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Abstract. The focus in this paper is on knowledge spillovers between high-technology 

firms in Europe, as captured by patent citations. High-technology is defined to include 

the ISIC-sectors aerospace (ISIC 3845), electronics-telecommunication (ISIC 3832), 

computers and office equipment (ISIC 3825), and pharmaceuticals (ISIC 3522). The 

European coverage is given by patent applications at the European Patent Office that are 

assigned to high-technology firms located in the EU-25 member states (except Cyprus 

and Malta), the two accession countries Bulgaria and Romania, and Norway and 

Switzerland.  By following the paper trail left by citations between these high-

technology patents we adopt a Poisson spatial interaction modelling perspective to 

identify and measure spatial separation effects to interregional knowledge spillovers. In 

doing so we control for technological proximity between the regions, as geographical 

distance could be just proxying for technological proximity. The study produces prima 

facie evidence that geography matters. First, geographical distance has a significant 

impact on knowledge spillovers, and this effect is substantial. Second, national border 

effects are important and dominate geographical distance effects. Knowledge flows 

within European countries more easily than across. Not only geography, but also 

technological proximity matters. Interregional knowledge flows are industry specific 

and occur most often between regions located close to each other in technological space. 
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1 Introduction 

 

The last few years have witnessed an increasing interest in knowledge spillovers. 

Knowledge spillovers
1
 may be defined to denote the benefits of knowledge to firms or 

individuals, not responsible for the original investment in the creation of this 

knowledge. There are two distinct types of knowledge spillovers: Spillovers embodied 

in traded capital or intermediate goods and services [so-called pecuniary externalities], 

and spillovers of the disembodied kind [non-pecuniary externalities]. This paper 

considers spillovers of the second type. Such spillovers arise when some of the R&D 

activities have the classic characteristic of a non-rivalrous good and cannot be 

appropriated entirely. 

 

The importance of knowledge spillovers is widely recognised. Modern endogenous 

growth theory, for example, casts knowledge spillovers from investments in R&D as a 

central component in generating the increasing returns which sustain long-term growth 

(see, for example, Romer 1990). In these theories, it is typically assumed that 

knowledge spills over to other agents within the country, but not to other countries. Yet 

there is no good reason to believe that knowledge stops spilling over because it hits a 

national boundary. 

 

The last few years have seen the development of a significant body of empirical 

research on knowledge spillovers. Empirical analysis of the externalities is usually 

carried out using the R&D expenditure that helps to create them, rather than the 

inventions themselves. Many different measurements
2
 provide varied evidence of 

knowledge spillovers at the aggregate level. Most of the studies find some evidence for 

                                                 
1  In this paper we use the notions knowledge spillovers and knowledge externalities interchangeably. 

2  Various methods have been used in attempts to measure externalities. One calculates the elasticity of output with 

respect to R&D at various levels of aggregation. The R&D input to production is usually measured hereby as the 

stock of R&D, thus treating it as a normal input into current production. In the standard Cobb-Douglas form, this 

elasticity is the estimated exponential parameter on the R&D input. At the firm level, the elasticity with respect to 

the firm's internal stock of knowledge capital is expected to be smaller than the elasticity with respect to the entire 

stock [internal and external] that actually gets used by the firm. An increase in the measured elasticity of the 

knowledge stock is taken as evidence of a positive R&D spillover. Aside from conceptual problems this 

measurement approach requires that there be sufficient independent variation in inside and outside R&D to be 

able to separate their effects (Carlow and Lipsey 2002). 
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such spillovers, some do not (see Griliches 1992, 1995). Generally speaking, this 

research has shown that new technological knowledge spills over and complements 

R&D in some industries, especially in high-technology ones (see Bernstein and Nadiri 

1988). 

 

But the spatial range of such knowledge spillovers is greatly contested
3
 (see Karlsson 

and Manduchi 2001). Several explanations have been offered for this lack of agreement, 

such as for example the notorious difficulty to measure knowledge spillovers. Indeed, 

Krugman (1991, p. 53) has argued that economists should abandon any attempts at 

measuring knowledge spillovers because "knowledge flows ... are invisible; they leave 

no paper trail by which they may be measured and tracked". The work of Jaffe, 

Trajtenberg and Henderson (1993), however, pointed to one important exception. They 

argued that spillovers of knowledge may well leave a paper trail in the citations to 

previous patents recorded in patent documents. Because patent documents contain 

detailed information about the technology of the patented invention, the inventor and 

his/her residence, the assignee (generally, the firm) that owns the patent rights, and 

citations to previous patents, these patent documents provide an important resource for 

analysing the geography of knowledge spillovers. 

 

This paper follows Jaffe, Trajtenberg and Henderson (1993) to use patent citations as a 

proxy for knowledge spillovers
4
. The focus is on externalities within the high-

                                                 
3 Most studies identifying the spatial extent of knowledge spillovers are based on the Griliches-Jaffe knowledge 

production function model to measure knowledge spillovers, indirectly via effects on the output of the knowledge 

production function. Note, however, that this type of research is not without problems. The problems center 

around the question of whether the spatial units of observation are appropriately chosen, whether and how spatial 

effects are taken into account, how the output of the knowledge production process is measured, whether 

available measures actually capture the contribution of R&D spilled-over, how the spillover pools are 

constructed, and R&D capital deflated and depreciated. Despite these difficulties, there has been a significant 

number of reasonably well done studies (see, for example, Anselin, Varga and Acs 1997; Bottazzi and Peri 2003; 

Fischer and Varga 2003), all pointing in the direction that knowledge spillovers tend to be geographically 

bounded within the region of knowledge production. 

4  Jaffe, Trajtenberg and Henderson (1993) analysed patent citation data pertaining to domestic university and 

corporate patents to test the extent of localisation of knowledge spillovers by using a case-based matching 

approach. They left open, however, the issue of whether and to what extent border and distance effects influence 

knowledge externalities. 
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technology sector
5
. The objective of the paper is to identify and measure those types of 

spatial separation that tend to impede the likelihood of knowledge spillovers between 

regions in Europe
6
. In particular, we are interested in the questions whether or not 

knowledge – as captured by patented inventions – flows more easily within countries 

than between, and to what extent geographic distance between inventions has an 

influence on these knowledge flows. As we consider spatial separation effects to 

interregional spillovers in a multiregional setting it is important to control for 

technological proximity between regions as geographical distance could be just 

proxying for technological proximity. 

