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Abstract 

During the last thirty years there has been much research effort in regional science 

devoted to modelling interactions over geographic space. Theoretical approaches for 

studying these phenomena have been modified considerably. This paper suggests a 'new 

modelling approach, based upon a general nested sigmoid neural network model. Its 

feasibility is illustrated in the context of modelling interregional telecommunication traffic in 

Austria and its performance is evaluated in comparison with the classical regression 

approach of the gravity type. The application of this neural network approach may be 

viewed as a three-stage process. The first stage refers to the identification of an 

appropriate network from the family of two-layered feedforward networks with 3 input 

nodes, one layer of (sigmoidal) intermediate nodes and one (sigmoidal) output node 

(logistic activation function). There is no general procedure to address this problem. We 

solved this issue experimentally. The input-output dimensions have been chosen in order 

to make the comparison with the gravity model as close as possible. The second stage 

involves the estimation of the network parameters of the selected neural network model. 

This is perlormed via the adaptive setting of the network parameters (training, estimation) 

by means of the application of a least mean squared error goal and the error back 

propagating technique, a recursive learning procedure using a gradient search to 

minimize the error goal. Particular emphasis is laid on the sensitivity of the network 

perlormance to the choice of the initial network parameters as well as on the problem of 

overlitting. The final stage of applying the neural network approach refers to the testing of 

the interregional teletraffic flows predicted. Prediction quality is analysed by means of two 

perlormance measures, average relative variance and the coefficient of determination, as 

well as by the use of residual analysis. The analysis shows that the neural network model 

approach outperlorms the classical regression approach to modelling telecommunication 

traffic in Austria. 



1. Introduction 

Telecommunication like transportation interactions, take place over geographic space. But 

in contrast to the vast literature devoted to the analysis of region-to-region travel demand 

(see Fischer 1993), relatively little research effort has been directed towards region-to­

region telecommunication demand. One reason for this deficiency in research is that 

telecommunication data are either not available as in the case of most European 

countries or viewed as proprietary by the private companies (as in the case of US) which 

provide the telecommunication services (Guldmann 1992). A better understanding of the 

spatial structure of telecommunication interactions is becoming more and more important 

especially in the context of Europe where the telecommunication sector is increasingly 

coming under debate due to deregulation trends. The knowledge of telecommunication 

linkages might also assist to clarify issues such as the complementarity and substitution 

effects between transportation and telecommunication (Salomon 1986) and the value of 

telecommunication technologies as patterns of regional development (see Gillespie and 

Williams 1988). 

The general purpose of this paper is to set out an (artificial) neural network (connectionist) 

approach to modelling interregional telecommunication interactions and, thus, to 

contribute to the debate on the feasibility of neural network computing (neurocomputing) 

in geography and regional science (Openshaw 1992, Fischer and Gopal 1993). The 

specific objectives may be stated. as follows: first, to develop and estimate a neural net 

telecommunication flow model with explicit treatment of geographical distance, second, to 

evaluate its prediction quality in relation to the classical regression model of the gravity 

type. 

-. 
The general model suggested is based upon the family of two-layered feedforward neural 

networks with sigmoidal non-linearities, the most tractable and most prominent family of 

artificial neural net models (see Hecht-Nielsen, 1990). The value of this approach to 

modelling interregional telecommunications will be illustrated on the basis of an 

application using a new telecommunication data set of Austria. The application of the 

approach may be viewed as a three-stage process. The first stage refers to the 

identification of an appropriate model candidate from the family of two-layered 

feedforward networks. The input-output dimensions are chosen so as to make the 

comparison to the gravity model as close as possible. The second stage involves the 

estimation of the network parameters of the selected neural network model. This is 

performed via the adaptive setting of the network parameters by means of the application 

of a least mean squared error goal and the error back propagating technique, a recursive 

learning procedure using a gradient search to minimize the error goal. Particular 

emphasis is laid on the sensitivity of the network performance to the choice of the initial 
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network parameters as well as the problem of overfitting. The final stage of applying the 

approach refers to the testing of the interregional teletraffic flows predicted. Prediction 

quality is analyzed by means of performance measures as well as by the use of residual 

analysis and compared with gravity model predictions. 

The remainder of this paper is organized as follows. Section 2 briefly characterizes the 

classical regression model of the gravity type that is used as a benchmark model in this 

study, then proceeds to outline the neural networks approach by considering it as a three 

stage process, and lastly, describes the estimation process based upon a supervised 

learning algorithm. The experimental environment and the results of model identification, 

estimation and testing are discussed in relation to the classical telecommunications flow 

model in section 3 . Conclusions and areas for further research are outlined in section 4. 

2. The Methodological Framework 

The literature on telecommunication flow modelling is primarily based on the conventional 

regression approach of the gravity type (Pacey 1983, Rietveld and Janssen 1990, 

Rossera 1990, Fischer et al. 1992, Guldmann 1992), and thus lies in the tradition of the 

broader and well-established framework of spatial interaction modelling in geography and 

regional science (see for example, Fotheringham and O'Kelly 1989). This conventional 

model approach serves as a benchmark for evaluating the performance of the alternative, 

the neural net approach. We first briefly characterize the conventional modelling 

approach, and then the general neural network model. 

2.1 The Gravity Model as Benchmark 

Let Trs denote the intensity of telecommunication from region r to region s (r, s =1, ... ,n), 

measured in terms of erlang or minutes. Then T rs is called interregional traffic, if r:ts, and 

intraregional traffic, if r=s. 

The conventional approach applied to the problem of modelling telecommunications traffic 

belongs to the class of (unconstrained) gravity models. It is usually assumed (see Rietveld 

and Janssen 1990, Fischer et al. 1992) that 

r, s = 1, ... , n (1) 

with 
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Ar a factor associated with the region r of origin and representing the intensity of 

telephone communication generated by this region, 

85 a factor associated with the region s of destination and representing destination-

specific pull factors or the degree to which the in-situ attributes of a particular 

destination attract telephone communication traffic, and 

Frs a factor associated with the origin - destination pairs (r, s) representing the inhibiting 

effect of geographic separation from region r to region s. 

