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Optimization in an Error Backpropagation Neural Network Environment

with a Performance Test on a Real World Pattern Classi�cation Problem

Manfred M. Fischera;b;� Petra Staufera;�
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Augasse 2-6, A-1090 Vienna, Austria;
E-mail: fmanfred.m.�scher, petra.stauferg@wu-wien.ac.at

b Institute for Urban and Regional Science, Austrian Academy of Sciences
Postgasse 7/4, A-1010 Vienna, Austria; E-mail: manfred.m.�scher@oeaw.ac.at

Abstract

Various techniques of optimizing the multiple class cross-entropy error function
to train single hidden layer neural network classi�ers with softmax output transfer
functions are investigated on a real-world multispectral pixel-by-pixel classi�cation
problem that is of fundamental importance in remote sensing. These techniques
include epoch-based and batch versions of backpropagation of gradient descent,
PR-conjugate gradient and BFGS quasi-Newton errors. The method of choice
depends upon the nature of the learning task and whether one wants to optimize
learning for speed or generalization performance. It was found that, comparatively
considered, gradient descent error backpropagation provided the best and most stable
out-of-sample performance results across batch and epoch-based modes of operation.
If the goal is to maximize learning speed and a sacri�ce in generalisation is accept-
able, then PR-conjugate gradient error backpropagation tends to be superior. If the
training set is very large, stochastic epoch-based versions of local optimizers should
be chosen utilizing a larger rather than a smaller epoch size to avoid inacceptable
instabilities in the generalization results.

Keywords: Feedforward Neural Network Training, Numerical Optimization
Techniques, Error Backpropagation, Cross-Entropy Error Function, Multispectral
Pixel-by-Pixel Classi�cation.
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neural network environment.
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1 Introduction

In recent years there has been increasing use of neural networks for solving problems in the
�eld of pattern classi�cation (see [2], [3]). The main thrust of work in this area has been in
the use of feedforward neural networks such as single hidden layer feedforward networks.
Their popularity can be attributed largely to their general approximation capabilities.
Inter alia, Hornik et al. [4] have demonstrated by rigorous mathematical proofs that such
models can approximate virtually any function of interest to any desired degree of accuracy,
provided su�ciently many hidden units are available. These results establish single hidden
layer network models as a powerful class of universal approximators in general and pattern
classi�ers in particular. As such, failures in applications can be attributed to inadequate
numbers of hidden units (i.e., inappropriate model choice) or inadequate learning (i.e.,
inappropriate parameter estimation). This contribution does not address the issue of
model choice to attain a given degree of approximation, but focus is laid on the issue of
network training (i.e., parameter estimation).

Several algorithms for adaptive training (learning) feedforward neural networks have
recently been discovered. Many of them are based on the gradient descent technique. They
generally depend on parameters that have to be speci�ed by the user, as no theoretical basis
exists for choosing them. The values of these parameters are often crucial for the success
of the algorithms. One of the most widely | and often wildly | used is backpropagation
of gradient descent errors, introduced and popularized by Rumelhart et al. [5], i.e., a
combination of the backpropagation technique for calculating the partial derivatives of the
error function and the gradient descent procedure for updating the network parameters.

Many enhancements of and variations to gradient descent backpropagation have been
proposed (see, [6], [7]). These are mostly heuristic modi�cations with goals of increased
speed of convergence, avoidance of local minima and/or improvement in the network
model's ability to generalize, and usually evaluated on arti�cial benchmark problems.
Another approach has been to draw upon a large body of theory in related �elds such as
statistical theory ([8]) and optimization theory ([9], [10]).

From the point of view of optimization theory network training is equivalent to min-
imizing an objective function that depends on the network parameters. This perspective
opens the possibility to combine the backpropagation technique with more sophisticated
optimization procedures for parameter adjustment, such as the conjugate gradient and
the quasi-Newton procedure. No doubt, the performance of backpropagation training
might be greatly inuenced by the choice of the optimization procedure for parameter
adaptation. This has been illustrated by a range of comparative studies, dominated by a
focus on execution time and usually evaluated on arti�cial benchmark problems (see, for
example, [11], [12], [13], [10], [14]).

The purpose of this contribution is to analyse the e�cacy of backpropagation train-
ing with three optimization procedures for weight updating, the gradient descent (GD),
the one-step Polak-Ribiere-conjugate gradient (PR-CG), the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) memoryless quasi-Newton algorithms, on a satellite image based pattern
classi�cation problem, with a challenging level of complexity and a larger size of train-
ing set. Two versions of o�-line backpropagation training are considered: epoch-based
learning (with epoch sizes k = 30; 300; 600; 900) and batch learning. They di�er in how
often the weights are updated. The batch version updates the weights after all patterns
have been propagated through the network. The epoch-based version updates using in-
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formation from K� patterns randomly chosen from the training set. The evaluation is
based on three performance indices, learning time (measured in both as the elapsed time
in CPU-seconds and the number of iterations), required to convergence on a solution, out-
of-sample classi�cation performance (measured in terms of total classi�cation accuracy)
and stability (i.e., the ability of a network model with a given set of weights to converge,
starting from di�erent positions in parameter space).

