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1. Introduction 

Current geographical information systems (GIS) are capable of acquiring spatially 

indexed data (locational, temporal and attribute information) from a variety of 

sources; changing the data into useful formats; storing the data; retrieving and 

manipulating the data for analysis; and then generating the outputs required by a 

given user. Their great strength is based on the ability to handle large, multilayered, 

heterogenous databases of spatially referenced data and to query such databases 

about the existence, location and properties of a wide range of spatial objects in an 

interactive way. 

But the current systems have only limited analytical functionality for analysing 

spatial data. The data manipulation procedures usually included in standard 

geographic information systems are limited to Boolean operations on the attributes 

of spatial entities (points, lines, polygons; measurements of distance and direction; 

geometrical operations such as rotation, translation and scaling of coordinates, 

rectification and removal of distortion, etc.), to line intersection, point-in-polygon or 

polygon overlay in raster or vector mode, to the creation of buffer zones around a 

feature, simplified forms of network analysis, and the computation of various simple 

statistics on the attributes of the entities. Much of the built-in analytical functionality 

in commercial GIS reflects the perceived needs of the current GIS market. But it is 

becoming increasingly evident that the standard analysis options are insufficient for 

scholars working in various fields (Burrough 1990). 

One of the challenges of the 1990s to the GIS and the geographic modelling 

communities will be to respond to this perceived deficiency in current geographic 

information systems. Evidence for this view can be found in the research agenda of 

the important forums and centres for GIS research. The theme of GIS and spatial 

analysis is a major concern of research efforts, especially undertaken by the US 

National Center for Geographical Information and Analysis, and by the ESRC's 

Regional Research Laboratory in the UK (see Masser 1988). Nevertheless, 

progress to link spatial analytical tools with GIS has been rather slow. An effective 

form of tight coupling in which data can be passed between a geographical 

information system and a spatial analysis module without loss of higher structure is 

still missing (Goodchild 1991 ). Increasing research efforts are directed towards 

developing modular computing environments, building statistical software such as 

MINITAB, GLIM and GAUSS onto a central GIS core. 
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The last few years have witnessed significant advances in the field of artificial 

intelligence (Al) leading to the emergence of practical and useful artificial 

intelligence technologies. Not all technologies and concepts will be useful in a GIS 

world, but some - especially artificial neural networks and (rule-based) expert 

systems - have the potential to be essential to the development of a new generation 

of intelligent or knowledge based geographic information systems. The following 

discussion places more emphasis on artificial neural networks than on expert 

systems due to two reasons. First, artificial neural networks or neurocomputing may 

be considered to have a much farer reaching potential to meet the needs for 

analysis and modelling generated by the GIS-revolution. Second, up to now 

geographers and regional scientists - with the exception of very few scholars like 

Openshaw (1992a, b), Halmari and Lundberg (1991 ), White (1989) - have been 

rather slow in realising the revolutionary potential of artificial neural networks for 

spatial analysis and modelling in a GIS-world. 

The paper is structured as follows. Section 2 briefly points to three major 

deficiencies of current geographic information systems: the logical foundation 

based on the classical concept of Boolean logic and classical set theory; the limited 

analytical functionality; and the low level of intelligence in terms of knowledge 

representation. The removal of these deficiencies is considered to be essential for 

the next generation of geographic information systems, the knowledge-based 

systems. Rule-based expert systems and artificial neural networks for spatial 

analysis and modelling are believed to be major components in such systems. 

Section 3 briefly summarizes the expert system approach, while in sections 4 and 5 

emphasis is laid on neurocomputing. Section 4 describes some basic 

characteristics and principles of neurocomputing necessary to understand the 

applications potential of artificial neural networks to be discussed in section 5. 

2. Some Major Limitations of Current Geographic Information 

Systems and the Need for a Knowledge Orientation 

A geographical information system (GIS) may be defined as a computer based 

information system which attempts to capture, store, manipulate and display 

spatially referenced data (in different points in time), for solving complex research, 

planning and management problems. The system may be viewed to embody 
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• a database of spatially referenced data consisting of locational and associated 

attribute data, (large-scale) data sets where the data included usually have 

spatial characteristics such as spatial (space-time) dependencies, non­

stationarity, varying degrees of reliability, multivariate non-normality, non­

linearities, sensitivity to scale and aggregation effects, noise because of error 

propagation or due to the nature of data sources (see Openshaw et al. 1990, 

Openshaw 1992b), 

• appropriate software components encompassing procedures for the interrelated 

transactions from input via storage and retrieval, and the adhering manipulation 

and spatial analysis facilities to output, and 

• associated hardware components including high-resolution graphic display, 

large-capacity electronic storage devices and processing units 

which are organized and interfaced in an efficient and effective manner to allow 

rapid data storage, retrieval and management capabilities and to facilitate the 

analysis. 

