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This paper attempts to develop a mathematically rigid and unified framework for 

neural spatial interaction modeling. Families of classical neural network models, but 

also less classical ones such as product unit neural network ones are considered for the 

cases of unconstrained and singly constrained spatial interaction flows. Current 

practice appears to suffer from least squares and normality assumptions that ignore the 

true integer nature of the flows and approximate a discrete-valued process by an 

almost certainly misrepresentative continuous distribution. To overcome this deficiency 

we suggest a more suitable estimation approach, maximum likelihood estimation under 

more realistic distributional assumptions of Poisson processes, and utilize a global 

search procedure, called Alopex, to solve the maximum likelihood estimation problem. 

To identify the transition from underfitting to overfitting we split the data into training, 

internal validation and test sets. The bootstrapping pairs approach with replacement is 

adopted to combine the purity of data splitting with the power of a resampling 

procedure to overcome the generally neglected issue of fixed data splitting and the 

problem of scarce data. In addition, the approach has power to provide a better 

statistical picture of the prediction variability, Finally, a benchmark comparison 

against the classical gravity models illustrates the superiority of both, the 

unconstrained and the origin constrained neural network model versions in terms of 

generalization performance measured by Kullback and Leibler’s information criterion. 
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There are several phases that an emerging field goes through before it reaches 

maturity, and GeoComputation is no exception. There is usually a trigger for birth of 

the field. In our case, new techniques such as neural networks and evolutionary 

computation, significant progress in computing technology, and the emerging data rich 

environment inspired many scholars to revisit old and tackle new spatial problems. The 

result has been a wealth of new approaches, with significant improvements in many 

cases (see Longley et al. 1998, Fischer and Leung 2001). 

 

After the initial excitement settles in, the crest breaking question is whether the new 

community of researchers can produce sufficient results to sustain the field, and 

whether practitioners will find these results to be of quality, novelty, and relevance to 

make a real impact. Successful applications of geocomputational models and 

techniques to a variety of problems such as data mining, pattern recognition, 

optimization, traffic forecasting and spatial interaction modeling rang the bell 

signifying the entry of GeoComputation as an established field. 

 

This paper is a response to the perceived omission in the comprehensive 

understanding of one of the most important subfields in GeoComputation. While 

various papers on neural network modeling of unconstrained spatial interaction flows 

have appeared in the past decade, there has yet to be an advanced discussion of the 

general concepts involved in the application of such models. This paper attempts to fill 

the gap. Among the elements which should be of interest to those interested in 

applications are estimation and performance issues. 

 

The paper proceeds as follows. The first section points to some shortcomings evident in 

current practice and motivates to depart in two directions: First, to employ maximum 

likelihood under more realistic distributional assumptions rather than least squares and 

normality assumptions, and second to utilize bootstrapping to overcome the problems 

of fixed data splitting and the scarcity of data that affect performance and reliability of 

the model results. Section 2 describes classical unconstrained neural spatial interaction 

models and less classical ones. Classical models are those that are constructed using a 

single hidden layer of summation units. In these network models each input to the 

hidden node is multiplied by a weight and then summed. Less classical models utilize a 
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product unit rather than the standard summation neural network framework for 

modeling interactions over space. 

 

Unconstrained – summation unit and product unit – neural spatial interaction 

models represent rich and flexible families of spatial interaction function 

approximators. But they may be of little practical value if a priori information is 

available on accounting constraints on the predicted flows. Section 3 moves to the case 

of constrained spatial interaction. To satisfactorily tackle this issue within a neural 

network environment it is necessary to embed the constraint-handling mechanism 

within the model structure. This is a far from easy task. We briefly describe the only 

existing generic model approach for the single constrained case (see Fischer, Reismann 

and Hlavackova-Schindler 2001), and present summation and product unit model 

versions. We reserve the doubly constrained case to subsequent work. 

 

We view parameter estimation (network learning) in an optimization context and 

develop a rationale for an appropriate objective (loss) function for the estimation 

approach in Section 4. Global search procedures such as simulated annealing or Alopex 

may be employed to solve the maximum likelihood estimation problem. We follow 

Fischer, Hlavackova-Schindler and Reismann (2001) to utilize the Alopex procedure 

that differs from the method of simulated annealing in three important aspects. First, 

correlations between changes in individual parameters and changes in the loss function 

are used rather than changes in the loss function only. Second, all parameter changes 

are accepted at every iteration, and, third, during an iteration step all parameters are 

updated simultaneously.  

 

The standard approach to evaluate the generalization performance of neural network 

models is to split the data set into three subsets: the training set, the internal validation 

set and the testing set. It has become common practice to fix these sets. A bootstrapping 

approach is suggested to overcome the generally neglected problem of sensitivity to the 

specific splitting of the data, and to get a better statistical picture of prediction 

variability of the models. Section 5 illustrates the application of the various families of 

neural spatial interaction function approximators discussed in the previous sections, and 

presents the results of a comparison of the performance of the summation and the 

product unit neural network model versions [unconstrained and origin constrained 
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cases] against the corresponding standard gravity models. The testbed for the evaluation 

uses interregional telecommunication traffic data from Austria. Section 6 outlines some 

directions for future research. 

 

1. DEPARTURES FROM CURRENT PRACTICE 

 

We will begin our analysis with the simplest case, namely that of unconstrained spatial 

interaction. For concreteness and simplicity, we consider neural spatial interaction 

models based on the theory of single hidden layer feedforward models. Current 

research in this field appears to suffer from least squares and Gaussian assumptions that 

ignore the true integer nature of the flows and approximate a discrete-valued process by 

an almost certainly misrepresentative distribution. As a result, least squares estimates 

and their standard errors can be seriously distorted. To overcome this shortcoming we 

will develop a more appropriate estimation approach under more realistic distributional 

assumptions.  

 

Thus, throughout the paper we assume observations generated as the realization of a 

sequence ( ){ }, , 1,...,k k kZ X Y k K= =  of ( )1 1N + ×  vectors ( )N ∈ `  defined on a 

Poisson probability space. The random variables kY  represent targets. Their relationship 

to the variables kX  is of primary interest. When ( )kE Y < ∞ , the conditional 

expectation of kY  given kX  exists, denoted as ( )k kE Y X=g . Defining 

( )k k kY Xε ≡ −g , we can also write ( )k k kY X ε= +g . The unknown spatial interaction 

function g  embodies the systematic part of the stochastic relation between kY  and kX . 

The error kε  is noise, with the property that ( ) 0k kE Xε =  by construction. Our 

problem is to learn (estimate, approximate) the mapping g  from a realization of the 

sequence { }kZ .  

 

In practice, we observe a realization of only a finite part of the sequence { }kZ , a 

training set or sample of size K  (i.e. a realization of { }1,...,kZ k K= ). Because g  is an 

element of a space of spatial interaction functions, say G , we have essentially no hope 

of learning g  in any complete sense from a sample of fixed finite size. Nevertheless, it 

is possible to approximate g  to some degree of accuracy using a sample of size K , and 

to construct increasingly accurate approximations with increasing K . We will refer to 

such a procedure interchangeable as learning, estimation or approximation. 
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There are many standard procedures of function approximation to this function g . 

Perhaps the simplest is linear regression. Since feedforward neural networks are 

characteristically nonlinear it is useful to view them as performing a kind of nonlinear 

regression. Several of the issues that come up in regression analysis are also relevant to 

the kind of nonlinear regression performed by neural networks. 

 

One important example comes up in the cases of underfitting and overfitting. If the 

neural network model is able to approximate only a narrow range of functions, then it 

may be incapable of approximating the true spatial interaction function no matter how 

much training data is available. Thus, the model will be biased, and it is said to be 

underfitted. The solution to this problem seems to be to increase the complexity of the 

neural network, and, thus, the range of spatial interaction functions, that can be 

approximated, until the bias becomes negligible. But, if the complexity [too many 

degrees of freedom] rises too far, then overfitting may arise and the fitted model will 

again lead to poor estimates of the spatial interaction function. If overfitting occurs then 

the fitted model can change significantly as single training samples are perturbed and, 

thus shows high variance. The ultimate measure of success is not how closely the 

model approximates the training data, but how well it accounts for not yet seen cases. 