 

In using patent citation data from the European Patent Office [EPO] this paper builds on 

recent work by Maurseth and Verspagen (2002), but departs from this prior analysis in 

four major aspects. First, it adopts a spatial interaction modelling perspective to identify 

and measure spatial separation effects, and develops the appropriate model specification 

to account for the integer nature of interactions in the given context. Second, we follow 

the paper trail left by individual patent citations in high-technology industries to track 

the individual flows within a discrete representation of space. This allows us to properly 

control for intrafirm patent citations
7
. Third, citations to a patent are counted for a 

window of five years to overcome at least partially the truncation bias that is due to the 

fact that we observe citations for only a portion of the life of an invention, with the 

duration of that portion varying across patent cohorts. Finally, the study extends the 

geographic coverage, essentially from the EU-15 to the EU-25 countries on the one 

side, and limits the context to the high-technology sector on the other. 

 

The reminder of the paper is organised as follows. The section that follows explains in 

some more detail the nature of patents and patent citations, and briefly discusses how 

patent citations can be used as an indicator for knowledge spillovers. Section 3 

                                                 
5  Following Hatzichronoglou (1997) we define high-technology to include the ISIC-sectors pharmaceuticals (ISIC 

3522), computers and office equipment (ISIC 3825), electronics-telecommunication (ISIC 3832), and aerospace 

(ISIC 3845). 

6  We have chosen 188 regions (see Appendix A) that cover the EU-25 member countries (except Cyprus and 

Malta), the accession countries Bulgaria and Romania, and Norway and Switzerland. 

7 Maurseth and Verspagen (2002) control for intraregional intrafirm, but not for interregional intrafirm patent 

citations. This is likely to generate errors due to the presence of multiregional firms in Europe. 
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elaborates on the patent citation data to be used in the study. In Section 4, we outline the 

spatial interaction modelling framework that is pertinent to the model development in 

this study. Section 5 develops a Poisson model specification that accommodates the true 

integer nature of patent citation flows and derives maximum likelihood estimates of the 

model parameters. Section 6 generalises this model specification to allow for the 

overdispersion in the data by letting each pair's of regions Poisson parameter have a 

random distribution of its own. In Section 7 we present the estimation results of the 

basic Poisson spatial interaction model and its generalisation. We conclude with a 

summary and evaluation of our results in the final section. 

 

 

2 Patents, Patent Citations and Knowledge Spillovers 

 

A patent is a property right awarded to inventions for the commercial use of a newly 

invented device. An invention to be patented has to satisfy three patentability criteria. It 

has to be novel and non-trivial in the sense that it would not appear obvious
8
 to a skilled 

practitioner of the relevant technology, and it has to be useful, in the sense that it has 

potential commercial value. If a patent is granted, an extensive public document is 

created. The document contains detailed information about the invention, the inventor, 

the assignee, and the technological antecedents of the invention. Because patents record 

the residence of the inventors they are an invaluable resource for studying how 

knowledge flows are affected by geography. 

 

Patent related data, however, have two important limitations
9
. First, the range of 

patentable inventions constitutes only a subset of all R&D outcomes, and second, 

patenting is a strategic decision and, thus, not all patentable inventions are actually 

patented. As to the first limitation, purely scientific advances devoid of immediate 

applicability as well as incremental technological improvements which are too trite to 

pass for discrete, codifiable inventions are not patentable. The second limitation is 

                                                 
8  What is obvious or not can be very difficult to evaluate. Different national patent offices have taken different 

approaches to this problem. While, for example, among the European countries, in Germany the threshold is 

comparatively high, the requirements in the UK are much lower. In extreme cases, this may lead to a situation 

where a patent on a given subject is granted in one country, but not in another (Michel and Bettels 2001). 

9  See Griliches (1990) for a more detailed discussion. 
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rooted in the fact that it may be optimal for inventors not to apply for patents even 

though their inventions would satisfy the criteria for patentability (Trajtenberg 2001). 

Inventors balance the time and expense of the patent process, and the possible loss of 

secrecy which results from patent publication, against the protection that a patent 

potentially provides to the inventor
10

 (Jaffe 2000). Therefore, patentability requirements 

and incentives to refrain from patenting limit the scope of our analysis based on patent 

data. 

 

Patent citations capture only those spillovers which occur between patented pieces of an 

invention, and, thus, underestimate the actual extent of knowledge spillovers. Other 

channels of knowledge transfers are not captured by patent citations, such as, for 

example, interfirm transfer of knowledge embodied in skilled labour; knowledge flows 

between customers and suppliers; knowledge exchange at conferences and trade fairs, 

etc. Thus, our study refers only to a very specific and limited form of interfirm 

knowledge flows. 

 

It is also clear that patent citations not always represent what we typically think of as 

knowledge spillovers. Some citations may represent noise
11

. This is certainly the case 

for citations added by the patent examiner of which the citing inventor was unaware. 

This noise creates a bias against finding spillovers. Fortunately, Thompson (2003) 

illustrates that bias in this direction is a problem of power, which can be overcome with 

a sufficiently large sample size. His result also implies that patent citations are more 

indicative of patterns of knowledge flows at the level of organisations, industries and 

regions than at the level of individual patents (Jaffe, Fogarty and Banks 1998). 

 

 

3 The Patent Citation Data and Some Descriptive Statistics 

                                                 
10  Though some firms may choose not to patent inventions, patenting in high-technology industries is commonly 

practiced and a vital part of maintaining technological competitiveness. High-tech firms use patents not only to 

protect the returns to specific inventions but also to block products of their competitors, as bargaining chips in 

cross-licensing negotiations, and/or to prevent or defend against infringement suits (Jaffe 2000, Almeida 1996). 

11  In the US, it is – in contrast to Europe – a legal requirement to supply a complete list of the state of the art, and 

non-compliance by the patent applicant can lead to subsequent revocation of the patent. Thus, applicants tend to 

quote each and every reference even if it is only remotely related to what is patented, rather than running the risk 

of filing an uncomplete list (Michels and Battels 2001). 
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The European coverage in our study is achieved via European patent applications. By 

European patent applications we mean patents applied at the European Patent Office 

[EPO]
12

 and assigned to organisations located in the EU-25 member states [except 

Cyprus and Malta], the two accession countries Bulgaria and Romania, and Norway and 

Switzerland. Our data source is the European Patent Office [EPO] database. This is a 

natural choice for the purpose of our study because patents from different national 

patent offices are not comparable to each other. There are different patenting costs, 

approval requirements, citation practices and enforcement rules across Europe. 

