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ABSTRACT 

 

The problem of constraining matrices of mixed sign to controls of possibly mixed sign arises in 

input-output matrices in economics and net migration in demography.  The recently developed 

Generalized RAS (GRAS) algorithm is presented to solve these problems.  The GRAS algorithm 

produces a unique solution that minimizes an entropy-like function.  The algorithm is applied to 

a well-known example and compared to the solution originally obtained using a generalization of 

the Akers-Siegel procedure. 
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1.  Introduction 

 

Controlling matrices of mixed sign is a problem occurring in economics and demography 

often by constraining input-output matrices and net migration matrices, respectively. 

This paper describes the Generalized RAS Algorithm (GRAS) as a method to find unique 

solutions.  GRAS is applied to net migration data within Japan from Shryock et al. (1973, 711).  

GRAS is compared to Shryock et al.’s (1973, 709-712) use of the Akers-Siegel (1965) “plus-

minus” procedure.  They display two iterations of the Akers-Siegel procedure applied to the 

columns and rows of a matrix.  The use of the Akers-Siegel procedure appears to have been 

motivated by the then lack of alternatives.  Junius and Oosterhaven (2003) introduced the GRAS 

algorithm to solve this problem in a theoretically sound manner.  Lenzen, Gallego and Wood 

(2007), Temurshoev, Miller and Bouwmeester (2013), and Lenzen, Moran, Geschke and 

Kanemoto (2014) improved GRAS so that it always produces an exact solution no matter the 

inputs. 

 

GRAS is a derivative of the RAS algorithm, also known as matrix scaling, matrix raking, 

iterative proportionate fitting, among others.  The RAS algorithm can be applied to nonnegative 

matrices with nonnegative controls, provided that a feasible solution exists. When that feasible 

solution exists, Bregman (1967) proved its uniqueness.  A feasible solution always exists when 

the inputs are all positive.  The existence of one or more zeroes in the input matrix can create 

infeasibility.  Fagan and Greenberg (1984) describe using a succession of linear programs to 

determine infeasibility caused by the presence of these zeroes.  Instead, GRAS can be used on 

the original problem with a negative output element indicating infeasibility.  Bregman (1967) 

proved that the RAS algorithm solves a minimum entropy measure of change.  That is, RAS 

minimizes the loss of information from controlling the input matrix.  See Schneider and Zenios 

(1990) for a history, properties and interpretations of the RAS algorithm. 

 

While RAS is restricted in its application and is not always feasible, GRAS can take any real 

value in its inputs and produce a unique solution.  This solution may require changing the signs 

of some elements of the input matrix.  GRAS solves a variant of the minimum entropy problem.  

When GRAS’s inputs are all positive (or negative), it reduces to the RAS algorithm.  These 

problems are always RAS-feasible. 

 

2.  The RAS Algorithm 

 

Given nonnegative 𝑚×𝑛 input and output matrices 𝐴 = 𝑎!"  and 𝑋 = 𝑥!" , an 𝑚-dimensional 

vector of row marginals 𝑢 and an 𝑛-dimensional vector of row marginals 𝑣, all of which are 

nonnegative, the RAS algorithm solves the equations 

𝑥!"

!

!!!

= 𝑢! , 𝑖 = 1,… ,𝑚 

(1a) 

and 
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𝑥!"

!

!!!

= 𝑣! , 𝑗 = 1,… ,𝑛 

(1b) 

so as to minimize the entropy, 𝐸, of the changes, 𝐸 = 𝑥!"

!!"

!!"
− 1!,! , where the constant 1 is 

arbitrary. 

 

Let 𝑡𝑜𝑙 be the convergence criterion.  Its value is the required precision.  The RAS algorithm is 

implemented by: 

 

Step 0. (Initialization) Set 𝑘 = 0 and 𝐴! = 𝐴. 

Step 1. (Row Raking) For 𝑖 = 1,2,… ,𝑚, define 𝑟!
!
= 𝑢! 𝑎!"

!!

!!! , where 𝑢! is the 

marginal for row 𝑖. Define the 𝑚×𝑛 matrix B by the elements 𝑏!" = 𝑟!
!
𝑎!"
!  for 𝑖 =

1,2,… ,𝑚 and 𝑗 = 1,2,… ,𝑛.  

Step 2. (Column Raking) For 𝑗 = 1,2,… ,𝑛 define 𝑠!
!
= 𝑣! 𝑎!"

!!

!!! , where 𝑣! is the 

marginal for column 𝑗.  Define matrix 𝐴!!! by the elements 𝑎!"
!!!

= 𝑠!
!
𝑏!" for 𝑖 =

1,2,… ,𝑚 and 𝑗 = 1,2,… ,𝑛. 