Current geographic information systems suffer from three major limitations (see 

Clarke 1990, Goodchild 1991. Fischer and Nijkamp 1992, Leung 1992): 

• The first major deficiency is caused by the logical foundation. Geographic 

information systems are predominantly based on the classical concept of 

Boolean logic and classical set theory which do not tolerate imprecision in 

information, human cognition, perception and thought processes. Boolean logic 

imposes artificial precision on intrinsically imprecise spatial data, phenomena 

and processes. It is inadequate to handle imprecision of information and 

knowledge in the representation of spatial data and relationships, in the query 

and analysis of spatial information. This limitation calls for a more general and 

sound logical foundation of geographic information systems as offered by the 

concept of fuzzy logic (see Leung 1992). 

• The second major deficiency refers to the limited built-in analytical and 

modelling functionality. Current geographic information systems are strong 

in the domains of data capture, storage, retrieval and graphical display. Their 

current capabilities for more sophisticated forms of spatial analysis and 

modelling, however, are rather limited. There is an enormous range of GIS-
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relevant spatial procedures and techniques which might be taken into 

consideration to increase the analytic and modelling functionality of geographic 

information systems, including inter alia exploratory spatial pattern analysis, 

regional taxonomic procedures, spatial interaction and choice models, spatial 

regression models with spatially autocorrelated errors, location-allocation 

models, space-time statistical models (see Openshaw 1990, Goodchild 1991, 

Fischer and Nijkamp 1992). 

• The third major deficiency of the systems refers to the low level of 

i nte 11 i gence in terms of knowledge representation and processing. 

Geographical problems are highly complex in nature. Effective solutions of such 

problem_s require an intelligent use of large data bases, structured and 

unstructured (procedural) knowledge. Over the years, structured (procedural) 

knowledge taking the format of statistical and mathematical models has been 

developed in Quantitative and Theoretical Geography, and recently loosely 

coupled with conventional geographic information systems via data export and 

import (see Leung 1992). The application of new artificial intelligence principles 

and technologies in general, and expert systems and artificial neural networks in 

particular, provides the potential to increase the level of intelligence of 

geographic information systems. 

Fig. 1: Three Types of Information System Technology 
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Combining different types of information system technologies (such as GIS, expert 

systems and artificial neural networks) can help to reduce the limitation of each 

system, and in particular to increase the level of intelligence of geographic 

information systems (see Fig. 1 ). 

The deficiencies of conventional geographic information systems mentioned above 

point to three elements which have to be considered to be critical for integration into 

the next generation of more intelligent systems: 

• the concept of fuzzy logic, 

• advanced spatial analysis and models modules via conventional tools and/or via 

• artificial intelligence technology in general and spatial expert systems (SES) and 

artificial neural networks (ANN) in particular. 

Fig. 2 outlines a system architecture of a knowledge based geographic information 

system which takes these elements into account and, thus, would greatly enhance 

the power and usefulness of geographic information systems for spatial analysis 

and decision making in such a way that the GIS can offer intelligent advice or take 

an intelligent decision about geoprocessing functions. The architecture is based 

upon three major components: 

• the GIS core component includes the databases (locational, temporal and 

attribute data), a database management system(s) and an information retrieval 

module, 

• the spatial expert system (SES) component for clearly defined and 

relatively simple spatial analysis and modelling tasks, with a knowledge­

acquisition module, a (spatial and non-spatial) domain-specific knowledge base 

and a rule-based inference engine, 

• the artificial neural networks (ANN) component for more sophisticated 

forms of spatial analysis and modelling. 

The SES- and the ANN-components may be integrated with the GIS component 

through a (fuzzy) information retrieval module. Such an integration establishes 

communication between expert systems and artificial neural networks on the one 

side and GIS on the other. The system contains the two major types of knowledge, 

procedural knowledge (algorithms, mathematical and statistical models) basically 
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via the artificial neural network component and declarative (rule-based) knowledge 

basically via the expert system component. 

To account for imprecision in spatial data as well in the reasoning process fuzzy 

logic extending the operations of Boolean algebra to cover fractional truth-values 

intermediate between 0 (false) and 1 (true) may be employed as the logic 

foundation in the design of the system (see Leung 1992, Wang et al. 1990). This 

implies the integration of a fuzzy relational data model, a fuzzy information retrieval 

tool and fuzzy-logic-based expert systems. Both, the artificial neural network and 

the expert system modules are coupled with the GIS-environment. User interfaces 

may facilitate communication with the GIS environment, the expert systems and the 

building of spatial model and analysis based art!ficial neural networks. 

