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Abstract 

This paper evaluates the classification accuracy of three neural network classifiers on a satellite 

image-based pattern classification problem. The neural network classifiers used include two types 

of the Multi-Layer-Perceptron (MLP) and the Radial Basis Function Network. A normal 

(conventional) classifier is used as a benchmark to evaluate the performance of neural network 

classifiers. The satellite image consists of 2,460 pixels selected from a section (270 x 360) of a 

Landsat-5 TM scene from the city of Vienna and its northern surroundings. In addition to 

evaluation of classification accuracy, the neural classifiers are analysed for generalization capability 

and stability of results. Best overall results (in terms of accuracy and convergence time) are 

provided by the MLP-1 classifier with weight elimination. It has a small number of parameters and 

requires no problem-specific system of initial weight values. Its in-sample classification error is 

7.87% and its out-of-sample classification error is 10.24% for the problem at hand. Four classes of 

simulations serve to illustrate the properties of the classifier in general and the stability of the result 

with respect to control parameters, and on the training time, the gradient descent control term, 

initial parameter conditions, and different training and testing sets. 

Keywords: Neural Classifiers, Classification of Multispectral Image Data, Pixel-by-Pixel 

Classification, Backpropagation, Sensitivity Analysis 



1. Introduction 

Evaluation of Neural Pattern Classifiers 

for a Remote Sensing Application 

Satellite remote sensing, developed from satellite technology and image processing, has been a 

popular focus of pattern recognition research since at least the 1970s. Most satellite sensors used for 

land applications are of the imaging type and record data in a variety of spectral channels and at a 

variety of ground resolutions. The current trend is for sensors to operate at higher spatial resolutions 

and for providing more spectral channels to optimize the information content and the usability of 

the acquired data for monitoring, mapping and inventory applications. At the end of this decade, the 

image data obtained from sensors on the currently operational satellites will be augmented by new 

instruments with many more spectral bands on board of polar orbiting satellites forming part of the 

Earth Observing System (Wilkinson et al. 1994). 

As the complexity of the satellite data grows, so too does the need for new tools to analyse them in 

general. Since the mid 1980s, neural network (NN) techniques have raised the possibility of 

realizing fast, adaptive systems for multispectral satellite data classification. In spite of the 

increasing number of NN-applications in remote sensing (see, for example Key et al. 1989, 

Benediktsson et al. 1990, Hepner et al. 1990, Lee et al. 1990, Bischof et al. 1992, Beerman and 

Khazenie 1992, Civco 1993, Dreyer 1993, Salu and Tilton 1993, Wilkinson et al. 1994) very little 

has been done on evaluating different classifiers. Given that pattern classification is a mature area 

and that several NN approaches have emerged in the last few years, the time seems to be ripe for an 

evaluation of different neural classifiers by empirically observing their performance on a larger data 

set. Such a study should not only involve at least a moderately large data set, but should also be 

unbiased. All the classifiers should be given the same feature sets in training and testing. 

This paper addresses the above mentioned issue in evaluating the classification accuracy of three 

neural network classifiers. The classifiers include two types of the Multi-Layer Perceptron (MLP) 

and a Radial Basis Function Network (RBF). The widely used normal classifier based on 

parametric density estimation by maximum likelihood, NML, serves as benchmark. The classifiers 

were trained and tested for classification (8 a priori given classes) of multispectral images on a 

pixel-by-pixel basis. The data for this study was selected from a section (270 x 360 pixels) of a 

Landsat-5 Thematic Mapper scene (TM Quarter Scene 190-026/4; location of the center: l 6° 23' E, 

48° 14' N; observation date: June 5, 1985). 



In section two of this paper, we will describe the structures of the various pattern classifiers. Then 

we will describe the experimental set-up in section 3, i.e. the essential organization of inputs and 

outputs, the network set-ups of the neural classifiers, a technique for addressing the problem of 

overfitting, criteria for evaluating the estimation (in-sample) and generalization (out-of-sample) 

ability of the different neural classifiers and the simulation set up (section 3). Four classes of 

simulations serve to analyse the stability of the classification results with respect to training time 

(50,000 epochs), the gradient descent control term (constant and variable learning schemes), the 

initial parameter conditions, and different training and testing sets. The results of the experiments 

are presented in section 4. Finally, in section 5 we give some concluding remarks. 

2. The Pattern Classifiers 

Each of our experimental classifiers consists of a set of components as shown in figure 1. The ovals 

represent input and output data, the rectangles processing components, and the arrows the flow of 

data. The components do not necessarily correspond to separate devices. They only represent a 

separation of the processing into conceptual units so that the overall structure may be discerned. 

The inputs may - as in the current context - come from Landsat-5 Thematic Mapper (TM) bands. 

Figure 1: Components of the Pixel-by-Pixel Classification System 

Input 
Pixels 

Discriminant ~ Maximum 
Functions Finder 

Hypothesized 
Class 

Each classifier provides a set of discriminant functions De (l:::;;c:::;;C, C number of a priori given 

classes). There is one discriminant function De for each class c. Each one provides a single 

floating-point-number which tends to have a large number if the input pixel (i.e. feature vector x of 

the pixel, x E 9tn) is of the class corresponding to that particular discriminant function. The C-tuple 

of values produced by the set of discriminant functions is sent to the 'Maximum Finder'. The 

'Maximum Finder' identifies which one of the discriminant values Dc(x) is highest, and assigns its 

class as the hypothesized class of the pixel, i.e. uses the following decision rule 

Assign x to class c if Dc(x) >Dk (x) for k=l, ... , C and k '# c (1) 

Three experimental neural classifiers are considered here: multi-layer perceptron (MLP) classifiers 

of two types, MLP-1 and MLP-2, and one radial basis function (RBF) classifier. The normal 
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classifier NML serves as statistical benchmark. The following terminology will be used in the 

descriptions of the discriminant functions below: . 

n dimensionality of feature space (n representing the number of spectral bands used, n=6 in our 

application context), 

9tn the set of all n-tuples of real numbers (feature space), 

x feature vector of a pixel (x = (x1, ... , xn) e 9tn), 

C number of a priori given classes (l~c~C). 