 

The focus is on corporate patents in the high-technology sector. We used MERIT's 

concordance table (Verspagen, Moergastel and Slabbers 1994) between the four-digit 

ISIC-sectors and the 628 patent subclasses of the International Patent Code (IPC) 

classification
13

 to identify such patents from the universe of European patent 

applications. Our core data set includes all the high-technology patents with an 

application date in the years 1985-2002, totalling 177,424 patents. Data on the inventor 

and his/her location, the assignee [that is, the legal entity that owns the patent rights, 

assigned to it by the inventor(s)], the time of application, the technology of the 

invention as captured by IPC codes, and EPO patent citations are the main pieces of 

information used from this file. We selected corporate patents, that is, patents assigned 

to non-government organisations located in Europe, since our interest is on interfirm 

research spillovers. 

 

Patent citation is a phenomenon that derives from the relationship between two 

inventions or inventors as evidenced by a citing patent and a cited patent. The data on 

                                                 
12  Patent protection in Europe can be obtained by filing national applications and European applications. This 

implies that patent data from the European Patent Office do cover only a subsample of patents applied for in 

Europe. 

13  The IPC system is an internationally agreed, non-overlapping hierarchical classification system that consists of 

eight sections (first level), 118 classes (second level), 628 subclasses (third level), 6,871 (fourth level) main 

groups and 57,324 subgroups (fifth level) to classify inventions claimed in the patent documents. The 

concordance table assigns the technical knowledge in the patent subclasses to the ISIC-sector best corresponding 

to the origin of this knowledge. The patent subclasses associated with the four high-technology ISIC-sectors are 

outlined in Appendix B. 
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this relationship come in form of citations made [that is, each patent lists references to 

previous patents]. For identifying the citation flows we need a list of cited and citing 

patent applications. This requires in fact access to all citation data in a way that permits 

efficient search and extraction of citations not by the patent number of the citing patent 

but by the patent number of the cited patent. 

 

While previous work indicates the usefulness of patent citations as an indicator for 

aggregate knowledge flows, it also highlights the need for careful attention to various 

biases that make their interpretation risky. In particular, the observation of citations is 

subject to a truncation bias because we observe citations for only a portion of the life of 

an invention, with the duration of that portion varying across patent cohorts. This means 

that patents of different ages are subject to different degrees of truncation. To overcome 

this problem at least in part we have identified all the pairs of cited and citing patents 

where citations to a patent are counted for a window of five years following its issuance. 

The analysis is, thus, confined to 1985-1997 in the case of cited patents while citing 

patents appearing in 1990-2002 are taken into account. Although the five-year horizon 

appears to be short, it does capture a significant amount of a typical patent's citation 

life
14

.  

 

Given our interest on pure externalities (that is, on interfirm knowledge spillovers), 

citations to patents that belong to the same assignee [so-called self-citations] were 

eliminated, resulting into 98,191 interfirm patent citations
15

. The elimination of self-

citations – in this and all prior work – remains far from satisfactory. Although we have 

manually checked the sample for cases where company names are sufficiently similar to 

identify self-citations between parents and their subsidiaries, and joint ventures, this 

effect can only get us so far. One could presumably complete the process using 

directories of company ownership (such as Dun & Bradstreet's Who owns Whom). But, 

                                                 
14 The mean citation lag of all citations in 1985-2002 is 4.62 years, with some sectoral differences: pharmaceuticals 

(4.4 years), computers and office equipment (4.4 years), electronics-telecommunication (4.7 years) and aerospace 

(5.4 years). 

15  About one third of all patent citations are self-citations. Not surprisingly, the self-citation rate differs for the four-

digit industry sectors. The rate is much higher in pharmaceuticals (78.6%) than in the other industries 

(electronics-telecommunications: 15.9%, computers and office equipment: 5.2%, and aerospace 0.2%). This 

corresponds well with what we know about this industry. Inventions are concentrated here in very large firms, 

and, thus, the likelihood that they will cite internally is higher. 
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daunting as that task would be, one must then decide when a citation is a self-citation 

and when it represents a spillover. The judgement depends on the degree of interaction 

taking place between related firms. This does not seem to be an operational criterion 

(Thompson 2003). 

 

The spatial interaction modelling perspective we adopt in this study shifts attention 

from individual patent citations to interregional patent citations or from the dyad "cited 

patent – citing patent" to the dyad "cited region – citing region". Accordingly, all 

citation data were aggregated into a region-by-region matrix (cij) where cij denotes the 

number of patent citations from region j (j=1, ..., J) to region i (i=1, ..., I). The rows of 

the matrix represent the regions of the cited patents [that is, the origins of spillovers] 

and the columns the regions of the citing patents [that is, the spillover absorbing 

regions]. The matrix is asymmetric in nature, that is, cij≠cji.  

 

We have chosen I=J=188 regions, generally NUTS-2 regions for the EU-15 countries
16

 

and NUTS-0 regions for the other countries. NUTS is an acronym of the French for the 

'nomenclature of the territorial units for statistics', which is a hierarchical system of 

regions used by the statistical office of the European Community for the production of 

regional statistics. At the top of the hierarchy are the NUTS-0 regions (countries), below 

which are NUTS-1 regions (regions within countries) and then NUTS-2 regions 

(subdivisions of NUTS-1 regions).  

 

In the case of cross-regional inventor-teams we have used the procedure of multiple full 

counting
17

. This procedure deviates from the USPTO [United States Patent and 

Trademark Office] practice to select first-named addresses only
18

. In order to clarify the 

difference between the two assignment procedures let us assume that patent A with three 

inventors in three different regions –  say i, j and k – cites patent B with two inventors in 

two different regions, say s and t. In this case the USPTO practice would count only the 

                                                 
16  In some cases (Denmark, Greece, Ireland and Luxembourg) NUTS-0 regions are used as dictated by practical 

convenience. Details of the regional system are given in Appendix A. 

17  Note that full rather than fractional counting does justice to the true integer nature of patent citations, but gives 

the interregional cooperative inventions greater weight. 

18  This assignment rule has been a common approach because of programming ease. 
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cross-regional citation link Ai to Bs, while our procedure takes all six patent citation 

links into account. Evidently, the USPTO procedure underestimates, our method 

overestimates knowledge spillovers. 

 

Table 1: Descriptive Statistics on the Region-by-Region Citation Matrix 
 

  Patent Citations 

 Number of Matrix 

Elements* 
Number Mean Standard 

Deviation 

Min.  Max. 

