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Abstract

In recent years interest has been growing in testing for stochastic non-linearity in
macroeconomic time series. There are several inference procedures available. But not
much is known about their behaviour on real world small-sized settings. This paper
surveys some of these tests. Their performance is compared using monthly Austrian
unemployment data that cover the period January 1960 to December 1997. It is found
that the test procedures surveyed are complementary rather than competing. Several
useful guidelines are provided for applying the increasingly complex test procedures
in practice.



1 Introduction

Univariate time series modelling is a major interest of (regional) economists. This
approach has the advantage that behavioural patterns can be predicted simply by
analysing the past history of a variable, reflecting these patterns. The most important
aspect of building such a model is learning about the intrinsic time patterns of a
variable or its underlying generating process.

Model identification is the key to model building and the most difficult stage in the
iterative identification–estimation–diagnosis model building strategy. Historically,
only a few time series tests have been available to assist in this respect and these were
mostly tests for linear models. In recent years there has been a growing interest of
economists in non-linear models, including autoregressive conditional heteroscedastic
[ARCH] models, threshold autoregressive [TAR] models and bilinear models.

Discussion of non-linearity is made more complicated by the usual problems with
macroeconomic time series. The data are usually discrete in time, contain often high
levels of measurement with unknown properties, are affected by temporal aggregation
and may have been filtered to remove a seasonal component. Many macroeconomic
time series also have long memory properties, including deterministic and stochastic
trends, which also have to be considered in the model identification stage.

If the data are linearly dependent, than linear time series models must be specified.
Alternatively, if the data are non-linearly dependent, then non-linear time series
models must be employed. Several non-linear identification tests are available (for
example, see Cromwell, Labys, and Terraza [1994]). Although the existence of these
tests enables us to model univariate time series more adequately, a larger task meets us
in attempting to decide which of several test procedures for detecting non-linearities,
in fact, should be employed. The purpose of this contribution is to provide some
practical guidelines in applying these increasingly complex test procedures in order
to identify univariate time series models. Our goal is to survey some of these tests
proposed in the time series literature and to apply and compare them on a real
macroeconomic time series. The comparison is based on monthly unemployment
rates in Austria1. The monthly sample is from January 1960 to December 1997.
There are 456 observations in the data set.

The section that follows gives some background information by introducing some
definitions and the inference methods selected to test for stochastic non-linearity.
The tests are described in greater detail then in section 3. Section 4 follows with the
presentation of empirical results. Some conclusions are drawn in the final section.
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2 Background

2.1 Some basic definitions

The definition of a time series begins with the notion of a stochastic process that
is defined as an ordered set of random variables indexed by time: x1, x2, . . . , xT .
An observed time series is a realisation of some underlying stochastic process. In
this sense, the relationship between realisation and process in time series analysis is
analogous to the relationship between sample and population in cross-section analysis.
A realisation [or time series] is used to build a model of the process that generated
the series.

Most methods of analysis require time series to be stationary. A time series is
said to be stationary in the wide sense, or second-order stationary, when the mean,
variance and covariance of the process are constant, but not higher order moments.
Because most real world data are non-stationary, performing transformations of the
data and testing for stationarity should conincide. The most common transformation
is that of differencing, that is, subtracting a past value of a variable from its current
value. If xt is a zero mean third-order stationary time series, then the mean µ =
E(xt) = 0, the second order covariance cxx(q) = E(xt+qxt) and the third order
covariances cxxx(q, r) = E(xt+qxt+rxt) are independent of t. If cxx(q) = 0 for all
non-zero q, the series is white noise. Pure white noise series is a noise series in
which x1, x2, . . . , xT are independent random variables. Gaussian white noise series
are necessarily pure white noise series.

In addition to stationarity, whiteness and pure whiteness, another often assumed
characteristic of a time series is linearity, which may be defined in different ways. We
conform here to the more conventional definition that a linear stochastic process is a
linear filter of independent and identically distributed (iid) inputs. For example, an
autoregressive moving average [ARMA] process is a finite order linear process.

Non-linearity may appear in different forms. Additive non-linear dependence
arises through persistence in conditional mean of the process. Examples of such
processes are the threshold autoregressive [TAR] models (see Tong and Lim [1980]),
the exponential autoregressive models (see Ozaki [1980]) and the bilinear models (see
Granger and Andersen [1978]). Multiplicative non-linear dependence arises when the
source of non-linearity is in the variance of the process. Examples of such processes
are the ARCH models (see Engle [1982]) and the generalizations of ARCH models
(for example Bollerslev [1986], Engle, Lilien, and Robins [1987], and Sentana [1995]).