This system architecture would enable to link spatial analysis and modelling with 

GIS intelligently for specific domains, via the SES- the ANN-components, and 

would assist the user to choose the best set of procedures and tools to solve his 

problem at hand within the constraints of data, data quality, cost and accuracy. The 

neural network and the expert system components fundamentally differ in their 

knowledge representation techniques. Expert systems utilize the way of symbolic 

encoding of knowledge in form of production rules (forward/backward chaining 

systems), the mainstream approach to knowledge representation, while artificial 

neural networks commited to the principle of interconnectivity represent knowledge 

implicitly rather than explicitly. 

3. The Expert System Component 

Expert systems may be viewed as systems which achieve expert-level performance 

utilising symbolic representation of knowledge, inference and heuristic search. 

They are designed to provide acceptable solutions using knowledge from experts 

and emphasize domain-specific knowledge rather than more general problem 

solving strategies. Four kinds of software tools are available for developing expert 

systems: 

• conventional languages such as C-language, 

• Al languages such as Lisp and Prolog, 

• expert system shells (for example, NEXPERT), and 
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• Al development environments such as KEE (Knowledge Engineering Environ­

ment, lntillcorp.). 

Expert system shells and Al development environments greatly reduce the cost of 

developing expert systems. 

Spatial expert systems, i.e. expert systems with a spatial domain, have evolved via 

a manner which parallels that of expert systems in the business data processing 

community (see, for example, Smith et al. 1987, Kim et al. 1990). A fully fledged 

fuzzy-logic-based expert system consists of four essential components (see Fig. 3) 

• a knowledge acquisition module to assist in expressing knowledge in a 

form suitable for inclusion in the knowledge base, 

• a fuzzy knowledge base consisting of spatial and non-spatial knowledge in 

fuzzy and non-fuzzy terms ((spatial) objects and their attributes, relationships 

and their attributes, etc.) about some substantive domain, 

• a fuzzy-logic-based inference engine consisting of rule-based inference 

procedures and control mechanisms used to detect, select, and execute relevant 

rules in the knowledge base, 

• an user interface which assists the user to consult the spatial expert system. 

In fuzzy-logic based expert systems fuzzy logic is employed to handle appropriate 

reasoning so that fuzzy and non-fuzzy terms can be employed to make inferences. 

The user interface is a general module which controls 1-0-behaviour of the system 

and facilitates user interaction with the system. The interface fulfills basically two 

functions: first, to provide the user with the information required to solve his 

problem, to display the conclusions and to explain its reasoning; second, to 

translate queries from the user into specific goals for the expert system's engine 

machine. 

The knowledge acquisition module serves to interact with the domain's expert to 

acquire information relevant to both the knowledge domain and judgemental 

behaviour of the expert, in terms of objects, facts, fuzzy terms etc. The conventional 

approach in knowledge acquisition is interview-based [and by static analysis]. 
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Interviewing is essential in eliciting new knowledge from domain experts. The 

purpose of an interview is to acquire knowledge useful in problem solving. The 

fundamental challenge is to decide what kind of knowledge to ask for in what 

situations. Major recent efforts are directed towards computer-based knowledge­

acquisition systems which, however, suffer from the so-called knowledge­

acquisition dilemma (see Kawaguchi et al. 1991 ). If the system is ignorant, it cannot 

raise good questions, and if it is sufficiently knowledgeable, it must not raise 

questions. Consequently, special attention is being paid to identifying what 

knowledge to give a system in advance and how to use that advanced knowledge 

to facilitate knowledge acquisition. 

Fig. 3: The Expert System Component of a Knowledge Based 

Geographic Information System 
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The knowledge base is elicitated from a domain expert and reformulated as a 

collection of rules or a frame-based structure. Rules derived from experts may be 

inexact, measurements unreliable, etc. This is especially true in complex spatial 

tasks and demands for a fuzzy, rather than a precise knowledge base. The 

production rules format of the general forms of if [conditions} I then [actions}. 

