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Abstract. In this paper we view learning as an unconstrained non-linear minimization 

problem in which the objective function is defined by the negative log-likelihood 

function and the search space by the parameter space of an origin constrained product 

unit neural spatial interaction model. We consider Alopex based global search, as 

opposed to local search based upon backpropagation of gradient descents, each in 

combination with the bootstrapping pairs approach to solve the maximum likelihood 

learning problem. Interregional telecommunication traffic flow data from Austria are 

used as test bed for comparing the performance of the two learning procedures. The 

study illustrates the superiority of Alopex based global search, measured in terms of 

Kullback and Leibler’s information criterion. 

 

Key Words: Maximum likelihood learning, local search, global search, backpropagation 

of gradient descents, Alopex procedure, origin constrained neural spatial interaction 

model 
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1 Introduction 

 

In many spatial interaction contexts, little is known about the form of the spatial 

interaction function that is to be approximated. In such cases it is not possible to utilize 

a parametric modeling approach where a mathematical model is specified with 

unknown coefficients that have to be estimated. Neural spatial interaction models 

relieve the model user of the need to specify exactly a model that includes all necessary 

terms to model the true spatial interaction function. Two major issues have to be solved 

when applying a neural spatial interaction model in a real world context: first the 

representation problem, and, second the learning problem. Our interest centers at the 

latter problem. 

 

This contribution departs from earlier studies in neural spatial interaction modeling in 

three respects. First, current research generally suffers from least squares and Gaussian 

assumptions that ignore the true integer nature of the flows and approximate a discrete-

valued process by an almost certainly misrepresentative distribution. To overcome this 

deficiency we adopt a more suitable approach for solving the learning problem, namely 

maximum likelihood learning [estimation] under more realistic distributional 

assumptions of Poisson processes. Second, classical [i.e. unconstrained summation unit] 

neural spatial interaction models represent – no doubt – a rich and flexible class of 

spatial interaction function approximators to predict flows, but may be of little practical 

value if a priori information is available on accounting constraints on the predicted 

flows. We focus attention on the only existing generic neural network model for the 

case of spatial interaction. Third, we utilize the bootstrapping pairs approach with 

replacement to overcome the generally neglected issue of fixed data splitting and to get 

a better statistical picture of the learning and generalization variability of the model 

concerned. 

 

Succinctly put, the objective of the paper is twofold. First, we develop a rationale for 

specifying the maximum likelihood learning problem in product unit neural networks 

for modeling origin constrained spatial interaction flows as recently introduced in 

Fischer, Reismann and Hlavackova-Schindler (2002). Second, we consider Alopex 

based global search, and local search based upon backpropagation of gradient descents, 
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in combination with the bootstrapping pairs approach to solve the maximum likelihood 

learning problem. 

 

The paper proceeds as follows. The next section sets forth the context in which the 

learning problem is considered. Section 3 views learning as an unconstrained non-linear 

minimization problem in which the objective function is defined by the negative log-

likelihood and the search space by the parameter space. In the sections that follow we 

discuss details how the highly non-linear learning problem can be solved. We consider 

two learning procedures in some more detail: gradient descent based local search [the 

most widely used technique in unconstrained neural spatial interaction modeling] in 

Section 4 and Alopex based global search in Section 5. Section 6 serves to illustrate the 

application of these procedures in combination with the bootstrapping pairs approach to 

address the issue of network learning. Interregional telecommunication traffic flow data 

are utilized as test bed for evaluating the two competing learning approaches. The 

robustness of the procedures is measured in terms of Kullback and Leibler’s 

information criterion. Section 7 outlines some directions for future research. 

 

 

2 The Context 

 

Before discussing the learning problem we must specify the context in which we 

consider learning. Our attention is focused on learning in origin constrained product 

unit neural spatial interaction models. Throughout the paper we will be concerned with 

the data generated according to the following conditions. 