Non-linear stochastic models have the potential of improving forecasts and thus
of providing stronger candidates against which to compare models found by a less
purely statistical research strategy. But it is important to note that only in the
case of additive non-linear dependence non-linear models can be utilized to generate
improved point predictions, while in the case of multiplicative non-linear dependence
they can be exploited to construct superior prediction intervals.
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2.2 The tests selected

We use four inference methods to test for stochastic non-linearity with the Aus-
trian unemployment rate data: a test originally proposed by Brock, Dechert, and
Scheinkman [1987] and described to more detail in Brock et al. [1996], henceforth
BDS test, a test introduced by McLeod and Li [1983], the socalled McLeod-Li test,
a test developed by Hsieh [1989], the socalled Hsieh test, and a test suggested by
Teräsvirta, Lin, and Granger [1993], henceforth the Teräsvirta-Lin-Granger test.

The BDS test does not provide a direct, but an indirect test for non-linearity. It
is a test for independence and can be used to test for residual non-linear structure,
after linear structure has been removed from the data through prewhitening. The
BDS test produces a viable test of linearity against the omnibus alternative of non-
linearity when the data are prefiltered by ARMA fit (Barnett et al. [1997]). We use
the test for this purpose.

Also the McLeod-Li test is an indirect test and based on the fact that by fitting a
linear model to the data, the inherent non-linearity has been swept into the residuals.
While the BDS test makes use of the concept of correlation integral, the McLeod-
Li test applies a standard Ljung-Box-Pierce Portmanteau test for serial correlation
to the squared residuals from ARMA representation. The test is sensitive against
multiplicative, less so against additive non-linearity.

Once it is established that some type of non-linearity exists, the Hsieh-test dis-
criminates between additive and multiplicative non-linearity. The test requires to set
up multiplicative non-linearity as the null hypothesis which implies that the third
order correlation coefficients equal zero. The correlation is based on the residuals
from a linear specification. Once again, the test is based on the assumption that the
inherent non-linearity has been swept into the residuals.

The Teräsvirta-Lin-Granger test has the useful property that if the null hypothesis
of linearity is rejected it will provide a non-linear model specification that is poten-
tially relevant for forecasting. This non-linear model produced by the test should,
however, not be accepted as the true model but only as a useful approximation. The
question of how to form better approximations is still very much an open question.
In the next section the tests will be described in some more detail.

3 Test descriptions

3.1 The Brock-Dechert-Scheinkman [BDS] test

The test developed by Brock, Dechert, and Scheinkman [1987] has been applied in
macroeconomic time series modelling (Brock and Sayers [1988] and Peel and Speight
[1998]) and elsewhere (see, for example, Craig, Kohlhase, and Papell [1991]). It is a
test that examines the underlying probability structure of a time series searching for
any kind of dependence. It was inspired by the Grassberger-Pocaccia correlation in-
tegral (see Grassberger and Procaccia [1983]), but it is a test for any kind of structure
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in a series, linear stochastic, non-linear stochastic, or deterministic chaos.
It is set up as follows. Let ut be a sequence of residuals of length T . Define the

embedded subvector as

um
t = (ut, . . . , ut−m+1), t = 1, 2, . . . , T −m+ 1 (1)

The choice of the embedding dimension m for the dimensionality of the vector is
subjective. But note that m − 1 data points are lost because it is required that all
vectors have equal length.

The dependence of ut is analysed by means of the concept of the correlation
integral, a measure that examines the distances between points, say um

t and um
s , in

the above m-dimensional space. For each embedding dimension m and choice of the
metric bound ǫ the correlation integral C(ǫ,m, T ) is defined as the fraction of close
pairs of points (um

t , u
m
s ):

C(ǫ,m, T ) =
2

Tm(Tm − 1)

∑

t<s

Iǫ(u
m
t , u

m
s ) (2)

where Tm = T −m + 1, t and s range from 1 to T −m + 1 in the summation and
are restricted such that t < s. Iǫ(u

m
t , u

m
s ) is an indicator function which equals 1 if

‖um
t −um

s ‖ < ǫ, where ‖.‖ is the sup norm over the subvector. The sup norm is given
by ‖u‖ = max1<i≤m|ui|.

Brock, Dechert, and Scheinkman [1987] show convergence in distribution for
statistics of the form

C(ǫ,m, T ) − C(ǫ, 1, T )m lim dist N(0, σ2(ǫ,m)) (3)

with

σ2(ǫ,m) = 4[4Km + 2
m−1
∑

j=1

Km−jC2j + (m− 1)2C2m −m2KC2m−2]. (4)

C and K can be consistently estimated by C(ǫ, 1, T ) and

K(ǫ, T ) =
1

Tm(Tm − 1)(Tm − 2)

∑

t6=s,t6=r,r 6=s

Iǫ(u
m
t , u

m
s )Iǫ(u

m
s , u

m
r ) (5)

Thus, they suggest as the test statistic

BDS(ǫ,m, T ) =
T

1

2

m(C(ǫ,m, T ) − C(ǫ, 1, T )m)

σ(ǫ,m)
(6)

for some selected m and ǫ. The statistic is divided by the asymptotic standard
deviation so it is distributed asymptotic normal with mean 0 and variance 1 under
the null of independent, identically distributed ut’s.
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The BDS statistic is a function of two arguments: the embedding dimension m
and the metric bound ǫ (i.e., the maximum difference between pairs of observations
counted in computing the correlation integral). The values of the two arguments are
finite and arbitrary in the definition of the test statistic. But an important relation
exists between the two and the small sample properties of the statistic. For a given
m, ǫ can not be too small because C(ǫ,m, T ) will capture too few points, nor should
ǫ be too large in order to prevent C(ǫ,m, T ) from involving too many data points
(Cromwell, Labys, and Terraza [1994]). In practice, m is typically chosen over the
range of 2 to 15, and ǫ to lie between 0.5 and 2 standard deviations of the time series
to be tested. Care must be undertaken in interpretation because tests performed for
different values of m and ǫ may give different results.