Ar and Bs are called mass or activity variables, Frs is termed separation variable, 

provided it is specified in a way such that higher values imply less telecommunications 

traffic. In this approach, the specific form of the function to be fitted to the data is first 

chosen and then the fitting according to some error criterion (usually mean squared error) 

is carried out. 

G is usually specified in such a way that the interregional telecommunication flow model 

reads as follows: 

Tconv 
rs 

with 

= Frs (Ors) r, s = 1, ... , n (2) 

r, s = 1, ... , n (3) 

where T~~nv denotes the intensity of telecommunication from r to s predicted by (2) - (3). 

Ar and 8 5 represent the potential pool of calls in region rand the potential draw of calls in 

regions, respectively. We have decided to use gross regional product as a measure for Ar 

and 8 5 . Gross regional product as a proxy of economic activity and income is relevant for 

both business and private phone calls (see Rietveld and Janssen 1990). Drs denotes 

distance from region r to region s. K is a scale parameter (constant), a 1, a 2 and a 3 are 

parameters to be estimated. n denotes the number of telecommunication regions. 

The usual strategy to estimating (2) - (3) is to assume that a normally distributed 

multiplicative error term Ers applies, i.e. Ers - N(o,cr) independently of Ar, 8 5 and Drs· In 

this case, OLS-regression can be applied after a logarithmic transformation yielding: 

r,s=1, ... ,n (4) 

OLS-estimation leads to unbiased and consistent estimates a1, a2 and a3. This model 

version is usually called log-normal gravity model and will be used as benchmark to 
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evaluate the relative efficiency of the neural net model to be developed in the sequel. It is 

worthwhile to note that there are some problems with this model. For example, it is based 

on the questionable assumption that the variances of the error terms are identical, and it 

cannot be used when some of the interaction flows are zero. 

The standard method for assessing the goodness of fit of this regression model is through 

the use of R2, the coefficient of determination. It is worthwhile to note that the OLS­

estimator of the log-normal gravity model minimizes the sum of squared residuals and, 

thus, automatically maximizes R2. Consequently, maximization of R2, as a criterion for the 

OLS-estimator, is formally identical to the least squares criterion. An unsatisfactory fit in 

terms of R2 may result from the failure to include all relevant explanatory variables, such 

as for example, barrier effects impeding the continuous flow pattern in space (see Fischer 

et al. 1992). 

2.2 The General Neural Network Model 

The general neural network approach set out in this section is based upon the family of 

two-layered feedforward neural networks with sigmoidal processing units. The two-layered 

feedforward neural network is a particular neural network architecture characterized by a 

hierarchical design consisting of 11 input nodes, one layer of 12 intermediate (hidden) 

nodes and 13 output nodes as displayed in figure 1. 

Figure 1: The General Two-Layer Feedforward Neural Network Model 

Arrays of 
Units 

Third Array 
(Second Layer) 

Network Units 
(including biases) 

Output Units 
i3=1, ... , 13 

Bias Unit 

Second Array Hidden Units or 
(First Layer) Internal RepresentationUnits 

First Array 
(Input Array) 

i2=1, ... , 12 

Bias Unit 

Input Units 
i1=1, ... , 11 

Network Architecture 

t t 

Network Parameters 

Second Layer of 
NetworkParameters 

w2,12,1a 

First layer of 
NetworkParameters 

w, .. 
'11' '2 

The input units, i1 =1, ... , 11 , send (continuous-valued) signals Y1 i to intermediate 
' , 

(hidden) units, indexed by i2=1, ... , 12 , that process them in some characteristic way 

(linear summation of input signals multiplied by the corresponding network weights) and 

produce a bounded output signal Y 2 i that is sent via the second layer of connections to 
' 2 
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the output units, indexed by i3=1, ... , 13 , which now treat the hidden units as inputs and 

produce the network output Y 3 i . Note also the presence of bias units. These output a 
' 3 

fixed unit value and can be viewed of as constant terms in the equations defining the 

process carried out by the network. The network has two layers of unidirectional 

connections with which weights (parameters) are associated. The first layer of weights 

connects the input units to the hidden units, and the second layer the hidden units to the 

output units. The architecture is feedforward because signals flow in only one direction. 

The fundamental characteristic of this network architecture is that there are no 

connections leading from an unit to units in previous arrays nor to the other units in the 

same array, nor to the units more than one array ahead. The arrays of nodes are 

connected in such a way that the units are connected to every unit in the next array. 

The general two-layer neural network model, denoted by ~ 11 , 12 , 13 or (1 1 :1 2 :1 3), may be 

described as follows: 

X2 . = 
'12 

(5) 

Y2 . = 
'12 

(6) 

'2 
X3 · = ""'W2 · · Y2· +W21 1 · 

'
1
3 ,L..i ' 1

2· 
1
3 '

1
2 ' 2+ '

1
3 

(7) 

with 

wk .. 
' 

1
k' 

1
k+1 

i2=1 

(8) 

numberof processing units of the j-th array (j=1, 2, 3), 

indices associated with the j-th array of units (j=1, 2, 3), 

(continuous-valued) output of the units i
1 
of the j-th array (j=1, 2, 3), 

(continuous-valued) input to the processing unit i
1 
belonging to the j-th array (j=2, 3), 

note: X1 . = Y1 . , ,1, ,1, 

weights (connection weights, parameters) of the k-th array between the k-th and 

(k+1) -th array of units with k=1: connection weights from the hidden to the output layer, 

k=2: connection weights from the input array to the hiden layer 

(note: Wk i i is a positive number if unit ik excites unit ik+1, and a negative number 
' k' k+1 

if unit ik inhibits unit ik+1), 

W 1 · bias unit of hidden units, 
1, t1, 12 

W 1 · bias unit of the output units. 
2, 2+1, 13 
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where the (transfer) function f is the following logistic function of hidden and output units, 

i2 and i3: 

1 
(9) k=2,3 

1 + exp(-a Xk . ) 
' lk 

(9) scales the activation of a unit sigmoidally between 0 and 1. Strict monotonocity implies 

that the activation derivative of f is positive: df/dXk,ik = a f (1-Xk,ik) > 0. This property 

increases the networks computational richness and facilitates noise suppression. The 

slope of the sigmoid, a, can be absorbed into weights and biases without loss of generality 

and is set to one. 