 

Assumption A: Observed data are the realization of the sequence 

( ){ }, , 1,...,u u uZ X Y u U= =  of ( )1 1N + ×  independent vectors ( )N ∈  defined as a 

Poisson probability space. 

 

The random variables uY  represent targets. Their relationship to the variables uX  is of 

primary interest. When ( )uE Y < ∞ , the conditional expectation of uY  given uX  exists, 

denoted as ( )u ug E Y X= . Defining ( )u u uY g Xε ≡ −  

 

 ( )u u uY g X ε= +  (1) 
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The unknown spatial interaction function g embodies the systematic part of the 

stochastic relation between uY  and uX . The error uε  is noise, with the property 

( ) 0u uE Xε =  by construction. Our problem is to learn the mapping g from a 

realization of the sequence { }uZ . 

 

We are interested in learning the mapping g for the case of origin constrained spatial 

interaction. Because g is unknown, we approximate it using a family of known 

functions. Of particular interest to us are the output functions of origin constrained 

product unit neural spatial interaction models as recently introduced in Fischer, 

Reismann and Hlavackova-Schindler (2002). 

 

Assumption B: Model output is given by 

 

 ( )
2

1 2 1

, hn

jH
H

j h h nj
h n j

x
βΩ ψ γ j

= = −

  
=      

∑ ∏x w  (2) 

 

for 1,...,j J=  with ,h hj ψ : →  , and 2J
x ∈ , that is x = (x1, x2,…, x2j-1,..., x2J-1, x2J) 

where 2 1jx −  represents a variable pertaining to destination j ( )1,...,j J=  and 2 jx  a 

variable characterizing the separation from region i to region j ( )1,..., ; 1,...,i I j J= =  of 

the spatial interaction system under scrutiny. hnβ  ( )1,..., ; 2 1, 2h H n j j= = −  are the 

input-to-hidden connection weights, and hγ  ( )1,...,h H=  the hidden-to-output weights 

in the j-th module of the network model. The symbol w is a convenient shorthand 

notation of the (3H)-dimensional vector of all the model parameters. jψ  ( )1,...,j J=  

represents a non-linear summation unit and hj  ( )1,...,h H=  a linear hidden product 

unit transfer function. The model output function is explicitly indexed by the number, 

H, of hidden units in order to indicate the dependence. Finally, it is worth noting that 

models of type (2) utilize a product unit rather than the generally used standard 

summation unit neural network framework for modeling interactions over space. The 

product units compute the product of inputs, each raised to a variable power. 

 

A leading case that is considered in this paper occurs when ( )hj ⋅  is specified as 

identity function and ( )jψ ⋅  as a non-linear transfer function which resembles the 
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Bradley-Terry-Luce model augmented by a bias unit ( )ib  to build the a priori 

information into the model structure (for a mathematical derivation see Fischer, 

Reismann and Hlavackova-Schindler, 2002): 

 

 ( ) ( )

2

1 2 1

2

1 1 2 1

, 1, ...,

hn

h n

jH

h n

h n jH

i jJ Hj

h n

j h n j

x

b j J

x

β

β

γ
Ω

γ

= = −

= = = −

= =
∑ ∏

∑∑ ∏
x w

'

'

'

' ' '

 (3) 

 

for 1,...,j J= . ( )ib  is the bias signal generated by a dummy unit whose output is 

clamped at the scalar it ⋅ , where it ⋅  denotes the observed flow from region i to each of 

the J regions. 