Under the null hypothesis, Brock, Dechert, and Scheinkman [1987] show that for
T large, BDS(ǫ,m, T ) will be normally distributed with mean 0 and a variance that
is a complicated function of m and ǫ. The null hypothesis of independence is rejected
if BDS(ǫ,m, T ) is large. The definition of large should depend on the sample size.
The test procedure can be performed in four steps:

(i) Choose a grid of values for m and ǫ,

(ii) Compute BDS(ǫ,m, T ) as given by (6),

(iii) For a selected significance level α, the critical values to test the null hypothesis
of independence are based on the number of observations divided by the selected
embedded dimension m:

• if (T−m+1)/m > 200 use the standard normal distribution for the critical
value τ ,

• if (T−m+1)/m ≤ 200 use the critical value τ from tables in Brock, Hsieh,
and LeBaron [1991].

(iv) Reject the null hypothesis of independence if |BDS(ǫ,m, T )| > τ

The BDS test does not provide a direct test for non-linearity, because the distri-
bution of the test statistic is not known, either in finite samples or asymptotically,
under a null hypothesis of non-linearity. The asymptotic distribution is known under
the null of independence. Thus, the hypothesis of non-linearity is nested within the
alternative hypothesis that includes both linear and non-linear processes. If all linear
possibilities have been removed by fitting the best possible linear model, the BDS
test can be utilized to test the residuals for remaining non-linear dependence.

If the null hypothesis is rejected then the alternative hypothesis implies the exis-
tence of non-linear dependence, and one can proceed to employ other tests to resolve
the question if this non-linear dependence is of additive or multiplicative kind or a
mixture of both kinds.
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3.2 The McLeod-Li test

It was noted in Granger and Andersen [1978] that for a linear stationary process

corr(x2

t , x
2

t−k) = (corr(xt, xt−k))
2 for all k (7)

and, thus, departures from this would indicate non-linearity. The McLeod-Li test
is a Box-Ljung-Pierce Portmanteau test for non-linear dependence (McLeod and Li
[1983]) that is conducted by examining the Ljung-Box-Pierce statistic of the squared
residuals from an ARMA representation2. The test procedure can be conducted in
four steps:

(i) Select lag length k based on the sample frequency and estimate the autocorre-
lation function of u2

t :

ruu(k) =

∑

t(u
2
t − σ2)(u2

t+k − σ2)
∑

t(u
2
t − σ2)2

(8)

where σ2 is the variance of u2
t .

(ii) Compute the Ljung-Box-Pierce (Box and Jenkins [1970]) statistic for the first
k autocorrelations of u2

t to test the null hypothesis of independence:

Quu(k) = T (T + 2)
k

∑

i=1

1

(T − i)
r2

uu(i) (9)

(iii) For a selected significance level α, find the critical value τ for testing the null
hypothesis using the chi-square distribution, with k degrees of freedom.

(iv) Reject the null hypothesis of linear dependence if Quu(k) > τ .

Rejection of the null hypothesis indicates the existence of non-linear dependence. The
main disadvantage of the test procedure is that the selection of k is entirely based
on the researcher’s knowledge of the memory of the process, that is, the correlation
between the current and previous periods. Besides this problem of lag selection the
test examines the presence of serial correlation of u2

t only under the alternative. This
depends on the assumption that the data are distributed normally and are stationary.
If one or both of these assumptions are incorrect, then the power of the test decreases.

The Mc-Leod-Li test is not a direct test for either multiplicative or additive non-
linearity, since the distribution of the test statistic is not known – either in finite
samples or asymptotically – under a null hypothesis of multiplicative or additive
non-linearity. The asymptotic distribution is known under the hypothesis of linear
dependence. The hypotheses of multiplicative and additive non-linearity are nested
within the alternative hypothesis.
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In conventional statistical methodology, one tests a hypothesis by equating it with
the null hypothesis or with the total alternative hypothesis, not by using the power of
the test to try to discriminate between subsets of the alternative hypothesis. Monte
Carlo evidence (see Lee, White, and Granger [1993]) shows that the McLeod-Li test
has a strong power against multiplicative non-linearity, but less power against other
forms of non-linearity. Thus under the above non-standard approach the McLeod-
Li test may be expected to provide evidence for the presence of non-linearity in
conditional variance3.