The parameters of (5) - (8) {Wk, ik' ik+)k=1, ... , lk; k=1, 2} and the adaptable biases 

{W 1, 1,+1 , j2, W2, 12+1 , j
3
}, briefly W ={Wk, 1k+1, ik+1; k=1, 2} have to be estimated. The 

. 2 

weights correspond to a point m in the K = ( L lk+1 (lk+1 ))-dimensional euclidean space 
k=1 

9tK. For every point min the network configuration space Q c 9tK, the network model (5)-

(9) is a realization of a deterministic mapping from an input, say x e X c 9t11, to an output, 

say y e Y c 9tl3 (see Levin, Tishby, and Solla 1990). We denote this mapping by 

Inserting (5) - (7) and (9) into (8) describes the general neural net model in the following 

compact form, for i3 = 1, ... , 13_ 

Y=Y3 . = 
' 13 [1 +exp t[~ w2 i i [1 +exp[-[~ W1 i i Y1 i + w 1 1+1 i )))-

1 

+ w 21 +1 i J]]-
1 

.L..J I 21 3 .L..J I 11 2 I 1 I 1 I 2 I 2 I 3 

i2=' i =1 

(10) 

The general model defined by (10) can be viewed as an input-output model Y=F 00(X) or as 

a non-linear regression function with quite a specific form. Its usefulness as a flexible 

functional form hinges on the nature of the set of mappings from input to output spaces 

that it can approximate (White 1989). Recently, Hornik, Stinchcombe and White (1989) 

and Cybenko (1989) have shown that networks of this type, with one layer of hidden units, 

can approximate any continuous input-output relation of interest to any desired degree of 

accuracy, provided sufficiently many hidden units are available (see also Hecht-Nielsen 

1990). This result shows the atttractivity of (10). 
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2.3 Neural Network Modelling as a Three-Stage Process 

The application of the general model (10) may be considered as a three stage modelling 

process (see figure 2). The first stage refers to the identification of a specific model from 

~ 11 , 12, 13 for the problem at hand and involves the determination of 11 , 12 and 13 . In order 

to make the comparison as close as possible with the gravity model, we identify the 

following subclass ~ 11 , 12, 13 defined as follows(see figure 3): 

• 11=3 input units corresponding to the three independent variables Ar, 85 , and Drs in (4) 

and 

• 13=1 output unit producing the neural network (telecommunication flow) prediction 

Y 3 1 ( =Tneu~ to be compared with ~rsonv, 
• rs 

• The number 12 (hereafter abbreviated as "I") of (sigmoidal) hidden units is a priori 

unknown. 

Figure 2: l'."eural Network Modelling as a Three-Stage Process 

Stage 1: Model Identification 

• Determination of the Number of Input Units (1 1) 

• Determination of the Number of Output Units (13) 

• Determination of the Number of Hidden Units (12) 

Stage 2: Model Estimation 

• Choice of a Reasonable Network Training Strategy 
involves considering various parameters such as 
training by pattern or epoch, sequentlal or random 
ordering of training veclors, choice of the error !unction 
and the iterative learning procedure, choice of 
appropriate initial conditions of the network para­
meters, rule of weight updates 

• Choice of a Strategy for Avoiding Overfitting 

• Choice of the Training, Validation Test and Testing 
Sets · 

Stage 3: Model Testing (Prediction) 

• Evaluation of the Prediction Quality by Means ol Per­
formance Measures 

• Evaluation of the Prediction Accuracy by means of 
Residual Analysis 

There is no general procedure to determine "I" exactly. Consequently, identification and 

estimation overlap in the model building process. Here we employ the estimation 

procedure to carry out part of the identification and determine "I" experimentally by means 
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of performance measures which indicate that specific model worthy of further 

investigation. 

Figure 3: A Subclass of the General Two-Layer Feedforward Neural 
Network Model to Modelling Telecommunications over Space 

Output Data 

Bias 

Input Data 

r:;.•ur (r, S=1, ... , 32, r;ts) 

t t 
Ar Bs Drs 

with r, s=1, ... , 32, (r;ts) 

Number of Network Parameters; 5 I + 1 

One Output Unit 

i3=1 

Hidden Layer 
i2=1, ... , 12= I 

(I a priori unknown) 

Three Input Units 
i1=1, ... , 11=3 

The second stage refers to the estimation of the network parameters. Once an 

appropriate network model has been chosen, much of the effort in neural network building 

concerns the design of a reasonable network training (estimation) strategy. This 

necessitates engineering judgement in considering various parameters: training by pattern 

or epoch, sequential or random ordering of training vectors, choice of the error goal, and 

the iterative learning procedure, choice of appropriate initial conditions on the network 

parameters. The non-linear character of (10) neGessitates a computationally intensive 

iterative solution of determining the network parameters. As shown in what follows in 2.4, 

the estimation of the network parameters is performed via adaptive setting by means of 

the application of a least mean squared error goal and the error back propagating 

technique, a recursive learning procedure using gradient search to minimize the error 

goal. A serious problem in model estimation is the problem of overfitting which is 

especially serious for noisy real world data of limited file length (see 3.3 for more details). 

The final stage involves the prediction of the interregional telecommunication flows and 

evaluating the model's testing performance by means of performance measures and by 

the use of residual analysis, in relation to the benchmark model. 
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2.4 The Training or Estimation Process 

The problem of finding a suitable set W of parameters that approximate an unknown input­

output relation Y = F(X) is solved using a supervised learning algorithm. Supervised 

learning requires a training set, that is, a set of input-output target (desired) examples, 

related through F, say ~(m) = { ~ 1 , 1 :::; I :::; m}, where ~ = (x, y) with x E X c 9\ 3 and 

y E Y c 9\ 1 in our spatial interaction context. The relation F can be generally described by 

the probability density function defined over the space of input-output pairs X ® Y c 9\4 : 

PF(~) = PF (x) PF (ylx), where PF (x) defines the region of interest in the input space and 

PF (ylx) the functional (statistical) relation between the inputs and the outputs. The training 

set consists of examples drawn independently according to this probability density 

function. 