Optimizing the generalization performance requires that the neural network complexity 

is adjusted to minimize both the bias and the variance as much as possible. 

 

Since the training data will be fitted more closely as the model complexity increases, 

the ability of the trained model to predict this data cannot be utilized to identify the 

transition from underfitting to overfitting. In order to choose a suitably complex model, 

some means of directly estimating the generalization performance are needed. For 

neural spatial interaction models data splitting is commonly used. Though this 

procedure is simple to use in practice, effective use of data splitting may require a 

significant reduction in the amount of data which is available to train the model. If the 

available data is limited and sparsely distributed – and this tends to be the rule rather 

than the exception in spatial interaction contexts, then any reduction in amount of 

training data may obscure or remove features of the true spatial interaction function 

from the training set.  
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In this contribution, we address this issue by adopting the bootstrapping pairs approach 

(see Efron 1982) with replacement. This approach will combine the purity of data 

splitting with the power of a resampling procedure and, moreover, allows to get a better 

statistical picture of the prediction variability. An additional benefit of the bootstrap is 

that it provides approximations to the sampling distribution of the test statistic of 

interest that are considerably more accurate than the analytically obtained large sample 

approximations. Formal investigation of this additional benefit is beyond the scope of 

this contribution. We have a full agenda just to analyze the performance of summation 

and product unit neural network models for the cases of unconstrained and constrained 

spatial interaction. But we anticipate that our bootstrapping procedure may well afford 

such superior finite sample approximations. 

 

 

2. FAMILIES OF UNCONSTRAINED NEURAL SPATIAL INTERACTION 

MODELS 

 

In many spatial interaction contexts, little is known about the form of the spatial 

interaction function which is to be approximated. In such cases it is generally not 

possible to use a parametric modeling approach where a mathematical model is 

specified with unknown coefficients which have to be estimated to fit the model. The 

ability of neural spatial interaction models to model a wide range of spatial interaction 

functions relieves the model user of the need to specify exactly a model that includes all 

the necessary terms to model the true spatial interaction function. 

 

The Case of Unconstrained Spatial Interaction 

 

There is a growing literature in geography and regional science that deals with 

alternative model specifications and estimators for solving unconstrained spatial 

interaction problems. Examples include, among others, Fischer and Gopal (1994); 

Black (1995); Nijkamp, Reggiani and Tritapepe (1996); Bergkvist and Westin (1997); 

Bergkvist (2000); Reggiani and Tritapepe (2000); Thill and Mozolin (2000); Mozolin, 

Thill and Usery (2000). All these models are members of the following general class of 

unconstrained neural spatial interaction models given by 
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 ( ) 00 0 1

1 1

,
H N

H H

h hn n

h n

w w w xΩ ψ ϕ
= =

  = +  
  

∑ ∑x w  (1) 

 

where the N-dimensional euclidean space (generally, N = 3) is the input space and the 

1-dimensional euclidean space the output space. Vector ( )1,..., Nx x=x   is the input 

vector that represents measures characterizing the origin and the destination of spatial 

interaction as well as their separation. ( )0 1,H ≡w w w  is the ( )1 1HN H+ + ×  vector of 

the network weights (parameters). There are H  hidden units. The vector 0w  contains 

the hidden to output unit weights, ( )0 00 01 0, ,..., Hw w w≡w , and the vector 1w  contains 

the input to hidden unit weights, ( )1 10 1,..., Hw w≡w  with ( )1 1 1 1,...,h h hNw w≡w . We allow 

a bias at the hidden layer by including 00w . A bias at the input array may be taken into 

consideration by setting 1 1x ≡ . ϕ  is a hidden layer transfer function, ψ  an output unit 

transfer function, both continuously differentiable of order 2 on ℜ . Note that the model 

output function and the weight vector are explicitly indexed by the number, H, of 

hidden units in order to indicate the dependence. But to simplify notation we drop the 

superindex hereafter. 

 

FIGURE 1 TO BE PLACED ABOUT HERE 

 

FIG. 1 depicts the corresponding network architecture. Hidden units, denoted by the 

symbol Σ , indicate that each input is multiplied by a weight and then summed. Thus, 

models of type (1) may be termed unconstrained summation unit spatial interaction 

models. The family of approximations (1) embodies several concepts already familiar 

from the pattern recognition literature. It is the combination of these that is novel. 

Specifically, 11

N

hn nn
w x

=∑  is a familiar linear discriminant function (see Young and 

Calvert 1974) which – when transformed by ϕ  – acts as a nonlinear feature detector. 

The 'hidden' features are then subjected to a linear discriminant function and filtered 

through ψ . The approximation benefits from the use of nonlinear feature detectors, 

while retaining many of the advantages of linearity in a particularly elegant manner. 

 

A leading case occurs when both transfer functions are specified as logistic 

functions
1
. This leads to the model 
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 ( )
1

1

00 0 1

1 1

, 1 exp 1 exp
H N

L h hn n

h n

w w w xΩ

−
−

= =

        = + − + + −           
∑ ∑x w  (2) 

 

that has been often used in practice (see, for example, Mozolin, Thill and Usery 2000; 

Fischer, Hlavackova-Schindler and Reismann 1999; Fischer and Leung 1998; Gopal 

and Fischer 1996; Black 1995; Fischer and Gopal 1994; Gopal and Fischer 1993; 

Openshaw 1993). 

 

Product Unit Model Versions 

 

Neural spatial interaction models of type (1) are constructed using a single hidden layer 

of summation units. In these networks each input to the hidden node is multiplied by a 

weight and then summed. A nonlinear transfer function, such as the logistic function, is 

employed at the hidden layer. Neural network approximation theory has shown the 

attractivity of such summation networks.  

 

In the neural network community it is well known that supplementing the inputs to a 

neural network model with higher-order combinations of the inputs increases the 

capacity of the network in an information capacity sense (see Cover 1965) and its 

ability to learn (see Giles and Maxwell 1987). This may motivate to utilize a product 

unit rather than the standard summation unit neural network framework for modeling 

interactions over space. The general class of unconstrained product unit spatial 

interaction models is given as 

 

 ( ) 1

00 0

1 1

, hn

NH
w

h n

h n

w w xπ Ω ψ ϕ
= =

  = +  
  

∑ ∏x w  (3) 

 

which contain both product and summation units. The product units compute the 

product of inputs, each raised to a variable power. FIG. 2 illustrates the corresponding 

network architecture.  

 

FIGURE 2 TO BE PLACED ABOUT HERE 
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Specifying ( )ϕ ⋅  to be the identity function and ( )ψ ⋅  to be the logistic function we 

obtain the following special case of (3)  

 

 ( ) 1

1

00 0

1 1

, 1 exp hn

NH
w

L h n

h n

w w xπΩ
−

= =

     = + − +    
     

∑ ∏x w  (4) 

 

 

3. NEURAL NETWORKS OF CONSTRAINED SPATIAL INTERACTION 

FLOWS 

 

Classical neural network models of the form (1) and less classical models of the type 

(3) represent rich and flexible families of neural spatial interaction approximators. But 

they may be of little practical value if a priori information is available on accounting 

constraints of the predicted flows. For this purpose Fischer, Reismann and Hlavackova-

Schindler (2001) have recently developed a novel class of neural spatial interaction 

models that are able to deal efficiently with the singly constrained case of spatial 

interaction.  

 

The models are based on a modular connectionist architecture that may be viewed 

as a linked collection of functionally independent modules with identical feedforward 

topologies [two inputs, H hidden product units and a single summation unit], operating 

under supervised learning algorithms. The prediction is achieved by combining the 

outcome of the individual modules using a nonlinear output transfer function multiplied 

with a bias term that implements the accounting constraint. 

 

Without loss of generality we consider the origin constrained model version only. FIG. 