3.3 The Hsieh test

Hsieh [1989] proposed a test to discriminate between additive and multiplicative
non-linearity. Let ut be a vector of residuals, ut, of a linearly filtered series xt.
Multiplicative non-linearity implies that the conditional expectation of the residuals
given past lags of the variable, xt, and the residuals, ut, is zero:

E(ut|xt−1, . . . , xt−k, ut−1, . . . , ut−k) = 0 (10)

Additive non-linearity implies that the same conditional expectation is non-zero.
The test requires to set up multiplicative non-linearity as the null hypothesis.

This implies that the third-order correlation coefficient, ρuuu(r, s), equals 0 for all
r, s > 0. The test is implemented as follows:

(i) Define the third-order moments of the residuals

ρuuu(r, s) = E(
utut−rut−s

σ3
u

) (11)

and estimate ρuuu(r, s) by the statistic

ruuu(r, s) =
(1/T )

∑

t utut−rut−s

[(1/T )
∑

t u
2
t ]

1.5
(12)

(ii) In order to test the null hypothesis that ut posesses a multiplicative non-linearity
compute the test statistic H(r, s) given by

H(r, s) =

√
Truuu(r, s)
√

V (r, s)
(13)

with

V (r, s) =
(1/T )

∑

t u
2
tu

2
t−ru

2
t−s

[(1/T )
∑

t u
2
t ]

3
(14)

Hsieh [1989] has shown that – with the null and other auxiliary assumptions
derived from the central limit theorems for martingale differences –

√
Truuu(r, s)

is asymptotically normally distributed with zero mean and variance consistently
estimated by (14). Thus, H(r, s) follows a standard normal distribution with
zero mean and variance one.
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(iii) For a selected significance level α, find the critical value τ for testing the null
hypothesis of multiplicative non-linearity, using the standard normal distribu-
tion.

(iv) Reject the null hypothesis, if |H(r, s)| > τ .

If the null hypothesis of multiplicative non-linearity is rejected then the alter-
native hypothesis implies the existence of additive non-linearity. The test has the
disadvantage that several lags have to be tested and that the choice of lags r and s
for the test statistic is ambiguous. The test is evaluated for a grid of values of r and
s, and one looks to the majority of the test results to sopport an outcome (Cromwell,
Labys, and Terraza 1994).

3.4 The Teräsvirta-Lin-Granger test

The test suggested by Teräsvirta, Lin, and Granger [1993] is an indirect test for
non-linearity.4 The authors consider the specific non-linear model

xt = π′wt + φ(γ′wt) + ut (15)

where wt = (1, xt−1, . . . , xt−p)
′ denotes a vector of dependent variables including a

constant, π′ = (π0, π1, . . . , πp) and γ′ = (γ0, γ1, . . . , γp) are parameter vectors, and
ut ∼ iid(0, σ2) is an error term. Set φ(γ′wt) = θψ(γ′wt) where

ψ(γ′wt) = (1 + exp(−γ′wt))
−1 − 1/2. (16)

Then, (15) can be interpreted as a non-linear autoregressive model of order p in which
the intercept π0 + θψ(γ′wt) is time varying and changes smoothly. Note that γ = 0
leads to the linear model xt = π′wt. Thus, the null hypothesis is

H0 : γ = 0. (17)

Note that model (15) is not identified under the null (17), but under the alternative.
This motivates Teräsvirta, Lin, and Granger [1993] to replace φ in (15) by a Taylor
expansion around γ = 0 in order to derive an applicable test for (17).

Thus, model (15) becomes

xt = π̃′wt +

p
∑

i=1

p
∑

j=i

δijxt−ixt−j +

p
∑

i=1

p
∑

j=i

p
∑

k=j

δijkxt−ixt−jxt−k + ũt (18)

where δij = dijθγiγjγ0 with dij = 1/36 if i = j and dij = 1/18 otherwise, and
δijk = dijkθγiγjγk with dijk = 1/36 if i = j = k, dijk = 1/18 if i = j, j = k or i = k,
and dijk = 1/6 otherwise. The null hypothesis corresponding to (17) is

H ′
0 : δij = 0, δijk = 0 i = 1, . . . , p; j = i, . . . , p; k = j, . . . , p. (19)

The test procedure can be performed in the following steps:
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(i) Select the order p of the autoregressive process by a conventional selection
criterion, regress xt on 1, xt−1, . . . , xt−p and compute the residuals ût and the
sum of the squared residuals SSR0 =

∑

t û
2
t .

(ii) Regress ût on 1, xt−1, . . . , xt−p and m auxiliary regressors corresponding to the
non-linear terms in (18). Compute the residuals v̂t and the sum of squared
residuals SSR =

∑

t v̂
2
t .

(iii) In order to test the null hypothesis of linearity H ′
0 according to (19), compute

the test statistic

TLG =
(SSR0 − SSR)/m

SSR/(T − p− 1 −m)
(20)

(iv) For a selected significance level α find the critical value τ for testing the null
hypothesis using the F -distribution withm and T−p−1−m degrees of freedom.

(v) Reject the null hypothesis of linearity if TLG > τ .