Learning the training set by a model of the general model ~ 3, 1, 1 may be posed as a (non­

linear) optimization problem by ~ntroducing a quality measure of the approximation of the 

desired relation F by the mapping Fco realized by the network (White 1989, Gyer 1992). In 

this study the additive error function for a set S of examples 

(11) 

has been chosen which measures the dissimilarity between F and Fco on the restricted 

domain covered by a set S of input-output target data (I< m). The error function e (ylx, ro) 

is a distance measure on 9\ 1 between the target output (signal) y and the actual output y 
of the network on the given input x. The minimization of E over the network's configuration 

space is called the training process. The task of learning, however, is to minimize that 

error for all possible examples related through F, namely, to generalize (Levin, Tishby and 

Solla 1990). 

To accomplish this task, we utilize the error back propagating technique of Rumelhart, 

Hinton and Williams (1986), a recursive learning procedure using a gradient search to 

minimize (11 ). Learning is carried out by iteratively adjusting the network parameters. 

This learning process is repeated until the network responds for each input vector x1 with 

an output vector y
1 

that is sufficiently close to the target one y1 

Error backpropagating has three major components. In the first component, an input 

vector x1 = (x11, x2i. x31) is presented which leads via the forward pass to the activation of 

the network as a whole. This generates a difference (error) between the output of the 

network and the desired output. The second component computes the error factor (signal) 
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for the output unit and propagates this factor successively back through the network (error 

backward pass); The third component computes the changes for the connection weights 

and the biases, and updates the parameters. This process continues until the network 

reaches a satisfactory level of performance. 

Error back propagation training may be performed on-line (i.e. after each presentation of 

an input signal; on-line learning) or off-line (i.e. after a set S of input presentations, off-line 

learning). We used the off-line learning mode, more precisely epoch training with epoch 

size of 20 input signals presented in random order (stochastic approximation) and 

parameter updates following the momentum update rule defined as (Rumelhart, Hinton 

and Williams 1986): 

a E (S) 

awk .. 
' 

1
k' 

1
k+1 

(12) + y L'.l wk i 1 Ct) 
' k' k+1 

where a E(S) I a wk i i denotes the partial derivative of E(S) with respect to wk i i I 

' k' k+1 ' k' k+1 

(the error gradient), 11 is the (constant) learning rate, y with 0 ::; y < 1 (the so-called 

momentum factor) the relative contribution of the previous change of the parameter, and t 

represents the number of epochs, i.e. the number of times the network has been through 

a set S of 20 randomly chosen cases, after which the parameters are updated. 

It is not easy to choose appropriate values for the learning rate parameter 11 and the 

momentum parameter y for a problem at hand. A learning rate that is too large may cause 
\ 

the model to oscillate, and therby to slow or prevent the network's convergence. The 

momentum term is much like the learning rate in that it is peculiar to specific error surface 

contours. The momentum term, if it overwhelms the learning rate, can make the system 

less sensitive to local changes. No rule for selecting optimal values for 11 and y exists, 

although specific values are sometimes suggested in the literature. Experiments showed 

that it was best to use a small learning rate and a larger momentum term in our application 

setting. In all training cases, the learning rate parameter, 11, was set to 0.15 and 

momentum, y, to 0.8. 

The backpropagating technique amounts to performing gradient descent on a hyper 

surface in weight space Q where at any point in that space the error of performance (11) 

is the height of the surface. The procedure, however, is not guaranteed to find a global 

minimum of E since gradient descent may get stuck in (poor) local minima. Thus, it makes 

sense to take different initial parameter values, and then select the estimate giving the 

smallest E. Although a number of more complex adaptation algorithms have been 

proposed to speed convergence (see Widrow and Lehr 1990, Shah, Palmieri and Datum 

1992), it seems unlikely that the complex regions formed by two-layer feedforward 
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networks can be generated in few epochs when regions are disconnected. As all gradient 

descent procedures, backpropagation is sensitive to starting points (in the present context, 

the initial set of coupling strengths and biases in the network). The initial network 

parameters were drawn at random from an uniform distribution between -0.1 and 0.1. This 

random initialization prevents the hidden units from acquiring identical weights during 

training. Five different random parameter initializations (trials) were generated to analyse 

the robustness of the parameters and the network performance. 

3. Experimental Environment and Results 

3.1 Data, Training and Testing Results 

The telecommunication data used in this study stem from network measurements of 

carried traffic (facsimile transfers) in Austria in 1991, in terms of erlang, an internationally 

widely used measure of telecommunication (facsimile transfer) contact intensity, which is 

defined as the number of phone calls (including facsimile transfers) multiplied by the 

average length of the call (transfer) divided by the duration of measurement. The data 

refer to the total telecommunication traffic between the thirty-two telecommunication 

districts representing the second level of the hierarchical structure of the Austrian 

telecommunication network (see figures 4 and 5). Due to measurement problems, 

intraregional traffic (i.e. r = s) is left out of consideration in this study. 

Figure 4: The Hierarchical Structure of the Austrian Telecommunication Network 

First Level national nodes (6) 

/~ 
Second Level regional nodes (32) 

Third Level subregional nodes (151) 

Fourth Level local nodes (1030) 

Note: In several cases there are direct lines between regional nodes belonging to 
different national nodes. The same is true for subregional nodes belonging to 
different regional nodes. 
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Figure 5: The Regional System (n=32) for Modelling Interregional Telecommunication in Austria 

Thus, the data set for the model building process is made up of a set of n(n-1) = 992 

4-tuples (Ar, 85 , Dr5 ; ~sbs ) with r,s = 1, ... , 32 and rt:s. The first three components 

represent the input x = (x1, .•. , Xm, x1 = (x11 , x12, x13), I= 1, ... , m), where I labels the 

individual training pairs, and the last component the desired (target) output (teacher) 

y = (Y1). displayed in table 1. 

