrinsic slowness of such procedures is mainly due to the slow but

crucial exploration process. This may motivate the development of a

hybrid approach that uses global search to identify regions of the

parameter space containing local minima and gradient information to

actually find them (Fischer, 2002).

Iterative – no matter whether local or global – procedures need both a

starting point and a stopping rule. The starting point is usually taken to be

a random set of weights. Some care is needed that they are not taken to

4 See Fischer and Leung (1998), and Fischer and Reismann (2002b) for an

illustration of these procedures in the context of neural spatial interaction
modelling.

14 Manfred M. Fischer

be too large in order to avoid that the sigmoid hidden units start with

outputs very near to zero or one. The issue of when to stop learning is

important. Many ad hoc rules have been proposed. One which seems

popular is to have an independent validation set, and training is stopped

when the loss function on the validation set starts to rise. It is also not

uncommon to use the test set rather than a validation set as the use of a

validation set is viewed wasteful.

6 Bootstrap Estimation

Resampling techniques can be used for estimating standard errors and

confidence intervals for the model parameters ˆ
Uw , when {Zu} is a

sequence of iid random variables. The term resampling is used to include

bootstrapping, jackknifing, cross-validation and their variants. These are

techniques primarily used for non-parametric estimation of statistical

error. In contrast to Monte Carlo simulations bootstrapping and

jackknifing do not require a priori specification of the data-generating

mechanism. The estimates of bootstrapping and cross-validation are

asymptotically equivalent. Bootstrapping loosely related to jackknifing is

conceptually simpler and more straightforward for the required

computations (Efron 1982).

The bootstrap pairs approach5 is an intuitive way to apply the

bootstrap notion to neural network models. The basic idea of this

approach is to draw a large number, say B, of random samples of size U

with replacement from {(,) : 1, ..., }U

u uz y x u U= = , compute ˆ
Uw for

each of the B bootstrap training samples, and use the resulting empirical

distribution of the ˆ*b

Uw as an estimate of the sampling of the distribution

of ˆ
Uw . Implementing the approach involves the following steps (Fischer

and Reismann 2002a):

5 This approach is called bootstrapping pairs in contrast to residuals

bootstrapping that treats the model residuals as the sampling units and creates a
bootstrap sample by adding residuals to the model fit. In this latter case
bootstrapping distribution is conditional on the actual observations.

 Neural Networks 15

(i) Use the original sample {(,) : 1, ..., }.U

u uz y x u U= =

(ii) Draw an iid bootstrap sample * *{(,) : 1, ..., }U*b b b

u uz y x u U= = of size U

with replacement from the original sample.

(iii) Use this bootstrap sample to compute a new parameter vector ˆ*b

Uw by

solving (8) with U*b
z replacing U

z :

 { }ˆ arg min () :*b *b *b p

U Uw L w w ℜ= ∈ ⊆W (14)

where p is the number of parameters. ()*b

UL w is the average least

squares performance of the network over the bootstrap sample of size

U given by

 * 21
2

1

() ((,)) .
U

*b b *b *b

u H uU

u

L w y x wφ
=

= −∑ (15)

(iv) Replicate step (ii)-(iii) many times, say B=100 or B=1,000.

(v) Take the bootstrap parameter estimates ˆ*b

Uw (b=1, ..., B) to estimate

the standard derivation [the root mean squared error] of the

estimation as follows

1

2
* * 21

1
1

ˆ ˆ ˆ(())
B

b

B U UB

b

w wσ °−
=

 
= − 
 

∑ (16)

where

* *1

1

ˆ ˆ() .
B

b

U UB

b=

w w° = ∑ (17)

(vi) Use the bootstrap of the parameter estimates to obtain a (1-2α) non-

parametric central confidence interval ˆ ˆ[(), (1)]U Uw wα α− for the

16 Manfred M. Fischer

'true' value of the parameter estimate where ˆ ()Uw α and ˆ (1)Uw α−

are the 100α and 100(1-α) percentiles of the bootstrap estimation,
B

UΞ , of ˆ*b

Uw (b=1, ..., B).