The inference engine consists of search and reasoning procedures which enable 

an expert system to arrive at conclusions. The choice of an inference strategy and 

the choice of knowledge representation are inextricably bound together. In the rule­

based systems it is common practice to employ all or some of the following 

reasoning strategies: backward chaining, forward chaining and/or Bayesian 

inference (see Graham 1989). Rule-based reasoning, however, limits a system's 

ability to acquire knowledge from domain experts. One of the solutions to the 

knowledge-acquisition problem is to reduce dependency on domain experts as 

much as possible. Several alternatives, such as model-based reasoning, case­

based reasoning, and explanation-based learning have been analysed. Model­

based reasoning utilizes a domain model of structural and functional knowledge 

about a given target system. It can deal with new situations which rule-based 

reasoning cannot cover, but its major drawback is the amount of the measuring or 

testing it must perform to find solutions. Case-based reasoning utilizes past 

problem-solving cases, including success and failure stories which directly reflect 

domain experts' experience. Finally, explanation-based learning, a deductive 

learning procedure, is a framework of generating compiled knowledge from goal 

concepts, training examples, domain theory and operationality criteria (see 

Kobayashi and Nakamura 1991 ). 

The advantages gained by the integration of an expert system into a GIS world are 

basically derived from the qualities of the rule-based languages (such as Prolog) 

(see Webster 1990): 

• symbols representing ideas, expectations, adjectives as well as numerical data 

can be subjected to the same general inferential processing, the semantic 

flexibility makes rule-based data processing of interest in the search for more 

semantically-oriented database models, 

• the ability to integrate database operations with processing rules implying 

efficient data processing, 
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• the ease with which programs and knowledge bases can be amended via ad 

hoc modifying a set of processing rules, 

• the new level of flexibility gained when facing the question of how much 

information to codify in explicit data representation and how much to leave for 

deriving via processing rules. 

Up to now, however, there are only a few applications of expert systems in spatial 

analysis and search (see Smith et al. 1987, Kim et al. 1990, Webster 1990, Leung 

1992). Compared to other disciplines, research on expert system application has 

lagged in geography and regional science, due to several reasons. One 

fundamental reason might be disparities between the type of problems 

geographers and regional scientists are usually dealing with and the type of 

problems for which the approach of expert systems is suited. Experience with rule­

based expert systems shows that the set of rules required to accomplish 

multidimensional and complex tasks characteristic to the GIS world is often quite 

large. 

In addition, developing rules and related heuristics may be extremely time 

consuming and only feasible for relatively simple, well-bounded problem situations 

in which clear diagnostic rules and procedures are known a priori. The major 

problem domains of GIS and spatial analysis in which expert systems can be 

applied include: 

• automated map design which emulates an expert cartographer in the task of 

locating feature names on a map using a heuristic graph-searching algorithm, 

• automated device routines for extracting, sorting, describing data and object 

structure (for example, a feature extraction detecting valleys and streams using 

the procedural knowledge in the knowledge base), 

• coupling expert systems and specific spatial analysis and model 

tools to provide qualitative reasoning capability (translation of qualitative criteria 

into numeric input and translation of the output to qualitative concepts) and more 

intelligent interfaces to the user. 

Expert systems may assist the user to select proper data analysis models (e.g., for 

identifying suitable sites for a particular land use; for solving vehicle routing 
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problems), input necessary parameters and interpret spatial analysis outputs. In 

addition, expert systems might be used to enable uncertainty reasoning and to 

resolve inconsistent and contradictionary information obtained in GIS databases. 

Among the problems of coupling expert systems with GIS the limited capabilities of 

current expert system shells and the lack of formalism typical for many problem 

areas in geography and regional science have to be mentioned. 

4. The Artificial Neural Network Component 

Artificial neural networks (neurocomputing) are generating much interest among 

engineers and academic scholars in different fields. They owe their current 

popularity to two major sources: first, significant major breakthroughs in the design 

and application of neural networks in the 1980s; second, the new technologies 

such as optical processing of information, high-density semiconductor networks, 

and eventually new materials like the 'spin-glasses' which offer an unforeseen 

capacity for computation. 

Artificial neural networks - inspired by models of the human brain and nerve cells -

may be viewed as structured networks of highly interconnected processing units or 

processors (often also termed neurons, in analogy to biological neural networks) 

with modifiable interconnection weights (Baldi and Hornik 1989). They have the 

ability to learn a desired mathematical or statistical function of any complexity from 

training samples and to generalise as well as to abstract essential characteristics 

from data inputs. 

Typically, the processing elements are organised into a hierarchical series of levels 

(layers): an input layer, one or more intermediate (so-called hidden) layer(s), and 

an output layer. Fig. 4 shows a neural network with three layers of processing units, 

a typical organisation for the popular neural network architecture which is known as 

back-error-propagation. The processing elements of the input layer assume the 

values of an input pattern represented as a vector which is input to the network. The 

intermediate layer consists of processing elements which receive and transmit the 

input signals. Sometimes, there is more than one intermediate layer. These 

intermediate layer processors are connected to output neurons which form the 

output layer. Note that connection within a layer or from higher to lower layers are 

forbidden. But connections can skip intermediate layers. 
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Fig. 4: An Artificial Neural Network with Three Fully Interconnected 

Layers 
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Each interconnection between processing elements acts as a communication route. 