 

3 The Learning Problem 

 

If we view (3) as generating a family of approximations – as w ranges over W, say – to 

a spatial interaction function g, then we need a way to pick the best approximation from 

this family. This is the function of network learning (also termed training or parameter 

estimation). It is convenient to consider learning as an unconstrained non-linear 

minimization problem in which the objective function is defined by a loss (error, cost) 

function and the search space by the (3H)-dimensional parameter space. Formally, 

 

 ( )min
W∈

λ
w

w  (4) 

 

where ( )wλ  represents the loss function measuring the network performance given the 

parameter w and observation ( ),=z x y . It is evident that the choice of the loss function 

plays a crucial role in the determination of the optimal parameter ŵ . We follow Fischer 

and Reismann (2002b) to specify an appropriate loss function. Hereby, we assume that 

the objective is to find that neural spatial interaction model which is the most likely 

explanation of the observed data set (Rumelhart et al., 1995). We express this as 

attempting to maximize 
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 ( )( )
( )( ) ( )( )

( )

H
P M P

P M
P M

H
H

Ω Ω
Ω =

w w
w  (5) 

 

where ( )( )P M
HΩ w  is the probability that model ( )HΩ w  would have produced the 

observed data M. ( )( )P
HΩ w  represents the unconditional probability density of 

( )HΩ w  and ( )P M  that of M. 

 

Since sums are easier to work with than products, we will maximize the log of 

( )( )P M
HΩ w , and since this log is a monotonic transformation, maximizing the log 

is equivalent to maximizing the probability itself. In this case we get 

 

 ( )( ) ( )( ) ( )( ) ( )ln ln ln lnP M P M P P M
H H HΩ Ω Ω= + −w w w  (6) 

 

The probability ( )P M  of the data is not dependent on ( )HΩ w . Thus, it is sufficient to 

maximize the first two terms of the right hand side of Equation (6). The first of these 

terms represents the probability of the data given the model, and hence measures how 

well the network accounts for the data. The second term is a representation of the model 

itself; that is, it is a prior probability of the model that can be utilized to get information 

and constraints into the learning procedure. 

 

We focus solely on the first term, the performance, and begin by noting that the data 

can be broken down into a set of observations, ( ){ }, 1,...,u u uM z x y u U= = = , each uz , 

we will assume chosen independently of the others. Hence we can write the probability 

of the data given the model as  

 

 ( )( ) ( )( ) ( )( )ln ln lnu u

uu

P M P z P z
H H HΩ Ω Ω= = ∑∏w w w  (7) 

 

Note that this assumption permits to express the probability of the data given the model 

as the sum of terms, each term representing the probability of a single observation 

given the model. We can still take another step and break the data into two parts: the 

observed input data ux  and the observed target data uy . Therefore we can write 
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 ( )( ) ( )( ) ( )ln ln and lnu u uu
u u

P M P y x  P x
H HΩ  Ω= +∑ ∑w w  (8) 

 

Since we assume that ux  does not depend on the model, the second term of Equation 

(8) will not affect the determination of the optimal model. Thus, we need only to 

maximize the first term of the right-hand side of Equation (8). 

 

Up to now we have – in effect – made only the assumption of the independence of the 

observed data. To proceed further, we have to specify the form of the distribution of 

which the model output is the mean. In line with Assumption A that the observed data 

are the realization of a sequence of independent Poisson random variables we can write 

the probability of the data given the model as 

 

 ( )( )
( ) ( )( )exp

and
!

uy

u u
u

u u u

u

P y x
y

H H

H
Ω Ω

Ω
−

=
∏ w w

w  (9) 

 

and, hence, define a maximum likelihood estimator as the parameter that maximizes the 

log-likelihood function 

 

 ( ) ( ) ( )( )max max lnu u u
u

L y
H HΩ Ω

∈ ∈
= −∑

w W w W
w w w  (10) 

 

Instead of maximizing the log-likelihood it is more convenient to minimize the negative 

log-likelihood function ( )wλ  

 

 ( ) ( ) ( )min min ln H H

u u uu
y Ω Ω

∈ ∈
 = − − ∑λ

w W w W
w w w  (11) 

 

The function λ  is called the loss, cost or objective function. w  is a (3H)-dimensional 

vector called the design vector. The point ŵ  is a global minimizer for ( )wλ  if 

( ) ( )ˆ ≤w wλ λ  for all 3H∈w . A parameter vector ŵ  is a strict local minimizer of 

( )wλ  if the relation ( ) ( )ˆ ≤w wλ λ  holds for a ball ( )ˆ ,B ∈w . If the first and second 

derivatives of ( )wλ , a point ŵ  is a strict local minimizer of ( )wλ  if the gradient is 

zero [that is ( )ˆ 0∇ =wλ ] and the Hessian matrix is positive definite [that is, 
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( )2 ˆ 0T ∇ >w wλ ]. λ  is typically a highly non-linear function of the parameters. As a 

consequence, it is in general not possible to find closed-form solutions for the minima. 