Table 1: Input - Target Output Pairs tor Training and Testing 

the Neural Network Model Candidates 

Input Components
1 

Output
2 

Ar BS 0 rs 

obs 

Trs 

(=X11) (=X12) (=X13J (=Y1) 

(~ 82 01,2 
obs 

>s = Y1 = T1.2 

(~ 83 01,3 
obs 

~ = Y2 = T13 
' 

(~ 84 014 
obs 

~ = Y3 = T1,4 
' 

(~ 832 0 1,32 ) 
obs 

~1 = Y31 = T1,32 

(A;_ 81 0
2.1 

obs 

~ = Y32 = T2,1 

(A;_ 83 02,3 
obs 

~ = Y33 = T2,3 

(~ 81 032,1 ) 
obs 

"961 = Yoo1 = T32,1 

(~ 8 31 0 32,31) 
obs 

~ = I 

' Y992 = T 32,31 

1 Ar represents the potential pool ol calls in region r, measured in terms of gross regional 

product in r (r = 1, .. ., 32); Bs represents the potential draw ol calls in region s, measured 

in terms of the gross regional product in s (s = 1, ... , 32); 

2 T~bs denotes the observed telecommunication flow from region r to region s (r'"5), 

measured Jn terms of erlang 
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The input and output signals were preprocessed to logarithmically transformed data 

scaled into (0, 1 ), partly in order to make the comparison with the gravity model (4) as 

close as possible, and partly, because experiments showed that it is easier tor the model 

candidates to learn the logarithmically transformed data than the original raw data. The 

continuous-valued input signals were presented one point at a time to activate the 

network. The response generated at the output in response to each input was then used 

to calculate the error with respect to the teacher. The weights and biases were updated 

after each 20 patterns presented in random order (accumulated parameter correction). In 

one epoch the network sees each point from the training set exactly once. If the samples 

are chosen in random order, it also makes the path through weight-space stochastically, 

allowing wider exploration of the error surface. 

3.2 Model Identification 

After fixing 11 and 13 to 3 and 1 respectively, the identification process involves the 

determination of 12 only, the issue of how many hidden units are needed. The choice of 

the number of hidden units in a feedtorward structure design is not an easy task. It is 

generally problem dependent and often involves considerable engineering judgement. 

Often trade-offs between training time and modelling performance lead to iterative 

judgement of the network using simulation. For a given problem, the design of an 

adequately sized hidden layer is often not very obvious. Intuition suggests that 'the more 

the better' rule might be used to guide sizing the hidden layer, since the number of hidden 

units controls the model's flexibility. But very large sized hidden layers may become 

counterproductive. Too many free network parameters will allow the network to fit the 

training data arbitrarily closely, but will not necessarily lead to optimal predictions. There is 

no general procedure to determine the optimal size of the hidden layer for a particular 

task. A rule-of-thumb often cited is that the number of weights should be less than one 

tenth of the number of training patterns (Weigend, Rumelhart, and Huberman, 1991). With 

a relatively small training set, this constraint is too restrictive. 

The training set used in the identification stage of the model building process consists 

one-half of the available data, i.e. 496 patterns. However, this is not a hard rule . To 

determine "I" experimentally, i.e. the number of hidden units required, we considered 10 

model candidates: (3:5:1 ), (3:10:1 ), (3:15:1 ), (3:20:1 ), (3:25:1 ), (3:30:1 ), (3:35:1 ), (3:40:1 ), 

(3:45: 1 ), and (3:50: 1 ). Each model candidate was trained on the training set tor 3000 

epochs. The initial parameters were drawn at random from an uniform distribution 

between -0.1 and 0.1 . Five different random initializations were used to analyse variations 

due to different random initial conditions. The weights were updated after each 20 input 

signals as defined by equation (12), presented in random order (stochastic 
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approximation). The model identification process is based on the networks' overall 

performance, specified in terms of two measures. Performance of each model candidate 

was taken to be the average over a set of five performance values obtained from the five 

trials. 

The first performance measure used is the average relative variance ARV(S) of a set S of 

patterns, which is widely used in the neural network literature (see Weigand, Rumelhart 

and Huberman 1991) defined as 

ARV (S) = 
le S 

(13) 

-
where y1 denotes the target value and Y1 the actual network value, y the average over the 

20 desired values in S. The averaging, i.e. division by N8 (the number of patterns in set S 

(=epoch), Ns = 20) makes ARV(S) independent of the size of the set. The division by the 

estimated variance ';/ of the data removes the dependence on the dynamic range of the 

data. This implies that if the estimated mean of the observed data would be taken as 

predictor, ARV(S) would be equal to 1 (Weigand, Rumelhart and Huberman 1991 ). In this 

study the variances of the individual sets S associated with the different epochs differ only 

slightly. Thus it appears to be reasonable to always use the variance of the entire data 
A2 2 

recordcr = cra11 = 3.112 as a proxy. 

A value of ARV(S) = 0.1 corresponds, thus, to an average absolute quadratic error of 

ARV (S) • cr~ 11 = 0.1 • 3.112 = 0.3112 :;::;; 0.9682
2 

. The alternative would have been. to 

normalize each individual set S by its own variance. 

The second performance measure used in this study is the coefficient of determination 

R2(S), a widely used goodness-of-fit measure in spatial interaction modelling 

(Fotheringham and O'Kelly 1989). This measure is defined as 

~ A A 2 
£..J (Y1 - Y) 
le S 

(14) 
1 1 ~A A2 

= ~ N £..J CYi - 9) 
~ - 2 cr s le s 
£..J (Y1 - Y) 

I e S 
A 

with O :::; R2 :::; 1 and y denoting the average over the 20 predicted values in S. 
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Table 2: Model Identification: Performance of Selected Model Candidates from ~ 
3

,I, 
1 

Neural Net Model Number of Trlal1 Performance Measures2 

Parameters ARV R2 

3:5:1 26 1 0.0855 0.6163 
2 0.0898 0.6313 
3 0.0825 0.7585 
4 0.0803 0.7636 
5 0.0793 0.7658 

Av. Pertormance 0.0835(0.0043)3 0.7071 (0.0763)3 

3:10:1 51 1 0.0813 0.7613 
2 0.0793 0.7710 
3 0.0810 0.7698 
4 0.0788 0.7725 
5 0.0804 0.7685 