The rationale underlying the bootstrap approach is simple. We want an

estimate of the accuracy of ˆ
Uw and like to use ()σ σ Θ= where () .σ is

some agreed upon functional that measures accuracy. Θ is the true

probability distribution giving rise to the sample {(,) : 1, ..., }u uY X u U= .

We do not know Θ, so instead we estimate ˆ ()ΒB Uσ σ Ξ= . Β
UΞ is

supposed to describe closely the empirical cumulative distribution

function ˆ
UΘ , in other words ˆˆ ()B

B Uσ σ Θ≈ . Asymptotically, this means

that as U tends to infinity, the estimate ˆ
Bσ tends to ˆ()B

Uσ Θ . But for finite

samples there will be deviations in general.

7 Network Complexity

In the preceding sections we have considered learning procedures for

feedforward neural networks of fixed complexity [that is, H suitably

chosen]. Despite the great flexibility which such models can afford in

their ability to approximate arbitrary mappings, they are nevertheless

fundamentally limited. In particular, feedforward networks will provide

only partial approximations to arbitrary mappings g. This performance

can be quite poor. A network model, for example, that is too complex

(relative to the sample size U) learns too much, but generally performs

poorly on generalization tasks, while a network that is too simple will

have a large bias and smooth out some of the underlying structure in the

data. This highlights the need to appropriately select the complexity of

the model in order to achieve the best generalization (out-of-sample)

performance (Bishop 1995).

Both the theoretical and practical sides of the problem have been

studied intensively and a vast variety of techniques have been suggested

to perform this task. There is no space left to review these procedures.

The reader is referred to Fischer (2000). Most approaches view selecting

 Neural Networks 17

the number of hidden units for a training set of given size as a process

consisting of a series of steps that are performed independently:

(i) The first step consists of choosing a specific parametric

representation that is oversized in comparison to the size of the

training set used.

(ii) Then in the second step either a performance function such as

LU(w) [possibly including a regularization term6] is chosen

directly, or in a Bayesian setting, prior distribution on the elements

of the data-generation process (noise, model parameter, regularizer,

etc.) are specified from which a performance function is derived.

(iii) Utilizing the performance function specified in (ii), the training

process is started and continued until a convergence criterion is

satisfied. The resulting parametrization of the given model

architecture is then placed in a pool of model candidates from

which the final model will be chosen.

(iv) To avoid overfitting, model complexity has to be limited. Thus, the

next step usually consists of modifying the network model

architecture [for example, by pruning weights] or the penalty term

[for example, by changing its weighting in the performance

function] or the Bayesian prior distributions. The last two

modifications then lead to a modification of the performance

function. This establishes a new framework for the training process

that is then restarted and continued until convergence, yielding

another model for the pool.

6 In this case in Equation (8) is modified by replacing LU(w) through

2
()UL w wµ+ where (0,)µ ∈ ∞ controls the degree of regularization, i.e. the

extent to which the weight decay term influences the form of the solution to the

minimization problem. The effect of the weight decay term is to reduce the

variability of the fit, at the cost of bias.

18 Manfred M. Fischer

This process is iterated until the pool is assumed to contain a reasonable

diversity of the model candidates that are then compared with each other.

The model with the best performance on a test set is selected. The

methods employed for training may be very sophisticated, while the

choice and modification of the network model architecture and

performance function is generally ad hoc, or directed by a search

heuristic in practice.

Finally note that a heuristic reason why feedforward networks of type

(2) might work well with modest numbers of hidden units in real world

application domains is that the hidden layer allows a projection onto a

subsequence of RN of much lower dimensionality, within which the

approximation can be carried out. In this aspect feedforward neural

network models share many of the properties of projection pursuit

regression.

8 Assessing the Generalization Performance

The standard approach for assessing the generalization (out-of-sample)

performance of a neural network is data splitting. This method simulates

learning [training] and generalization by partitioning the data set into

three data sets: a training set, a validation set and a testing set. The

training set is used for parameter estimation only. The validation set for

determining the stopping point before overfitting occurs and for selecting

architectural parameters such as H. The generalization performance of

the model is tested on the test set using an appropriate performance

criterion such as described in Section 5. Note that the validation set must

be different from the test set for the assessed performance to be valid.