2.1 The Normal Classifier 

This classifier (termed NML) which is most commonly used for classifying remote sensing data 

serves as benchmark for evaluating the neural classifiers in this paper. NML is based on parametric 

density estimation by maximum likelihood (ML). It presupposes a multivariate normal distribution 

for each class c of pixels. In this context, it may be worthwhile to mention first factors pertaining to 

any parametric classifier. 

Let L(clk) denote the loss (classification error) incurred assigning a pixel to class c rather than to 

class k. Let us define a particular loss function in terms of the Kronecker symbol Dck 

c=k 

otherwise 
(2) 

This loss functilln implies that correct classifications yield no losses, while incorrect classifications 

produce equal loss values of 1. In this case the optimal or Bayesian classifier is that one which 

assigns each input x ('feature vector' of a pixel), to that class c for which the a posteriori probability 

p( clx) is highest, i.e. 

p(c Ix) ;::: p(k Ix) 

According to Bayes rule 

p(c Ix) = p(c) p(x I c) 
p(x) 

k=l, ... ,C (5) 

(4) 

where p(c) denotes the a priori probability of class c and p(x) the mixture density f p(x) dx with x 

belonging to the training set S c 9tn. For a pattern classification problem in which the a priori 
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probabilities are the same, p( c) can be ignored. For the normal classifier NML each class c is 

assumed to have a conditional density function 

c=l, .. ., C (5) 

with µc and ~c being the mean and associated covariance matrix for class c. The first term on the 

right-hand side of (5) is constant and may be discarded for classification. By replacing the mean 

vectors µc and the covariance matrices ~c with their sample estimates, Ille and Sc, squaring and 

taking logarithms the set of NML-discriminant functions is given by 

(6) 

where p( c) denotes the estimate of p( c ). 

2.2 The Multi-Layer Perceptron Classifiers 

Multi-layer perceptrons are feed-forward networks with one or more layers of nodes between the 

input and output nodes. These additional layers contain hidden (intermediate) nodes or units. We 

have used MLPs with three layers (counting the inputs as a layer), as outlined in figure 2. 

Figure 2: Architecture of a N(O) : N(l) : N(
2
) Perceptron 

Network: Parameters 

(2) 

Weights O)cj 

<Ji' ) 
We ights j i 

Network Architecture Network Units · 

(2) 

N Output Units 

(= C classes) 

(I) 

N Hidden Units 

(0) 

N Input Units 

Let N(k) denote the number of units in the k-th 11;1yer (k = 0, 1, 2). The number of inputs, N<0>[=n] 

and the number of outputs, N<
2

>[ =CJ are determined by the application at hand, and in our study are 
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six for the input layer (one for each spectral channel TMl, TM2, TM3, TM4, TM5 and TM7) and 

eight for the output layer (representing the eight a priori categories of the pixels). The parameter 

with respect to the network architecture outlined in figure 2 is the number N(l) of non-linear hidden 

units that are fully connected to the input units and with the output units. Output and hidden units 

have adjustable biases (left out of consideration in figure 2). The weight mjJ) connects the i-th node 

of the (1-1)-th layer to the j-th node of the I-th layer (1=1, 2; 1 ~ i ~ ~I-1), 1 ~j~ ~ 0 ). The weights 

can be positive, negative or zero. 

Let us define b~
1
) the bias term of the i-th node of the I-th layer (1 = 1, 2), and 'l'(x) the non-linear 

hidden unit activation function, then the set of discriminant functions are of the form: 

N(l) N(O) 

exp{b(2
) + Lro(~) 'l'(b~ 1 ) + Lro~~) x-)} 

C j=I CJ J i=I JI l 
Dc(x) = -N-c2J-----"'-N-0J ______ N_co_J ___ _ c=l, .. ., C (7) 

L exp {b(2
) + L OJ(~) \11(b~l) + L Ol~l) x )} 

1=1 I j=l lj "f' J . k=I jk k 

It is worthwhile to note that classifiers of type (7) use a softmax output unit activation function (see 

Bridle 1989). This activation function is a composition of two operators: an exponential mapping, 

followed by a normalisation to ensure that the output activations are non-negative and sum to one. 

The specification of the activation function 'I' is a critical issue in successful application 

development of a MLP classifier. We have experimented with two types of sigmoid functions, the 

most widely used non-linear activation functions: asymmetric and symmetric sigmoid functions. 

We use logistic activations for defining MLP-1 and hyperbolical tangent (tanh) activations for 

MLP-2. 

The activation Sh of a logistic (sigmoid) hidden unit is given by 

(8) 

which performs a smooth mapping (-oo, +oo) ~ (0,1). The slope 'a' can be absorbed into weights 

and biases without loss of generality and is set to one. 

The activation Th of a tanh hidden unit is given by 

(9) 
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performing a smooth mapping (-oo, -too) -7 (-1, +1). We here also set a=l. 

For the training of the weights of MLP networks, a reasonable procedure is the use of an 

optimization algorithm to minimise the mean-square-error (least mean square error function) over 

the training set between the discriminant values actually produced and the target discriminant 

values that consist of the appropriate strings of ls and Os as defined by the actual classes of the 

training pixels. For example, if a training vector is associated to class 1, then its target vector of 

discriminant values is set to (1,0, ... , 0). 