Numeric values are passed along these interconnections from one processor to 

another. They are weighted by connection strengths which are associated with 

each interconnection and adjusted during training to generate the final neural 

network. 

Fig. 5 depicts an example of a typical processing unit i in layer k of a multilayered 

network. On the left side there are the multiple inputs to the processor. The output 

connections are shown at the right. The same output value is sent along all the 

output connections. A processing unit acts as some kind of nonlinear leaky 

integrator of input. The total input Ii of the units j that are connected to the unit i is 

generally appoximated by a linear function 

(1) 

where ~i denotes the activation level (output value) of unit j connected to i and µii 

the weight on this connection. Units can be given biases by introducing an extra 
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input to each unit which always has a value of one. The weight on this extra input is 

called the bias and is equivalent to a quenching threshold of the opposite sign. It 

can be treated just like the other weights. 

Non-linear processing units i yield continuous-valued non-negative outputs 'lli 

which are typically approximated by a non-linear function of its total input as follows 

11; = 1 / ( 1 + exp ( - ~ ~i ~ ) ) (2) 

Any continuous-valued non-negative input-output function which has a 

bounded derivative may used. But the use of a linear function (1) for the integration 

of the inputs to a unit before applying the non-linearity greatly simplifies the 

learning procedure. All units within a layer have their states (activation levels) set 

in parallel,.but different layers have their states set sequentially, starting with the 

input level and moving forward until the states of the output units are determined 

(see Rummelhart et al. 1986). 

Fig. 5: Basic Processing Unit from a Layered Artificial Neural Network 
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Most neural networks undergo a training procedure during which the 

interconnection parameters are adjusted to ensure that for each input vector the 

output vector generated by the network is sufficiently close to the desired output 

vector. Training may be supervised or unsupervised. The most important 

examples of supervised and unsupervised neural network architectures are 

outlined in Table 1. Back-error propagation is the most widely used of the neural 

network architectures. Such networks are supervised and usually layered, with 

each layer (fully) connected to the layers below and above. Back-error propagation 

is an important step forward compared to its forerunner, the perceptron, which was 

limited to only two layers of processors, with only a single layer of adaptable 

weights (see Rosenblatt 1958). The power of the back-error propagation network 

architecture lies in its ability to train hidden layers and, thus, to escape the restricted 

capabilities of single-layered networks as in the case of the Hopfield networks (see 

Dayhoff 1990). 

Table 1: The Most Important Examples of Supervised and Non­

Supervised Neural Network Architectures 

Supervised 

Network 

Architectures 

Unsupervised 

Network 

Architectures 

Hybrid 

Network 

Architecture 

Forerunners 

Perceptron 

Adaline/Madaline 
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Today's Neural Network 

Architectures 

Back-Error-Propagation 

Hopfield Networks (recursive organisation, 

non-synchronous updating) 

Competitive Layers and Inhibitory 

Connection Network Architectures 

(e.g. Adaptive Resonance Theory, 

Kohonen's Self-Organising Feature Map) 

Counterpropagation (hidden layers with 

competitive units doing unsupervised 

learning, non-competitive top layer trained 

by a Widrow-Hoff or Grossberg Rule) 



Unsupervised neural networks perform unsupervised learning. In unsupervised 

learning, the neural network is trained without the help of an external (hypothetical) 

teacher. Unsupervised networks are especially useful for classifying large data sets 

where the target classifications are not known a priori (see, for example, Openshaw 

et al. 1991 ). Competitive layers and inhibitory connection are key elements to 

several unsupervised neural networks (for example, Kohonen's self-organising 

feature map and the Adaptive Resonance Theory). In such competitive learning and 

lateral inhibition network architectures processing units act through competition and 

lateral inhibition in opposition to one another, to respond to the input pattern. 

Unsupervised networks contrast sharply with supervised networks which require an 

external hypothetical teacher. The teacher is usually represented in form of target 

output patterns, the desired responses to specific input patterns. The mismatch 

between the target output and the actual output generated by the network is used to 

adjust the values of the connection parameters successively and, thus, to drive 

learning of the supervised network. 

There is a variety of learning algorithms which may be used to adjust the 

connection parameters in a neural network. The most popular and reasonably 

successful learning procedure for connectionist networks is the back-error 

propagation procedure (Rummelhart et al. 1986) which can be used to update the 

weights by the method of steepest descent, an iterative optimisation algorithm. This 

is achieved by viewing training of the network as a non-linear least squares 

optimisation problem. The connection parameters of the network are determined to 

minimize the least-square functional 

J =LE ( /t) - f (x(t), m<t))2 

t 

(4) 

where t is an index over pairs of training sets (input pattern x(t) paired with a target 

output pattern y(t)), E (•) denotes the mathematical expectation, f the transfer 

function implemented by the network (see equation (2)) and m the parameter vector 

of connection weights. 