The organization of the paper is as follows. In the next section a summarized descrip-
tion of single hidden layer networks as pattern classi�ers is reviewed. Additionally, the
network training problem is described as a problem of minimizing the multiple class cross-
entropy error function. Training algorithms, whether used in o�-line (epoch-based and
batch) or on-line mode, are termed backpropagation algorithms if they use the technique
of backpropagation for the evaluation of the error function derivatives (see Section 3) and
some optimization scheme for parameter updating. They basically di�er in the choice
of the optimization procedure for weight adjustment. The three optimization procedures
used in the simulations in this study are discussed in Section 4: the gradient descent,
the PR-conjugate gradient and the BFGS quasi-Newton algorithms. These techniques are
compared on a supervised multispectral pixel-by-pixel classi�cation problem in which the
classi�er is trained with examples of the classes to be recognized in the data set. This is
achieved by using limited ground survey information which speci�es where examples of
speci�c categories are to be found in the satellite imagery. The remote sensing pattern
classi�cation problem is characterized in section 5 along with a discussion of the relative
strengths and weaknesses of the above optimization techniques when applied to solve the
problem in batch and in epoch-based mode of operation. It will be demonstrated that the
method of choice depends upon whether one wants to optimize learning speed or general-
ization performance. If the training set is very large, stochastic epoch-based rather than
deterministic batch modes of operation tend to be preferable.

2 Single Hidden Layer Networks and the Network Training

Problem

Suppose we are interested in approximating a classi�cation function F : RN 7! RC which
estimates the probability that a pattern belongs to one of a priori known mutually exclusive
classes. The function F is not analytically known, but rather samples S = fs1; : : : ; sKg

with sk = (xk;yk) are generated by a process that is governed by F , i.e., F(xk) = yk.
From the available samples we want to build a smooth approximation to F . Note that
in real-world applications, only a �nite (i.e., small) number K of learning examples is
available or can be used at the same time. Moreover, the samples contain noise.

To approximate F we consider the class of single hidden layer feedforward networks
�, the leading case of neural network models. � consists of a combination of transfer
functions 'j(j = 1; : : : ; J) and  c(c = 1; : : : ; C) that are represented by hidden units,
and weighted forward connections between the input, hidden, and output units. The c-th
output element of � is

�(x;w)c =  c

0
@ JX
j=0

wcj 'j

 
NX
n=0

wjn xn

!1A 1 � c � C; (1)

where N denotes the number of input units, J the number of hidden and C the number
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of output elements (a priori given classes). x = (x0; x1; : : : ; xN) is the input vector aug-
mented with a bias signal x0 that can be thought of as being generated by a `dummy'
unit (with index zero) whose output is clamped at 1. The wjn represent input to hidden
connection weights, and the wcj hidden to output weights (including the biases). The
symbol w is a convenient short-hand notion of the ! = [J(N +1)+C(J +1)]-dimensional
vector of all the wjn and wcj network weights and biases (i.e., the model parameters).
'j(�) and  c(�) are di�erentiable non-linear transfer (activation) functions of, respectively,
the hidden units (j = 1; : : : ; J) and the output elements (c = 1; : : : ; C).

One of the major issues in neural network modelling includes the problem of selecting
an appropriate member of model class � in view of a particular real-world application.
This model speci�cation problem involves both the choice of appropriate transfer functions
'j(�) and  c(�), and the determination of an adequate network topology of �. Clearly,
the model choice problem and the network training problem (i.e., the determination of an
optimal set of model parameters where optimality is de�ned in terms of an error function)
are intertwined in the sense that if a good model speci�cation can be found, the success of
which depends on the particular problem, then the step of network training may become
easier to perform.

In this contribution, however, we restrict our scope to the network training problem
and to training algorithms that train a �xed (i.e., predetermined) member of class �.
The approximation � to F then only depends on the learning samples, and the learning
(training) algorithm that determines the parametersw from S and the model speci�cation.
Let us assume the hidden unit transfer functions 'j(�) to be identical, 'j(�) = '(�) for all
j = 1; : : : ; J , and the logistic function. Thus, the output of the j-th hidden unit, denoted
by zj reads as

zj = '(netj) =
1

1 + exp(�netj )
j = j; : : : ; J (2)

with netj representing the net input given by

netj =
NX
n=0

wjn xn j = 1; : : : ; J: (3)

Moreover, each unit c (c = 1; : : : ; C) of the output layer is assumed to have the same
transfer function, denoted by  (�). Since the network should implement a pattern classi�er
with real valued outputs, a generalization of the logistic function known as softmax transfer
function ([15]) represents an approriate choice. With this speci�cation the c-th network
output is

�c =  (netc) =
exp(netc)PC

c0=1 exp(netc0)
c = 1; : : : ; C (4)

with netc representing the net input given by

netc =
JX
j=0

wcjzj =
JX
j=0

wcj '(netj) c = 1; : : : ; C: (5)

The choice of this output transfer function is motivated by the goal of ensuring that the
network outputs can be interpreted as probabilities of class membership, conditioned on
the outputs zj (j = 1; : : : ; J) of the hidden units (see [3, 238 pp.] for more details).