It is common practice to use random splits of the data. The simplicity

of this approach is appealing. But recent experience has found this

approach to be very sensitive to the specific splitting of the data. To

overcome this problem – and a potential problem of scarce data for

example in a spatial interaction context – Fischer and Reismann (2002a)

suggest to use the bootstrapping pairs approach with replacement as

outlined in the previous section. This approach combines the purity of

 Neural Networks 19

splitting the data into three disjoint data sets with the power of a

resampling technique and allows us to get a better statistical picture of

the generalization performance of the model.

The idea behind this approach is to generate B pseudo-replicates of

the training sets 1U *b
z , validation sets 2U *b

z and testing sets 3U *b
z , then to

estimate resampled weights ˆ*b

Uw on each training bootstrap sample 1U *b
z

as described in the previous section, to stop training on the basis of the

associated validation set 2U *b
z and to test out-of-sample performance on

the test bootstrap sample 3U *b
z . In this bootstrap world, the empirical

bootstrap distribution of the performance measure can be estimated,

pseudo-errors can be computed, and used to approximate the distribution

of the real errors. The approach is appealing, but characterized by very

demanding computational intensity in real world contexts (see Fischer

and Reismann 2002b for an application).

9 Concluding Remarks

Learning from examples, the problem for which neural networks were

designed to solve, is one of the crucial research topics in artificial

intelligence in these days. A possible way to formalize learning from

examples is to assume the existence of a function representing the set of

examples and, thus, enabling to generalize. This may be called function

reconstruction from sparse data or function approximation. Single hidden

layer feedforward networks with linear output and sigmoid hidden layer

transfer functions can approximate any continuous function g uniformly

on compacta, by increasing the size of the hidden layer. There are also

some results on the rate of approximation [that is, how many hidden units

are required to approximate to a specified accuracy], but as always with

such results they are no guide to how many units might be needed in any

application development. Despite of that, failures in applications can

usually be attributed to inadequate learning [for example, the presence of

overfitting or underfitting] and/or inadequate complexity of the network

model [that is, inadequate numbers of hidden units]. Parameter

estimation and a suitably chosen number of hidden units are, thus, of

20 Manfred M. Fischer

crucial importance for the success of real world neural network

applications.

Neural network modelling will gain further acceptance in GIScience,

as its usefulness becomes apparent in a diversity of application domains.

There is no doubt in mind that neural network modelling may satisfy two

roles in GIScience: as a statistical device to identify relationships in large

and complex spatial data sets, and as a way to come to grips with unclear

or fuzzy data. In the first instance, neural networks are gaining

acceptance as spatial interaction approximators and as classifiers of

remotely sensed pixel data; and in the second instance, data that in past

years have been disregarded because of their inconclusive nature are

being evaluated using neural modelling approaches. This trend is likely

to continue, given the mountains of data now being amassed, but also

because the methods are tied directly to the new technology that allows

for computationally intensive analysis.

References

Bishop, M. (1995). Neural Networks for Pattern Recognition. Oxford

University Press, Oxford.
Chen, A.M., Lu, H.M. and Hecht-Nielsen, R. (1993). On the geometry of

feedforward neural-network error surfaces. Neural Computation,
Vol. 5, 910-926.

Cichocki, A. and Unbehauen, R. (1993). Neural Networks for
Optimization and Signal Processing. John Wiley, Chichester.

Coetzee, F.M. and Stonick, V.L. (1995). Topology and geometry of
single hidden layer network. Neural Computation, Vol. 7, 672-705.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
function. Mathematics of Control Signals and Systems, Vol. 2, 303-
314.

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling

Plans. Society for Industrial and Applied Mathematics, Philadelphia.
Efron, B. and Tibshirani, R. (1983). An Introduction to the Bootstrap.

Chapman and Hall, New York.
Fischer, M.M. (2002). Learning in neural spatial interaction models: A

statistical perspective. Journal of Geographical Systems, Vol. 4(3),
287-299.

 Neural Networks 21

Fischer, M.M. (2001). Spatial analysis in geography, in: Smelser, N.J.
and Baltes, P.B. (Eds.), International Encyclopedia of the Social and
Behavioral Sciences, Vol. 22. Elsevier, Oxford, pp. 14752-14758.