All Elements 35,344 98,191 2.77 16.23 0 1,408 

Intraregional Links 188 11,371 60.48 152.05 0 1,408 

Interregional Links 35,156 86,820 2.46 11.14 0 351 

Positive Interregional 

Links 

11,468 86,820 7.57 18.49 1 351 

National Interregional 

Links 

3,952 25,341 6.41 20.02 0 351 

International 

Interregional Links 

31,204 61,479 1.97 9.31 0 290 

* Elements of the region-by-region citation matrix 

 

 

Table 1 provides some basic information about the region-by-region citation matrix. 

The (188, 188)-matrix contains 35,344 elements with a total of 98,191 citations between 

high-technology firms. The mean number of citations between any two regions 

(including intraregional flows) is 2.77, but the standard deviation is rather high. 

Interregional citations show a highly skewed distribution. About two thirds of all pairs 

(i, j; i≠j) of regions [23,688 pairs] never cite each other's patents. The frequency of 

patent citations gradually declines for more intensive citation links. There are only 90 

pairs of regions for which the number of citations is 100 or more. The average number 

of citations for all interregional pairs is 2.46 and the average for those that cite each 

other 7.57. Table 1 indicates that national patent citations are more frequent than 

international ones. 

 

 

 



 

10 

 

 

 

4 The Spatial Interaction Modelling Perspective 

 

We adopt a spatial interaction modelling perspective to identify and measure spatial 

separation effects to interregional knowledge spillovers as captured by patent citations 

among high-technology firms. Mathematically, the situation we are considering is one 

of observations cij (i=1, ..., I=188; j=1, ..., J=188) on random variables, say Cij, each of 

which corresponds to the interfirm transfer of knowledge from region i to region j. We 

are interested in models of the type 

 

ij ij ijC µ ε= +  i=1, ..., I; j=1, ..., J; i≠j (1) 

 

where the observed patent citation flows cij are independent Poisson variates with 

[ ]ij ijE Cµ = . The error ijε  is noise, with the property [ | ] 0ij ijE cε =  by construction. 

Note that this error term relates to a pair (i, j) of regions. We aim to develop appropriate 

models for the systematic part, ijµ , of the stochastic relationship with other random 

variables which are the forecasts. 

 

Spatial interaction models simultaneously incorporate the effect of origin and 

destination characteristics and separation. Mathematically, they may be written as  

 

( )ij i j ij ijA B F dµ =   i=1, ..., I; j=1, ..., J; i≠j (2) 

 

where ijµ  denotes the estimated knowledge flow from region i to region j. Ai represents 

a factor characterising the origin i of interaction, and Bj a factor characterising the 

destination j of interaction, while Fij is a factor that measures separation from i to j. 

Origin and destination factors may be viewed as weights associated with origin and 

destination variables. Their classical specifications are given by power functions 

 

1

1( , )i i iA A a a
αα= =   i=1, ..., I (3) 

 
2

2( , )j j jB B b b
αα= =   j=1, ..., J (4) 
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where 1α  and 2α  are parameters to be estimated and ai and bj denote some appropriate 

origin and destination variables. The product Ai Bj in (2) can be interpreted simply as the 

number of distinct (i, j)-interactions which are possible. In the current study ai is 

measured in terms of the number of patents in the knowledge producing region i in the 

time period 1985-1997, and bj in terms of the number of patents in the knowledge 

absorbing region j in the time period 1990-2002. 

 

The separation function Fij constitutes the very core of spatial interaction models. 

Hence, a number of alternative specifications of Fij have been proposed. In this study 

we use the multivariate separation function   

 

( )

1

( , ) exp
K

k

ij ij k ij

k

F F d dβ
=

 = =   
∑β   i=1, ..., I; j=1, ..., J; i≠j (5) 

 

that provides a flexible representational framework for the purpose of our study. 

(1) ( )( , ..., )K

ij ij ijd d d=  denotes the K separation measures. kβ  (k=1, ..., K) are unknown 

parameters.  

 

Our interest is focused on K=4 measures: (1)

ijd represents geographic distance measured 

in terms of the great circle distance [in km] between the regions’ economic centres, (2)

ijd   

is a dummy variable
19

 that represents border effects measured in terms of the existence 

of country borders between i and j, while (3)

ijd  is a dummy variable
20

 that represents 

language barrier effects. As we consider the distance effect on interregional patent 

citations it is important to control for technological proximity between regions, as 

geographical distance could be just proxying for technological proximity. To do this we 

use the technological proximity index sij developed by Maurseth and Verspagen (2002). 

We divide the high-technology patents into fifty-five technological subclasses, 

                                                 
19  The dummy is set equal to zero for pairs of regions that are located within the same country, and to one 

otherwise. 

20  The language barrier dummy is set equal to zero for pairs of regions that share the same language, and one 

otherwise. 
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following the International Patent Code (IPC) classification. Each region is then 

assigned a (55, 1)-'technology vector' that measures the share of patenting in each of the 

technological subclasses for the region. The technological proximity between two 

regions i and j is given by the uncentred correlation of their technological vectors. Two 

regions that patent exactly in the same proportion in each subclass have an index equal 

to one, while two regions patenting only in different subclasses have an index equal to 

zero. This index is appealing because it allows for a continuous measure of 

technological distance, namely (4) 1ij ijd s= − , and avoids the problem of defining 

technological distance between sectors. 

 

Integrating (2)-(5) into (1) yields 

 

1 2 ( )

1

exp
K

k

ij i j k ij ij

k

C a b d
α α β ε

=

 = +  
∑  i=1, ..., I; j=1, ..., J; i≠j. (6) 

 

Fitting this model to the patent citation data is a question of estimating the unknown 

parameters 1 2,α α  and kβ  (k=1, ..., K). At a first glance it is tempting to express (6) 

equivalently as a log-additive model of the form 

 

( )

1 2

1

log log log
K

k

ij i j k ij ij

k

C a b d uα α β
=

= + + +∑    i=1, ..., I; j=1, ..., J; i≠j (7) 

 

with 

 

( )20,u N σ∼   (8) 

 

and then proceed to estimate the parameters by ordinary least squares regression of the 

observations cij on ai, bj, and dij.  