3 illustrates the modular network architecture of the models. Modularity is seen here as 

decomposition on the computational level. The network is composed of two processing 

layers and two layers of network parameters. The first processing layer is involved with 

the extraction of features from the input data. This layer is implemented as a layer of J 

functionally independent modules with identical topologies. Each module is a 

feedforward network with two inputs 2 1jx −  and 2 jx [representing measures of 

destination attractiveness and separation between origin and destination, respectively], 
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H hidden product units, denoted by the symbol Π , and terminates with a single 

summation unit, denoted by the symbol Σ . The collective output of these modules 

constitutes the input to the second processing layer consisting of J output units that 

perform the flow prediction. 

 

 

FIGURE 3 TO BE PLACED ABOUT HERE 

 

This network architecture implements the general class of product unit neural 

models of origin constrained [OC] spatial interaction  

 

 ( )
2

1 2 1

, 1, ...,hn

jH
OC

j h h nj
h n j

x j J
βπΩ ψ γ ϕ

= = −

  
= =     

∑ ∏x w  (5) 

 

with :hϕ ℜ → ℜ , :jψ ℜ → ℜ  and 2J∈ ℜx , that is ( )1 2 2 1 2 2 1 2, , ..., , , ..., ,j j J Jx x x x x x− −=x  

where 2 1jx −  represents a variable pertaining to destination j ( )1, ...,j J=  and 2 jx  a 

variable ijf  pertaining to the separation from region i to region j ( )1, ..., ; 1, ...,i I j J= =  

of the spatial interaction system under scrutiny. hnβ  ( )1, ..., ; 2 1, 2h H n j j= = −  are the 

input-to-hidden connection weights, and hγ  ( )1, ...,h H=  the hidden-to-output weights 

in the j-th module of the network model. The symbol w is a convenient shorthand 

notation of the (3H)-dimensional vector of all the model parameters. jψ  ( )1, ...,j J=  

represents a nonlinear summation unit transfer function and hϕ  ( )1,...,h H=  a linear 

hidden product unit transfer function. 

 

Specifying ( )hϕ ⋅  to be the identity function and ( )jϕ ⋅  a nonlinear normalized 

function we obtain the following important special case of (5) 

 

 ( ) ( )

2

1 2 1

2

1 1 2 1

, 1, ...,

hn

h n

jH

h n

h n jOC

1 i jJ Hj

h n

j h n j

x

b j J

x

β

π

β

γ
Ω

γ

= = −

= = = −

= =
∑ ∏

∑∑ ∏
�x w

'

'

'

' ' '

 (6) 
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where ( )ib�  is the bias signal that can be thought as being generated by a ’dummy unit’ 

whose output is clamped at the scalar it i  A more detailed description of the model may 

be found in Fischer, Hlavackova-Schindler and Reismann (2001). 

 

Summation Unit Model Versions  

 

The summation unit version of the general class of product unit neural network 

models of origin constrained spatial interaction may be easily derived from Equation 

(5): 

 

 ( )
2

1 2 1

, 1, ...,
jH

OC

j h h hn nj
h n j

x j JΣΩ ψ γ ϕ β
= = −

  
= =     

∑ ∑x w  (7) 

 

where :hϕ ℜ → ℜ , :jψ ℜ → ℜ  and 2J∈ ℜx  as above. Specifying ( )hϕ ⋅  as logistic 

function for h = 1,...,N, and ( )jψ ⋅  as nonlinear normalized output transfer function we 

obtain the following origin constrained member of class (7)  

 

 ( ) ( )

1
2

1 2 1

1
2

1 1 2 1

1 exp

, 1, ...,

1 exp

jH

h hn n

h n jOC

1 ij
jJ H

h h n n

j h n j

x

b j J

x

Σ

γ β
Ω

γ β

−

= = −

−

= = = −

  
+ −     = =
  

+ −     

∑ ∑

∑∑ ∑

�x w
'

' '

' ' '

 (8) 

 

 

4. A RATIONALE FOR THE ESTIMATION APPROACH 

 

If we view a neural spatial interaction model, unconstrained or constrained, as 

generating a family of approximations (as w  ranges over W, say) to a spatial 

interaction function g , then we need a way to pick a best approximation from this 

family. This is the function of network learning (training, parameter estimation) which 

might be viewed as an optimization problem.  

 

We develop a rationale for an appropriate objective (loss, cost) function for this task. 

Following Rumelhart et al. (1995) we propose that the goal is to find that model which 



 

11 

is the most likely explanation of the observed data set, say M. We can express this as 

attempting to maximize the term 

 

 ( )( ) ( )( ) ( )( )
( )

P M P
P M

P M

Ω
Ω

Ω
=

w w
w  (9) 

 

where Ω  represents the neural spatial interaction model (with all the weights H
w ) in 

question, unconstrained or constrained. ( )( )P M Ω w  is the probability that the model 

would have produced the observed data M . Since sums are easier to work with than 

products, we will maximize the log of this probability, and since this log is a monotonic 

transformation, maximizing the log is equivalent to maximizing the probability itself. In 

this case we have 

 

 ( )( ) ( )( ) ( )( ) ( )ln ln ln lnP M P M P P MΩ Ω Ω= + −w w w  (10) 

 

The probability of the data, ( )P M , is not dependent on the model. Thus, it is 

sufficient to maximize ( )( ) ( )( )ln lnP M PΩ Ω+w w . The first of these terms 

represents the probability of the data given the model, and hence measures how well the 

network accounts for the data. The second term is a representation of the model itself; 

that is, it is a prior probability, that can be utilized to get information and constraints 

into the learning procedure. 

 

We focus solely on the first term, the performance, and begin by noting that the data 

can be broken down into a set of observations, ( ){ }, 1,...,k k kM z x y k K= = = , each kz , 

we will assume, chosen independently of the others. Hence we can write the probability 

of the data given the model as  

 

 ( )( ) ( )( ) ( )( )ln ln lnk k

kk

P M P z P zΩ Ω Ω= =∑∏w w w  (11) 

 

Note that this assumption permits to express the probability of the data given the model 

as the sum of terms, each term representing the probability of a single observation 
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given the model. We can still take another step and break the data into two parts: the 

observed input data kx  and the observed target ky . Therefore we can write 

 

 ( )( ) ( )( ) ( )ln ln and lnk k kk
k k

P M P y x  P xΩ  Ω= +∑ ∑w w  (12) 

 

Since we assume that kx  does not depend on the model, the second term of the equation 

will not affect the determination of the optimal model. Thus, we need only to maximize 

the term ( )( )ln andk kk
P y x Ω∑ w . 

 

Up to now we have – in effect – made only the assumption of the independence of 

the observed data. In order to proceed, we need to make some more specific 

assumptions, especially about the relationship between the observed input data kx  and 

the observed target data ky , a probabilistic assumption. We assume that the relationship 

between kx  and ky  is not deterministic, but that for any given kx  there is a distribution 

of possible values of ky . But the model is deterministic, so rather than attempting to 

predict the actual outcome we only attempt to predict the expected valued of ky  given 

kx . Therefore, the model output is to be interpreted as the mean bilateral interaction 

frequencies (that is, those from the region of origin to the region of destination). This is, 

of course, the standard assumption. 

 

To proceed further, we have to specify the form of the distribution of which the 

model output is the mean. Of particular interest to us is the assumption that the 

observed data are the realization of a sequence of independent Poisson random 

variables. Under this assumption we can write the probability of the data given the 

model as 

 

 ( )( )
( ) ( )( )exp

and
!

ky

k k
k

k k k
k

P y x
y

Ω Ω
Ω

−
=
∏ w w

w  (13) 

 

and, hence, define a maximum likelihood estimator as a parameter vector ŵ  which 

maximizes the log-likelihood L 
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 ( ) ( ) ( )( )max , , max lnk k kk
L y Ω Ω

∈ ∈
= −∑

w W w W
x y w w w  (14) 

 

Instead of maximizing the log-likelihood it is more convenient to view learning as 

solving the minimization problem 

 

 ( ) ( )min , , min , ,L
∈ ∈

= −  w W w W
x y w x y wλ  (15) 

 

where the loss (cost) function λ  is the negative log-likelihood L. λ  is non-negative, 

continuously differentiable on the Q-dimensional parameter space ( 1Q HN H= + +  in 

the unconstrained case and 3Q H= in the constrained one) which is a finite dimensional 

closed bounded domain and, thus, compact. It can be shown that λ  assumes its value as 

the weight minimum under certain conditions.  