Networks of the MLP type are usually trained using the error backpropagation algorithm (see 

Rumelhart et al. 1986). Error backpropagation is an iterative gradient descent algorithm designed to 

minimise the least square error between the actual and target discrimination values. This is 

achieved by repe_atedly changing the weights of the first and second parameter layer according to 

the gradient of the error function. The updating rule is given by 

(k) (k) a E 
rors (t+ 1) = rors (t) + 11 (k) 

~ rors 

k=l,2 (10) 

Where E denotes the least mean square error function to be minimised over the set of training 

examples, and 11 the learning rate, i.e. the fraction by which the global error is minimised during 

each pass. The bias value bh is also learned in the same way. In the limit, as 11 tends to zero and the 

number of iterations tends to infinity, this learning procedure is guaranteed to find the set of 

weights which gives the least mean square error (see White 1989). 

2.3 The Radial Basis Function Classifier 

In the MLP classifiers, the net input to the hidden units is a linear combination of the inputs. In a 

Radial Basis Function (RBF) network the hidden units compute radial basis functions of the inputs. 

The net input to the hidden layer is the distance from the input to the weight vector. The weight 

vectors are also called centres. The distance is usually computed in the euclidean metric. There is 

generally a bandwidth a associated with each hidden unit. The activation function of the hidden 

units can be any of a variety of functions on the non-negative real numbers with a maximum at 

zero, approaching zero at infinity, such as the Gaussian transfer function. 

We have experimented with a RBF classifier which uses softmax output units and Gaussian 

functions in the hidden layer. The following notation is necessary to describe the classifier. Let 
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(k) (k) (k) )T n 
C = (cl , .. ., Cn E ':Jt 

denote the centre vector of the k-th hidden unit and 

(k) (k) (k) )T n 
cr = (cr 1 , ... ,crn e 9t 

(1) 
k=l, ... ,N 

(1) 
k=l, ... ,N 

its width vector, while b~I) and ro}~) with 1 :5 I :5 N(2
) =: C and 1 :5 I :5 N(I) are the bias term to the k

th node of the I-th layer and the weight connecting the I-th output node to the k-th hidden node, 

respectively. 

Then the discriminant functions are given by: 

N(I) 

exp{b(2
) + Lro(2

) ..i. (x)} 
c k=l ck 't'k 

Dc(x) = -----------
Nc2i N(I) 

L exp { b~
2
) + L co~) <l>k (x)} 

l=I k=l 

where each hidden unit j computes the following radial basis function: 

( 

N(O) ( (k) J2J N(O) ( ( (k) J2J 
<l>k(x) =exp -L xi-ci =TI exp - xi-ci 

•=I <J.·(k) i=t cr~k) 
I I 

c=l, ... , C 

(I) 
k=l, ... ,N 

(11) 

(12) 

The centres c(k), widths cr(k), output bias nodes b?) and output node weights co}~) may be 

considered as trainable weights of the RBF network. They are trained initially using the cluster 

means (obtained by means of the K-means algorithm) as the centre vectors c(k). The width vectors 

cr(k) are set to a single tunable positive value. Note that no target discriminant values are used to 

determine c(k) and cr(k), while training of the output weights and bias proceeds by optimization 

identical to that described for the MLP classifiers. 

The crucial difference between the RBF and the two MLP classifiers lies in the treatment of the 

inputs. For the RBF classifier, as can be seen from (12), the inputs factor completely. Unless all 

inputs xi (1 :5 i :5 n) are reasonably close to their centres c}k)' the activation of hidden unit k is close 

to zero. A RBF unit is shut off by a single large distance between its centre and the input in any one 

of the dimensions. In contrast, in the case of the MLP classifiers, a large contribution by one 

weighted output in the sum of (7) or (8) can often be compensated for by the contribution of other 

weighted inputs of the opposite sign. This difference between MLP and RBF classifiers increases 

with the dimensionality of the feature space. 
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3. Experimental Set up 

3.1 The Data and Data Representation 

The data used for training and testing the classification accuracy of the classifiers was selected from 

a section (270 x 360 pixels) of a Landsat-5 Thematic Mapper (TM) scene. The area covered by this 

imagery is 8. lxl0.8 km2 and includes the city of Vienna and its northern surroundings. The spectral 

resolution of each of the six TM bands (TMl, TM2, TM3, TM4, TM5, TM7) which were used in 

this study was eight bits or 256 possible digital numbers. Each pixel represents a ground area of 

30x30 m2. The purpose of the multispectral image classification task was to distinguish between 

eight land cover categories as outlined in table 1. 

One of the authors, an expert photo interpreter with extensive field experience of the area covered 

by the image, used ancilliary information from maps and orthophotos (from the same time period) 

in order to select suitable training sites for each class. One training site was selected for each of the 

eight categories of land cover [single training site case]. This approach resulted in a database 

consisting of 2,460 pixels (about 2.5 percent of all the pixels in the scene) that are described by six

dimensional feature vectors and their class membership (target values). The set was divided into a 

training set (two thirds of the training site pixels) and a testing set by stratified random sampling, 

stratified in terms of the eight categories. Thus each training/test run consists of 1,640 training/820 

testing vectors. This moderately large size for each training run makes the classification problem 

non-trivial at the one hand, but still allows for extensive tests on in-sample and out-of-sample 

performance of the classifiers. 

Table 1: Categories Used for Classification and Number of Trainingffesting Pixels 

Category Description of the Category Pixels 

Number Training Testing 

CI Mixed grass and arable farmland 167 83 

C2 Vineyards and areas with low vegetation cover 285 142 

C3 Asphalt and concrete surfaces 128 64 

C4 Woodland and public gardens with trees 402 200 

cs Low density residential and industrial areas (suburban) 102 52 

C6 Densely built up residential areas (urban) 296 148 

C7 Water courses 153 77 

cs Stagnant water bodies 107 54 

Total Number of Pixels for Training and Testing 1,640 820 
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Data preprocessing (i.e. filtering or transforming the raw input data) plays an integral part in any 

classification system. Good preprocessing techniques reduce the effect of poor quality (noisy) data 

and this usually results in improved classification performance. In this study, the classifiers 

implemented in the experiments use gray coded data. The gray scale values in each spectral band 

were linearly compressed in the (0.1, 0.9) range to generate the input signals. 