4



The process of determining optimal parameter values is called training or learning
and may be formulated in terms of the minimization of an appropriate error function.
The function that is minimized for the pattern classi�cation problem of this study is the
multiple class cross-entropy error function that is | following [3, p. 238] | de�ned (for
batch learning) as a sum over all training patterns and all outputs as

E(w) =
KX
k=1

Ek(w) = �
KX
k=1

CX
c=1

ykc ln

�
�(xk;w)c

ykc

�

= �

KX
k=1

CX
c=1

ykc ln

8<
: 1

ykc

exp
hP

j wcj (1 + exp (�
P

n wjn xn))
�1
i

P
c0 exp

hP
j wc0j (1 + exp (�

P
n wjn xn))

�1
i
9=
;: (6)

�c represents the c-th component of the actual network output as a function of xk and the
weight vectorw, and may be interpreted as the network's estimate of the class membership
probability. ykc is the target data which has a 1-of-C coding scheme so that ykc = �cc0 for
a training pattern xk from class c0 where �cc0 denotes the Kronecker symbol with �cc0 = 1
for c = c0 and �cc0 = 0 otherwise. E(w) can be calculated with one forward pass and the
gradient rE(w) that is de�ned as

rE(w) =

 
: : : ;

KX
k=1

@Ek(w)

@wjn

; : : : ;

KX
k=1

@Ek(w)

@wcj

; : : :

!
(7)

where K is the number of patterns presented to the network model during training,
and Ek(w) the local cross-entropy error associated with pattern k. Optimal weights
w� = (: : : ; w�

jn; : : : ; w
�
cj; : : :) are obtained when �(xk)c = ykc for all c = 1; : : : ; C and

k = 1; : : : ; K. Characteristically, there exist many minima all of which satisfy

rE(w) = 0 (8)

where rE(w) denotes the gradient of the error function in the !-dimensional parameter
space. The minimum for which the value of E(w) is smallest is termed the global minimum
while other minima are called local minima. But there is no guarantee about what kind of
minimum is encountered. The problem is usually tackled by repeated application of the
learning procedure from di�erent starting con�gurations.

There are two basic approaches to �nd the minimum of the global error function E,
o�-line learning and on-line learning. They di�er in how often the weights are updated.
The on-line (i.e., pattern based) learning updates the weights after every single pattern
sk chosen at random from S, i.e., using only information from one pattern. In contrast,
o�-line learning updates the weights after K� patterns randomly chosen from S have been
propagated through the network, i.e., using information from K� patterns in the training
set. If K� = K o�-line learning is known as batch learning, otherwise it is also termed
epoch-based learning with an epoch size of K� (1 < K� < K).

Both, the on-line and epoch-based (K� small) versions are not consistent with opti-
mization theory, but nevertheless have been found to be superior to batch learning on real
world problems that show a realistic level of complexity and have a training set that goes
beyond a critical threshold (see [16], [17]).
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3 Optimization Strategy and the Backpropagation Tech-

nique

In the previous section the network training problem has been formulated as a problem
of minimizing the multiple class cross-entropy error function, and, thus, as a special case
of function approximation where no explicit model of the data is assumed. Most of the
optimization procedures used to minimize functions are based on the same strategy. The
minimization is a local iterative process in which an approximation to the function in a
neighbourhood of the current point in parameter space is minimized. The approximation
is often given by a �rst- or second-order Taylor expansion of the function. In the case of
batch learning, the general scheme of the iteration process may be formulated as follows:

(i) choose an initial vector w in parameter space and set � = 1,

(ii) determine a search direction d(�) and a step size �(�) so that

E(w(�)+ �(�) d(�)) < E(w(�)) � = 1; 2; : : : (9)

(iii) update the parameter vector

w(� + 1) = w(�) + �(�) d(�) � = 1; 2; : : : (10)

(iv) if dE(w)dw 6= 0 then set � = � + 1 and go to (ii), else return w(� + 1) as the desired
minimum.

In the case of on-line learning the above scheme has to be slightly modi�ed since this
learning approach is based on the (local) error function Ek, and the parameter vector
wk(�) is updated after every presentation of sk = (xk;yk). In both cases, batch and on-
line learning, determining the next current point in the iteration process is faced with two
problems. First, the search direction d(�) has to be determined, i.e., in what direction in
parameter space do we want to go in the search for a new current point. Second, once the
search direction has been found, we have to decide how far to go in the speci�ed direction,
i.e., a step size �(�) has to be determined. For solving these problems characteristically
two types of operations have to be accomplished: �rst, the computation or the evaluation
of the derivatives of the error function (6) with respect to the network parameters, and,
second, the computation of the parameter �(�) and the direction vector d(�) based upon
these derivatives.

In the sequel we illustrate that the backpropagation technique is a powerful method for
e�ciently calculating the gradient of the cross-entropy error function (6) with respect to
the parameter weights. Because the single hidden layer network is equivalent to a chain of
function compositions (see equation (1)), the chain rule of di�erential calculus will play a
major role in �nding the gradient of function (6). In order to keep the notation uncluttered
we will omit the superscript k (representing the k-th training pattern) from the terms,
except the error function.

Let us consider, �rst, the partial derivatives of Ek(w) with respect to the hidden-to-
output connection parameters, i.e., the wcj weights with c = 1; : : : ; C and j = 1; : : : ; J.
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Note thatEk(w) depends on wcj only via the summed input netc to output unit c (cf. equa-
tion (5)). Thus, using the chain rule for di�erentiation one may express the partial deriva-
tives of Ek(w) we are looking for as (for training pattern k)

@Ek

@wcj

=
@Ek

@netc

@netc
@wcj

: (11)

Recall from equation (5) that netc =
PJ

j=1 wcjzj where the sum is taken over the output
of all hidden units j = 1; : : : ; J . Thus, the second term of the right hand side of equation
(11) can be evaluated as follows:

@netc
@wcj

=
@

@wcj

JX
j=1

wcjzj =
@

@wcj

2
4X
j0 6=j

wcj0zj0 + wcjzj

3
5 = zj : (12)

Substituting (12) into (11) we obtain

@Ek

@wcj

=
@Ek

@netc
zj (13)

If we de�ne the local error at the c-th node of the network, called delta, by

�c :=
@Ek

@netc
; (14)

we can express the partial derivatives of E with respect to wcj as

@Ek

@wcj

= �c zj : (15)

Equation (15) tells us that the required partial derivative @Ek=@wcj is obtained sim-
ply by multiplying the value of �c | associated with the output end of the connection
parameter wcj | with the value of zj | associated with the input end of the connection
parameter wcj . Note that z0 = 1. Thus, in order to evalute the partial derivatives in
question we need only to calculate the value of �c for each c = 1; : : : ; C and then apply
(15).