 

 

5. TRAINING THE NEURAL NETWORK MODELS 

 

Since the loss function λ  is a complex nonlinear function of w  for the neural 

spatial interaction models, ŵ  cannot be found analytically and computationally 

intensive iterative optimization techniques such as global search procedures must be 

utilized to find (15). Simulated annealing, genetic algorithms and the Alopex
2
 

procedure are attractive candidates for this task. We utilize the latter as described in 

Fischer, Hlavackova-Schindler and Reismann (2001). 

 

The loss function ( )wλ  is minimized by means of weight changes that are 

computed for the s-th step ( 2s > ) of the iteration process as follows
3
, 

 

 ( ) ( ) ( )1k k kw s w s sδ= − +  (16) 

 

where ( )k sδ  is a small positive or negative step of size δ  with the following 

properties: 
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 ( ) ( )
( )

with probability

with probability 1

k

k

k

p s
s

p s

δ
δ

δ
−= + −   

 (17) 

 

The probability ( )kp s  for a negative step is given by the Boltzmann distribution 

 

 ( ) ( ) ( )( ) 1

1 exp /k kp s C s T s
−

 = + −   (18) 

 

where 

 

 ( ) ( ) ( )k kC s w s sλ= ∆ ∆  (19) 

 

with 

 

 ( ) ( ) ( )1 2k k kw s w s w s∆ = − − −  (20) 

 

and 

 

 ( ) ( ) ( )1 2s s sλ λ λ∆ = − − −  (21) 

 

The parameter T in Equation (18), termed temperature in analogy to simulated 

annealing, is updated using the following annealing schedule: 

 

 ( ) ( )

( )

1

if is a multiple of

1 otherwise

s

k

k s s S

C s s S
QST s

T s

δ −

= −


= 
 −

∑ ∑
'

'
 (22) 

 

where ( 1Q HN H= + +  in the case of the unconstrained models, and 3Q H=  in the 

case of the constrained models) denotes the number of weights. When T is small, the 

probability of changing the parameters is around zero if kC  is negative and around one 

if kC  is positive. If T is large, then 0.5kp ≅  (see Bia 2000).  
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The effectiveness of Alopex in locating global minima and its speed of convergence 

critically depend on the balance of the size of the feedback term kw∆ ∆λ  and the 

temperature T. If T is very large compared to kw∆ ∆λ  the process does not converge. If 

T is too small, a premature convergence to a local minimum might occur. The 

procedure is governed by three parameters: the initial temperature T, the number of 

iterations, S, over which the correlations are averaged for annealing, and the step size 

δ . The temperature T and the S-iterations cycles seem to be of secondary importance 

for the final performance of the algorithm. The initial temperature T may be set to a 

large value of about 1,000. This allows the algorithm to get an estimate of the average 

correlation in the first S iterations and reset it to an appropriate value according to 

Equation (22). S may be chosen between 10 and 100. In contrast to T and S, δ  is a 

critical parameter that has to be selected heuristically with care. There is no way to a 

priori identify δ  in the case of multimodal parameter spaces. 

 

The Termination Criterion 

 

It has been observed that forceful training may not produce network models with 

adequate generalization ability, although the learning error achieved is small. The most 

common remedy for this problem is to monitor model performance during training to 

assure that further training improves generalization as well. For this purpose an 

additional set of validation data, independent from the training data is used. In a typical 

training phase, it is normal for the validation error to decrease. This trend may not be 

permanent, however. At some point the validation error usually reverses. Then the 

training process should be stopped. In our implementation of the Alopex procedure 

network training is stopped when 40,000κ =  consecutive iterations are unsuccessful. 

κ  has been chosen so large at the expense of the greater training time, to ensure more 

reliable estimates.  

 

6. EXPERIMENTAL ENVIRONMENT, PERFORMANCE TESTS AND 

BENCHMARK COMPARISONS 

 

To illustrate the application of modeling and estimation tools discussed in the 

previous sections we utilize interregional telecommunication traffic data from Austria 

and standard gravity models as benchmarks.  
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The Benchmark Models 

 

The standard unconstrained gravity model 

 

 1,..., ; 1,..., ;grav

ij i j ijk r s d i I j J j iα β γτ −= = = ≠  (23) 

 

with 

 

 
i j ij

i j j

t
k

r s dα β γ−

≠

=
∑∑

ii  (24) 

 

 : ij

i j j

t t
≠

=∑∑ii  (25) 

 

serves as a benchmark model for the unconstrained neural spatial interaction models
4
, 

that is, the classical models of type (2) and the less classical ones of type (4). grav

ijτ  

denotes the estimated flow from i  to j , k  is a factor independent of all origins and 

destinations, α  reflects the relationship of ir  with grav

ijτ  and β  the relationship of js  

with grav

ijτ . γ  is the distance sensitivity parameter, γ >0. ir  and js  are measured in 

terms of the gross regional product, ijd  in terms of distances from i to j, whereas ijt  in 

terms of erlang (see Fischer and Gopal 1994 for more details).  

 

The standard origin constrained gravity model 

 

 ( ) 1,... ; 1,..., ;orig grav

ij j iji
b s d i I j J j iα γτ −= = = ≠  (26) 

 

with 

 

 ( )
i

i

j ijj i

t
b

s dα γ−
≠

=
∑

i  (27) 

where 
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 :i ij

j i

t t
≠

=∑i  (28) 

 

is used as benchmark model for the constrained neural spatial interaction models (6) 

and (8). ( )ib  is the origin specific balancing factor. , , jsα γ , ijd  and ijt  are defined as 

above.  

 

Performance Measure 

 

One needs to be very careful when selecting a measure to compare different models. 

It makes not much sense to utilize least squares related performance measures, such as 

the average relative variances or the standardized root mean square, in the context of 

our ML estimation approach. Model performance is measured in this study by means of 

Kullback and Leibler’s (1951) information criterion (KLIC) which is a natural 

performance criterion for the goodness-of-fit of ML estimated models: 

 

 ( )
( ) ( )

1

'

' 1

1
1

'
'

' 1
' 1

ln

, ,Ω Ω

−

=
−

=

= =

  
  

  =        

∑
∑
∑ ∑

U

u uU
uu

U
U

u
u

u u
u

u

y y
y

KLIC M

y x xw w

 (29) 

 

where ( ),u ux y  denotes the u -th pattern of the data set M , and Ω  is the neural spatial 

interaction model under consideration. The performance measure has a minimum at 

zero and a maximum at positive infinity when 0uy >  and ( ) 0uxΩ =w  for any ( ),u ux y  

pair. 

 

The Data, Data Splitting and Bootstrapping 

 

To model interregional telecommunication flows for Austria we utilize three 

Austrian data sources – a (32, 32)-interregional telecommunication flow matrix ( )ijt , a 

(32, 32)-distance matrix ( )ijd , and gross regional products for the 32 

telecommunication regions – to produce a set of 992 4-tupel ( ), , ;i j ij ijr s d t  with 

( ), 1,...,32i j i j= ≠ . The first three components represent the input vector of the 

unconstrained models, the second and the third component represent the input variables 
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2 1jx −  and 2 jx  of the j-th module of the origin constrained network models, and the last 

component the target output. The bias term ( )ib�  is clamped to the scalar it i . js  

represents the potential draw of telecommunication in j and is measured in terms of the 

gross regional product, ijd  denotes distances from i to j, while ijt  represents 

telecommunication traffic flows. The input data
5
 were rescaled to lie in [0.1, 0.9]. 