Each parameter value is adjusted via back propagation (from the output layer back 

to the bottom one) by a constant proportion, commonly preferred to as learning rate, 

of the partial derivative of J with respect to the parameter, gradm (J) (Jacobs 1988). 
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Thus, the connection parameter adjustment procedure, known as the generalized 

delta rule (Rummelhart and McClelland 1986) can be written as 

m<t+1) = m(t) - £ gradm (J) (5) 

where m<t+1
) is the parameter vector at step t+ 1, £ the learning rate parameter 

(commonly fixed and chosen as O < £ < 1 ), and gradm (J) the gradient of J. Since 

the gradient vector points in the direction of maximum increasing error, it is 

necessary to multiply the gradient vector by negative one, to minimize the error 

(Jacobs 1988). 

The most obvious drawback of the learning procedure is that the error surface may 

contain local minima so that gradient descent does not guarantee to find a global 

one. Despite its effectiveness, many scholars find this algorithm's rate of 

convergence too slow to be used in many practical situations. Training sessions 

can demand hundreds or thousands of iterations even in the case of relatively 

simple problems. Thus, major research efforts are currently undertaken to develop 

new and faster algorithms (see Jacobs 1988 for more details). For heuristic learning 

procedures achieving faster rates of convergence through allowing the learning 

rate to vary over time see for example Jacobs (1988). 

5. The Potential Role of Neural Networks in Geographic Information 

Processing 

Neural networks have a far-reaching potential as modules in tomorrow's 

computational world in general and in knowledge based geographic information 

systems in particular. Useful applications have been already designed, built and 

commercialised in various fields, such as 

• image analysis, i.e. pattern classification and pattern completion problems, in 

various domain areas (for example, automated medical image analysis, 

industrial visual inspection of a product or component under manufacture), 

• automated diagnosis ranging from machine diagnosis and failure analysis to 

identify and evaluate fault types (for example, jet engine and automobile engine 

diagnosis) to automated control covering a wide range of complexity of control 
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problems, from simple systems such as balancing a broom to complex systems 

such as autonomous control of a moving car and robotic control problems, 

• speech analysis and generation, including text-to-speech translation and 

automated speed (syllable) recognition where current applications, however, are 

limited to the recognition of phenomes or simple words and a limited vocabulary. 

Up to now, geographers and regional scientists have been rather slow in realising 

the great potential of the revolutionary new technology of neural networks, with the 

exception of very few scholars like White (1989), Halmari and Lundberg (1991) and 

Openshaw (1992a, b). 

In principle, neural networks offer possibilities for addressing problems which 

require pattern recognition, pattern completion, pattern mapping, dealing with noisy 

data, systems which learn or adapt (adaptive control problems) and knowledge 

processing. The range of potential applications is impressive. Key candidate 

application areas in geographic information processing are summarized in Fig. 6. 

They are considered to include 

• exploratory spatial data and image analysis (pattern detection and 

pattern completion via (un)supervised neural network architectures, especially in 

the field of environmental monitoring and management) in remote sensing and 

data rich GIS environments, 

• homogeneous and functional regional taxonomic problems, especially 

in the case of very large data sets (see Openshaw et al. 1991 for evaluating 

different unsupervised neural network classifiers on census data for Britain), 

• spatial Interaction and choice modelling (via supervised neural network 

architectures, see Fischer and Gopal 1992 for the application of multi-layered 

feedback forward networks with a back-propagation learning algorithm to model 

telephon traffic in Austria, or Openshaw 1992a to model journey to work flows), 

• optimization problems such as the classical travelling salesman 

problem and shortest-path-problems in networks (via supervised neural 

network architectures, see Wilson and Pawley 1988 for a Hopfield network 

application to the travelling salesman problem), and 
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• space-time statistical modelling (via supervised or unsupervised neural 

networks, depending upon the problem under study). 

Fig. 6: Some Key Candidate Application Areas of Neural Networks In 

the Field of Geographic Information Processing 

This list of problems addressable by the neural network approach is by no means 

exhaustive, but certainly reflects priorities for neural network applications in 

geographic information processing. In principle, neural networks may be developed 

to replicate the descriptive and predictive functions of current statistical and 

mathematical procedures of any complexity, often with an improved level of 

performance and accuracy (Openshaw 1992a). 