This leads to the task to evaluate �c. Once again applying the chain rule we obtain

�c =
@Ek

@netc
=

CX
c=1

@Ek

@�c0

@�c0

@netc
: (16)

From (6) we have

@Ek

@�c0
=

@

@�c0

"
�

CX
c00=1

yc00 ln

�
�c00

yc00

�#
= �

yc0

�c0
(17)

and from (4)

@�c0

@netc
=

@

@netc

�
exp(netc)P
c000 exp(netc000)

�

= �cc0
exp(netc)P
c000 exp(netc000)

�
exp(netc0) exp(netc)

(
P

c000 exp(netc000))
2
= �cc0 �c � �c �c0 (18)
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where �cc0 is the usual Kronecker symbol. Substituting (17) and (18) into (1) leads to

�c =
CX

c0=1

�
�
yc0

�c0

�
[�cc0 �c � �c�c0 ] =

X
c6=c0

yc0 �c � yc + yc �c

=

2
4X
c6=c0

yc0 + yc

3
5 �c � yc = �c � yc: (19)

Thus, the partial derivative we are looking for is

@Ek

@wcj

= �c zj = (�c � yc)zj : (20)

Let us consider now the second set of partial derivatives, @Ek=@wjn for j = 1; : : : ; J
and n = 1; : : : ; N . This is a little more complicated. Again we apply the chain rule for
di�erentiation and �nally arrive at:

@Ek

@wjn

= �j xn (21)

with

�j = '0(netj)
CX
c=1

wcj �c: (22)

Note that the local error of the hidden units is determined on the basis of the local errors
at the output layer (�c is given by (19)). The chain rule gives

@Ek

@wjn

=
@Ek

@zj

@zj
@netj

@netj
@wjn

(23)

with

@netj
@wjn

=
@

@wjn

NX
n=1

wjnxn =
@

@wjn

2
4X
n0 6=n

wjn0xn0 + wjnxn

3
5 = xn (24)

�j :=
@Ek

@zj

@zj
@netj

(25)

where the second term of the right hand side of equation (25) is evaluated as

@zj
@netj

= '0(netj) = '(netj)(1� '(netj)) (26)

and the �rst term as

@Ek

@zj
=

@

@zj

(
CX
c=1

yc ln

"
1

yc

exp(
P

j wcjzj)P
c0 exp(

P
j wc0jzj)

#)

=
CX
c=1

wcj [�c � yc] =
CX
c=1

wcj �c: (27)
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Substituting (26)-(27) into (25) leads to (22).

In summary, the backpropagation technique for evaluating the partial derivatives of
the cross-entropy error function with respect to the wcj and the wjn parameters can be
described with three major steps:

Step 1: Feedforward Computation: Select (preferably at random) a training pattern
(xk;yk) from the set of training samples and propagate xk forward through the
network using equations (2){(5), thus generating the hidden and output unit ac-
tivations based on current weight settings.

Step 2: Set of Partial Derivatives @Ek=@wcj: Compute the �c for all the output units
c = 1; : : : ; C using (19), and utilize (20) to evaluate the required derivatives.

Step 3: Set of Partial Derivatives @Ek=@wjn: Backpropagate the deltas using (22) and
(19) backward to the hidden layer to obtain �j for each hidden unit j = 1; : : : ; J
in the network model, and utilize (21) to evaluate the required derivatives.

In on-line learning the error function gradient is evaluated for just one pattern at a
time, and the parameters updated using (11) where the di�erent patterns sk = (xk;yk)
in the training set S can be considered in sequence, or more typically selected at random.
For o�-line (i.e., batch and epoch-based) learning, the derivative of the total error E(w)
can be obtained by repeating the above three steps for each training sample sk , and then
summing over all samples, i.e.,

@E

@wcj

=
K�X
k=1

@Ek

@wcj

(28)

and

@E

@wjn

=
K�X
k=1

@Ek

@wjn

(29)

with K� = K in the case of batch learning, and K � K� > 1 in the case of epoch-based
learning with epoch size K�. It is worthwhile to note that in the stochastic version of
epoch-based learning K� training patterns are chosen randomly in each iteration step of
the optimization strategy.