 

However, such an approach suffers from two major drawbacks. First, the regression 

produces estimates of the logarithms of ijµ , not of the ijµ 's themselves. The 
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antilogarithms of these estimates are biased estimates of ijµ . One of the effects of this is 

to underpredict large patent citations flows, and to underpredict the total flow (see 

Flowerdew and Aitkin 1982). Second, estimating the parameters by the ordinary log-

additive regression model given by Equations (7)-(8) would only be justified 

statistically if we believed that flows Cij were independent and log-normally distributed 

about their mean value with a constant variance. Such an assumption, however, is not 

valid since patent citation flows are discrete counts whose variance is very likely to be 

proportional to their mean value (see Bailey and Gatrell 1995, among others).  

 

 

5 The Poisson Model Specification and Maximum Likelihood 

Estimation 

 

Least squares and normality assumptions ignore the true integer nature of patent citation 

flows and approximate a discrete-valued process by an almost certainly 

misrepresentative continuous distribution (Fischer and Reismann 2002). To overcome 

this deficiency, it seems natural to assume that the Cij given Ai, Bj and Fij are iid Poisson 

distributed with density 

 

( )exp
, ,

!

ijc

ij ij

ij ij i j ij

ij

f C c A B F
c

µ µ−
 = =    (9) 

 

where the mean parameter µ [that is, the conditional expectation of (i, j) patent citations, 

given Ai, Bj, Fij] is parameterised as  

 

( )1 2, , exp log ( , ) log ( , ) log ,ij i j ij i j ijE c A B F A a B b F dα α   = + +   β   (10) 

 

with (1) ( )( ,..., )K

ij ij ijd d d=  and 1( , ..., ).Kβ β=β  Specification (10) is called the 

exponential mean function
21

. The model comprising (9) and (10) is referred to as the 

                                                 
21 The parameter  

1 2 1
( , , , ..., )

K
α α β β  can be interpreted as elasticities. 



 

14 

 

 

basic Poisson model specification. Note that ijµ  is a deterministic function of Ai, Bj and 

Fij, and the randomness in the model comes from the Poisson specification of cij.  

 

Parameterisation (10) implies a particular form of heteroskedasticity, due to 

equidispersion or equality of conditional variance and conditional mean: 

 

, , , , .ij i j ij ij i j ij ijV c A B F E c A B F µ   = =      (11) 

 

It also implies the conditional mean to have a multiplicative form given by 

 

1 2

1 2

, , exp log ( , ) log ( , ) log ( , )

( , ) ( , ) ( , ).

ij i j ij i j ij

i j ij

E c A B F A a B b F d

A a B b F d

α α

α α

   = + + =  
=

β

β
  (12) 

 

The Poisson specification of the spatial interaction model (6) shows some interesting 

advantages. First, it is analogous to the familiar econometric regression specification 

(7)-(8) in many ways. In particular, , ,ij i j ij ijE c A B F µ  =  . Moreover, parameter 

estimation is straightforward and may be done by maximum likelihood. Second, the 

'zero problem', cij=0, is a natural outcome of the Poisson specification. In contrast to the 

logarithmic regression specification there is no need to truncate an arbitrary continuous 

distribution. The integer property of the outcomes cij is handled directly. 

 

Parameter Estimation 

 

For notational economy, let us denote θ the (K+2)-dimensional parameter vector 

( )1 2 1 1 2, , , ..., ( , , )Kα α β β α α= β  that has to be estimated. The standard estimator for the 

model is the maximum likelihood estimator. The likelihood principle selects as 

estimator of θ the value which maximises the joint probability of observing the sample 

values cij. This probability, viewed as a function of parameters conditional on the data, 

is called the likelihood function and is denoted as 
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1 1
1

( ) , , ,
I J

ij i j ij

i j
j

L f c A B Fθ
= =

≠

 =  ∏∏ θ   (13) 

 

where we suppress the dependence L(θ) on the data and have assumed independence 

over (i, j). Maximising L(θ) is equivalent to maximising the log-likelihood function (see 

Sen and Smith 1995) 

 

{

}

1 2

1 1

1 2

1 2 1

1 1 1

( )

2

1

( ) log ( ) ( , ) ( , ) exp[ ]

[log ( , ) log ( , ) ) ] log ( !)

{ ( , ) ( , ) exp( )} log ( , )

log ( , )

I J

i j ij

i j
j ì

ij i j ij ij

I J I

i j ij i i

i j i
j ì

J
k

j j k ij ij

j
j ì

L A a B b d

c A a B b d c

A a B b d c A a

c B b d c

α α

α α

α α α

α β

= =
≠

•
= = =

≠

•
=
≠

= = − +

+ + + − =

= − + +

 + + 

∑ ∑

∑ ∑ ∑

∑

θ θ β

β

β

L

1 1 1

log ( !)
K I J

ij

k i j
j ì

c
= = =

≠

−∑ ∑ ∑

 (14) 

 

where 
1

J

i ijj
c c• =

=∑ and 
1

I

j iji
c c• =

=∑ .The partial derivatives of L(θ) are: 

 

( )

[ ]

2

11 1

1

1

( , ) exp
( , )

( , ) for 1,...,

J
ij

j ij

j i

i i i

c
B b d

A a

c A a i I

ϑ
α

ϑα α

µ α
=

−
• •

 
 = − + =  

 
= − =

∑
θ

β
L

  (15) 

 

( )
1

12 2

1

2

( , ) exp
( , )

( , ) for 1,...,

I
ij

i ij

i j

j j j

c
A a d

B b

c B b j J

ϑ
α

ϑα α

µ α

=

−
• •

   = − + =  
  

 = − = 

∑
θ

β
L

  (16) 

 

( ) { }( ) ( )

1 2

1 1

( )

1 1

( , ) ( , ) exp

for 1,...,

I J
k k

ij i j ij ij ij

i jk
j ì

I J
k

ij ij ij

i j
j ì

d A a B b d c d

d c k K

ϑ
α α

ϑβ

µ

= =
≠

= =
≠

 = − + = 

 = − = 

∑ ∑

∑ ∑

θ
β

L

  (17) 
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with 
1

J

i ijj
µ µ• =

=∑ and 
1

I

j iji
µ µ• =

=∑ . Maximum likelihood estimates may be found by 

maximising ( )θL  directly using iterative procedures, usually gradient algorithms, such 

as Newton-Raphson. Alternatively, one could set the partial derivatives of ( )θL  [that 

is, Equations (15), (16) and (17)] equal to zero and solve the resultant equations: 

 

( ) ( )

1 1 1 1

for =1, ...,  and   for =1, ..., , and 

for 1,..., .

i i j j

I J I J
k k

ij ij ij ij

i j i j
j ì j ì

c i I c j J

d d c k K

µ µ

µ

• • • •

= = = =
≠ ≠

= = 

= =



∑ ∑ ∑ ∑   (18) 

 

Convergence is guaranteed because the log-likelihood function is globally concave
22

.  