 

In the sections that follow we discuss how the learning problem (11) can be solved. We 

seek a solution to what is typically a highly non-linear optimization problem. We first 

consider the gradient descent based search and then the Alopex based global search 

procedures. 

 

4 Gradient Descent Based Search 

 

The most prominent procedures solving the learning problem (11) are gradient descent 

techniques. These methods transform the minimization problem into an associated 

system of first-order ordinary differential equations which can be written in compact 

matrix form (see Cichocki and Unbehauen, 1993) as 

 

 ( ) ( ), w

d
s

d
= − ∇

w
w w

s
µ λ  (12) 

 

with 

 

 31 , ...,

T

Hdwd dw

d ds ds

 =   
w

s
 (13) 

 

( )w∇ wλ  represents the gradient operator of ( )wλ  with respect to the (3H)-

dimensional parameter vector w. ( ), swµ  denotes a 3 3H H×  positive definite 

symmetric matrix with entries depend on time s and the vector ( )sw . 

 

In order to find the desired vector ŵ  that minimizes the loss function ( )wλ  we need to 

solve the system of ordinary equations (12) with initial conditions. Thus, the minima of 

( )wλ  are determined by the following trajectory of the gradient system with 

 

 ( )ˆ lim
s

s
→∞

=w w  (14) 
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But it is important to note that we are concerned only with finding the limit rather that 

determining a detailed picture of the whole trajectory ( )sw  itself. In order to illustrate 

that the system of differential equations given by (12) is stable let us determine the time 

derivative of the loss function 

 

 ( ) ( ) ( )
3

1

0
H

T
k

w w

k k

d
,s

ds s=

∂∂
= = − ∇ ∇ ≤  ∂ ∂∑ w

w w w
w

λ λ λ µ λ  (15) 

 

under the condition that the matrix ( ),swµ  is symmetric and positive definite. Relation 

(15) guarantees under appropriate regularity conditions that the loss function decreases 

in time and converges to a stable local minimum as s → ∞ . When /d ds = 0w  then this 

implies ( )∇ = 0λ w  for the system of differential equations. Thus, the stable point 

coincides either with the minimum or with the inflection point of the loss function (see 

Cichocki and Unbehauen, 1993). 

 

The speed of convergence to the minimum depends on the choice of the entries of 

( ),swµ . Different choices for µ  implement different specific gradient based search 

procedures: In the simplest and most popular procedure, known as gradient descent, the 

matrix ( ),swµ  is reduced to the unity matrix multiplied by a positive constant η  that 

is called the learning parameter. It is interesting to note that the vectors /d dsw  and 

( )∇ wλ  are opposite vectors. Hence, the time evaluation of ( )sw  will result in the 

minimization of ( )wλ  as time s  goes on. The trajectory ( )sw  moves along the 

direction which has the sharpest rate of decrease and is called the direction of steepest 

descent. 

 

The discrete-time version of the steepest descent [also termed gradient] procedure can 

be written in vector form as 

 

 ( ) ( ) ( ) ( )( )1 ws s s sη+ = − ∇w w wλ  (16) 

 

with ( ) 0sη ≥ . The parameter ( )sη  is called learning rate and determines the length of 

the step to be taken in the direction of the gradient of ( )( )swλ . It is important to note 

that ( )sη  should be bounded in a small range to ensure stability of the algorithm. Note 
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that the sometimes extreme local irregularity ('roughness', 'ruggedness') of the function 

λ  over W arising in neural spatial interaction models may require the development and 

use of appropriate modifications of the standard procedure given by (16). 