 

The telecommunication data stem from network measurements of carried traffic in 

Austria in 1991, in terms of erlang, an internationally widely used measure of 

telecommunication contact intensity, which is defined as the number of phone calls 

(including facsimile transfers) multiplied by the average length of the call (transfer) 

divided by the duration of measurement
 
(for more details, see Fischer and Gopal 1994). 

The data refer to the telecommunication traffic between the 32 telecommunication 

districts representing the second level of the hierarchical structure of the Austrian 

telecommunication network. Due to measurement problems, intraregional traffic (i.e. 

i = j) is left out of consideration.  

 

The standard approach to evaluate the out-of-sample [prediction] performance of a 

neural spatial interaction model (see Fischer and Gopal 1994) is to split the total data 

set M of 992 samples into three subsets: the training [in-sample] set 

( ){ }1 1 1 1, with 1 1,..., 496 patternsu uM x y u U= = = , the internal validation set 

( ){ }2 2 2 2, with 2 1,..., 248 patternsu uM x y u U= = =  and the testing [prediction, out-of-

sample] set ( ){ }3 3 3 3, with 3 1,..., 248 patternsu uM x y u U= = = . 1M  is used only for 

parameter estimation, while 2M  for validation. The generalization performance of the 

model is assessed on the testing set 3M . It has become common practice to fix these 

sets. But recent experience has found this approach to be very sensitive to the specific 

splitting of the data. To overcome this problem as well as the problem of scarce data we 

make use of the bootstrapping pairs approach (Efron 1982) with replacement. This 

approach combines the purity of splitting the data into three disjoint data sets with the 

power of a resampling procedure and allows us also to get a better statistical picture of 

the prediction variability. 

 

The idea behind this approach is to generate B pseudo-replicates of the training, 

validation and test sets, then to re-estimate the model parameters w  on each training 

bootstrap sample, stopping training on the basis of the validation and testing out-of-
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sample performance of the test bootstrap samples. In this bootstrap world, the errors of 

prediction and the errors in the parameter estimates are directly observable. Statistics on 

parameter reliability can easily be computed. 

 

Implementing the approach involves the following steps (see Fischer and Reismann 

2000): 

 

Step 1: Conduct three totally independent re-sampling operations in which B 

independent training bootstrap samples, B independent validation bootstrap 

samples and B independent testing bootstrap samples are generated, by 

randomly sampling 1U , 2U  and 3U  times, respectively, with replacement 

from the observed input-output pairs M. 

 

Step 2: For each training bootstrap sample the minimization problem (15) is solved 

by applying the Alopex procedure. During the training process the KLIC 

performance of the model is monitored on the corresponding bootstrap 

validation set. The training process is stopped as specified in Section 5. 

 

Step 3: Calculate the KLIC-statistic of generalization performance for each test 

bootstrap sample. The distribution of the pseudo-errors can be computed, 

and used to approximate the distribution of the real errors. This 

approximation is the bootstrap. 

 

Step 4: The variability of the B bootstrap KLIC-statistics gives an estimate of the 

expected accuracy of the model performance. Thus, the standard errors of 

the generalization performance statistic is given by the sample standard 

deviation of the B bootstrap replications. 

 

Performance Tests and Results 

 

We consider first 

 

•  the summation unit neural network LΩ  [see Equation (2)] and 

•  the product unit neural network L

πΩ  [see Equation (4)],  
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to model the unconstrained case of spatial interaction, and then 

 

•  the modular product unit neural network version OC

1

πΩ  [see Equation (6)] and 

•  the modular summation unit neural network version OC

1

ΣΩ  [see Equation (8)]  

 

of singly constrained neural spatial interaction models to model the origin constrained 

case. Conventional gravity model specifications [see Equations (23)-(25) for the 

unconstrained case and Equations (26)-(28) for the origin constrained case] serve as 

benchmark models. 

 

All the models were calibrated by means of the ML-estimation approach utilizing 

the Alopex procedure to eliminate the effect of different estimation procedures on the 

result. In order to do justice to each model specification, the critical Alopex parameter 

δ  [step size] was systematically sought for each model. The Alopex parameters T and 

S were set to 1,000 and 10, respectively. We made use of the bootstrapping pairs 

approach [B = 60] to overcome the problem of sensitivity to the specific splitting of the 

data into in-sample, internal validation and generalization data sets, and the scarcity of 

data, but also to get a better statistical picture of prediction variability. 

 

It should be emphasized that the main goal of training is to minimize the loss 

function λ . But it has been observed that forceful training may not produce network 

models with adequate generalization ability. We adopted the most common remedy for 

this problem and checked the model performance in terms of ( )2KLIC M periodically 

during training to assure that further training improves generalization, the so-called 

cross-validation technique. 

 

Alopex is an iterative procedure. In practice, this means that the final results of 

training may vary as the initial weight settings are changed. Typically, the likelihood 

functions of feedforward neural network models have many local minima. This implies 

that the training process is sensitive to its starting point. Despite recent progress in 

finding the most appropriate parameter initialization that would help Alopex – but also 

other iterative procedures – to find near optimal solutions, the most widely adopted 

approach still uses random weight initialization. In our experiments random numbers 

were generated from [-0.3, 0.3] using the rand_uni function from Press et al. (1992). 



 

21 

The order of the input data presentation was kept constant for each run to eliminate its 

effect on the result.  

 

The Case of Unconstrained Spatial Interactions: Extensive computational experiments 

with different combinations of H- and δ -values have been performed on DEC Alpha 

375 Mhz, with { }2, 4,6,8,10,12,14H ∈  and 

{ }0.0005,0.0010,0.0025,0.0050,0.0100,0.0250,0.0500,0.1000δ ∈ . Selected results of 

these experiments [ 2, 4,6,8,10,12,14H =  and ]0.0005,0.0010,0.0050,0.0100δ =  are 

reported in TABLE 1. Training performance is measured in terms of ( )1KLIC M , 

validation performance in terms of ( )2KLIC M  and testing performance in terms of 

( )3KLIC M . The performance values represent the mean of 60B =  bootstrap 

replications, standard deviations are given in brackets. 

 

PLACE  TABLE 1  ABOUT HERE 

 

Some considerations are worth making. First, the best result (averaged over the 60 

independent simulation runs) in terms of average out-of-sample KLIC-performance was 

obtained with 12H =  and 0.0010δ =  in the case of the summation unit neural network 

model, and with 14H =  and 0.0005δ =  in the case of the product unit neural network 

model. Second, there is convincing evidence that the summation unit model 

outperforms the product unit model version at any given level of model complexity. 

This is primarily due to the fact that the input data of LΩ  were preprocessed to 

logarithmically transformed data scaled to [0.1, 0.9]. Third, it can be seen that model 

approximation improves as the complexity of L

πΩ  grows with increasing H (except H = 

12). This appears to be less evident in the case of the summation unit model version. 

Fourth, the experiments also suggest that 0.0010δ =  tends to yield the best or at least 

rather good generalization performances in both cases of neural network models. The 

poorest generalization performance of the summation unit network is obtained for 

0.0005δ =  (except: H = 8) while 0.0100δ =  leads to the poorest results in the case of 

the product unit network model (except H = 2 and 12). Fifth, as already mentioned 

above, forceful training may not produce the network model with the best 

generalization ability. This is evidenced for H =2, 10, 12, 14 in the case of LΩ , and H = 

2, 10, 12 in the case of L

πΩ . Finally, note that the standard deviation illustrates the 

impact of both, random variations in training, validation and test sets and random 
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variations in parameter initializations. Most of the variability in prediction performance 

is clearly coming from sample variation and not from variation in parameter 

initializations as illustrated in Fischer and Reismann (2000). This implies that model 

evaluations based on one specific static split of the data only, the current practice in 

neural spatial interaction modeling (see, for example, Bergkvist 2000; Reggiani and 

Tritapepe 2000; Mozolin, Thill and Usery 2000), have to be considered with great care. 