Neural network architectures may be expected to complement rather than to 

replace rule-based knowledge processing and conventional analysis tools in the 

long run. For example, a rule-based approach to automating environmental visual 

diagnosis requires a human expert to formulate the rules by which satellite 

environmental data can be analysed. Experience with rule-based expert systems, 

however, has shown that the set of rules required to accomplish diagnostic tasks is 
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often quite large. The new methodology utilizes a neural network's ability to deal 

with large data sets, incomplete data and situations in which the diagnostic rules 

are not known a priori (see Dayhoff 1990). 

6. Summary and Conclusions 

Knowledge based geographic information systems will play an important role in 

decision and policy analysis (resource exploration, environmental monitoring and 

management, land use planning, motor vehicle navigation, distribution logistics, 

etc.). Geographic information systems without intelligence have only little chances 

to provide effective and efficient solutions to spatial decision making problems in 

the highly complex and imprecise decision making environment. The application of 

applied artificial intelligence techniques and principles to geographic information 

and analysis provides a great potential to meet the challenges encountered in 

developing the next generation of intelligent GIS. Spatial expert systems and 

artificial neural networks may be considered to be essential components of such 

systems. They fundamentally differ in their knowledge representation techniques 

from each other. Expert systems utilize the way of symbolic encoding of knowledge 

in form of production rules (forward/backward chaining systems), while artificial 

neural networks commited to the principle of interconnectivity represent knowledge 

implicitly rather than explicitly. Moreover, they have the ability to learn a desired 

mathematical or statistical function of any complexity from training samples and to 

generalise without imposing rigid assumptions as in the case of conventional 

spatial analysis procedures. 

In the years to come, neural network architectures may be expected to complement 

rather than to replace rule-based knowledge processing and conventional data 

analysis tools, especially when geographical information systems are implemented 

on large, multi-processor systems. While developing rules and related heuristics to 

accomplish diagnostics may be extremely time consuming and only feasible in 

relatively simple and well-defined knowledge domains, neurocomputing shows 

greater flexibility to deal with situations typical for the GIS world, in which the data at 

hand are poor (incomplete, noisy, imprecise, etc.) from an analytical point of view, 

the detection of patterns and relationships in data-rich environments is important, 

but relevant theories and hypotheses for data analysis are missing. 

20 



References 

Baldi, P. and Hornik, K. (1989): Neural networks and principal component analysis: Learning from 
examples without local minima, Neural Networks 2, pp. 53-58. 

Burrough, P.A. (1990): Methods of spatial analysis in GIS, International Journal of 
Geographical Information Systems, vol. 4, pp. 221-223. 

Clarke, M. (1990): Geographical information systems and model based analysis: Towards effective 
decision support systems, in Scholten, M.J. and Stillwell, J.C.M. (eds.): Geographical 
Information Systems for Urban and Reglonal Plannlng, pp. 165-175, Dordrecht et 
al.: Kluwer. 

Dayhoff, J.E. (1990): Neural Network Architectures. An Introduction. New York: Van 
Nostrand Reinhold. 

Fischer, M.M. and Gopal S. (1992): Neural Networks: General Principles with an Application to 
Modelling Telephon Communication, Paper prepared for the Symposium of the IGU­
Commission on Mathematical Modelling, Princeton, August 1992. 

Fischer, M.M. and Nijkamp, P. (1992): Geographic information systems and spatial analysis, The 
Annals of Regional Science, vol. 26(1) (in press). 

Forsyth, R. (1989): The expert systems phenomena, in Forsyth, R. (ed.): Expert Systems, 
Principles and Case Studies, pp. 3-21. London et al: Chapman and Hall. 

Goodchild, M.F. (1991): Progress on the GIS research agenda, in Harts, J., Ottens, H.F.L. and 
Scholten , M.J. (eds.): EGIS '91. Proceedings, Second European Conference on 
Geographical Information Systems, Volume 1, pp. 342-350. Utrecht: EGIS Foundation. 

Graham, I. (1989): Inside the inference engine, in Forsyth, R. (ed.): Expert Systems, Principles 
and Case Studies, pp. 57-83. London et al: Chapman and Hall. 

Grossberg, S. (1988): Nonlinear neural networks: Principles, mechanisms and architectures, Neural 
Networks 1, pp. 17-61. 

Halmari, P.M. and Lundberg, C.G. (1991): Bridging inter- and intra-corporate information flows with 
neural networks, Paper presented at the Annual Meeting of the Association of American 
Geographers, Miami, April 13-17, 1991. 