 

We utilize the simplest version of (16), that is, ( )sη η=  [η  sufficiently small] in 

combination with the technique of backpropagation popularized in a paper by 

Rumelhart, Hinton and Williams (1986) for evaluating the derivatives of the loss 

function with respect to the parameters. This technique provides a computationally 

efficient method for evaluating such derivatives. It corresponds to a propagation of 

errors backwards through the spatial interaction network. Because of the relative 

familiarity of this evaluation technique we do not go into details regarding the specifics 

of implementation. Those not familiar with backpropagation are referred to Bishop 

(1995) for further information. 

 

5 Alopex-Based Global Search 

 

Although computationally efficient, gradient based minimization procedures, such as 

backpropagation of gradient errors, may lead only to local minima of ( )wλ  that 

happen to be close to the initial search point ( )0w . As a consequence, the quality of the 

final solution of the learning problem is highly dependent on the selection of the initial 

condition. Global search procedures are expected to lead to optimal or 'near-optimal' 

parameter configurations by allowing the network model to escape from local minima 

during training. Genetic algorithms and the Alopex procedure are attractive candidates. 

We utilize the latter as described in Fischer and Reismann (2002b). 

 

The success of global search procedures in finding a global minimum of a given 

function such as ( )wλ  over w ∈ W hinges on the balance between an exploration 

process, a guidance process and a convergence-inducing process (see Hassoun, 1995). 

The exploration process gives the search a mechanism for sampling a sufficiently 

diverse set of parameters w in W. The Alopex procedure performs an exploration 

process that is stochastic in nature. The guidance process is an implicit process that 

evaluates the relative quality of search points and utilizes correlation guidance to move 

towards regions of higher quality solutions in the parameter space. Finally, the 

convergence-inducing process ensures the convergence of the search to find a fixed 
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solution ŵ . The convergence-inducing process is realized effectively by a parameter T, 

called temperature in analogy to the simulated annealing procedure, that is gradually 

decreased over time. The dynamic interaction among these three processes is 

responsible for giving the Alopex search procedure its global optimizing character. 

 

Alopex is a correlation-based method for solving the learning problem (see Bia, 2000; 

Unnikrishnan and Venugopal, 1994; Harth and Pandya, 1988). The loss function λ  is 

minimized by means of weight changes that are calculated for the s-th step ( 2s > ) of 

the iteration process as follows: 

 

 ( ) ( ) ( )( )1 sgnk k kw s w s p sδ s= − + −  (17) 

 

where δ  is the step size that has to be chosen a priori, and s  is an uniformly 

distributed random value with [ ]0,1s ∈ . The probability of change of the parameter is 

calculated as 

 

 ( ) ( ) ( )( )( ) 1

1 exp /k kp s C s T s
−

= +  (18) 

 

with ( )kC s  given by the correlation 

 

 ( )kC s  ( ) ( ) ( )( ) ( )( )1 2 1 2k k k kw s w s w s w sλ λ = − − − − − −      (19) 

 ( ) ( )( )k kw s w s= ∆ ∆λ   

 

The weight will be incremented in a given fixed magnitude δ , when ( ) 0kw s∆ > , and 

the opposite when it is less than zero. The sign of kC  indicates whether λ  varies in the 

same way as kw . If 0kC > , both λ  and kw  will be raised or lowered. If 0kC < , one 

will be lowered and the other one raised. If T is too small, the algorithm gets trapped 

into local minima of λ . Thus the value of T for each iteration, ( )T s , is chosen using 

the following heuristic 'annealing schedule': 
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 ( )
( )

( )

1

if is a multiple of
3

1 otherwise

s

k

k s S

C s s S
HST s

T s

δ −

= −


= 
 −

∑ ∑
s'

'
 (20) 

 

where 3H  denotes the number of parameters. The annealing schedule controls the 

randomness of the algorithm. When T is small, the probability of changing the 

parameter is around zero if kC  is negative and around one if kC  is positive. 