Av. Pertormance 0.0802(0.0011 )3 0.7686(0.0041)3 

3:15:1 76 1 0.0800 0.7685 
2 0.0799 0.7685 
3 0.0791 0.7651 
4 0.0800 0.7650 
5 0.0814 0.7660 

Av. Pertormance 0.0801 (0.0008)3 0.7666(0.0018)3 

3:20:1 101 1 0.0773 0.7751 
2 0.0737 0.7833 
3 0.0778 0.7757 
4 0.0769 0.7775 
5 0.0778 0.7749 

Av. Pertormance 0.0767(0.0017)3 0.7773(0.0035)3 

3:25:1 126 1 0.0788 0.7727 
2 0.0794 0.7722 
3 0.0775 0.7767 
4 0.0775 0.7757 
5 0.07751 0.7763 

Av. Pertormance 0.0781 (0.0009)3 0.7747(0.0021)3 

3:30:1 151 1 0.0774 0.7755 
2 0.0771 0.7786 
3 0.0781 0.7770 
4 0.0766 0.7820 
5 0.0787 0.7766 

Av. Pertormance 0.0776(0.0008)3 0. 7780(0.0025)3 

3:35:1 176 1 0.0847 0.7613 
2 0.0808 0.7712 
3 0.0811 0.7652 
4 0.0820 0.7666 
5 0.0794 0.7690 

Av. Pertormance 0.0816(0.0020)3 0.7667!0.0038)3 

3:40:1 201 1 0.0766 0.7839 
2 0.0783 0.7763 
3 0.0764 0.7779 
4 0.0795 0.7740 
5 0.0798 0.7739 

Av. Pertormance 0.0781 (0.0016)3 0. 7772(0.0041 )3 

3:45:1 226 1 0.0871 0.6222 
2 0.0833 0.6377 
3 0.0867 0.6227 
4 0.0852 0.6299 
5 0.0869 0.6224 

Av. Pertormance 0.0858(0.0016)3 0.6270(0.0068)3 

3:50:1 251 1 0.0868 0.6420 
2 0.0866 0.6532 
3 0.0869 0.6365 
4 0.0868 0.6421 
5 0.0870 0.6310 

Av. Pertormance 0.0868(0.0002)3 0.6400(0.0082)3 

Conventional Model 3 
1 0.0880 0.6803 
2 0.0813 0.6080 
3 0.0855 0.6729 
4 0.0848 0.6930 
5 0.0870 0.6732 

Av. Pertormance 0.0863(0.0032)3 0.6768(0.0080)3 

The trials differ in initial conditions as well as in the random sequence of the input signals; epoch size of 20 patterns 
presented in random order, the training set consists of 496 patterns (50 percent of the available data). 

2 ARV: (average relative variance) as defined by (13); R2 (coefficient of determination) as defined by (14); average 
performance is the mean over the given performance values; the training set consists of 496 points, conventional 
model: Gravity model (4) 

3 Standard deviation 
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The resulting fits of the model candidates, in terms of ARV and R2, are reported in table 2 

for each of the five trials. Compared to the benchmark model's results, we find strikingly 

good fits for seven model candidates: (3:10:1), (3:15:1), (3:20:1), (3;25:1), (3:30:1), 

(3:35:1) and (3:40:1). The best average R2-performance is achieved by the (3:30:1) model 

with R2 = 0.7780 followed by (3:20:1) with 0.7773 and (3:40:1) with 0.7772. In terms of the 

average ARV-performance a slightly different ranking is obtained. (3:20: 1) performs 

slightly better than the (3:30:1) model, followed by the (3:40:1) and (3:25:1) models. The 

variation in ARV- and R2-performance due to initial conditions is very moderate. 

It is well known, that there can be little connection between the training error, restricted to 

the training set, and the network's ability to generalize outside of that set. The (3:30:1) 

model unequivocally shows a better generalization capability than the (3:20: 1) model. The 

(3:30: 1) network outperforms the (3:20: 1) network on the testing set, in terms of the 

average ARV-performance (0.4131 compared to 0.4198) and the average R2-

performance (0.5935 compared to 0.5827). In addition, (3:30:1) tends to be less sensitive 

to initial conditions. Thus, (3~30: 1) rather than (3:20: 1) has been chosen as the 

appropriate model for the problem at hand. 

3.3 Model Estimation and the Overfitting Problem 

Whereas the stage of identification was concerned with identifying an appropriate model 

from the family ~ 3, r, 1, the stage of parameter estimation is devoted to the determination 

of the magnitude and sign of the parameters of the (3:30: 1) network model. A serious 

problem in model estimation is the problem of overfitting which is particularly serious for 

noisy real world data of limited record length. As opposed to computer generated data, the 

noise level in any real world context is not known a priori. 

If the network mapping Fro fits the training data exactly, the capability of the network to 

generalize, that is to generate an acceptable output when a novel input signal is applied to 

the network, will often be poor. This arises from the rapid oscillations in the network 

function that are generally needed to fit the noisy training data. To improve the 

generalization capability of the network model, it is necessary for the network mapping to 

represent the underlying trends in the data, rather than fitting all of the fine details of the 

data set (Bishop 1991). 

Several strategies for handling the overfitting problem have been devised (Hecht-Nielsen 

1990, Bishop 1991, Weigand, Rumelhart and Huberman 1991 ). One possibility is to take a 

subset of input vectors from the training data. The subset may be chosen randomly or by 

a more systematic elimination procedure. We used the random method of cross-validating 
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to detect when overfitting occurs. It is crucial to split the whole available data set of 992 

patterns into three seRarate subsets: a training (estimation) set, a validation test set and a 

testing (prediction) set. While the training set is directly used for training the neural 

network model, the validation test set is used only for the evaluation process, i.e. for 

determining when to stop the training process. The testing or prediction set is strictly set 

apart and never used in the estimation stage. The training set-validation set pair consists 

of two thirds of the available data. One quarter of these data (i.e. 148 patterns) have been 

used for validation process. It is crucial that the validation test set is only utilized to detect 

a statistically proper stopping point of the training process of the (3:30: 1) model. 