3.2 Network Set Up of the Neural Classifiers and the Overfitting Problem 

The architecture of a neural classifier is defined by the arrangement of its units, i.e. the set of all 

weighted connections between units (see figure 2). This arrangement (i.e. the topology) of the 

network of a classifier is very important in determining its generalization ability. Generalization 

refers to the ability of a classifier to recognize patterns outside the training set. An important issue 

for good generalization is the choice of the optimal network size. This means finding the optimal 

number of hidden units, since inputs and outputs are defined by the problem at hand. There are 

some rules of thumb which often fail drastically since they ignore both the complexity of the task at 

hand and the redundancy in the training data (Weigend 1993). The optimal size of the hidden layer 

is usually not known in advance. 

Figure 3: The Pruned MLP-1with14 'Degrees of Freedom' and 196 Parameters 

Output Units 

Hidden 

Units 

Input 

Units 

CI C2 C3 

TMI TM 2 TM4 

Strengths or the Conoecdon Weights 

IHUllHlllllH > 5 

--- 0~5 

9 

C7 C 8 

< -5 
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The number of hidden units when the minimum is arrived may be viewed as a kind of measure of 

the degree of freedom of the network (Gershenfield and Weigend 1993). If the hidden layer is 

chosen to be too small, it will not be flexible enough to discriminate the patterns well, even in the 

training set. If it is chosen too large, the excess freedom will allow the classifier to fit not only the 

signals, but also the noise. Both, too small and too large hidden layers thus lead to a poor 

generalization capability in the presence of noise (Weigend et al. 1991). 

This issue of overfitting or in other words the problem of estimating the network size has been 

widely neglected in remote sensing applications, up to now. Recently, several techniques have been 

proposed to get around this problem. To be relieved from the uncertainty of a specific choice of a 

validation set of the cross-validation approach (see Fischer and Gopal 1994) we have chosen in this 

study another approach, a network pruning or weight-elimination technique to overcome the 

problem of overfitting. This technique starts with an oversized network and attempts to minimise 

the complexity of the network (in terms of connection weights) and the standard sum squared error 

function by removing 'redundant' or least sensitive weights (see Weigend et al. 1991). 

We deliberately have chosen an oversized, fully connected MLP-1 network with 22 hidden units 

and a variable learning rate. The 338 weights were updated after each 3 patterns, presented in 

random order (stochastic approximation). In the first 17 ,000 epochs, the procedure eliminated the 

weights between the eight output units and eight hidden units. Since these eight units did not 

receive the signals in the backward pass anymore, their weights to the input subsequentially 

decayed. In this sense, the weight-elimination procedure can be thought of as unit-elimination, 

removing the least important hidden units. The weights and biases of the pruned MLP with 14 

remaining hidd~n units are given in appendix A. The architecture of the pruned MLP-1 is outlined 

in figure 3. The size of the network declined from 338 to 196 free parameters. 

In contrast to MLP-classifiers, RBF networks are self-pruning to some degree. Unimportant 

connections are effectively pruned away by the training process leaving a large width. Each large 

width effectively deletes one connection from an input to one RBF and reduces the number of 

active patterns by two. 

3.3 Performance Measures 

The ultimate performance measure for any classifier is its usefulness to provide accurate 

classifications. This involves in-sample and out-of-sample classification accuracy. Four standard 

measures will be used to measure various aspects of classification accuracy: 
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• the classification error (also termed confusion) matrix (f1k) with f1k (l,k=l, ... , C) denoting the 

number of pixels assigned by the classifier to category 1 and found to be actually in (ground 

truth) category k, 

• the map user's classification accuracy,'\\• for the ground truth category k=l, .. ., C 

Uk 
fkk fkk 

(13) -
f.k 

- -c--

I: f.k 
i=l 

1 

• the map producer's classification accuracy 1t1 for the classifier's category 1=1, .. ., C 

1t1 
f u f u 

(14) -
f1. 

- -c-

I: fr 
j=l J 

• the total classification accuracy 't [or the total classification error 't' defined as 't' = (100 - 't)] 

c 

L. f.. 
1"1 II 

'C .- f •• 

c 
:Ef.. 
i"I II 

.- c c 

I:I: f 
k ~ I l=l Jk 

3.4 Experimental Simulation Set Up 

(15) 

Neural networks are known to produce wide variations in their performance properties. This is to 

say that small changes in network design, and in control parameters such as the learning rate and 

the initial parameter conditions might generate large changes in network behaviour. This issue, 

which is the major focus of our simulation experiments, has been highly neglected in remote 

sensing applications up to now. In real-world applications, it is, however, a central objective to 

identify intervals of the control parameters which give robust results, and to demonstrate that these 

results persists across different training and test sets. 

In-sample and out-of-sample performance are the two most important experimentation issues in this 

study. In-sample performance of a classifier is important because it determines its convergence 

ability and sets a target of feasible out-of-sample performance which might be achieved by fine

tuning of the control parameters (Refenes et al. 1994). Out-of-sample performance measures the 

ability of a classifier to recognize patterns outside the training set, i.e. in the testing set strictly set 

· apart from the training set. The performance depends on many factors, such as 
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• the gradient descent control term, 

• initial parameter conditions, and 

• training and testing sets. 

Consequently, it is important to analyse the stability with respect to such control parameters. 

Several other important issues are not considered in this study, such as for example the issue of how 

the convergence speed can be improved. We have not used any acceleration scheme of 

backpropagation such as momentum. We also do not discuss the dependence of the performance on 

the size of the training/testing sets. 