 

If T is large, then 0.5kp ≅ . This means that there is the same probability to increment 

or decrement the weights and that the direction of the steps is now random. In other 

words, high values of T imply a random walk, while low values cause a better 

correlation guidance (see Bia, 2000). The effectiveness of Alopex in locating global 

minima and its speed of convergence critically depend on the balance of the size of the 

feedback term kw∆ ∆λ  and the temperature T. If T is very large compared to kw∆ ∆λ  

the process does not converge. If T is too small, a premature convergence to a local 

minimum might occur.  

 

The algorithm has three control parameters: the initial temperature T, the number of 

iterations S over which the correlations are averaged for annealing, and the step size δ . 

Setting the temperature high initially, say 1,000T = , one may escape from local 

minima. The temperature is lowered at an appropriate rate so as to control the 

probability of jumping away from relatively good minima. The correlations need to be 

averaged over a sufficiently large number of iterations so that the annealing does not 

freeze the algorithm at local minima. 10S =  has been found to be appropriate. δ  is a 

critical control parameter that has to be chosen with care. 

 

It is worth noting that Alopex based global search is similar to the method of simulated 

annealing (see Kirkpatrick, Gelatt and Vecchi, 1983), but differs in three important 

aspects: first, the correlation ( )∆ ∆wλ  is used instead of the change in error ∆λ  for 

parameter updates; second, all parameter changes are accepted at every iteration step; 

and third during an iteration all parameters are updated simultaneously. 
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6 Experimental Environment and Performance Tests 

 

To analyze the performance of the learning procedures discussed in the previous 

sections in a real world context we utilize the interregional telecommunication traffic 

flow data from Austria as test bed. 

 

The Data Set 

 

The data set was constructed from three data sources: a ( )32,32 - interregional flow 

matrix ( )ijt , a ( )32,32 -distance matrix ( )ijd , and gross regional products jg  for the 32 

telecommunication regions. It contains 992 3-tuples ( ), ,i ij ijg d t  where the first two 

components represent the input variables 2 1jx −  and 2 jx  of the j-th module of the 

network model, and the last component the target output. Input data were preprocessed 

to lie in [0.1, 0.9]. The telecommunication data stem from network measurements of 

carried telecommunication traffic in Austria in 1991, in terms of erlang, which is 

defined as the number of phone calls (including facsimile transmissions) multiplied by 

the average length of the call (transfer) divided by the duration of the measurement. 

 

Data Splitting, Bootstrapping and Performance Measure 

 

The main goal of network learning is to minimize ( )wλ  while ensuring good model 

generalization. Thus, we monitor model performance during training to assure that 

further learning improves generalization as well as reduces the loss function λ . For this 

purpose an additional set of internal validation data, independent from the training data, 

is used. In our implementation of the learning procedures network learning will be 

stopped when 40,000κ =  consecutive iterations are unsuccessful. κ  has been chosen 

so large at the expense of the greater training time, to ensure more reliable estimates. Of 

course, setting the number of unsuccessful iterations to 40,000 (or more) does not 

guarantee that there would be any successful steps ahead if training continued. At some 

stage a learning algorithm may recover from some local attractor and accomplish 

further error minimization, but we require it should occur within a certain number of 

iterations. 
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One of the simplest methods for assessing the learning and generalization abilities of a 

model is, thus, data splitting. This method simulates learning and generalization by 

partitioning the total data set ( ){ }, , 1,...,u uM x y u U= =  into three separate subsets: the 

training set ( ){ }1 1 1 1, , 1 1,...,u uM x y u U= = , the internal validation set 

( ){ }2 2 2 2, , 2 1,...,u uM x y u U= =  and the test set ( ){ }3 3 3 3, , 3 1,...,u uM x y u U= = . 1M  is 

used for learning only, 2M  for stopping the learning process and 3M  for measuring the 

generalization performance. In our study 1 496,U = 2 3 248U U= = . 