The test possesses the useful property that if the null hypothesis of linearity is rejected
it will provide a non-linear model that is potentially useful for forecasting. Of course,
this non-linear model produced by the test procedure should not be accepted as being
the true model but only as a useful approximation. The question of how to construct
better approximations is still an open question (see Granger [1991]).

4 Data and empirical results

4.1 Raw and differenced data series

In recent years, much attention has been paid to identifying the appropriate time
series characteristics of various macroeconomic aggregates. An interesting example
in this respect is the empirical investigation of unemployment. Empirical studies in
this area typically rely on linear specifications, the standard approach involving the
estimation of ARMA processes. This approach reflects the view that macroeconomic
data may be adequately described by stable linear processes driven into recurrent
oscillations by successive random shocks (Peel and Speight [1998]). But a number
of theoretical models have been prepared that suggest that unemployment may be a
non-linear process (see, for example, Burgess [1992]).

This motivates to analyse the above test procedures on unemployment data, us-
ing the Austrian definition of the unemployment rate. The monthly sample is from
January 1960 to December 1997 (456 data points). Figure 1 provides a visual repre-
sentation of the time series with the y-axis defined as the unemployment rate and the
x-axis as the time index. From an eyeball inspection of the plotted series, it seems
obvious that this series is non-stationary and seasonal. In fact, the series level appears
to increase in annual steps in the 1980s and 1990s. The Augmented Dickey-Fuller,
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the Phillips-Perron, the Kwiatkowski-Phillips-Schmidt-Shin and the Dickey-Hasza-
Fuller test confirm that the series is seasonally non-stationary. Seasonal differencing,
i.e. applying the seasonal filter ∆sxt = xt − xt−s, with s = 12, is supposed to make
the series stationary. The seasonally differenced series is plotted in Figure 2. Table 1
presents summary statistics for both the original and the seasonally differenced series.

[Figure 1 about here.]

[Figure 2 about here.]

[Table 1 about here.]

But closer inspection of ∆sxt reveals that there is seasonal heteroskedasticity in
the data. A series consisting only of seasonal peak months exhibits higher variance
than a series consisting only of seasonal trough months. The fact that ∆sxt is not
(co)variance stationary has some drawbacks for linear model building (the estimators
are not efficient) and for testing for non-linear dependence (apparent ARCH structure
is introduced).

In order to tackle the problem of seasonal heteroskedasticity we considered the
logistic transformation yt = lnxt − ln(100 − xt) of the unemployment rate5 and the
seasonal differences thereof, ∆syt. It turned out that for ∆syt the problem of seasonal
heteroskedasticity is considerably alleviated, but a trivial form of heteroskedasticity
is introduced. The variance of ∆syt is higher for larger values of yt−s and for the
beginning of the time series. This implies similar problems for linear modelling and
testing for non-linearity as in the case of the untransformed series. Being unable to
completely render the time series covariance stationary, we performed the tests for
both ∆sxt and ∆syt

6.
Our primary concern is to detect non-linear departure from a linear process. The

BDS test, the McLeod-Li test and the Hsieh test – in contrast to the Teräsvirta-Lin-
Granger test – require the extraction of linear structure by the use of an estimated
filter. Typically, an AR(p) model is fitted to the series and the test then applied to
the estimated residuals. For the purpose of model identification selection criteria such
as the Akaike Information Criterion [AIC] are usually employed (see Brockwell and
Davis [1991]). Minimisation of the AIC suggests model order p = 26 for the seasonally
differenced series. Furthermore, the model contains no intercept, reflecting the fact,
that unemployment rates do not tend to rise or fall in the long run.

4.2 Empirical results

The following is a summary of the results obtained by applying the BDS test, the
McLeod-Li test, the Hsieh test, and the Teräsvirta-Lin-Granger test, with each test
judged relative to the null hypothesis that it is designed to test.
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Results with the BDS test

The first test used is the BDS test that examines the underlying probability structure
of the time series searching for any kind of dependence in the series. The BDS statistic
will reject any deviation from independence. Evidence from the AR(26) model shows
that the seasonally differenced series is not independent. In this situation the BDS
statistic can be used as a test for residual non-linear structure, after linear structure
has been removed by fitting the AR(26) model.

The BDS-statistic has been computed over a grid of embedding dimension (m =
2, . . . , 15) and ǫ’s (ǫ = 0.5σu, 1.0σu) where σu is the standard deviation of the residual
time series). The results are summarized in Table 2. Rejection of the null hypothesis
of independence indicates structure beyond the fitted linear model. When (T −m+
1)/m exceeded 200 we used the standard normal distribution for the critical value,
otherwise we looked up the critical value from tables in Brock, Hsieh, and LeBaron
[1991] to assess the significance.

[Table 2 about here.]

The results obtained are unambiguous. The rejection of the null is extremely
strong for ǫ = 0.5σu and ǫ = 1.0σu. Much of the Monte Carlo research that has
been published on the BDS test (see, for example, Brock, Hsieh, and LeBaron [1991])
has emphasized the potential dependence of the properties of the test on the a priori
linear filter. Thus, we considered a sparsely specified ARMA model with two AR
coefficients at lags 1 and 12 and three MA coefficients at lags 11, 12 and 13 as an
alternative linear filter. But the results did not change when varying the linear filter.