 

 

6 A Generalisation of the Poisson Spatial Interaction Model 

 

The above Poisson model specification does not allow for individual (i, j)-effects, given 

the exogenous variables Ai, Bi, Fij. The exogenous variables are assumed to summarise 

all individual deviations. Also, it is clear that the existence of fixed effects at the 

individual level of (i,j) pairs is likely to exist in interregional patent citation 

relationships. This individual effect problem can be partly solved
23

 by introducing a 

heterogeneity term in the mean µij of the Poisson distribution such that the 

multiplicative heterogeneity term exp(ξij) follows a gamma distribution with mean one 

and variance δ:  

 

*Poisson ( )ij ijc µ∼   (19) 

 

where  

 

                                                 
22  The Hessian of the log-likelihood function is always negative. After estimation, the negative inverse of the 

estimated Hessian can be used for estimation of the asymptotic covariance matrix of the parameter estimates. 

23  Hausman, Hall and Griliches (1984) give results that are suggestive of ours, though pursuing a different 

specification in the context of the patents-R&D relationship. 
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*

1 2

1 2

exp log ( , ) log ( , ) log ( , )

exp log ( , ) log ( , ) log ( , ) exp( )

ij i j ij ij

i j ij ij

A a B b F d

A a B b F d

µ α α ξ

α α ξ

 = + + + = 
 = + + 

β

β
  (20) 

 

and  

 

1exp( ) Gamma ( , ).ijξ δ δ−∼   (21) 

 

If exp( )ijξ  is gamma distributed and independent of the explanatory variables, cij has a 

negative binomial distribution (Cameron and Trivedi 1998): 

 

1

1 1

1 1 1

( )
, , ,

( 1) ( )

ijc

ij ij

ij ij i j ij

ij ij ij

c
f C c A B F

c

δ
Γ δ µδδ

Γ Γ δ µ δ µ δ

−
− −

− − −

   +
 = =         + + +   

  (22) 

 

where (.)Γ  is the gamma function and 0δ ≥  the dispersion parameter. The larger δ  is, 

the greater the dispersion. Specification (22) with (20)-(21) is referred to as the 

heterogeneous Poisson model of interregional patent citations. This modification leaves 

the mean unchanged, but changes the variance to  

 

{ } { }* * * *( ) ( | ) ( | ) ( ) ( ) (1 ).ij ij ij ij ij ij ij ij ijV c E V c V E c E Vµ µ µ µ µ δ µ= + = + = +   (23) 

 

Thus, the model allows for overdispersion (that is, 0δ > ), with 0δ =  reducing to the 

basic Poisson specification (9)-(10). 

 

Estimation of the model may proceed with maximum likelihood. The log-likelihood 

function is 

 

{ }
}

1

1
1 1

1

1 2

1 2

( )
( , ) log log !

( )

( ) log 1 exp ( , ) ( , ) ( , )

log log ( , ) ( , ) ( , ) .

I J
ij

ij

i j
j ì

ij i j ij

ij ij ij i j ij

c
c

c A a B b F d

c c c A a B b F d

Γ δ
δ

Γ δ

δ δ α α

δ δ α α

−

−
= =

≠

−

  += − − 
   

 − + + + 

 + + +  

∑∑θ

β

β

L

  (24) 
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7 Estimation Results 

 

Table 2 reports the results from the estimation of the two Poisson spatial interaction 

model specifications [see Equations (9) and (10), and equation (22) with (20) and (21), 

respectively] by maximum likelihood, using Newton-Raphson. The maximum 

likelihood estimates of the basic Poisson spatial interaction model specification are 

given in the first column, those of the generalised Poisson model in the second. 

Standard errors are presented in brackets rather than t-statistics to allow comparison 

with the precision of the negative binomial maximum likelihood estimates in the second 

column. The reported standard errors all assume correct specification of the variance 

function. They are characterised by low significance levels. 

 

Table 2: Estimation Results of the Poisson Spatial Interaction Model Specifications 

[N=35,156 observations; asymptotic standard errors in brackets] 

Poisson Spatial Interaction Model 
Variable 

without Heterogeneity with Heterogeneity 

Log-Likelihood -51,801.10 -37,235.05 

{Corr (cij, predicted cij)}
2
 

Wald Chi-Square (6) 

0.686 

307,522.81 

0.783 

30,552.12 

Independent Variables   

Origin Variable [α1] 0.833*** 

(0.002) 

0.915*** 

(0.006) 

Destination Variable [α2] 0.858*** 

(0.002) 

0.885*** 

(0.006) 

Geographical Distance [ß1] 

 

Country Border  [ß2] 

 

Language Barrier[ß3] 

 

Technological Proximity [ß4] 

-0.270*** 

(0.005) 

-0.050*** 

(0.007) 

-0.238***
 

(0.014) 

0.928*** 

(0.032) 

-0.321*** 

(0.014) 

-0.533*** 

(0.046) 

-0.031*** 

(0.043) 

1.219*** 

(0.130) 

Intercept    -10.278*** 

(0.051) 

  -10.881*** 

(0.124) 

Dispersion Parameter (δ) – 0.725 

(0.014 ) 
 

Note: All independent metric variables are expressed as natural logs in order to lessen the impact of 

outliers. The origin, destination and separation functions are specified as follows: 1( ),
ii iA aa
αα = , 

2

2
( , )

j j
B b b

αα =  and 
( )

1
( , ) exp ( )

K k

ij ij kk
F d d β

=
= ∑β . 

i
a  is measured in terms of patents (1985-1997) in 
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the cited region i, 
j

b  in terms of patents (1985-2002) in the citing region j, 
(1)

ij
d  representing geographic 

distance is measured in terms of the great circle distance [km] between the economic centres in i and j; 
( 2)

ij
d  is a dummy that represents border effects [zero for pairs (i, j) that are located in the same country, 

one otherwise], 
(3)

ij
d  is a dummy that represents language barrier effects [zero for pairs (i, j) that share the 

same language, one otherwise]; 
( 4)

1
ij ij

d s−=  where 
ij

s  denotes technological proximity of regions i and j 

in a 55-dimensional technology space; *** denotes significance at the one percent level. 