 

It is common practice to use random splits of the data. The simplicity of this approach 

is appealing. But recent experience has found this approach to be more sensitive to the 

specific splitting of the data (see Fischer and Reismann, 2002a). In order to overcome 

this problem we use the learning algorithms in combination with the bootstrapping pairs 

approach with replacement [ ]60B =  (see Efron, 1982) to address the issue of network 

learning. This approach combines the purity of splitting the data into three disjoint data 

sets with the power of a resampling procedure and, thus, allows to get a better statistical 

picture of both the learning and prediction variability.  

 

Performance is measured in terms of Kullback and Leibler’s information criterion (see 

Kullback and Leibler, 1951), that reflects the conditions under which ML learning is to 

be evaluated 

 

 ( )
( ) ( )

1

'

' 1

1
1

'
'

' 1
' 1

ln

, ,

U

u uU
uu

U
U

u
u

u u
u

u

y y
y

KLIC M

y x x
H HΩ Ω

−

=
−

=

= =

  
    =        

∑
∑

∑ ∑w w

 (21) 

 

where ( ),u ux y  denotes the u-th pattern of the data set M. The performance measure has 

a minimum at zero and a maximum at positive infinity when 0uy >  and 

( ) 0ux ,
HΩ =w  for any ( ),u ux y -pair. 

 

Performance Tests 

 

Both methods, backpropagation of gradient descents and Alopex are iterative 

procedures. This implies that the learning process is more or less sensitive to its starting 
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point in both cases. The solutions to the learning problem may vary as the initial 

parameter settings are changed. Despite recent progress in finding the most appropriate 

parameter initialization to determine near optimal solutions, the most widely adopted 

approach still uses random parameter initialization. In our experiments random 

numbers were generated from [-0.3, 0.3] using the rand_uni function from Press et al. 

(1992). The order of the input data presentation was kept constant for each run to 

eliminate its effect on the result. 

 

For concreteness, we consider the learning problem in a series of increasingly complex 

neural spatial interaction models { ( ),
HΩ x w , H = 2, 4, 6, 8, 10, 12 ,14} permitting the 

complexity of the product unit neural network to grow at an appropriate rate. Statistical 

theory may provide guidance in choosing the control parameters of the learning 

algorithms for optimal tracking, but this is a difficult area for future research. In this 

study the Alopex parameters T and S were set to 1,000 and 10, respectively. In order to 

do justice to each learning procedure, the critical Alopex control parameter δ  [step 

size] and the critical gradient descent control parameter η  [learning rate] were 

systematically sought for each HΩ . Extensive computational experiments with 

η ∈{0.0000025, 0.0000050, 0.0000100, 0.0000250, 0.0000500, 0.0001000, 

0.0002500} and δ ∈{0.0005, 0.0010, 0.0025, 0.0050, 0.0075, 0.0100, 0.0250, 0.0500, 

0.1000} have been performed on DEC Alpha 375 MHz to address the issue of learning 

in the above models. 

 

POSITION TABLE 1 ABOUT HERE 

 

Table 1 shows the best solutions of both procedures for HΩ  with H = 2, 4, 6, 8, 10, 12 

and 14. Learning [in-sample] performance is measured in terms of ( )1KLIC M , 

validation performance in terms of ( )2KLIC M  and generalization [out-of-sample] 

performance in terms of ( )3KLIC M . The performance values represent the mean of 

60B =  bootstrap replications, standard deviations are given in brackets. The results 

achieved illustrate that Alopex based global search outperforms backpropagation of 

gradient descents in all cases, in terms of both learning and generalization performance. 