If the null hypothesis of the BDS test is rejected, other tests should be used to
allow the class of relevant alternatives to be narrowed down. If the null hypothesis is
accepted then there would be little point to continue further, since either the lack of
non-linear structure or the shortness of the time series would strongly question the
informativeness of tests for more specific forms of non-linearity.

Results with the McLeod-Li test

The McLeod-Li test is a Portmanteau test for non-linear dependence that examines
the Ljung-Box-Pierce statistic of the squared residuals from an AR(26) representa-
tion. The results with the test, displayed in Table 3, for k = 5, . . . , 26, provide clear
evidence against the null hypothesis of linearity. The strength of this conclusion is
evident from the fact that the critical value of the test at the 0.05 level is reached
in all displayed cases. This result corroborates the inference that the data contain
non-linearities, and in particular provides a strong indication for non-linearity in
conditional variance.

[Table 3 about here.]
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Results with the Hsieh test

The Hsieh test discriminates between additive and multiplicative non-linearity once
it is established that some type of non-linearity exists in the data. Again, the test is
based on the assumption that by fitting an AR(26) model to the seasonally differenced
time series, the inherent non-linearity has been swept into the residuals. The test is
used to evaluate the null hypothesis of multiplicative non-linearity, using the standard
normal distribution. The test is a third moment test which has the disadvantage
that several lags have to be tested and that the selection of lags r and s for the test
statistic is ambiguous. Thus, the test results are displayed in Figure 3 for a grid of
r, s = 1, . . . , 15.

[Figure 3 about here.]

The figure shows asymptotic prob-values for the test, a low prob-value suggesting
rejection of the null hypothesis of multiplicative non-linear dependence in favour of the
alternative hypothesis of additive non-linearity. The test produced only 6 rejections
out of 120 cases. The results of the Hsieh test can be considered only as extremely
weak evidence against the null hypothesis of multiplicative non-linearity.

Results with the Teräsvirta-Lin-Granger test

The final test used is the Teräsvirta-Lin-Granger test which does not need to extract
linear structure by the use of an estimated filter. The disadvantage of this test is that
the researcher has to fix p, and that the size of the regressions can grow quite large
very rapidly, that is, the number m of regressors used in the auxiliary regressions of
the test procedure increases more than proportionally with p.

The test procedure starts with selecting the order p of the autoregressive process.
In doing so, we followed the rule of minimizing AIC (see Brockwell and Davis [1991]).
The resulting AR model is of order 26, leading to m = 2, 266 regressors in the non-
linear auxiliary regression. Thus, computation of the TLG-statistic is not feasible
anymore in this situation. To make the testing applicable to form, we modify the
test procedure as follows:

(i) Select the order p of the autoregressive process by a conventional selection
criterion, regress xt on 1, xt−1, . . . , xt−p and compute the residuals ût and the
sum of the squared residuals SSR0 =

∑

t û
2
t .

(ii) Select a smaller subset, (xt−q1
, xt−q2

, . . . , xt−qn
| q1, q2, . . . , qn ≤ p), of

(xt−1, . . . , xt−p) for appropriate q1, q2, . . . , qn.

(iii) Regress ût on 1, xt−1, . . . , xt−p and m̃ auxiliary regressors corresponding to the
the second-order and third-order expansions of xt−q1

, xt−q2
, . . . , xt−qn

. Compute

12



the residuals v̂t and the sum of squared residuals SSR =
∑

t v̂
2
t and the test

statistic

T̃LG =
(SSR0 − SSR)/m̃

SSR/(T − p− 1 − m̃)
(21)

(iv) For a selected significance level α find the critical value τ for testing the null
hypothesis using the F -distribution with m̃ and T−p−1−m̃ degrees of freedom.

(v) Reject the null hypothesis of linearity if T̃LG > τ .

Note that the modification of the test procedure has the advantage, that the
number m̃ of regressors used in the non-linear part of the auxiliary regression is now
in a reasonable range. It is straightforward to show that this modification does not
affect the statistical properties of the test procedure.

The results with the modified Teräsvirta-Lin-Granger test are summarized in Ta-
ble 4, for various subsets (xt−1), (xt−2), (xt−10), (xt−1, xt−10), (xt−1, xt−2, xt−10) and
(xt−1, xt−2, xt−10, xt−12). The null hypothesis of linearity is rejected, suggesting non-
linearity in the mean. The rejection is very strong except in the second case.

[Table 4 about here.]

[Figure 4 about here.]

Figure 4 shows asymptotic prob-values for the modifed test for a grid of q1, q2 =
1, . . . , 15 with q1 > q2. A low prob-value suggests rejection of the null hypothesis of
linearity in favour of the alternative hypothesis of non-linearity in the mean. This
is unambiguously the case for (q1, q2) with q1 = 1, 10 and 12. This result underlines
that it may be sufficient to consider specific lag combinations (q1, q2) to reject the
null hypothesis of linearity.