For our MLP-simulations we used parameter values initialised with uniformly distributed random 

values in the range between -0.1 and +0.1. If the initial weights are too large, the hidden units are 

saturated, and the gradient is also very small. The initial values for the RBF-centres were obtained 

from a K-means algorithm and the widths from a nearest neighbour heuristic. All the simulations 

were carried out on a Sun SPARCserver 10-GS with 128 MB RAM. The simulations described are 

performed using the epoch-based stochastic version of backpropagation, where the weights are 

updated after each epoch of three (randomly chosen) patterns in the training set. This version is 

opposed to the batch version, where the weights are updated after the gradients have accumulated 

over the whole training set, and to the pattern based version, where the weights are updated after 

the presentation of each pattern. The supervised learning minimised the standard objective (error) 

function, the sum of square of the output errors. Training and testing sets were chosen as simple 

random sample in each stratum of the eight training sites. 

4. Classification Results 

4.1 Overall Results: Performance of the Neural Classifiers with a Fixed Hidden-Layer Size 

The purpose of the first experiment is to compare the in-sample and out-of-sample performance of 

the three neural classifiers each with 196 parameters, where the degrees of freedom are equal to 14. 

Thus, we were able to analyse the effect of different hidden unit activation functions, the sigmoid 

(logistic), the hyperbolic tangent (tanh) and the radial basis activations, upon performance. All 

other factors including initial conditions are fixed in these simulations (rt=0.8). The results are 

outlined in table 2 and show that the two MLP-classifiers trained more slowly than the RBF

classifier, but clearly outperform RBF (measured in terms of 't). The RBF-classifier does not train 

and generalize as accurately as the MLP-networks. Its results, however, strongly depend on the 

initial conditions for the RBF centres and widths. It is important to bear in mind that no attempts 
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have been made here to optimise the results of this classifier with respect to these parameters. There 

seems to be much unexplored potential to improve the performance of this classifier. MLP-1 and 

MLP-2 generally train and generalize at the same rate, but MLP-1 'straining is faster, by about 30 

percent. 

Table 2: Summary ol Classification Results 

MLP-1 

MLP-2 

RBF 

NML 

Clalalftcatloa Accuracy 't 

In-Sample Out-of-Sample 

92.13 89.76 

90.91 90.00 

80.00 

90.8S 

7S.61 

8S.24 

Convergence Time 

(CPU-Time [sec.]) 

lS.l 

21.0 

10.6 

1.4 

Thus, the best overall result is provided by the MLP-1 classifier with 14 hidden units and 196 free 

parameters, followed by MLP-2, and RBF. Both MLP classifiers outperform the NML classifier in 

terms of generalization capabilities. The superiority of the MLP classifiers over RBF may be, 

moreover, underlined by considering the in-sample and out-of-sample classification error matrices 

(see appendix B), the map user's and map producer's accuracies in appendix C. Even though 

trained on 1,640 pixels only, the MLP-1 classifier can be used to classify the 97,200 pixels of the 

whole image. The raw satellite image and the MLP-1 classified image are displayed in figure 4. 

4.2 Stability with Training Time 

Figure 5 shows the in-sample performance for the two versions of the multi-level perceptron, 

MLP-1 and MLP-2, and the radial basis function classifier as a function of training time in epochs 

(11=0.8, trained for 50,000 epochs, and equal random initialisations). The in-sample performance 

tends to converge asymptotically at a minimum that is found at about 17 ,000 epochs in the case of 

the MLP-classifiers and about 36,000 epochs in the case of RFB. 

There are some regions with temporary performance drops. At least, in the case of the MLP

classifiers we do not think that these can be interpreted as signs of overtraining, because they 

appear rather early in the training process. More probably, their existence implies that the network 

is still undertrained, and the better solutions are yet to come for larger numbers of epochs. This 

behaviour persists across the three different neural classifiers. 
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Figure 5: In-Sample-Performance ofMLP-1, MLP-2, and RBF 
(as a function of training time in epochs) 
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4.3 Stability with Initial Conditions 

Backpropagation is known to be sensitive to the values of initial conditions of the parameters. The 

number of free parameters of MLP-1 is 196. The objective function has multiple local minima and 

is sensitive to details of initial values. A relatively small change in the initial values for the 

parameters generally results in finding a different local minimum. In this type of experiment we 

used three different sets of initial conditions. Initial weights were chosen from a uniform random 

distribution in (-0.1, +0.1 ). 

Figure 6: The Effect of Different Initial Parameter Conditions on the Performance ofMLP-1 
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Figure 6 shows the in-sample and out-of-sample classification error curves for the three trials. It is 

clear, that different initial conditions can lead to more or less major differences in the starting stage 

of the training process. After about 15,000 epochs the differences in performance more or less 

vanish. Nevertheless, it is important to stress that the issue of stability with initial conditions 

deserves consideration when training a classifier in a real-world application context. 

4.4 Stability with the Gradient Descent Control Term Tl 

The choice of the control parameter for the gradient descent along the surface essentially influences 

the magnitude of weight changes and, thus, is crucial for learning performance. But it is difficult to 

find appropriate learning rates. On one hand, a small learning rate implies small changes even 

though greater weight changes would be necessary. On the other hand, a greater learning rate 

implies greater weight changes. Greater weight changes might be required because of the speed of 

convergence on the network stability. Larger learning rate values might also assist the classifier to 

escape from a local minimum. 

It is important to examine how the classification results vary with the gradient descent control term. 

A stability analysis with respect to this parameter shows that both in-sample and out-of-sample 

performance of the classifier remain very stable in the range of 11=0.4 to 11=0.8, while a small 

change from 11=0.4 to 11=0.2 yields a dramatic loss in classification accuracy (see table 3). The 

optimal learning rate is the one which has the largest value that does not lead to oscillation, and this 

is 11=0.8 in this experiment. Figure 7 shows that a variable learning rate adjustment (declining 

learning rate: 11=0.8 until 5,000 epochs, 11=0.4 until 15,000 epochs, then 11=0. l until 35,000 epochs 

and thereafter Tl =0.00625) might lead to faster convergence, but only to a slightly better 

generalization performance. 