Step 3. (Convergence Test) Compute 𝑚𝑎𝑥𝑑𝑖𝑓𝑓 = max!,! 𝑎!"
!!!

− 𝑎!"
! .  If 𝑚𝑎𝑥𝑑𝑖𝑓𝑓 <

𝑡𝑜𝑙, then output 𝐴!!!.  Otherwise, repeat from Step 1. 

The result has the form 

𝐴
!!!

= 𝑅
!
𝐴𝑆

!, 

(2) 

where 𝑅! = diag 𝑅!
! ,… ,𝑅!

! , 𝑆! = diag 𝑆!
! ,… , 𝑆!

! , 𝑅!
!
= 𝑟!

!!

!!!
 and 𝑆!

!
= 𝑠!

!!

!!!
.  The 

reasoning for the algorithm’s name is obvious. 

While the RAS algorithm iterates the 𝐴! to convergence, Eq. (2) shows that it can be viewed as 

the result of iterating the rakes.  This intuition is the foundation of the GRAS algorithm. 

 3.  The GRAS Algorithm 

Given the same inputs as the RAS algorithm, but without any restriction on sign, the GRAS 

algorithm first separates 𝐴 into its positive elements, 𝑃 = 𝑝!" , and absolute values of its 

negative elements, 𝑁 = 𝑛!" , with zeroes filling out the other elements: 

𝐴 = 𝑃 − 𝑁. 

(3) 

Given 𝐴 and vectors of row and column marginals 𝑢 and 𝑣, all of any sign, GRAS finds the 

matrix 𝑋 that minimizes the generalized entropy function 𝐸 = log 𝑥!"

!!"

!!"
− 1!,! , where 
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𝑋 = 𝑅𝑃𝑆 − 𝑅
!!
𝑁𝑆

!!, 

(4) 

where 𝑅 = diag 𝑅!,… ,𝑅! , 𝑆 = diag 𝑆!,… , 𝑆!  with corresponding inverses 𝑅!! and 𝑆!!.  

Zero elements on the diagonals are replaced by 1. 

Suppressing superscripts, let 

𝑝! 𝑆 = 𝑝!"𝑆!
!

,𝑝! 𝑅 = 𝑝!"𝑅!
!

,𝑛! 𝑆 =
𝑝!"

𝑆!
!

,𝑛! 𝑠 =
𝑝!"

𝑅!
!

, 

(5) 

where all values are taken from the just completed iteration. 

Let 𝑡𝑜𝑙 be the convergence criterion.  Because it is the criterion for the rakes, its preferred value 

is not obvious.  Temushoev et al. (2013) use 10!!.  The GRAS algorithm uses the following 

steps: 

Step 0 (Initialization):  Set 𝑃 equal to the positive elements of 𝐴, zero elsewhere.  Set −𝑁 

equal to the negative elements of 𝐴, zero elsewhere.  Set the row rakes, 𝑟! , 𝑖 = 1,… ,𝑚, 

and column rakes, 𝑠! , 𝑗 = 1,… ,𝑛 equal to 1. 

Step 1 (Column Rakes): For 𝑗 = 1,… ,𝑛, compute 

𝑆! =

𝑣! + 𝑣!
!
+ 4𝑝!(𝑅)𝑛!(𝑅)

!

!

2𝑝!(𝑅)
for 𝑝! 𝑅 > 0

−
𝑛!(𝑅)

𝑣!

for 𝑝! 𝑅 = 0

. 

Step 2 (Column Sign Changes):  Compute the current value of 𝑋 using Eq. (4).  For 

𝑗 = 1,… ,𝑛, if sign 𝑥!" ≠ sign(𝑣!! ), then set 𝑆! = −𝑆!. 

Step 3 (Row Rakes):  For 𝑖 = 1,… ,𝑚, compute 

𝑅! =

𝑢! + 𝑢!
!
+ 4𝑝!(𝑆)𝑛!(𝑆)

!

!

2𝑝!(𝑆)
for 𝑝! 𝑆 > 0

−
𝑛!(𝑆)

𝑢!

for 𝑝! 𝑆 = 0

. 

Step 4 (Column Sign Changes):  Compute the current value of 𝑋 using Eq. (4).  For 

𝑖 = 1,… ,𝑚, if sign 𝑥!"! ≠ sign(𝑢!), then set 𝑅! = −𝑅!.  

Step 5 (Convergence Test):  Compute 𝑚𝑎𝑥𝑑𝑖𝑓𝑓 = max! 𝑆!
!!!

− 𝑆!
! , where 𝑘 refers to 
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the previous iteration.  If 𝑚𝑎𝑥𝑑𝑖𝑓𝑓 < 𝑡𝑜𝑙, then repeat Steps 1 and 3 and output 𝑋.  