5 Conclusions

We find some consistency in our inferences across the methods of inference, although
there are some clear differences among the power functions of the tests. It may
be possible that greater robustness across inference procedures might be obtained
at much greater sample size that are, however, rare in practice. Some of the test
procedures can be considered as complementary rather than competing. None of the
tests uniformly dominates the others. Using all of them jointly may produce deeper
insights into the nature of the non-linearity that may exist in the data.

The BDS test is an omnibus test that tests linearity against all possible alterna-
tives. Monte Carlo simulations indicate that the test is very sensitive to departures
from linearity, but also emphasize that it may depend on the linear filter used for
prewhitening. The highly significant test results and, thus, rejection of the null hy-
pothesis may partly be caused by multiplicative non-linearity present in the data.
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Only if non-linearity is rejected with the BDS test or if the test leads to ambiguous
results it becomes reasonable to make use of other more focused tests for non-linearity.
The McLeod-Li test is sensitive against multiplicative non-linearity, less so against
additive non-linearity. The Hsieh test and the Teräsvirta-Lin-Granger test are specif-
ically designed to detect additive non-linearity. The Teräsvirta-Lin-Granger test has
high power to distinguish among non-linear processes that are non-linear in the mean
and those that are not [such as ARCH processes]. But the Hsieh test should be run
before proceeding to the modified Teräsvirta-Lin-Granger test because of the a priori
knowledge required in choosing q1, q2, . . . , qn. Note that simply rejecting linearity is
not likely to exhaust the useful information available in the data about non-linearity.

It is important to emphasize that we cannot be sure that there are not other
features of the unemployment series that lead to the observed results with the latter
two tests. Especially, seasonal heteroskedasticity and possible ARCH effects may have
two effects. First, they may cause the size of the test statistic to be incorrect while still
resulting in a diagnostic bounded in probability under the null hypothesis, as is the
case of the Teräsvirta-Lin-Granger test. Second, they may directly lead to rejection
despite linearity in the mean. Lee, White, and Granger [1993] suggest two strategies
that can be undertaken in this situation. The first strategy may be followed to remove
effects of the first type by using a heteroskedasticity consistent matrix operator in
calculating the test statistic. The second strategy involves specifying the form of the
ARCH effect and jointly modelling non-linearity in the mean and heteroskedasticity
when performing the tests. Joint modelling is necessary because using an ARCH with
a linear filter may bias the test against the alternative. Note that the use of ARCH
with a non-linear model may make one incorrectly not find actual non-linearity in
the case of the BDS test. So it might be necessary to revise this test procedure, not
affected by heteroskedasticity.

Conclusions are not substantially altered when using ∆syt rather than ∆sxt. It is
interesting to note that the tests that have power against multiplicative non-linearity
(McLeod-Li test and BDS test) still reject the respective null-hypothesis but the test
statistics are less highly significant. This can be seen as an indication that seasonal
heteroskedasticity is taken for ARCH effects by the tests and that the problem caused
by trivial heteroskedasticity in ∆syt is less severe than the corresponding problem
caused by seasonal heteroskedasticity in the case of ∆sxt. The other two tests (Hsieh
test, Teräsvirta-Lin-Granger test) produce very similar test results for ∆syt or ∆sxt.
But the test statistic may become larger due to heteroskedasticity and ARCH effects.

Consequently, we can take the empirical results of this study as indicating that
either neglected non-linearity or ARCH effects and seasonal heteroskedasticity may
be present in the Austrian unemployment time series. Thus, further investigation is
required. The results achieved are only a first step on the way to analysing inference
procedures able to unambiguously detect non-linearity in real world small sized time
series.
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Notes

1The results presented in this paper are part of a larger Ph.D. project of the first author, super-
vised by the second.

2Instead of using the residuals from a linear representation, the raw data can be examined through
the use of the k autocorrelation functions.

3The ARCH test of Engle [1982], which is asymptotically equivalent to the McLeod-Li test,
shares the same shortcoming, assuming a correct conditional mean specification, including potential
additive non-linearity (see Lumsdaine and Ng [1999] for more details and robustification of the
ARCH test statistic).

4The test is also known as Teräsvirta’s neural network test due to the fact it has been motivated
by White’s neural network test (see White [1989] and Lee, White, and Granger [1993]), the test
statistic, however, is not based on neural network concepts such as neural network approximation
theory.

5The logistic transformation was proposed by Wallis [1987] as particularly appropriate for time
series that are bounded between a lower and an upper value, for instance 0 and 100 as in the
case of the unemployment rate. The logistic transformation numerically comes very close to the
logarithmic transformation yt = lnxt, provided that xt does not move far away from the lower
bound. It is interesting to note that by far the majority of the published univariate time series
studies of unemployment rate do not use any static transformation, among them also investigations
of seasonally unadjusted Austrian unemployment rate time series (for example Skalin and Teräsvirta
[1999]).