 

PLACE  TABLE 2  ABOUT HERE 

 

TABLE 2 summarizes the simulation results for the unconstrained neural network 

models in comparison with the gravity model. Out-of-sample performance is measured 

in terms of ( )3KLIC M . For matters of completeness, also training performance values 

are displayed. The figures represent averages taken over 60 independent simulations 

differing in the bootstrap samples and in the initial parameter values randomly chosen 

from [-0.3, 0.3].  

 

If out-of-sample [generalization] performance is more important than fast learning, 

then the neural network models exhibit clear and statistically significant superiority. As 

can be seen by comparing the KLIC-values the summation unit neural network model 

ranks best, followed by the product unit model and the gravity model. The average 

generalization performance, measured in terms of ( )3KLIC M , is 0.2348 (H = 12), 

compared to 0.2514 in the case of L

πΩ  (H = 14), and 0.3036 in the case of gravτ . These 

differences in performance are statistically significant
6
. If, however, the goal is to 

minimize execution time and a sacrifice in generalization accuracy is acceptable, then 

the gravity model is the model of choice. The gravity model outperforms the neural 

network models in terms of execution time, the summation unit network model by a 

factor of 50 and the product unit network model by a factor of 30. But note that this is 

mainly caused by two factors: first, that our implementations were done on a serial 

platform even though the neural network models are parallelizeable, and, second, that 

we implemented a rather time consuming termination criterion ( 40,000κ = ) to stop the 

training process. 

 

The Origin Constrained Case of Spatial Interactions: TABLE 3 presents some 

selected results of experiments with different combinations of { }2, 4,6,8,10,12,14H ∈  
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and { }0.0005,0.0010,0.0500,0.1000δ ∈ . Again some considerations are worth making. 

First, a comparison with TABLE 1 illustrates that the consideration of a priori 

information in form of origin constraints clearly improves the generalization 

performance more or less dramatically. Second, the best result (averaged over the 60 

independent simulation runs) in terms of average ( )3KLIC M  was achieved with H = 8 

and 0.0500δ =  in both cases, the origin constrained summation unit neural network 

model OC

1

ΣΩ , and the origin constrained product unit neural network model, OC

1

πΩ . 

Third, the summation unit model version slightly outperforms the product unit version. 

Again this is primarily due to the logarithmic transformation of the input data in the 

case of Σ OC

1Ω . Fourth, model approximation improves as the complexity of the model 

grows with increasing H [up to H = 8, except H = 6 in the case of OC

1

ΣΩ ]. Fifth, there is 

clear evidence that 0.0500δ =  tends to lead to the best results (except H = 6 in the case 

of OC

1

ΣΩ ), while 0.0005δ =  tends to yield the poorest results, with only two 

exceptions (H = 2 and 4) in the case of OC

1

ΣΩ . Sixth, there is strong evidence that the 

origin constrained neural network models are much less robust with respect to the 

choice of the Alopex parameter δ  in comparison to their unconstrained counterparts, 

while the variability in prediction performance over changes in training, internal 

validation and test samples, and parameter initialization is lower. Finally it is interesting 

to note that forceful training encourages OC

1

πΩ  to produce the best generalization 

ability in all cases considered. 

 

TABLE 4 reports the simulation results for the origin constrained neural network 

models, OC

1

ΣΩ  and OC

1

πΩ , in comparison with orig gravτ . Training and generalization 

performance are displayed. The figures represent again averages taken over 60 

simulations differing in parameter initialization and bootstrap samples as in the other 

tables. The modular summation unit neural network performs best, closely followed by 

the product unit model version. Both outperform the gravity model predictions
7
. The 

average out-of-sample performance of OC

1

ΣΩ  with H = 8, measured in terms of 

( )3KLIC M , is 0.1989, compared to 0.2076 in the case of OC

1

πΩ  with H = 8, and 0.2726 

in the case of orig gravτ . The gravity model would be the model of choice if the goal 

would be to minimize execution time and a sacrifice in generalization would be 

acceptable. 
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7. SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH 

 

In this contribution a modest attempt has been made to provide a unified framework for 

neural spatial interaction modeling including the case of unconstrained and that of 

origin constrained spatial interaction flows. We suggested and used a more suitable 

estimation approach than available in literature, namely maximum likelihood estimation 

under distributional assumptions of Poisson processes. In this way we could avoid the 

weakness of least squares and normality assumptions that ignore the true integer nature 

of the flows and approximate a discrete-valued process by an almost certainly 

misrepresentative continuous  distribution. Alopex, a powerful global search procedure, 

was used to solve the maximum likelihood estimation problem.  

 

Randomness enters in two ways in neural spatial interaction modeling: in the 

splitting of the data into training, internal validation and test sets on the one side and in 

choices about parameter initialization on the other. The paper  suggests the 

bootstrapping pairs approach to overcome this problem as well as the problem of scarce 

data. In addition one receives a better statistical picture of the variability of the out-of-

sample performance of the models. The approach is attractive, but computationally 

intensive. Each bootstrap iteration requires a run of the Alopex procedure on the 

training bootstrap set. In very large real world problem contexts this computational 

burden may become prohibitively large. 

 

Although the discussion has been centered on several general families of neural 

spatial interaction models, only one of the vast number of neural network architectures 

and only one – even though powerful – estimation approach were considered. Thus, we 

emphasize that our results are only a first step towards a more comprehensive 

methodology for neural spatial interaction modeling. There are numerous important 

areas for further investigation. Especially desirable is the design of a neural network 

approach suited to deal with the doubly constrained case. Another area for further 

research is greater automation of the cross-validation training approach to control 

maximum model complexity by limiting the number of hidden units. Finding good 

global optimization methods for solving the non-convex training problems is still an 

important area for further research even though some relevant work can be found in 

Fischer, Hlavackova-Schindler and Reismann (1999). Finally the model choice problem 
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deserves further research activities to come up with methods that go beyond the current 

rules of thumb. We hope that this paper will inspire others to pursue the investigation in 

neural spatial interaction modeling further as we finally believe that this field is an 

interesting theoretical area rich with practical applications. 
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Endnotes 

 
 1 Sigmoid transfer functions such as the logistic function are somewhat better behaved than many other 

functions with respect to the smoothness of the error surface. They are well behaved outside of their 

local region in that they saturate and are constant at zero or one outside the training region. Sigmoidal 

units are roughly linear for small weights [net input near zero] and get increasingly nonlinear in their 

response as they approach their points of maximum curvature on either side of the midpoint. 
 2 Alopex is an acronym for algorithm for pattern extraction. 
 3 For the first two iterations, the weights are chosen randomly. 
 4 There is virtual unanimity of opinion that site specific variables, such as sj in this case, are generally 

best represented as power functions. The specification of fij is consistent with general consensus that 

the power function is more appropriate for analyzing longer distance interactions (Fotheringham and 

O’Kelly 1989). 

 5 In the case of the summation unit model versions the input data were preprocessed to logarithmically 

transformed data scaled into [0.1, 0.9]. 

 6 assessed by means of the Wilcoxon-Test (comparison of two paired samples). The differences 

between 
L

Ω  and 
gravτ  are statistically significant at the 1 % level (Z = -3.740, Sig. 0.000) as are the 

differences between 
L

πΩ  and 
gravτ  (Z = -3.269, Sig. 0.001). But the differences between 

L
Ω  and 

L

πΩ  

are not statistically significant at the 1 % level (Z = -1.436, Sig. 0.151). 