Figure 6 shows the performance of the (3:30: 1) neural network model as a function of 

training time in epochs with an epoch size of 20 patterns. The average relative variances 

are given for the training set, the validation set and the prediction set. The ARV-error of 

the model measured using the training set continuously decreases and seems to level out 

after 5,000 epochs. This is what one expects for a model of ~ 11 , 12, 13• The validation test 

set error as shown in figure 6 decreases first, after 1,500 epochs only at a moderate rate 

until 4,250 epochs, then slightly increases and tends to approach an asymptotic value. If 

we assume that the error curve of the (3.30: 1) model tested against the entire infinite set 

of possible patterns would be approximately the same as that of the validation set curve 

(Hecht-Nielsen 1990), which is only a crudely correct assumption, then clearly we would 

like to stop training when this curves arrives at its minimum. The minimum is reached after 

4,250 epochs. At this stopping point, P, the model is used for prediction. In the specific 

choice of a training set-validation set combination shown in figure 6, the fitting of the noise 

of the training set occurs to have only a little effect on the error of the validation set, which 

is also reflected in the prediction set curve. 

Figure 6: Training, Validation and Prediction Set Curves 
of the (3:30:1) Network Model as a Function of 
Training Time In Epochs (the vertical line P 
indicates the stopping point) 
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To get a feeling for the effect of the sampling error induced by using a specific training set­

validation set combination, we analysed several such pairs. Because the 

telecommunication data set at hand is rather small, different pairs of training and 

validation test sets each, drawn randomly from the available data set, did lead to different 

ARV-results differing by factors up to two. These variations are rather large compared to 

the small variations due to different random initial parameters. Consequently, the 

statistical procedure of cross-validating is somewhat unsatisfactory. 

3.4 Neural Net and Gravity Model Predictions 

The ultimate goal of the (3:30:1) neural net model is to predict interregional 

telecommunication traffic flows or in other words to determine how well the network 

learned to approximate the unknown input-output function for arbitrary values of x. Thus, 

we briefly discuss the predictive quality of the neural net model and compare it with that of 

the gravity model. It is important to note that the network model is no longer allowed to 

adapt while it is being tested. To assess the prediction performance, we primarily use the 

average relative variance ARV as defined in equation (13) and the coefficient of 

determination R2 as defined in equation (14). 

Table 3: Testing Performance of the (3:30:1) Neural Net and the Gravity 
Model* 

Prediction (Testing) 
Trial 1 
Trial 2 
Trial 3 
Trial 4 
Trial 5 
Average Performance 
(Standard Deviation) 

(3:30:1) Neural Net Model 

ARV R2 

0.4063 
0.4057 
0.4063 
o.4on 
0.4064 
0.4131 

(0.0155) 

0.5937 
0.5942 
0.5938 
0.5923 
0.5934 
0.5935 

(0.0007) 

Conventional Model 

ARV R2 

0.4630 
0.4611 
0.4582 
0.4761 
0.4892 
0.4695 
(O.D130) 

0.5431 
0.5390 
0.5422 
0.5310 
0.5290 
0.5353 
(0.0068) 

• The lrlals differ In initial conditions as well as in the random 'sequence of the input signals; 

ARV: (average relative variance) as defined by (13) ; R2 (coefficient of determination) as defined by (14); average 
performance Is \he mean over the given performance values; the testing set consists of 348 points, conventional 
model: gravity model (4) 

Table 4: Prediction Accuracy of the (3:30:1) Neural Net and the Gravity 
Model: Some Selected Results 

Model Predictions 

Trs Observation Neural Net Conventional 

T2.17 69.7279 44.2051 57.8402 

T3.30 0.2113 0.1219 0.7010 

T4.7 12.1801 11 .5071 13.8977 

T5.21 1.7500 1.6858 2.1387 

T11.23 0.4314 0.4695 0.5587 

T13.7 1.4137 1.8286 2.3708 

T16.9 10.4940 10.8594 19.4737 

T18.4 21.9815 20.5638 23.3007 

T20.1 1 4.4647 3.7864 3.4129 

T28.16 1.5310 1.6492 1.6535 

T29.18 15.082 19.7773 30.9833 
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Table 3 reports the prediction periormance of the (3:30:1) network on the testing set in 

terms of ARV and R2 averaged over the five trials. In order to make the comparison with 

the gravity model as close as possible, this model was estimated (tested) with the same 

data seen by the neural net model during training (testing). As can be seen by comparing 

the ARV- and R2-values, the neural network leads to a somewhat higher prediction 

periormance in all trials. The average prediction quality measured in terms of ARV and R2 

is 0.4131 and 0.5932 respectively, compared to 0.4695 (ARV) and 0.5353 (R2) for the 

gravity model. The prediction quality is rather stable over the different trials. In table 4 the 

prediction accuracy achieved by the two alternative interregional teletraffic models is 

exemplified by a systematic sample of T r5-values. 

One means of further investigating the predictive p~wer is the use of residual analysis. 

Figure 7 graphically displays in terms of 

(a) the absolute residuals of the individual flows (T~ 5 bs - ~sonv)compared .to (T~sbs - T~seur), 

(b) the relative residuals · of the individual flows (T~:s - r~:ur) I ~sbs and 

(robs _ ,;:onv) I T?.bs 
rs rs rs 

where both absolute and relative residuals are ordered by the size of the T~sbs flows. 

Figure 7: Residuals of the 3:30:1 Neural Net and the Gravity Model Predictions 
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The main conclusions from this analysis can be summarized as follows: 

• First, both models show a tendency to underpredict larger flows, especially those 

between dominant (provincial capital) regions. Examples include flows from Vienna to 

Klagenfurt, Salzburg to Linz, and Salzburg to Klagenfurt. They also underpredict flows 

involving dominant regions and neighbouring minor regions, such as, for example, the 

flows from Graz to Hartberg, Innsbruck to Reutte, Ried/lnnkreis to Salzburg, and 

Wolfsberg to Klagenfurt. The neural network model underpredicts 63 out of 87 flows in 

the largest quartile, compared to 51 gravity model underpredictions. 