6The results for ∆syt are available from the authors upon request.
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Teräsvirta, T., Lin, C.-F., and Granger, C. (1993). Power of the neural network
linearity test. Journal of Time Series Analysis, 14(2), 209–220.

Tong, H. and Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical
data. Journal of the Royal Statistical Society, B42, 245–292.

Wallis, K. F. (1987). Time series analysis of bounded economic variables. Journal of

Time Series Analysis, 8(1), 115–123.

White, H. (1989). An additional hidden unit test for neglected non-linearity in mul-
tilayer feedforward networks. In Proceedings of the International Joint Conference

on Neural Networks, Washington, DC, vol. I, pp. 451–455, San Diego, CA. SOS
Printing.

17



Figures

1960 1970 1980 1990

2
4

6
8

U
ne

m
pl

oy
m

en
t R

at
e 

[in
 %

]

Figure 1: Monthly observations of the Austrian unemployment rate, from January
1960 to December 1997
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Figure 2: Seasonally differenced series, ∆12xt, Austrian unemployment rates
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Figure 3: Hsieh test, residuals of an AR(26) model (prob-values ×100)
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Tables

Table 1: Summary statistics for Austrian unemployment rates, xt and ∆12xt

Time Series N Mean Variance Minimum Maximum
Raw data series, xt 456 3.7253 4.5531 0.8 9.2
Seasonal differenced series, ∆12xt 444 0.0975 0.2411 -1.9 1.7
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Table 2: BDS(ǫ,m, T ) for m = 2, . . . , 15 and two different values of ǫ: Data are
prewhitened by AR(26) fit

m ǫ = 0.5σu ǫ = σu

2 5.6946 (0.0000)*** 6.3186 (0.0000)***
3 6.2463 (0.0000)*** 6.5120 (0.0000)***
4 6.5737 (0.0000)*** 6.7165 (0.0000)***
5 6.3121 (0.0000)*** 6.3626 (0.0000)***
6 6.1554 (0.0000)*** 5.6167 (0.0000)***
7 5.5415 (0.0000)*** 4.5242 (0.0000)***
8 4.7303 (0.0000)*** 3.8954 (0.0001)***
9 3.7160 (0.0002)*** 3.2697 (0.0011)**
10 6.5993 (0.0000)*** 3.0386 (0.0024)**
11 16.2679 (0.0000)*** 3.3001 (0.0010)***
12 35.6241 (0.0000)*** 3.6136 (0.0003)***
13 73.1271 (0.0000)*** 4.6322 (0.0000)***
14 140.1451 (0.0000)*** 6.2985 (0.0000)***
15 239.2324 (0.0000)*** 8.2771 (0.0000)***

Note: The BDS statistic is asymptotically standard normal under the
null hypothesis of independence. If (T − m + 1)/m ≤ 200 we use the
critical values from tables in Brock, Hsieh, and LeBaron [1991]. Prob-
values are included in parentheses. ***, ** and * denote significant
values at the 0.1%, 1% and 5% confidence levels, respectively.
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Table 3: McLeod-Li test: Ljung-Box-Pierce statistics, residuals of an AR(26) model

k Q(k) k Q(k)
5 15.2538 (0.0093)** 16 55.1627 (0.0000)***
6 22.1388 (0.0011)** 17 59.5608 (0.0000)***
7 26.9507 (0.0003)*** 18 66.2256 (0.0000)***
8 29.2521 (0.0003)*** 19 72.2936 (0.0000)***
9 29.4720 (0.0005)*** 20 72.8171 (0.0000)***
10 29.7238 (0.0009)*** 21 72.8940 (0.0000)***
11 35.6877 (0.0002)*** 22 72.9240 (0.0000)***
12 45.5349 (0.0000)*** 23 81.3158 (0.0000)***
13 54.9075 (0.0000)*** 24 95.1295 (0.0000)***
14 55.0969 (0.0000)*** 25 96.3822 (0.0000)***
15 55.1211 (0.0000)*** 26 97.0221 (0.0000)***

Note: The test statistic Q(k) is chi-square-distributed with k degrees of freedom.
Prob-values are included in parentheses. *** and ** denote significant values at
the 0.1% and 1% confidence levels, respectively.
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Table 4: The modified Teräsvirta-Lin-Granger test: The test statistic T̃LG for several
sets (xt−q1

, . . . , xt−qn
)

q1 q2 q3 q4 m̃ T − p − 1 − m̃ T̃LG

1 2 415 13.9272 (0.0000)***
2 2 415 4.2322 (0.0152)*

10 2 415 11.4322 (0.0000)***
1 10 7 410 8.4546 (0.0000)***
1 2 10 16 401 5.0293 (0.0000)***
1 2 10 12 30 387 3.6521 (0.0000)***

Notes: The test statistic T̃LG of the modified Teräsvirta-Lin-Granger test is asymp-
totically F -distributed with m̃ and T − p − 1 − m̃ degrees of freedom. Prob-values
are included in parentheses. ***, ** and * denote significant values at the 0.1%, 1%
and 5% confidence levels, respectively.
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