 7 The differences between 
OC

1

Σ Ω  and 
orig gravτ  are statistically significant at the 1 % level (Z = -6.684, 

Sig. 0.000) as are the differences between 
OC

1

πΩ  and 
orig gravτ  (Z = -6.714, Sig. 0.000), while the 

differences between the neural network models are not statistically significant at the 1 % level (Z = -

2.481, Sig. 0.130). 
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FIG. 1. Architecture of the Unconstrained Summation Unit Neural Spatial 

Interaction Models as defined by Equation (1) for N = 3 
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FIG. 2. Architecture of the Unconstrained Product Unit Neural Spatial Interaction 

Models as defined by Equation (3) for N = 3 
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FIG. 3. Origin Constrained Product Unit Neural Spatial Interaction Models as 

Defined by Equation (5) 
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TABLE 1 

The Unconstrained Case of Spatial Interaction – Summation Unit and Product Unit 

Neural Networks, LΩ  and L

πΩ  [see Equations (2) and (4)], Estimated by the Alopex 

Procedure: The Choice of H and δ  [T = 1,000; S = 10] 
      

Summation Unit Network Product Unit Network
   KLIC(M1) KLIC(M2) KLIC(M3) KLIC(M1) KLIC(M2) KLIC(M3) 

 H = 2 δ = 0.0005 0.2396 0.2555 0.2744  0.2931 0.2784 0.3228  
   (0.0619) (0.1934) (0.1718)  (0.0763) (0.1398) (0.1623)  

  δ = 0.0010 0.2415 0.2334 0.2535  0.2955 0.2847 0.3199  

   (0.0565) (0.1426) (0.1334)  (0.0740) (0.1335) (0.1635)  

  δ = 0.0050 0.2327 0.2418 0.2605  0.3084 0.3007 0.3241  

   (0.0545) (0.1427) (0.1356)  (0.0749) (0.1334) (0.1535)  

  δ = 0.0100 0.2436 0.2447 0.2648  0.3132 0.2955 0.3094  

   (0.0558) (0.1361) (0.1428)  (0.0814) (0.1367) (0.1572)  

 H = 4 δ = 0.0005 0.2252 0.2433 0.2771  0.2367 0.2316 0.2779  
   (0.0598) (0.1921) (0.1756)  (0.0684) (0.1284) (0.1449)  

  δ = 0.0010 0.2268 0.2238 0.2622  0.2278 0.2311 0.2725  

   (0.0581) (0.1412) (0.1368)  (0.0546) (0.1201) (0.1451)  

  δ = 0.0050 0.2268 0.2259 0.2539  0.2629 0.2516 0.2943  

   (0.0572) (0.1363) (0.1333)  (0.0853) (0.1459) (0.1575)  

  δ = 0.0100 0.2294 0.2250 0.2606  0.2694 0.2831 0.3140  

   (0.0534) (0.1207) (0.1284)  (0.0917) (0.1515) (0.1685)  

 H = 6 δ = 0.0005 0.2206 0.2424 0.2568  0.2229 0.2281 0.2727  
   (0.0637) (0.1875) (0.1544)  (0.0595) (0.1102) (0.1455)  

  δ = 0.0010 0.2219 0.2188 0.2528  0.2165 0.2264 0.2614  

   (0.0602) (0.1334) (0.1240)  (0.0490) (0.1143) (0.1294)  

  δ = 0.0050 0.2102 0.2111 0.2447  0.2399 0.2379 0.2666  

   (0.0557) (0.1176) (0.1232)  (0.0693) (0.1177) (0.1423)  

  δ = 0.0100 0.2221 0.2225 0.2470  0.2658 0.2488 0.3021  

   (0.0501) (0.1189) (0.1280)  (0.0784) (0.1263) (0.1554)  

 H = 8 δ = 0.0005 0.2179 0.2426 0.2608  0.2230 0.2211 0.2682  
   (0.0673) (0.1848) (0.1518)  (0.0584) (0.1052) (0.1482)  

  δ = 0.0010 0.2144 0.2177 0.2491  0.2190 0.2229 0.2591  

   (0.0584) (0.1350) (0.1121)  (0.0516) (0.1085) (0.1304)  

  δ = 0.0050 0.2221 0.2256 0.2617  0.2281 0.2331 0.2728  

   (0.0552) (0.1350) (0.1277)  (0.0615) (0.1084) (0.1512)  

  δ = 0.0100 0.2159 0.2171 0.2534  0.2600 0.2526 0.2879  

   (0.0531) (0.1242) (0.1285)  (0.0847) (0.1313) (0.1679)  

 H = 10 δ = 0.0005 0.2149 0.2416 0.2623  0.2150 0.2199 0.2551  
   (0.0663) (0.1895) (0.1589)  (0.0498) (0.1079) (0.1310)  

  δ = 0.0010 0.2189 0.2247 0.2395  0.2167 0.2248 0.2528  

   (0.0544) (0.1363) (0.1190)  (0.0541) (0.1129) (0.1304)  

  δ = 0.0050 0.2160 0.2174 0.2423  0.2358 0.2341 0.2616  

   (0.0573) (0.1262) (0.1189)  (0.0671) (0.1233) (0.1601)  

  δ = 0.0100 0.2138 0.2214 0.2415  0.2563 0.2504 0.2812  

   (0.0576) (0.1205) (0.1327)  (0.0748) (0.1205) (0.1836)  

 H = 12 δ = 0.0005 0.2146 0.2430 0.2588  0.2127 0.2171 0.2552  
   (0.0640) (0.1849) (0.1581)  (0.0462) (0.1056) (0.1416)  

  δ = 0.0010 0.2163 0.2190 0.2348  0.2110 0.2098 0.2667  

   (0.0591) (0.1346) (0.1070)  (0.0460) (0.1084) (0.1843)  

  δ = 0.0050 0.2181 0.2227 0.2535  0.2206 0.2340 0.2995  

   (0.0555) (0.1216) (0.1175)  (0.0617) (0.1039) (0.1564)  

  δ = 0.0100 0.2092 0.2158 0.2513  0.2480 0.2527 0.2595  

   (0.0529) (0.1191) (0.1252)  (0.0944) (0.1300) (0.1979)  

 H = 14 δ = 0.0005 0.2139 0.2395 0.2537  0.2067 0.2111 0.2514  
   (0.0626) (0.1867) (0.1565)  (0.0445) (0.1083) (0.1390)  

  δ = 0.0010 0.2160 0.2203 0.2488  0.2099 0.2182 0.2554  

   (0.0564) (0.1350) (0.1254)  (0.0457) (0.1102) (0.1470)  

  δ = 0.0050 0.2144 0.2153 0.2409  0.2335 0.2360 0.2833  

   (0.0561) (0.1187) (0.1190)  (0.0691) (0.1132) (0.1624)  

  δ = 0.0100 0.2120 0.2254 0.2483  0.2391 0.2477 0.3008  

   (0.0547) (0.1158) (0.1233)  (0.0774) (0.1178) (0.2717)  

           

Note: KLIC-performance values represent the mean (standard deviation in brackets) of B = 60 

bootstrap replications differing in both the initial parameter values randomly chosen from [-0.3; 0.3] 

and the data split. KLIC(M1): In-sample performance measured in terms of average KLIC (the best 

value for a given H in bold); KLIC(M2): Validation performance measured in terms of average KLIC 

(the best values for a given H in bold); KLIC(M3): Out-of-sample performance measured in terms of 

average KLIC (the best values for a given H in bold); M consists of 992 patterns, M1 of 496 patterns, 

M2 of 248 patterns and M3 of 248 patterns. 
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TABLE 2 

Benchmark Comparisons of the Summation Unit and Product Unit Neural Networks, 

LΩ  and L

πΩ , with the Gravity Model gravτ  for Modeling Unconstrained Spatial 

Interactions 
 

  Summation Unit 

Neural Network 

[H = 12; δ = 0.001] 

Product Unit 

Neural Network 

[H = 14; δ = 0.0005] 

Gravity Model 

 

[δ = 0.0005] 

 In-Sample (Training)     

 Performance     

 KLIC(M1) 0.2163 0.2067 0.2991 

  (0.0591) (0.0445) (0.0717) 

 Out-of-Sample (Testing)     

 Performance     

 KLIC(M3) 0.2348 0.2514 0.3036 

  (0.1070) (0.1390) (0.1952) 

Note: KLIC-performance values represent the mean (standard deviation in brackets) of B = 60 bootstrap 

replications differing in the initial parameter values randomly chosen from [+0.3, -0.3] and the data split; 

the testing set consists of 248 patterns and the training set of 496 patterns. 
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TABLE 3 