4 Optimization Techniques for Parameter Adjustments

In numerical optimization di�erent techniques for the computation of the parameter �(�)
and the direction vector d(�) are known (see, e.g., [18], [19]). We consider three techniques
that are used for the pattern classi�cation task to be described in Section 5:

(i) The steepest-descent (gradient) method (GD) de�nes the direction as the negative
gradient

d(�) := �rE(w(�)) : (30)
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(ii) Conjugate gradient (CG) methods calculate the actual search direction d(�) as a
linear combination of the gradient vector and the previous search directions (see
[20]). In the PR-CG algorithm, the Polak-Ribiere variant of conjugate gradient
procedures (see [1]), that is used in the simulations presented in Section 5, the
search direction is computed as

d(�) := �rE(w(�)) + �(�) d(� � 1) � = 1; 2; : : : (31)

with

d(0) = �rE(w(0)) (32)

where �(�) is a scalar parameter that ensures that the sequence of vectors d(�)
satisfying the following condition expressed as

�(�) =
[rE(w(�))� rE(w(� � 1))]T rE(w(�))

rE(w(� � 1))T rE(w(� � 1))
: (33)

w(� � 1)T is the transpose of w(� � 1). Note that the CG algorithm utilizes infor-
mation about the direction search d(� � 1) from the previous iteration in order to
accelerate convergence, and each search direction would be conjugate if the objective
function would be quadratic.

(iii) Quasi-Newton | also called variable metric | methods employ the di�erences of
two successive iteration points � and � + 1, and the di�erence of the correspond-
ing gradients to approximate the inverse Hessian matrix. The most commonly
used update technique is the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm
(see [18], [19], [1]) that determines the search direction as

d(�) = �H(�) rE(w(�)) (34)

whereH(�) is some !�! symmetric positive de�nite matrix and denotes the current
approximation to the inverse of the Hessian matrix, i.e.,

H(�) �=
�
r2 E(w(�))

��1
(35)

where

H(�) =

�
I�

d(�� 1) (g(� � 1))T

(d(� � 1))T g(� � 1)

�
H(� � 1)

�
I�

g(� � 1) (d(� � 1))T

(d(� � 1))T g(� � 1)

�

+
d(� � 1) (d(� � 1))T

(d(� � 1))T d(� � 1)
(36)

with

g(� � 1) := rE(w(�))� rE(w(� � 1)): (37)

H is initialised usually with the identity matrix I and updated at each iteration
using only gradient di�erences to approximate second order information. The inverse
Hessian is more closely approximated as iterations proceed.
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Both the PR-CG and the BFGS algorithms raise the calculation complexity per train-
ing iteration considerably since they have to perform a one-dimensional linear search in
order to determine an appropriate step size. A line search involves several calculations of
either the global error function E or its derivative, both of which raise the complexity.
Characteristically, the parameter � = �(�) is chosen to minimize

E(�) = E(w(�)) + � d(�) (38)

in the � -th iteration. This gives an automatic procedure for setting the step length, once
the search direction d(�) has been determined.

All these three procedures use only �rst-order derivative information of the error func-
tion. The derivatives can, thus, be calculated e�ciently by backpropagation as shown in
Section 3. The steepest descent algorithm has the great advantage of being very simple
and cheap to implement. One of its limitations is the need to choose a suitable step size
� by trial and error. Ine�ciency is primarily due to the fact that the minimization di-
rections and step sizes may be poorly chosen. Unless the �rst step is chosen such that it
leads directly to the minimum, steepest descent will zig-zag with many small steps.

In contrast, the conjugate gradient and quasi-Newton procedures are intrinsically o�-
line parameter adjustment techniques, and evidently more sophisticated optimization pro-
cedures. In terms of complexity and convergence property, the conjugate gradient can be
regarded as being somewhat intermediate between the method of gradient descent and
the quasi-Newton technique ([21]). Its advantage is the simplicity for estimating optimal
values of the coe�cients �(�) and �(�) at each iteration. No ! � !-dimensional matrices
H(�) need to be generated as in the quasi-Newton procedures. The search direction is cho-
sen by appropriately setting the � so that d distorts as little as possible the minimization
achieved by the previous search step. A major di�culty is that for the non-quadratic error
function (6) the obtained directions are not necessarily descent directions and numerical
instability can result ([22]). Periodically, it might be necessary to restart the optimization
process by a search in the steepest descent direction when a non-descent search direction
is generated. It is worthwhile to mention that the gradient descent procedures can be
viewed as a form of gradient descent with an adaptive momentum �(�), the important
di�erence being that �(�) and �(�) in conjugate gradient are automatically determined at
each iteration (see equations (33) and (38)).

But the conjugate gradient methods are not as e�ective as some quasi-Newton pro-
cedures. They require approximately twice as many gradient evaluations as the quasi-
Newton methods. However, they save time and memory required for calculating the
! � !-dimensional matrices H(�), especially in the case of large-sized classi�cation prob-
lems ([23]). The quasi-Newton methods provide many advantages of the Newton method
while using only �rst-order information about the objective function (6). The matrices
H(�) are positive de�nite approximations of the inverse Hessian matrix obtained from
gradient information. Thus, it is not required to evaluate second-order derivatives of E.
The algorithms such as BFGS are always stable since d(�) is always a descent search direc-
tion. They are today the most e�cient and sophisticated optimization techniques for batch
training. But they are expensive both in computation and memory. Large-sized real-world
classi�cation problems implying larger ! could lead to prohibitive memory requirements
([23]).
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5 The Pattern Classi�cation Task and Test Results

The following training procedures that represent the major classes of the optimization
techniques are compared:

(i) GD: error backpropagation with gradient descent minimization and with �xed and
constant step sizes (i.e., the standard backpropagation technique),

(ii) PR-CG: error backpropagation with the Polak-Ribiere conjugate gradient minimiza-
tion,