Otherwise, repeat from Step 1. 

4.  An RAS-infeasible Problem Solved by GRAS 

Let 𝐴 =
0 3

2 1
,𝑢 = 3,1  and 𝑣 = 2,2 .  It is easy to show that this problem is RAS-infeasible.  

Satisfying the first row marginal requires 𝑅! = 1.  Thus, 𝑋!" = 3.  However there is no 

nonnegative value 𝑋!! such that 𝑋!! + 3 = 1.  Thus, the problem is RAS-infeasible. 

Removing the nonnegativity constraint results in the rakes 𝑅 = diag 1,−1  and 𝑆 = diag −1,1  

with solution 𝑋 =
0 3

2 −1
. 

Sinkhorn (1964) proves that the RAS algorithm is feasible for all positive 𝐴.  The presence of 

zeroes in the example, together with its constraints, made it infeasible.  Fagan and Greenberg 

(1984) propose determining feasibility using a sequence of linear programs.  This example 

suggests first solving a possibly infeasible problem using GRAS, then checking the solution for 

negative entries.  If any exist, excluding machine zeroes, then the problem is RAS-infeasible. 

5.  A Net Migration Problem 

Shryock et al. (1973) present a problem involving constraining a net migration problem.  They 

do two iterations of the Akers-Siegel procedure, each iteration consisting of constraining rows 

then columns.  The problem is shown in Table 1, with the marginals at right and bottom. 

Table 1: Reported Net Migration Within Japan, 1955-60 

Region	 1955-56	 1956-57	 1957-58	 1958-59	 1959-60	

1955-60,	

adjusted	

Hokkaido	 -561	 -3,715	 25,566	 -583	 -11,509	 -52,976	

Tohoku	 -80,810	 -102,454	 -92,620	 -96,156	 -119,310	 -583,301	

Kanto	 208,016	 241,799	 237,025	 253,926	 283,776	 1,218,828	

Chubu	 -57,369	 -56,726	 -72,701	 -56,320	 -33,060	 -251,318	

Kinki	 77,287	 125,944	 90,937	 100,310	 136,377	 551,007	

Chugoka	 -39,182	 -46,038	 -46,995	 -53,327	 -61,643	 -329,777	

Shikoku	 -35,808	 -53,560	 -46,803	 -45,301	 -60,257	 -296,668	

Kyushu	 -79,313	 -115,441	 -101,406	 -113,161	 -184,552	 -788,929	

All	Japan,	

adjusted	 -104,715	 -91,963	 -97,550	 -105,037	 -133,869	

	Source:  Shryock et al. (1973, 711). 

The results after their constraining process are shown in Table 2. 
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 Table 2: Controlled Net Migration in Japan, 1955-60, as Published by Shryock et al. (1973) 

Region	 1955-56	 1956-57	 1957-58	 1958-59	 1959-60	 Sum	

Hokkaido	 -9,754	 -15,233	 10,411	 -9,436	 -28,956	 -52,968	

Tohoku	 -100,815	 -120,738	 -110,992	 -115,532	 -135,234	 -583,311	

Kanto	 196,706	 242,683	 233,931	 249,940	 295,558	 1,218,818	

Chubu	 -54,400	 -50,811	 -66,220	 -51,434	 -28,482	 -251,347	

Kinki	 75,982	 131,414	 93,307	 102,649	 147,669	 551,021	

Chugoka	 -54,944	 -60,983	 -63,300	 -72,018	 -78,536	 -329,781	

Shikoku	 -46,240	 -65,335	 -58,057	 -56,341	 -70,698	 -296,671	

Kyushu	 -111,250	 -152,959	 -136,629	 -152,867	 -235,192	 -788,897	

Sum	 -104,715	 -91,962	 -97,549	 -105,039	 -133,871	

	Source:  Shryock et al. (1973, 711). 

The results of running GRAS with a tolerance of 10!! are in Table 3.  Six iterations were 

required. 

Table 3:  Net Migration in Japan, 1955-60, Controlled by GRAS 

 

Region	 1955-56	 1956-57	 1957-58	 1958-59	 1959-60	

Hokkaido	 -2264	 -13999	 6714	 -2257	 -41170	

Tohoku	 -102041	 -120822	 -110380	 -116488	 -133570	

Kanto	 194606	 242217	 234952	 247612	 299442	

Chubu	 -54966	 -50759	 -65741	 -51770	 -28083	

Kinki	 75124	 131081	 93656	 101630	 149517	

Chugoka	 -55613	 -61026	 -62953	 -72616	 -77570	

Shikoku	 -46821	 -65405	 -57758	 -56829	 -69854	

Kyushu	 -112739	 -153250	 -136041	 -154320	 -232580	

 

The unrounded GRAS solution is exact within a small rounding error.  GRAS’s great advantages 

compared to the Akers-Siegel procedure lie in its sound theoretic basis and automatic running.  