There is also strong evidence of the robustness of the algorithm, measured in terms of 

standard deviation. We attribute Alopex superiority in finding better local minima to its 

annealing mechanism to escape from local minima during training. 
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7 Conclusions and Outlook 

 

Learning neural spatial interaction parameters is like solving an unconstrained 

continuous non-linear minimization problem. The task is to find parameter assignments 

that minimize the given negative log-likelihood function. Product unit neural spatial 

interaction network learning is a multimodal non-linear minimization problem with 

many local minima. Local minimization algorithms such as backpropagation of 

gradient descents have difficulties when the surface of the search space is flat [that is, 

gradient close to zero], or when the surface is very rugged. When the surface is rugged, 

a local search from a random starting point generally converges to a local minimum 

close to the initial point and to a worse solution than the global minimum. 

 

Global search procedures such as Alopex based search, as opposed to local search, have 

to be used in learning problems where reaching the global optimum is at premium. But 

the price one pays for using global search procedures in general and Alopex search in 

particular is increased computational requirements. The intrinsic slowness of global 

search procedures is mainly due to the slow but crucial exploration process employed. 

An important lesson from the results of the study and an interesting avenue for research 

is, thus, to make global search more speed efficient. This may motivate the 

development of a hybrid procedure that uses global search to identify regions of the 

parameter space containing promising local minima and gradient information to 

actually find them. 
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Table 1. 

Approximation to the Spatial Interaction Function Using Backpropagation of Gradient 

Descents versus Alopex Based Global Search. 
            

   Backpropagation of Gradient Descents   Alopex Based Global Search  

  Parameter KLIC(M1) KLIC(M2) KLIC(M3)  Parameter KLIC(M1) KLIC(M2) KLIC(M3)  

 H = 2 η = 10
-5
 0.2105 0.2230 0.2262  δ = 10

-2
 0.1927 0.1968 0.2120  

   (0.0540) (0.0911) (0.0812)   (0.0522) (0.0776) (0.0698)  

 H = 4 η = 10
-5
 0.2109 0.2229 0.2262  δ = 10

-2
 0.1853 0.1897 0.2035  

   (0.0541) (0.0909) (0.0806)   (0.0460) (0.0754) (0.0690)  

 H = 6 η = 10
-5
 0.2125 0.2231 0.2271  δ = 2.5·10

-2
 0.1883 0.1902 0.2048  

   (0.0551) (0.0895) (0.0796)   (0.0483) (0.0725) (0.0708)  

 H = 8 η = 10
-5
 0.2129 0.2230 0.2279  δ = 2.5·10

-2
 0.1868 0.1888 0.2049  

   (0.0553) (0.0879) (0.0796)   (0.0505) (0.0732) (0.0707)  

 H = 10 η = 5·10
-6
 0.2120 0.2243 0.2273  δ = 2.5·10

-2
 0.1874 0.1897 0.2045  

   (0.0543) (0.0887) (0.0811)   (0.0485) (0.0734) (0.0691)  

 H = 12 η = 2.5·10
-5

 0.2131 0.2254 0.2283  δ = 10
-2
 0.1866 0.1909 0.2019  

   (0.0560) (0.0893) (0.0826)   (0.0483) (0.0731) (0.0684)  

 H = 14 η = 5·10
-6
 0.2122 0.2260 0.2275  δ = 2.5·10

-2
 0.1899 0.1924 0.2065  

   (0.0547) (0.0894) (0.0803)   (0.0504) (0.0747) (0.0689)  

            

Note: KLIC-performance values represent the mean (standard deviation in brackets) of B = 60 bootstrap 

replications differing in both the initial parameter values randomly chosen from [-0.3; 0.3] and the data split. 

KLIC(M1): Learning performance measured in terms of average KLIC; KLIC(M2): Validation performance 

measured in terms of average KLIC; KLIC(M3): Generalization performance measured in terms of average 

KLIC; M consists of 992 patterns, M1 of 496 patterns, M2 of 248 patterns and M3 of 248 patterns. 
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