 

 

The estimated value of the dispersion parameter δ indicates that the basic Poisson model 

specification has to be rejected [H0: δ =0, G
2
 =29,256.6, p<0.01]

24
. The rejection of this 

model version is due to the situation of overdispersion which is associated with 

unobserved heterogeneity among (i, j) pairs of regions. Therefore, the Poisson model 

specification with heterogeneity is preferred. The variance-mean equality assumption of 

the Poisson model is too restrictive to adequately describe the patent citation flows.  

 

The parameters of the negative binomial distribution are estimated along with a large 

increase in the log-likelihood function compared to the Poisson model. The negative 

binomial parameter estimates are generally somewhat larger in magnitude than the basic 

Poisson ones, with the exception of the language dummy. But, since the negative 

binomial specification allows for an additional source of variance, the estimated 

standard errors are all larger, and therefore the conclusions to be drawn, while similar to 

those derived from the basic Poisson model specification, are less precise. 

 

The Poisson spatial interaction model specification with heterogeneity yields highly 

significant effects. Both α-estimates are – in accordance with expectations – close to 

one
25

. Geographical distance between inventors has a strong and negative effect on the 

likelihood of high-technology patent citations. The parameter estimate, 1
ˆ 0.321β = − , 

                                                 

24  The G-squared statistic is defined to be 
1

1 1

ˆ ˆlog( ) ( )[ ]{ }
I J

ij ijij ij ij
i j

j ì

c c cµ µ−

= =
≠

− −∑∑  where ) = (  log 0
ij ij

c c  if = 0  
ij

c  

(see Bishop, Fienberg and Holland 1975). 

25  Recall that the product of the origin and destination functions can be interpreted simply as the number of distinct 

(i, j)-interactions which are possible. The origin function is measured in terms of patents [1985-1997] in the 

knowledge producing region i, and the destination function in terms of patents [1985-2002] in the knowledge 

absorbing region j. 
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indicates that for any additional 100 km between regions i and j the (i, j)-mean patent 

citation frequency decreases by 27.5 percent. This suggests spillovers between high-

technology firms are impeded by geographical distance. 

 

Not only distance, but also border effects matter. The point estimate of the coefficient β2 

is nearly twice times as large as that of β1, showing that border effects are more 

important than distance effects. Citing patents are much more likely to come from the 

same country as the cited patents. High-technology related knowledge flows much more 

easily within than between countries. This is a finding that corresponds well with the 

notion of national systems of innovation
26

. Note that language barriers though 

significant have only a rather small effect ( 3β̂ =–0.031) on interregional knowledge 

spillovers. 

 

The variable technological proximity controls for spillovers that are stronger between 

technologically similar regions. The point estimate for the variable shows an effect that 

is about four times larger than the distance effect even though the estimate is not very 

precise. Interregional patent citation flows tend to follow particular technological 

trajectories as defined at the three-digit level of the IPC classification. This indicates 

that patent citation flows are industry specific and occur most often between regions not 

too far located from each other in technological space. Technological proximity matters 

more than geographical proximity. 

 

 

8 Summary and Conclusions 

 

A revival of interest in economic geography during the last decade has renewed efforts 

to consider knowledge spillovers as a geographical phenomenon. In adopting this view 

one is confronted with two challenges. The first is the notoriously difficult issue to 

measure knowledge spillovers and the second one the issue to model the geographic 

dimension of knowledge spillovers. In confronting the first challenge we used patent 

citations as proxy for knowledge spillovers and followed the paper trail left by patent 

                                                 
26  See Fischer (2001) for a discussion of the concept of a system of innovation. 
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citations to track this specific type of knowledge flows within the high-technology 

sector across Europe. To address the second challenge we adopted a spatial interaction 

modelling perspective. This perspective shifted the focus of attention from individual to 

interregional patent citations, from the dyad "cited patent – citing patent" to the dyad 

"cited region – citing region". 

 

The basic goal of this study has been to identify and measure spatial separation effects 

to interregional knowledge spillovers. In particular interest was focused on the 

following three questions: To what extent geographical distance has an impact on 

interregional knowledge spillovers? How important are national border effects as 

distinct from geographical distance? Do linguistic borders matter? We have used a 

Poisson spatial interaction model specification with heterogeneity to address these 

questions. It is important to note that in doing so we have controlled for technological 

proximity between regions, as geographical distance could be just proxying for 

technological proximity. 

 

The previous section has produced prima facie evidence that knowledge spillovers are 

geographically localised. National borders have a negative impact on knowledge flows, 

and this effect is very substantial. Knowledge flows are larger within countries than 

between regions located in different countries. The results also indicate that 

geographical proximity matters, while also suggesting that these effects are much 

smaller than the border effects. Knowledge spillovers occur more often between regions 

that belong to the same country and are in geographical proximity. Technology 

proximity tends to overcome geographical proximity. Interregional knowledge flows 

seem to follow particular technological trajectories, and occur most often between 

regions that are located in technological space, not too far from each other. 

 

The results support the conclusion that national and sectoral systems of innovation 

matter at least as far as high-technology firms are concerned. This is a conclusion that 

has important policy implications. European regional cohesion appears to be at stake, 

especially – but not exclusively – because of the localised nature of knowledge flows. 

The results also have important implications for modelling technological change and 

economic growth. They provide strong empirical support for the models of endogenous 
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economic growth, such as Romer (1990), in which localised knowledge spillovers are 

simply assumed. 
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 Appendix A: List of Regions Used in the Study 
 