Fischer, M.M. (2000). Methodological challenges in neural spatial
interaction modelling: The issue of model selection, in: Reggiani, A.
(Ed.), Spatial Economic Science: New Frontiers in Theory and
Methodology. Springer, Berlin, Heidelberg and New York, pp. 89-
101.

Fischer, M.M. and Getis A. (Eds.) (1997). Recent Developments in
Spatial Analysis. Spatial Statistics, Behavioural Modelling and
Computational Intelligence. Springer, Berlin, Heidelberg and New
York.

Fischer, M.M. and Gopal, S. (1994). Artificial neural networks: A new
approach to modelling interregional telecommunication flows.
Journal of Regional Science, Vol. 34(4), 503-527.

Fischer, M.M. and Leung, Y. (Eds.) (2001). GeoComputational
Modelling: Techniques and Applications. Springer, Berlin,
Heidelberg and New York.

Fischer, M.M. and Leung, Y. (1998). A genetic-algorithm based
evolutionary computational neural network for modelling spatial
interaction data. The Annals of Regional Science, Vol. 32(3), 437-
458.

Fischer, M.M. and Reismann M. (2002a). Evaluating neural spatial
interaction modelling by bootstrapping. Networks and Spatial
Economics, Vol. 2(3), 255-268.

Fischer, M.M. and Reismann M. (2002b). A methodology for neural
spatial interaction modeling. Geographical Analysis, Vol. 34(2), 207-
228.

Fischer, M.M., Hlavackova-Schindler K. and Reismann M. (1999). A
global search procedure for parameter estimation in neural spatial
interaction modelling. Papers in Regional Science, Vol. 78, 119-134.

Funahashi, K. (1989). On the approximate realization of continuous
mappings by neural networks. Neural Networks, Vol. 2, 183-192.

Gallant, A.R. and White, H. (1988). A Unified Theory of Estimation and
Inference for Nonlinear Dynamic Models. Basil Blackwell, Oxford.

Hassoun, M.H. (1995). Fundamentals of Artificial Neural Networks. MIT
Press, Cambridge [MA] and London, England.

Hecht-Nielsen, R. (1989). Theory of the back-propagation neural
network. Proceedings of the International Joint Conference on
Neural Networks, Washington, D.C. IEEE, New York, pp. 593-606.

22 Manfred M. Fischer

Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer
feedforward networks are universal approximators. Neural Networks,
Vol 2., 359-368.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992).
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, Cambridge.

Ripley, B.D. (1996). Pattern Recognition and Neural Networks.
Cambridge University Press, Cambridge.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). Learning
internal representations by error propagation, in: Rumelhart, D.E.,
McClelland, J.L. and the PDP Research Group (Eds.), Parallel
Distributed Processing: Explorations in the Microstructure of
cognition. MIT Press, Cambridge [MA], pp. 318-362.

Sussmann, H.J. (1992). Uniqueness of the weights for minimal
feedforward nets with a given input-output map. Neural Networks,
Vol. 5, 589-593.

White, H. (1990). Connectionist nonparametric regression: Multilayer
feedforward networks can learn arbitrary mappings. Neural
Networks, Vol. 3, 535-550.

White, H. (1989a). Learning in artificial neural networks: A statistical
perspective. Neural Computation, Vol. 1, 425-464.

White, H. (1989b). Some asymptotic results for learning in single hidden
layer feedforward network models. Journal of the American
Statistical Association, Vol. 84, 1008-1013.

White, H. and Racine, J. (2001). Statistical inference, the bootstrap, and
neural-network modeling with application to foreign exchange rates.
IEEE Transactions on Neural Networks, 12(4), 657-673.

White, H. and Wooldridge, J. (1991). Some results for sieve estimation
with dependent observations, in: Barnett, W., Powell, J. and
Tauchen, G. (Eds.), Nonparametric and Semiparametric Methods in
Econometrics and Statistics. Cambridge University Press, New York.

Zapranis, A. and Refenes, A.-P. (1999). Principles of Neural
Identification, Selection and Adequacy. With Applications to
Financial Econometrics. Springer, London, Berlin and Heidelberg.