(iii) BFGS: error backpropagation with the Broyden-Fletcher-Goldfarb-Shanno quasi-
Newton minimization

in batch mode as well as in epoch-based operation with epoch sizes K� = 30; 300; 600; 900.
These procedures are compared on a supervised multispectral pixel-by-pixel classi�ca-

tion problem in which the classi�er is trained with examples of the classes to be recognized
in the data set. This is achieved by using limited ground survey information which spec-
i�es where examples of speci�c categories are to be found in the satellite imagery. Such
ground truth information has been gathered on sites which are well representative of the
larger area analyzed from space. The image data set consists of 2,460 pixels (resolution
cells) selected from a Landsat Thematic Mapper (TM) scene (270�360 pixels) from the
city of Vienna and its northern surroundings (observation date: June 5, 1985, location
of the centre: 16�230E, 48�140N ; TM Quarter Scene 190-026/4). The six Landsat TM
spectral bands used are blue (SB1), green (SB2), red (SB3), near infrared (SB4), and mid
infrared (SB5 and SB7), excluding the thermal band with only a 120 meter ground reso-
lution. Thus, each TM pixel represents a ground area of 30m�30m and has six spectral
band values varing over 256 digital numbers (16 bits).

The purpose of the multispectral classi�cation task at hand is to distinguish between
the eight classes of urban land use listed in Table 1. The classes chosen are meaningful to
photointerpreters and land use managers, but are not necessarily spectrally homogeneous.
This classi�cation problem used to evaluate the performance of the above training
procedures in a real-world context, is challenging. The pixel-based remotely sensed
spectral band values are noisy and sometimes unreliable. Some of the urban land use
classes are sparsely distributed in the image. The number of training sites is small
relative to the number of land use categories (one site training case). The training sites
vary between 154 pixels (class suburban) and 602 pixels (class woodland and public
gardens with trees). The above mentioned six TM bands provide the data set input
for each pixel, with values scaled to the interval [0:1; 0:9]. This approach resulted in
a database consisting of 2,460 pixels (about 2.5 percent of all the pixels in the scene)
that are described by six-dimensional feature vectors, each tagged with its correct class
membership. The set was divided into a training set (two thirds of the training site
pixels) and a testing set by strati�ed random sampling | strati�ed in terms of the eight
classes. Pixels from the testing set are not used during network training and serve only to
evaluate out-of-sample (generalization) performance accuracy (measured in terms of total
classi�cation accuracy) when the trained classi�er is presented with novel data. The goal
is to predict the correct class category for the test sample of pixels. In remote sensing
classi�cation tasks generalization performance can be more important than fast learning.
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Table 1 to be placed about here

A single hidden layer network classi�er, with N = 6 input units (representing the six-
dimensional feature vectors), J = 14 hidden units and C = 8 output units (representing
the eight urban land use classes), was used in the study along with logistic hidden and
softmax output transfer functions. Using a pruning technique J = 14 has been found in
a previous study ([24]) to control the e�ective complexity of the network (complexity in
terms of the model parameters). The network was initialized with random weights in the
range [�0:1; 0:1]. Weights were updated in batch and epoch-based modes. The latter with
a range of four epoch sizes (K� = 30; 300; 600; 900). Learning was stopped when every
element of the gradient vector had an absolute value of less than 10�6. This termination
criterion is considered as a realistic test for convergence on a minimum ([25]). Otherwise,
training was terminated if the number of iterations exceeded 100,000. The test set was
presented at convergence or after a maximum of 100,000 iterations in order to monitor
generalization.

Each experiment (i.e., combination of training algorithm with tuning parameters)
was repeated 10 times, the network classi�er being initialized with a di�erent set of
random weights before each trial. To enable more accurate comparisons, the classi�er was
initialised with the same 10 sets of random weights for all experiments. All experiments
were done on a SUN Ultra 1 workstation. For implementation of PR-CG and BFGS, we
used library algorithms [1] modi�ed as necessary to work in an error backpropagation
neural network environment.

Tables 2 and 3 to be placed about here

Table 2 presents the results for experiments involving batch mode of operation.
Averages and standard deviations of performance indices were calculated only for those
trials which converged within the 100,000 iterations limit. The times shown are CPU
seconds in the sense that they exclude overheads such as scoring on the test set and screen
display of progress information. In-sample (out-of-sample) performance is measured in
terms of the percentage of training (testing) pixels correctly classi�ed at convergence.
In order to do justice to each algorithm, optimal combinations of parameters were
systematically sought. GD requires time consuming tuning of the learning rate parameter
� to get optimum performance. The possible restarts and line search combinations for
PR-CG and BFGS also require tuning, particularly when using inexact searches. Since
the error surface is often highly non-quadratic, it is important to use a line search that
deals successfully with non-convexities etc.

Figures 1 and 2 to be placed about here

Although GD could quickly learn the training set, it could not �nd a local minimum
in less than 6,499 iterations. Convergence to a minimum was impossible except with very
low �-values which make convergence extremely slow. By contrast, PR-CG and BFGS
proved to be much faster on average. This can also be observed from the learning curves
displayed in Figure 1. To avoid cluttering the graphs Figure 1 shows only the learning
curves averaged over all the converged simulations of the 10 trials. The GD-learning curve
clearly illustrates the extremely slow convergence of GD-optimization. In contrast, PR-
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CG and BFGS have the advantage of faster convergence. The rate of convergence for the
PR-CG is signi�cantly higher than that of BFGS. But the di�erence is not statistically
signi�cant. The higher convergence rate of both these techniques was o�set by greater
computational complexity in terms of CPU-time (see Table 2) and exhaustive memory
requirements. In contrast to BFGS, PR-CG saves time and memory needed for computing
a totally dense matrix H(�) at each iteration step � , but requires approximately twice as
many gradient evaluations.