To the contrary, Shryock et al. (1973, 709) state that they did Hokkaido separately, including an 

unspecified additive adjustment, because of a weakness in the Akers-Siegel procedure that also 

causes nonunique solutions (Akers and Siegel, 1965).  GRAS lacks this sort of instability 

because it produces unique solutions.  Moreover, GRAS’s multipliers for positive and negative 

data are deterministically related, being reciprocals of one another, while the Akers-Siegel 

procedure’s multipliers have no predefined relationship. 

6.  A Perturbed Version of the Net Migration Problem 

Perturbing the net migration problem above leads to additional insights.  Starting with Table 1, 

the row control for Kanto is decreased by 251,328 and added to Chubu, changing the latter’s sign 

and resulting in a value of 10.  The new problem is shown in Table 4.  
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Table 4: Perturbed Net Migration Within Japan, 1955-60 

Region	 1955-56	 1956-57	 1957-58	 1958-59	 1959-60	

1955-60,	

adjusted	

Hokkaido	 -561	 -3,715	 25,566	 -583	 -11,509	 -52,976	

Tohoku	 -80,810	 -102,454	 -92,620	 -96,156	 -119,310	 -583,301	

Kanto	 208,016	 241,799	 237,025	 253,926	 283,776	 967500	

Chubu	 -57,369	 -56,726	 -72,701	 -56,320	 -33,060	 10	

Kinki	 77,287	 125,944	 90,937	 100,310	 136,377	 551,007	

Chugoka	 -39,182	 -46,038	 -46,995	 -53,327	 -61,643	 -329,777	

Shikoku	 -35,808	 -53,560	 -46,803	 -45,301	 -60,257	 -296,668	

Kyushu	 -79,313	 -115,441	 -101,406	 -113,161	 -184,552	 -788,929	

All	Japan,	

adjusted	 -104,715	 -91,963	 -97,550	 -105,037	 -133,869	

	 

The GRAS solution to the new problem is shown in Table 5. 

Table 5:  Solution to Perturbed Net Migration Problem 

	

1955-56	 1956-57	 1957-58	 1958-59	 1959-60	

Hokkaido	 -2370	 -14277	 6417	 -2302	 -40443	

Tohoku	 -104636	 -120678	 -113105	 -116382	 -128500	

Kanto	 150419	 192210	 181735	 196435	 246702	

Chubu	 2	 2	 3	 2	 1	

Kinki	 72992	 130756	 91064	 101349	 154846	

Chugoka	 -57047	 -60974	 -64529	 -72575	 -74651	

Shikoku	 -48039	 -65364	 -59217	 -56809	 -67240	

Kyushu	 -116036	 -153637	 -139918	 -154754	 -224584	

 

Perhaps the most notable aspect of Table 5 is that Chubu’s data have changed sign and are in 

rough proportion to the absolute values of the input data.  An examination of the rakes is 

revealing.  The column rakes are shown Tables 6; the row rakes in Table 7. 

Table 6:  Column Rakes 

Period	 1955-56	 1956-57	 1957-58	 1958-59	 1959-60	

Original	 0.83	 0.89	 0.88	 0.87	 0.94	

Perturbed	 0.66	 0.72	 0.70	 0.70	 0.79	
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Table 7:  Row Rakes 

Region	 Original	 Perturbed	

Hokkaido	 0.30	 0.36	

Tohoku	 0.95	 1.18	

Kanto	 1.12	 1.10	

Chubu	 1.25	 -39278.24	

Kinki	 1.17	 1.44	

Chugoka	 0.85	 1.05	

Shikoku	 0.92	 1.14	

Kyushu	 0.84	 1.04	

 

The column rakes decrease across the board per Table 6.  This appears to be driven by the need 

for Kanto’s greater reduction to offset the loss of negative values in Chubu.  Table 7 is 

particularly revealing.  All the original rakes are all positive and within 70% of 1.  The perturbed 

rakes are approximately the same except for Chubu.  Chubu’s rake is negative and its absolute 

value is four orders of magnitude larger.  Since Chubu’s data are negative, they are divided by 

this rake to obtain, to a first approximation, Table 5’s results.  This demonstrates GRAS’s ability 

to handle sign changes and differences in magnitudes. 

6.  Conclusion 

The recently developed GRAS algorithm solves the matrix balancing problem for any 

combination of real inputs.  It is applied to a well-known demographic problem with satisfactory 

results.  Moreover, it solves problems involving sign changes and changes in the order of 

magnitude of results.  GRAS has the advantages of being theoretically sound and completely 

automated. 
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