The Origin Constrained Case of Spatial Interaction – Summation Unit and Product Unit 

Neural Networks, OC

1

ΣΩ  and OC

1

πΩ  [see Equations (6) and (8)], Estimated by the 

Alopex Procedure: The Choice of H and δ  [T = 1,000; S = 10] 
      

Summation Unit Network Product Unit Network
   KLIC(M1) KLIC(M2) KLIC(M3) KLIC(M1) KLIC(M2) KLIC(M3) 

 H = 2 δ = 0.0005 0.3521 0.3684 0.3809  0.2693 0.2810 0.2939  
   (0.0724) (0.0998) (0.1034)  (0.0989) (0.1126) (0.1113)  

  δ = 0.0010 0.3515 0.3688 0.3815  0.2340 0.2425 0.2538  

   (0.0711) (0.1008) (0.1038)  (0.0763) (0.1057) (0.0937)  

  δ = 0.0500 0.1958 0.2049 0.2131  0.2037 0.2071 0.2181  

   (0.0520) (0.0877) (0.0735)  (0.0575) (0.0785) (0.0747)  

  δ = 0.1000 0.1982 0.1976 0.2141  0.2188 0.2250 0.2328  

   (0.0518) (0.0777) (0.0808)  (0.0596) (0.0890) (0.0760)  

 H = 4 δ = 0.0005 0.3530 0.3669 0.3843  0.2422 0.2543 0.2718  
   (0.0719) (0.0947) (0.1036)  (0.0860) (0.1058) (0.1289)  

  δ = 0.0010 0.3540 0.3655 0.3855  0.2175 0.2265 0.2404  

   (0.0710) (0.0949) (0.1042)  (0.0809) (0.0857) (0.0905)  

  δ = 0.0500 0.1854 0.1867 0.2032  0.1953 0.1975 0.2125  

   (0.0502) (0.0713) (0.0747)  (0.0513) (0.0750) (0.0749)  

  δ = 0.1000 0.1862 0.1867 0.2051  0.2105 0.2133 0.2271  

   (0.0505) (0.0702) (0.0686)  (0.0579) (0.0835) (0.0785)  

 H = 6 δ = 0.0005 0.3523 0.3695 0.3820  0.2351 0.2462 0.2662  
   (0.0723) (0.1002) (0.1070)  (0.0749) (0.1013) (0.1166)  

  δ = 0.0010 0.3505 0.3663 0.3776  0.2078 0.2134 0.2277  

   (0.0704) (0.1004) (0.1006)  (0.0604) (0.0753) (0.0801)  

  δ = 0.0500 0.1862 0.1883 0.2067  0.1915 0.1941 0.2084  

   (0.0481) (0.0726) (0.0703)  (0.0474) (0.0751) (0.0722)  

  δ = 0.1000 0.1858 0.1868 0.2050  0.2019 0.2046 0.2211  

   (0.0463) (0.0743) (0.0701)  (0.0468) (0.0764) (0.0784)  

 H = 8 δ = 0.0005 0.3525 0.3678 0.3822  0.2257 0.2315 0.2495  
   (0.0730) (0.1004) (0.1031)  (0.0621) (0.0871) (0.0940)  

  δ = 0.0010 0.3521 0.3667 0.3817  0.2136 0.2190 0.2369  

   (0.0721) (0.0997) (0.1034)  (0.0801) (0.0870) (0.1034)  

  δ = 0.0500 0.1790 0.1825 0.1989  0.1916 0.1905 0.2076  

   (0.0456) (0.0697) (0.0684)  (0.0475) (0.0741) (0.0707)  

  δ = 0.1000 0.1822 0.1844 0.2024  0.2032 0.2039 0.2193  

   (0.0441) (0.0677) (0.0716)  (0.0527) (0.0809) (0.0834)  

 H = 10 δ = 0.0005 0.3532 0.3673 0.3850  0.2267 0.2369 0.2505  
   (0.0728) (0.0989) (0.1043)  (0.0684) (0.0971) (0.0990)  

  δ = 0.0010 0.3516 0.3675 0.3818  0.2014 0.2076 0.2219  

   (0.0713) (0.0986) (0.1037)  (0.0488) (0.0697) 0.0755  

  δ = 0.0500 0.1795 0.1820 0.2004  0.1918 0.1949 0.2087  

   (0.0440) (0.0671) (0.0656)  (0.0478) (0.0755) (0.0727)  

  δ = 0.1000 0.1840 0.1856 0.2040  0.2047 0.2055 0.2207  

   (0.0494) (0.0701) (0.0697)  (0.0524) (0.0782) (0.0797)  

 H = 12 δ = 0.0005 0.3586 0.3720 0.3877  0.2357 0.2443 0.2637  
   (0.0821) (0.1038) (0.1108)  (0.0895) (0.1009) (0.1428)  

  δ = 0.0010 0.3527 0.3662 0.3812  0.2094 0.2153 0.2251  

   (0.0724) (0.0980) (0.1018)  (0.0563) (0.0760) (0.0776)  

  δ = 0.0500 0.1793 0.1824 0.2005  0.1911 0.1920 0.2101  

   (0.0443) (0.0686) (0.0647)  (0.0529) (0.0757) (0.0717)  

  δ = 0.1000 0.1788 0.1822 0.2012  0.2038 0.2081 0.2202  

   (0.0444) (0.0670) (0.0691)  (0.0532) (0.0845) (0.0763)  

 H = 14 δ = 0.0005 0.3523 0.3683 0.3809  0.2174 0.2284 0.2389  
   (0.0714) (0.1003) (0.1031)  (0.0647) (0.0826) (0.0895)  

  δ = 0.0010 0.3514 0.3682 0.3801  0.2036 0.2101 0.2211  

   (0.0714) (0.1003) (0.1037)  (0.0518) (0.0754) (0.0690)  

  δ = 0.0500 0.1798 0.1831 0.1992  0.1912 0.1924 0.2126  

   (0.0467) (0.0713) (0.0663)  (0.0479) (0.0773) (0.0725)  

  δ = 0.1000 0.1829 0.1865 0.2052  0.2055 0.2063 0.2244  

   (0.0464) (0.0704) (0.0698)  (0.0497) (0.0824) (0.0822)  

           

Note: KLIC-performance values represent the mean (standard deviation in brackets) of B = 60 

bootstrap replications differing in both the initial parameter values randomly chosen from [-0.3; 0.3] 

and the data split. KLIC(M1): In-sample performance measured in terms of average KLIC (the best 

values for a given H in bold); KLIC(M2): Validation performance measured in terms of average KLIC 

(the best values for a given H in bold); KLIC(M3): Out-of-sample performance measured in terms of 

average KLIC (the best values for a given H in bold); M consists of 992 patterns, M1 of 496 patterns, 

M2 of 248 patterns and M3 of 248 patterns. 
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TABLE 4 

Benchmark Comparisons of the Summation Unit and Product Unit Neural Networks, 
OC

1

ΣΩ  and OC

1

πΩ , with the Gravity Model orig gravτ  for Modeling Origin Constrained 

Spatial Interactions 
 

  Summation Unit 

Neural Network 

[H = 8; δ = 0.05] 

Product Unit 

Neural Network 

[H = 8; δ = 0.05] 

Gravity Model 

 

[δ = 0.1] 

 In-Sample (Training)     

 Performance     

 KLIC(M1) 0.1790 0.1916 0.2532 

  (0.0456) (0.0475) (0.0601) 

 Out-of-Sample (Testing)     

 Performance     

 KLIC(M3) 0.1989 0.2076 0.2726 

  (0.0684) (0.0707) (0.0949) 

Note: KLIC-performance values represent the mean (standard deviation in brackets) of B = 60 bootstrap 

replications differing in the initial parameter values randomly chosen from [+0.3, -0.3] and the data split; 

the testing set consists of 248 patterns and the training set of 496 patterns. 

 

 
 