Country Nuts-Code Region Country Nuts-Code Region 

Austria AT11 Burgenland  DEB1 Koblenz 

 AT12 Niederösterreich/Wien  DEB2 Trier 

 AT21 Kärnten  DEB3 Rheinhessen-Pfalz 

 AT22 Steiermark  DEC0 Saarland 

 AT31 Oberösterreich  DED1 Chemnitz 

 AT32 Salzburg  DED2 Dresden 

 AT33 Tirol  DED3 Leipzig 

 AT34 Vorarlberg  DEE1 Dessau 

Belgium BE10 Région Bruxelles-Capital  DEE2 Halle 

 BE21 Antwerpen  DEE3 Magdeburg 

 BE22 Limburg (B)  DEF0 Schleswig-Holst./Hamburg 

 BE23 Oost-Vlaanderen  DEG0 Thüringen 

 BE24 Vlaams Brabant Denmark DK00 Denmark 

 BE25 West-Vlaanderen Estland EE00 Estland 

 BE31 Brabant Wallon Finland FI13 Itä-Suomi 

 BE32 Hainaut  FI14 Väli-Suomi 

 BE33 Liège  FI15 Pohjois-Suomi 

 BE34 Luxembourg (B)  FI16 Uusimaa 

 BE35 Namur  FI17 Etelä-Suomi 

Bulgaria BG00 Bulgaria France FR10 Île de France 

Czech Republic CZ00 Czech Republic  FR21 Champagne-Ardenne 

Germany DE11 Stuttgart  FR22 Picardie 

 DE12 Karlsruhe  FR23 Haute-Normandie 

 DE13 Freiburg  FR24 Centre 

 DE14 Tübingen  FR25 Basse-Normandie 

 DE21 Oberbayern  FR26 Bourgogne 

 DE22 Niederbayern  FR30 Nord - Pas-de-Calais 

 DE23 Oberpfalz  FR41 Lorraine 

 DE24 Oberfranken  FR42 Alsace 

 DE25 Mittelfranken  FR43 Franche-Comté 

 DE26 Unterfranken  FR51 Pays de la Loire 

 DE27 Schwaben  FR52 Bretagne 

 DE30 Berlin  FR53 Poitou-Charentes 

 DE40 Brandenburg  FR61 Aquitaine 

 DE71 Darmstadt  FR62 Midi-Pyrénées 

 DE72 Gießen  FR63 Limousin 

 DE73 Kassel  FR71 Rhône-Alpes 

 DE80 Mecklenburg-Vorpommern  FR72 Auvergne 

 DE91 Braunschweig  FR81 Languedoc-Roussillon 

 DE92 Hannover  FR82 Provence-Côte d'Azur 

 DE93 Lüneburg/Bremen Greece GR00 Greece 

 DE94 Weser-Ems Hungary HU00 Hungary 

 DEA1 Düsseldorf Ireland IE00 Ireland 

 DEA2 Köln Italy IT11 Piemonte 

 DEA3 Münster  IT12 Valle d'Aosta 

 DEA4 Detmold  IT13 Liguria 

 DEA5 Arnsberg  IT20 Lombardia 
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ctd. 
 IT31 Trentino-Alto Adige  SE06 Norra Mellansverige 

 IT32 Veneto  SE07 Mellersta Norrland 

 IT33 Friuli-Venezia Giulia  SE08 Övre Norrland 

 IT40 Emilia-Romagna  SE09 Småland med öarna 

 IT51 Toscana  SE0A Västsverige 

 IT52 Umbria Switzerland CH00 Switzerland 

 IT53 Marche United Kingdom UKC1 Tees Valley & Durham 

 IT60 Lazio  UKC2 Northumberland & Wear 

 IT71 Abruzzo  UKD1 Cumbria 

 IT72 Molise  UKD2 Cheshire 

 IT80 Campania  UKD3 Greater Manchester 

 IT91 Puglia  UKD4 Lancashire 

 IT92 Basilicata  UKD5 Merseyside 

 IT93 Calabria  UKE1 East Riding & Lincolnsh. 

 ITA0 Sicilia  UKE2 North Yorkshire 

 ITB0 Sardegna  UKE3 South Yorkshire 

Lithuania LT00 Lithuania  UKE4 West Yorkshire 

Luxembourg LU00 Luxembourg  UKF1 Derbyshire & Nottingham 

Latvia LV00 Latvia  UKF2 Leicestershire 

Netherlands NL11 Groningen  UKF3 Lincolnshire 

 NL12 Friesland  UKG1 Herefordshire 

 NL13 Drenthe  UKG2 Shropshire & Staffordsh. 

 NL21 Overijssel  UKG3 West Midlands 

 NL22 Gelderland  UKH1 East Anglia 

 NL23 Flevoland  UKH2 Bedfordshire & Hertford. 

 NL31 Utrecht  UKH3 Essex 

 NL32 Noord-Holland  UKI1/UKI2 London Region 

 NL33 Zuid-Holland  UKJ1 Berkshire 

 NL34 Zeeland  UKJ2 Surrey 

 NL41 Noord-Brabant  UKJ3 Hampshire 

 NL42 Limburg (NL)  UKJ4 Kent 

Norway NO00 Norway  UKK1 Gloucestershire 

Poland PL00 Poland  UKK2 Dorset & Somerset 

Portugal PT11/PT12/PT14/PT15 Portugal except Lisbon  UKK3 Cornwall 

 PT13 Lisbon Region  UKK4 Devon 

Romania RO00 Romania  UKL1 West Wales  

Slovakia SK00 Slovakia  UKL2 East Wales 

Slovenija SI00 Slovenija  UKM1 North Eastern Scotland 

Spain ES11/ES12/ES13 Galicia/Asturias  UKM2 Eastern Scotland 

 ES21 Pais Vasco  UKM3 South Western Scotland 

 ES22/ES23/ES24 Aragón/La Rioja/Navarra  UKM4 Highlands and Islands 

 ES30 Comunidad de Madrid  UKN0 Northern Ireland 

 ES41 Castilla y León    

 ES42 Castilla-la Mancha Not included ES53 Baleares 

 ES43 Extremadura  ES70 Canares 

 ES51 Cataluña  FI20 Aland 

 ES52 Comunidad Valenciana  FR83 Corse 

 ES61 Andalucia  PT20 Acores 

 ES62 Región de Murcia  PT30 Madeira 

Sweden SE01 Stockholm    

 SE02 Östra Mellansverige    

 SE04 Sydsverige    
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Appendix B: Assignment of Patent Classes to the High-Technology Sector at the Four-

Digit ISIC-Level 

 

ISIC 

Category 
Industry Sector IPC Patent Class 

3522 Pharmaceuticals  

A61J, A61K, C07B, C07C, C07D, C07F, 

C07G, C07H, C07J, C07K, C12N, C12P, 

C12S 

3825 
Computers and Office 

Equipment 

B41J, B41L, G06C, G06E, G06F, G06G, 

G06J, G06K, G06M G11B, G11C 

3832 
Electronics – 

Telecommunications  

G08C, G09B, H01C, H01L, H01P, H01Q, 

H03B, H03C, H03D, H03F, H03G, H03H, 

H03J, H03K, H03L, H04A, H04B, H04G, 

H04H, H04J, H04K, H04L, H04M, H04N, 

H04Q, H04R, H04S, H05K 

3845 Aerospace B64B, B64C, B64D, B64F, B64G 

 