Figure 7: The Effect of Different Approaches to Learning Rate Adjustment on (a) In-Sample 
Performance and (b) Out-of-Sample Performance of MLP-1: Constant ('fl=0.8) Versus 
Variable Learning Rate Adjustment 
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Table 3: Stability of Results with the Gradient Descent Control Parameter as Function of 
Training Time in Epochs 

Epochs Control Parameter In-Sample Performance Out-of-Sample Performance 
(x 103) 11 (in terms of 't) (in terms of 't) 

3 0.2 16.6 12.5 

0.4 73.7 72.3 

0.6 78.2 78.5 

0.8 82.2 78.5 

6 0.2 17.60 12.5 

0.4 90.17 88.2 

0.6 86.93 86.0 

0.8 88.28 84.9 

9 0.2 21.56 12.5 

0.4 89.37 88.2 

0.6 90.22 87.5 

0.8 89.97 87.6 

12 0.2 21.56 12.5 

0.4 88.37 85.4 

0.6 88.38 86.5 

0.8 90.92 86.8 

15 0.2 22.54 12.7 

0.4 90.06 89.1 

0.6 88.93 87.9 

0.8 89.86 87.3 

18 0.2 24.50 13.1 

0.4 89.55 87.3 

0.6 89.96 87.1 

0.8 90.51 88.5 

21 0.2 24.50 13.1 

0.4 90.77 87.7 

0.6 91.48 88.3 

0.8 90.22 86.6 

24 0.2 31.51 15.4 

0.4 91.47 88.2 

0.6 90.69 88.0 

0.8 87.87 84.3 

27 0.2 31.51 15.4 

0.4 91.11 89.0 

0.6 89.96 87.2 

0.8 88.95 88.2 

30 0.2 31.51 15.4 

0.4 90.81 89.2 

0.6 90.29 87.9 

0.8 90.59 87.5 

4.5. Stability of Results with Different Training and Testing Samples 

All the simulations we mentioned so far were performed for the same training and test data sets, 

obtained by stratified random sampling. To examine the effect of different training and test data 

sets on the performance, we used three randomly selected trials with stratification to generate 
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training and testing sets of 1,640 and 820 pixels, respectively. In figure 8 we see only minor 

differences. The in-sample performance of the. classifier did not alter significantly after 15,000 

epochs. The out-of-sample performance of two trials was rather similar after 36,000 epochs. 

However, one of the trials shows a different pattern in out-of-sample performance. If the training 

and test samples were randomly drawn without stratification, major differences in performance 

might arise between the trials (see figure 9 ). 

Figure 8: The Effect of Selected Randomly Chosen Training/Testing Set Trials with Stratification 
on (a) In-Sample Performance and (b) Out-of-Sample Performance of MLP-lwith 
Variable Learning Rate Adjustment 
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Figure 9:The Effect of Selected Randomly Chosen Training/Testing Set Trials without 
Stratification on (a) In-Sample Performance and (b) Out-of-Sample Performance of 
MLP-lwith Variable Learning Rate Adjustment 
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5. Conclusions 

One major objective of this paper was to evaluate the classification accuracy of three neural 

classifiers, MLP-1, MLP-2 and RBF, and to analyze their generalisation capability and the stability 

of the results. We illustrated that both in-sample and out-of-sample performance depends upon fine

tuning of control parameters. Moreover, we were able to show that even a simple neural learning 

procedure such as the backpropagation algorithm outperforms by about 5 percent the conventional 

classifier in generalisation that is most often used for multispectral classification on a pixel-by-pixel 

basis, the NML classifier. The non-linear properties of the sigmoid (logistic) and the hyperbolic 

tangent (tanh) activation functions in combination with softmax activations of the output units 

allow neural network based classifiers to discriminate the data better and generalize significantly 

better, in the context of this study. 

We strongly believe that with careful network design and multiple rather than single training sites 

and with a more powerful learning procedure, the performance of the neural network classifiers can 

be improved further, especially the RBF classifier. In this respect, other techniques than the K

means procedure might be more promising to use in order to obtain the initial values for the RBF 

centres and widths. 

We hope that the issues addressed in this paper will be beneficial not only for designing neural 

classifiers for multispectral classification on a pixel-by-pixel basis, but also for other classification 

problems in the field of remote sensing, such as classification of multi-source data or multi-angle 

data. 
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Appendix A: Parameters of the MLP-1 Classifier after Weight Elimination 

The classifier was trained for 17,000 epochs with backpropagation and a constant learning rate of 0.8. The connection weights and biases of the network are given below in table Al. 

When simulated serially on a SPARCserver 10-GS, the training took 15.1 CPU-minutes. Once the parameters have been determined, predictions are extremely fast. 

Table Al: Weights of the MNP-1-Classifier after Weight Elimination (17 x 103 epochs) 