Han, S.-Y. and Kim, T.J. (1990): Intelligent urban information systems: Review and prospects, in Kim, 
T.J., Wiggins, LL. and Wright, J.R. (eds.): Expert Systems: Applications to Urban 
Planning, pp. 241-264. New York et al.: Springer. 

Hopfield, J.J. and Tank, D.W. (1985): Neural computation of decisions in optimization problems, 
Biological Cybernetics 52, pp. 141-152. 

Jacobs, A.A. (1988): Increased rates of convergence through learning rate adaptation, Neural 
Networks 1, pp. 295-307. 

Kawaguchi, A., Motoda, H. and Mizoguchi, R. (1991): Interview-based knowledge acquisition using 
dynamic analysis, IEEE Expert (October), p. 47-60. 

Kim, T.J., Wiggins, LL. and Wright, J.R. (eds.) (1990): Expert Systems: Appllcatlons to Urban 
and Reg Iona I Planning, pp. 191-201. Dordrecht et al.: Kluver. 

Kobayashi, S. and Nakamura, K. (1991 ): Knowledge compilation and refinement for fault diagnosis, 
IEEE Expert (October), pp. 39-46. 

Kohonen, T. (1988): An introduction to neural computing, Neural Networks 1, pp. 3-16. 

21 



Leung, Y. (1992) : Towards the development of an intelligent decision support system, in Fischer, 
M.M. and Nijkamp, P. (eds.): Geographical Information Systems, Spatial Modelling 
and Polley Evaluation , Berlin et al.: Springer (in press). 

Masser, I. (1990): The Regional Research Laboratory Initiative: An overview, Regional Research 
Laboratory Initiative Discussion Paper No. 1. 

Openshaw, S. (1990): A spatial analysis research strategy for the Regional Research Laboratory 
Initiative, Regional Research Laboratory Initiative Discussion Paper No. 3. 

Openshaw, S. (1992a): Modelling spatial interaction using a neural net, in Fischer, M.M. and Nijkamp, 
P. (eds.): Geographical Information Systems, Spatial Modelling and Polley 
Evaluation, Berlin et al.: Springer (in press). 

Openshaw, S. (1992b): Some suggestions concerning the development of artificial intelligence tools 
for spatial modelling and analysis in GIS, The Annals of Regional Science, vol. 26(1) (in 
press). 

Openshaw, S., Cross, A. and Charlton, M. (1990): Building a prototype Geographical Correlates 
Exploration Machine, International Journal of Geographical Information Systems, 
vol. 4, pp. 297-311. 

Openshaw, S., Wymer, C. and Charlton, M. (1991): An evaluation of three neural net classifiers on 
census data for Britain, Paper presented at the 7th European Colloquium on Quantitative and 
Theoretical Geography, Hasseludden (Sweden), September 5-8, 1991. 

Ortolano, L. and Perman, C.D. (1990): Application to urban planning: An overview, in Kim, T.J., 
Wiggins, L.L. and Wright, J.R. (eds.): Expert Systems: Applications to Urban 
Planning, pp. 3-13. New York et al.: Springer. 

Rosenblatt, F. (1958): The perceptron: A probabilistic model for information storage and organization 
in the brain, Psychoanalytic Review 65, pp. 386-408. 

Rummelhart, D.E. and McClelland, J.L. (1986): Parallel Distributing Processing, Volume 1 
and 2, Cambridge (Mass.): The MIT Press. 

Rummelhart, D.E., Hinter, G.E. and Williams, R.J. (1986): Learning representations by back­
propagating errors, Nature 323, pp. 533-536. 

Shadbolt, N. (1989): Knowledge representation in man and machine, in Forsyth, R. (ed.): Expert 
Systems. Principles and Case Studies, pp. 142-170. London et al.: Chapman and Hall. 

Smith, T.R., Penquet, D., Menon, S., and Agarwal, P. (1987): KBGIS-11. A knowledge-based 

geographical information system, International Journal of Geographic Information 

Systems, vol. 1, pp. 149-172. 

Wang, F., Hall, G.B. and Subaryono (1990) Fuzzy information representation and processing in 

conventional GIS software: Database design and application, International Journal of 

Geographical Information Systems, vol. 4, pp.261-283. 

Webster, C. (1990): Rule-based spatial search, International Journal of Geographical 

Information Systems, vol. 4, pp.241-259. 

White, R.W. (1989): The artificial intelligence of urban dynamics: Neural net modelling of urban 
structure, Papers of the Regional Science Association 67, pp. 43-53. 

Wilson, G.V. and Pawley, G.S. (1988): On the stability of the traveling salesman problem algorithm of 
Hopfield and Tank, Biological Cybernetics 58, pp. 63-70. 

22 