The average values of the multiple class cross-entropy function do seem to indicate that
PR-CG tended to �nd better local minima tan any other procedure, and this conclusion
is corroborated by the fact that the standard deviation after training in the ten runs is
signi�cantly lower as shown in Table 2. Especially, BFGS appears to be more prone to
fall into local minima as indicated from the rather hight standard deviation. Moreover,
Table 2 clearly indicates that better generalization performance is not the result of �nding
a lower minimum (see also [22]). PR-CG and BFGS seem to utilize information to modify
the direction of steepest descent that resulted in signi�cantly poorer generalization on
our task. In fact, GD outperforms PR-CG by 9.60 percentage points and BFGS by 8.10
percentage points on average. An interesting conclusion from this comparative study is
that generalization performance can vary between algorithms and even between di�erent
trials of the same algorithm, despite all of them �nding a local minimum. It is important
to note that GD-generalization performance varies between 80.49 and 86.22 percent of
classi�cation accuracy, while PR-CG generalization performance varies between 70.21 and
78.54, and BFGS between 67.80 and 79.88 percent only.

The second series of experiments involves epoch-based rather than batch learning, with
a range of epoch sizes K� = 900; 600; 300 and 30. The results obtained are summarized in
Table 3 along with the corresponding learning curves displayed in Figure 2. Epoch-based
learning strategies may be more e�ective than batch learning, expecially when the num-
ber K of training examples is very large and many training examples possess redundant
information in the sense that many contributions to the gradient are very similar. Epoch-
based updating makes the search path in the parameter space stochastic when the input
vector is drawn at random. The main di�culty with stochastic epoch-based learning is its
apparent inability to converge on a minimum within the 100,000 iterations limit.

While modi�cations to increase speed are important and attract most attention, gen-
eralization ability is perhaps more important in applications such as pixel-by-pixel clas-
si�cation of remotely sensed data. Important di�erences in generalization performance
between batch and epoch-based learning may be observed. First, with larger K� epoch
based learning tends to outperform batch out-of-sample performance. This is especially
true for PR-CG optimization. The best generalization results for all three optimization
techniques are obtained for K� = 900. The generalization ability of PR-CG is improved
by 8.92 percentage points in classi�cation accuracy on average (at the expense of less
stable solutions), and that of BFGS by 6.74 percentage points. GD produces slightly bet-
ter and much more stable generalization results. Second, better generalization is not the
result of �nding lower multiple class cross-entropy function values. Third, out-of-sample
performance tends to slightly decrease with decreasing epoch size and at the same time
the uncertainty in the generalization obtained increases. This can be seen from the larger
amplitude of the oscillation in Figure 2(c) and especially Figure 2(d). Oscillation in results
cause a larger standard deviation.
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6 Concluding Remarks

Three techniques of optimizing the multiple class cross-entropy error function to train
single hidden layer neural network classi�ers with softmax output transfer functions were
analysed on a real-world multispectral pixel-by-pixel classi�cation problem that is of fun-
damental importance in remote sensing. These techniques (GD, PR-CG and BFGS) are
but a small sample of all the techniques that have been studied in error backpropagation
neural network environments. But the results of previous studies [9; 11; 17; 22] indicate
that these techniques are representative of the most important approaches. Thus, the
results of Section 5 can provide interesting empirical evidence in view of a challenging
real-world pattern classi�cation problem using remotely sensed data. Much contradictory
information exists on the relative merits and demerits of di�erent training strategies, espe-
cially with respect to their training speeds. We did not attempt to resolve these issues, but
we focused on providing some evidence on how the strategies (batch versus epoch-based
operation) and techniques (GD, PR-CG and BFGS) di�er with respect to their training
speed and their ability to generalize.

The choice of optimization strategy (batch versus epoch-based mode of operation)
and of the optimization technique (GD, PR-CG and BFGS) depends on the nature of
the learning task and whether one wants to optimize learning for speed or generalization
performance. If the goal is to maximize learning speed on a pattern classi�cation problem
and a sacri�ce in generalization is acceptable, then PR-CG error backpropagation, the
most mature technique, would be the method of choice. Where high generalization and
stability is more important than faster learning, then GD error backpropagation exhibits
superiority over PR-CG and BFGS in view of our pixel-by-pixel pattern classi�cation task
| independently of the mode of operation | but requires time consuming tuning of the
learning parameter � to achieve \best" out-of-sample performance. If the training set
is very large, stochastic epoch-based rather than deterministic batch modes of operation
should be chosen, with a larger rather than a smaller epoch size. Much work on such
optimizers, however, is still required before they can be utilized with the same con�dence
and ease that batch local optimizers one currently used.
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Table 1: Classes and Number of Training/Testing Pixels

Pixels
Description Training Testing

Class c1 Mixed grass and arable farmland 167 83
Class c2 Vineyards & areas with low vegetation cover 285 142
Class c3 Asphalt & concrete surfaces 128 64
Class c4 Woodland & public gardens with trees 402 200
Class c5 Low density suburban areas 102 52
Class c6 Densely built up urban areas 296 148
Class c7 Water courses 153 77
Class c8 Stagnant water bodies 107 54
Total Number of Pixels 1,640 820

Table 2: Batch learning: Comparative performance of error backpropagation with di�erent opti-
mization techniques�

Error Backpropagation with

GD (� = 0:0008) PR-CG BFGS

Number Converged 9 10 8
Time 0.43 (0.67) 9.36 (12.49) 48.85 (44.00)
Iterations 19,443 (25,343.86) 8,306 (4,650.37) 9,582.75 (16,659.89)
Function Values 263.35 (29.63) 110.271 (17.15) 244.00 (79.58)
In-Sample Classi�cation Accuracy 93.08 (0.82) 96.65 (0.42) 93.81 (1.63)
Out-of-Sample Classi�cation Accuracy 84.20 (1.83) 74.60 (2.26) 76.10 (3.77)
� Performance values represent the mean (standard deviation in brackets) of converged simulations.
Number Converged : number of simulations converged within 100,000 iterations, out of 10 trials
di�ering in the initial random weights. The same 10 sets of weights were used for each algorithm.
Time: CPU seconds required to reach the convergence condition. Function Value: multiple class
cross-entropy error function value at convergence In-Sample-Classi�cation Accuracy: percentage of
training pixels correctly classi�ed at convergence. Out-of-Sample-Classi�cation Accuracy: percentage
of test pixels correctly classi�ed at convergence.



Table 3: Epoch based learning: Comparative performance of error backpropagation with di�erent
optimization techniques�

Error Backpropagation with

GD PR-CG BFGS

Epoch Size K� = 900 (GD: � = 0:0003)
Time 21.97 (3.44) 28.14 (4.67) 42.74 (6.84)
Function Values 249.01 (3.24) 210.16 (16.06) 196.05 (21.23)
In-Sample Classi�cation Accuracy 93.43 (0.17) 94.18 (0.59) 94.74 (0.82)
Out-of-Sample Classi�cation Accuracy 85.67 (0.73) 83.52 (4.38) 82.84 (3.85)

Epoch Size K� = 600 (GD: � = 0:0001)
Time 21.88 (2.57) 23.45 (3.14) 37.91 (5.39)
Function Values 312.76 (3.82) 167.05 (20.53) 151.86 (17.04)
In-Sample Classi�cation Accuracy 92.27 (0.08) 95.16 (0.59) 95.74 (0.53)
Out-of-Sample Classi�cation Accuracy 85.28 (1.07) 79.60 (5.42) 76.14 (4.92)

Epoch Size K� = 300 (GD: � = 0:008)
Time 20.82 (1.98) 17.22 (4.33) 30.33 (4.95)
Function Values 196.33 (7.67) 157.38 (11.68) 190.37 (29.34)
In-Sample Classi�cation Accuracy 94.87 (0.28) 95.41 (0.55) 95.38 (0.39)
Out-of-Sample Classi�cation Accuracy 83.56 (2.41) 77.50 (4.12) 76.12 (3.73)

Epoch Size K� = 30 (GD: � = 0:08)
Time 17.10 (0.45) 11.37 (0.65) 20.24 (3.34)
Function Values 247.58 (27.80) 790.47 (310.90) 1,451.83 (374.08)
In-Sample Classi�cation Accuracy 93.59 (1.20) 84.05 (9.14) 81.66 (5.02)
Out-of-Sample Classi�cation Accuracy 81.29 (3.17) 74.65 (6.84) 75.07 (4.40)

� Performance values represent the mean (standard deviation in brackets) of 10 simulations di�ering
in the initial random weights. Time: CPU seconds required to reach the convergence condition.
Function Value: multiple class cross-entropy function value after 105 iterations. In-Sample-
Classi�cation Accuracy: percentage of training pixels correctly classi�ed after 105 iterations. Out-of-
Sample-Classi�cation Accuracy: percentage of test pixels correctly classi�ed after 105 iterations.
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Figure 1: Batch learning curves as a function of training time: The effects of different 
optimization techniques [averaged value of converged simulations]
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(b) Epoch Size K* = 600
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(c) Epoch Size K* = 300
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Figure 2: Epoch−based learning curves as a function of training time: The effects of different optimization 

techniques [averaged values over 10 trials]



List of Symbols Used

n input unit label
j hidden unit label
c output unit (class) label
N number of input units
J number of hidden units
C number of output units (classes)
K number of learning patterns
K� epoch size
k learning pattern label
xk k-th learning input pattern
yk k-th learning output pattern
 c transfer function of the c-th output unit
'j transfer function of the j-th hidden unit
'0 derivative of '
exp exponential function
ln logarithm to base e
R space of real numbers
xT transpose of x
�cc0 Kronecker symbol
w vector of all wcj and wjn network weights and biases
w� vector of optimal w�

cj- and w
�
jn-patterns

wcj connection weight from hidden unit j to output unit c
wjn connection weight from input unit n to hidden unit j
! dimension of the parameter space
d search direction vector
� step size (scalar)
� iteration step
E total error function
Ek local error function
r gradient
@ partial derivative
�j local error of the j-th hidden node
�c local error of the c-th output node
S set of training patterns
F analytically unknown mapping from input to output space
2 element of
:= de�ned as
� single hidden layer feedforward network function
�c c-th element of �
zj activation of the j-th hidden unit
netj net input to the j-th hidden unit
netc net input to the c-th output unit
x N -dimensional vector, element of space XN

y C-dimensional vector, element of space Y C

xn n-th component of x



yc c-th component of y
x0 bias signal
� much greater than
� scalar parameter
H Hessian matrix
I identity matrix
g gradient vector
�= approximate
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