Weights from 

to Hidden Unit I 

to Hidden Unit 2 

to Hidden Unit 3 

to Hidden Unit 4 

to Hidden Unit 5 

to Hidden Unit 6 

to Hidden Unit 7 

to Hidden Unit 8 

to Hidden Unit 9 

to Hidden Unit 10 

to Hidden Unit 11 

to Hidden Unit 12 

to Hidden Unit 13 

to Hidden Unit 14 

Weights to 

from Hidden Unit I 

from Hidden Unit 2 

from Hidden Unit 3 

from Hidden Unit 4 

from Hidden Unit 5 

from Hidden Unit 6 

from Hidden Unit 7 

from Hidden Unit 8 

from Hidden Unit 9 

from Hidden Unit 10 

from Hidden Unit 11 

from Hidden Unit 12 

from Hidden Unit 13 

from Hidden Unit 14 

from Bias Unit 

Input Unit il 
Initial Final 

-0.2654 

0.1594 

0.0531 

0.1994 

-0.1601 

-0.0044 

-0.3718 

0.3438 

0.0437 

-0.3722 

0.0069 

0.0750 

-0.0528 

-0.1923 

-4.2068 

3.0924 

1.8249 

0.4149 

0.3377 

-1.3902 

-15.9215 

7.9521 

2.4169 

-13.5282 

12.3658 

-3.5478 

1.5297 

-12.4562 

Output Unit I 
Initial Final 

0.0296 

0.0313 

-0.0727 

0.1569 

-0.1165 

0.0895 

-0.1257 

-0.1848 

-0.1908 

0.0026 

-0.0783 

0.1461 

-0.2124 

0.0992 

0.1249 

7.6672 

-0.3342 

-0.4291 

0.2916 

-0.5384 

0.0044 

0.2249 

-3.3815 

-1.6496 

1.0520 

-1.0328 

2.1664 

-1.6818 

0.5098 

0.2723 

Input Unit 2 
Initial Final 

-0.1314 

0.4070 

0.3094 

0.0774 

-0.3399 

-0.2401 

-0.3073 

0.3005 

0.0576 

-0.2948 

0.1574 

-0.0813 

0.1934 

-0.1975 

-3.5575 

5.8573 

5.8297 

0.7208 

-0.3897 

-2.8702 

-14.7156 

1.2669 

0.5233 

-9.6025 

9.6851 

-2.2013 

0.5204 

-8.4983 

Output Unit 2 
Initial Final 

-0.1638 

0.0924 

0.0232 

0.1540 

-0.0406 

-0.0086 

-0.1955 

-0.1404 

-0.1914 

-0.1997 

0.1830 

-0.0339 

-0.1096 

-0.0655 

0.1453 

0.1116 

2.7388 

4.5698 

2.9387 

-1.1709 

-0.3923 

-1.7252 

-6.3693 

-3.2548 

-1.3107 

-2.4157 

0.4392 

-2.9845 

-0.4612 

0.7989 

Input Unit 3 
Initial Final 

-0.2212 

0.2456 

0.2921 

-0.2140 

0.1033 

-0.1541 

0.1205 

0.3396 

0.1545 

0.0408 

0.3950 

0.2052 

-0.3384 

0.0904 

-5.9796 

5.3472 

5.2104 

0.2577 

I 0.1062 

-3.1082 

-11.5417 

1.7644 

0.9377 

-6.4631 

8.1292 

-2.2538 

0.2251 

-4.8614 

Output Unit 3 
Initial Final 

-0.0154 

-0.1079 

0.2100 

0.1912 

0.0888 

0.0505 

-0.1904 

-0.1170 

0.1779 

-0.0280 

0.1434 

-0.0863 

0.0001 

-0.0141 

0.1157 

-2.1449 

3.7358 

2.4571 

0.4205 

-0.2694 

-0.4396 

-1.7241 

0.3268 

0.0828 

-1.1155 

4.4601 

-4.0775 

0.0142 

-1.2092 

-0.4729 

Input Unit 4 
Initial Final 

0.3784 

0.0073 

0.1607 

-0.2098 

-0.4065 

0.0318 

-0.1708 

0.1011 

-0.0733 

0.1526 

-0.3037 

-0.1013 

-0.1238 

-0.3738 

18.6484 

-0.3563 

-0.1826 

4.3713 

-5.9631 

-3.2401 

-0.6922 

-14.2799 

-15.7223 

3.2262 

-8.5565 

7.9774 

-15.4543 

2.8841 

Output Unit 4 
Initial Final 

0.0306 

-0.0066 

-0.0060 

0.0663 

-0.1419 

-0.0500 

0.1733 

-0.1681 

-0.1485 

0.1611 

-0.0311 

0.0292 

-0,1844 

0.2045 

0.1530 

1.3780 

-1.3653 

-1.2327 

0.0305 

-0.5978 

0.0434 

4.7005 

-0.9975 

-0.8071 

6.2207 

-1.0268 

0.4963 

-0.7775 

5.7548 

-0.2961 

Input Unit 5 
Initial Final 

0.3578 

1
0.2850 

-0.0433 

0.0882 

-0.3450 

-0.0878 

0.0414 

0.0615 

0.2209 

0.2933 

-0.3066 

-0.0173 

0.0033 

-0.0765 

-0.0732 

7.5201 

12.0609 

10.3742 

-4.9175 

-3.6032 

-1.6728 

-7.5545 

-7.2733 

-0.4754 

-6.0183 

0.1960 

-6.3996 

-0.0992 

Output Unit 5 
Initial Final 

-0.1633 

0.0776 

0.1543 

-0.0894 

0.1315 

-0.0742 

0.1701 

0.0472 

0.0005 

-0.1762 

-0.1831 

-0.0933 

-0.0521 

0.0216 

0.0318 

-0.2221 

0.7831 

1.1922 

0.3293 

-0.0037 

-0.0712 

0.1637 

-0.1072 

-0.2282 

-0.3579 

-0.2165 

0.2816 

-0.2195 

0.0802 

3.4917 

Input Unit 6 
Initial Final 

0.0869 

0.2688 

0.3005 

0.1856 

0.3534 

0.1167 

-0.3274 

0.3542 

0.0608 

-0.0902 

-0.1253 

0.2132 

0.3912 

0.1709 

-8.5990 

5.5217 

7.7699 

6.9198 

-0.2195 

-2.4680 

-5.5068 

-0.0473 

-0.8447 

-1.7938 

1.2778 

-0.3957 

-0.0856 

-0.8173 

Output Unit 6 
Initial Final 

-0.1745 

0.1954 

0.1215 

-0.2090 

-0.0932 

-0.0528 

0.0223 

0.0691 

-0.0661 

-0.0653 

0.0293 

-0.1719 

0.1410 

-0.2110 

-0.1816 

-2.0476 

0.0913 

-0.0193 

-0.5576 

0.2617 

0.0778 

-0.4417 

1.6311 

4.1493 

-1.1377 

0.7224 

-0.5003 

4.0468 

-0.4714 

0.1615 

Bias Unit 
Initial Final 

0.2003 

0.1842 

0.4015 

-0.2269 

-0.1589 

-0.0406 

0.0237 

0.1576 

0.2412 

-0.0380 

0.1470 

-0.1855 

-0.3394 

-0.1162 

-8.3436 

-10.4762 

-9.0623 

-1.1575 

0.7615 

-0.4469 

7.1074 

8.3054 

6.7711 

-0.1079 

-3.8310 

0.6626 

7.0218 

0.0340 

Output Unit 7 
Initial Final 

0.1451 

-0.0674 

-0.2042 

-0.0788 

-0.1675 

0.0694 

-0.1298 

0.2088 

0.2081 

0.1879 

0.1890 

-0.1109 

0.1640 

-0.0020 

-0.0615 

-1.2741 

-0.5317 

-1.1493 

-2.0048 

0.5696 

0.2861 

-0.1447 

1.8163 

3.6822 

-0.4309 

3.0847 

-0.5863 

3.6123 

-0.2936 

-0.3898 

Output Unit 8 
Initial Final 

-0.1667 

-0.1269 

-0.1241 

0.1540 

0.1175 

0.1096 

0.0983 

0.0129 

0.1130 

-0.2095 

-0.1837 

-0.0690 

0.0173 

-0.0036 

0.1679 

-0.6374 

-2.1005 

-2.6817 

-2.7553 

2.2892 

2.6504 

6.7245 

0.8942 

2.2155 

-0.4046 

0.0306 

-0.4879 

2.0987 

0.1820 

-0.6033 



Interpretation of these weights sheds light on which spectral channels are important for particular surface categories. Similarly, the connection weights indicate, for each output 

category, the degree of information redundancy among channels in the input data. Channels which are only weakly weighted add little additional information to the classification 
process. The identification of the exact role of the hidden units is difficult, as they often represent generalisations of the input patterns. Figure Al shows with which input data 
channel each hidden node is associated in the trained network (top) and with which hidden unit each output class is related (bottom). The unit labelled 'bias' has output +1 and so 
represents the bias term. The areas of the boxes represent the values, the colour the signs (black= positive, white= negative). Following the connections through these two boxes, 
thus, indicates which input channels are linked to particular output categories. 

Figure Al: Weights of the MLP-1-Classifier after Weight Elimination (17 x HP epochs) 
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Appendix B: In-Sample and Out-of-Sample Classification Error Matrices of the Neural Classifiers 

An error matrix is a square array of numbers set out in rows and columns which expresses the number of pixels assigned to a particualr category relative to the actual category as 

verfied by some reference (ground truth) data. The columns represent the reference data, the rows indicate the classification generated. It is important to note that differences 
between the map classification and reference data might be not only due to classification errors. Other possible sources of errors include errors in interpretation and delineation of the 

reference data, changes in land cover between the data of the remotely sensed data and the data of the reference data (temporal error), variation in classification of the reference data 
due to inconsistencies in human interpretation etc. 
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Table Bl: In-Sample Performance: Error Classification Matrices (f1k) of the Neural and the Statistical Classifiers 
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Table B2: Out-of-Sample Error Classification Matrices (f1k) of the Neural and the Statistical Classifiers 
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Appendix C: In-Sample and Out-of-Sample Map User's and Map Producer's Accuracy 

Table Cl: In-Sample C~irlcation Accuracy 7t and u for the Pattern ClaWliers 

Category Name Map User's Accuracy 1t Map Producer's Accuracy u 

MLP-1 MLP-2 RBF NML MLP-1 MLP-2 RBF NML 

Cl Rural Landscape 94.0 93.4 84.4 96.4 96.9 95.1 86.0 95.1 

C2 Vineyards 98.9 98.2 92.3 99.6 96.6 96.9 92.3 96.9 

C3 Asphalt 100.0 98.4 89.8 96.9 97.7 97.7 87.1 97.7 

C4 Woodland 96.8 95.5 86.8 95.8 99.5 97.7 91.4 97.7 

C5 Low Residential 96.1 94.1 76.5 100.0 89.9 87.3 63.9 87.3 

C6 Densely Built Up 87.8 85.5 63.9 72.3 80.5 79.8 68.5 79.8 

C7 Water Courses 60.8 60.8 52.3 75.8 78.8 78.8 53.0 78.8 

cs Stagnant Walel 97.2 963 90.7 97.2 91.2 85.8 75.8 85.8 

Table C2: Out-of-Sample C~ilication Accuracy 7t and u for the Pattern Classifiers 

Category Name Map User's Accuracy 11 Map Producer's Accuracy u 

MLP-1 MLP-2 RBF NML MLP-1 MLP-2 RBF NML 

Cl Rural Landscape 95.2 95.2 42.2 96.4 95.2 97.5 54.7 98.8 

C2 Vineyards 94.4 98.6 96.5 99.3 93.7 95.2 70.6 92.8 

C3 Asphalt 100.0 100.0 93.8 96.9 91.4 100.0 88.2 98.4 

C4 Woodland 97.0 96.5 81.5 95.5 100.0 100.0 85.8 100.0 
. 

cs Low Residential 94.2 98.1 423 90.4 96.1 89.5 100.0 83.9 

C6 Densely Built Up 77.7 74.3 70.3 49.3 79.3 78.6 78.2 73.0 

C7 W~Courses 62.3 62.3 62.3 68.8 61.5 60.0 55.8 45.3 

cs Stagnant W auz 98.1 98.1 94.4 96.3 86.9 91.4 81.0 86.7 
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