• Second, and in addition, the two alternate models share a tendency to overpredict 

smaller flows representing generally flows between minor regions further apart from 

each other. This is evidenced by 67 neural network and 75 gravity model 

overpredictions in the smallest quartile. 

• Third, the neural network model and the conventional model show a relatively similar 

pattern of residuals. Despite this similarity, however, the neural network produces more 

accurate predictions for 188 of the 348 flows considered in the testing stage. This is 

also indicated by the average (that is, root-mean-squared) error of 20.52 percent, while 

the corresponding figure amounts to 24.56 percent for the gravity model. Many of the 

differences are small. But in some cases, the flows are replicated substantially more 

accurately by the neural network model. Figure 7 (b2) provides evidence that flow 

errors of the gravity model may occasionally exceed even over 100 percent (4 cases). 

In summary, the analysis unequivocally shows that the neural net model outperforms the 

gravity model in terms of both the ARV and R2 prediction performance as well as 

prediction accuracy, but to a lesser degree than previously expected. One reason for this 

might be that the validation set was relatively small and the statistical method of cross­

validating the network against validation data did not indicate unequivocally the stopping 

point, another reason being the training procedure. In addition, there is an indication that 

memorization of the training set is interfering with the ability of the (3:30: 1) network to 

generalise. This is an issue for further research. 

4. Summary and Conclusions 

The primary advantage of the general neural network model set out in this paper over the 

classical regression approach to spatial interaction modelling lies in the fact that it has a 

more general functional form than the gravity model can effectively deal with. The neural 

network model implements a functional input--output relationship that is expressed in 

terms of a general, modifiable form. This functional form is modified via the adaptive 

setting of weights by means of the application of the feedback propagating technique and 
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the additive (mean squared) error function to fit the specific mapping which is 

approximated. It may be viewed as a non-linear regression function of a quite specific 

form (White 1989). The methods of non-linear regression analysis evidently resemble 

those of neural network modelling. But none, if any, individual statistical regression 

function procedures have been developed as the neural network model presented in this 

paper. 

For sigmoid processing units, relatively good local solutions were obtained for the 

interregional (3:30:1) neural net telecommunication model in all trials with different initial 

random network parameters. Sensitivity to initial conditions was rather moderate. This 

might have been mainly due to choosing relatively small initial parameter values, a small 

learning rate parameter 11, a relatively large momentum rate parameter y, a relatively large 

hidden layer and the logistic rather than the hyperbolic tangent transfer function for the 

problem at hand. On the noisy real-world telecommunication data of limited record length 

the analysis illustrated the superiority of the neural network model over the classical 

regression approach. But neural network modelling requires a procedure to deal with the 

problem of overfitting. The statistical method of cross-validating the network against a 

reserved set of validation data is certainly unsatisfactory at least due to two reasons. First, 

the results depend on the specific training set-validation set pair used for deciding when to 

stop training. Second, it is not always completely clear from the ARV of the validation set 

when the training process should be stopped to avoid overfitting. The issue of overfitting 

deserves further research efforts in future. One alternative strategy to tackle this problem 

might be the strategy of weight elimination suggested by Weigend, Rurnelhart and 

Huberman (1991 ). This strategy involves the extension of the gradient method by adding 

a complexity term to the error (cost) function which associates a cost element with each 

connection. 

Neural networks have an important role to play in geography and regional science not 

only in the application domain of spatial interaction modelling, but also in exploratory 

spatial data analysis. They can principally be used to cope with problems such as very 

large volumes of spatial data, missing data, noisy data and fuzzy information for which 

conventional statistical techniques may be inappropriate or cumbersome to use. It is 

hoped that the methodology outlined in this paper will make the study of neural networks 

more accessible to the regional science community and will stimulate further research in 

this new and promising field. 
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Appendix: Parameters of the (3:30:1)-lnterregional Teletraffic Neural Network Model 

The (3:30: 1) network was trained for 4,250 epochs with a learning rate Tl = 0.15 and a momentum y = 0.8. The weights 

were updated after each 20 patterns presented in random order. The connection weights and biases of the network are 
given below in . Table A 1. When simulated serially-on a SparcStation 1 +, the training of the 3:30:1 takes less than 
6 CPU-minutes for 4,250 epochs. Once the network parameters have been determined, predictions are extremely fast. 
The parameter estimates of the gravity model (4) are explicitly given in Table A2. 

Table A1: Parameter Estimates W1,i
1
,i

2
; W2,i:z,i

3 
of the (3:30:1) Neural Net Interregional Teletraffic 

Model (Trial 3 see Table 3) 

Weights W1 i i from Input Unit i1 = 1 Input Unit i1 = 2 Input Unit i1 = 3 Bias Unit 
I 1' 2 

Start Final Start Final Start Final Start Final 

to Hidden Unit 1 0.0073 0.1045 0.0160 0.1022 0.0662 -0.0839 0.0680 -0.0256 
to Hidden Unit 2 -0.0985 -0.5126 -0.0213 -0.3944 -O.Q116 0.2485 0.0164 -0.0347 
to Hidden Unit 3 0.0022 -0.2100 -0.0488 -0.2391 -0.0134 0.0745 0.0829 0.0070 
lo Hidden Unit 4 -0.0150 -0.1397 0.0981 -0.0181 -0.0156 0.0045 -0.0787 -0.1552 
to Hidden Unit 5 0.0005 -0.1220 -0.0002 -0.1118 -0.0246 -0.0011 -0.0719 -0.1457 
to Hidden Unit 6 -0.0818 -0.1307 0.0509 0.0048 -0.0890 -0.1207 -0.0439 -0.1206 
lo Hidden Unit 7 0.0504 0.4725 -0.0079 0.3707 -0.0081 -0.4110 0.0757 -0.0372 
to Hidden Unit 8 -0.0064 -0.3705 -0.0871 -0.4116 0.0868 0.2903 0.0823 0.0098 
to Hidden Unit 9 0.0225 -0.0459 0.0878 0.0233 0.0781 0.0511 -0.0063 -0.0916 
to Hidden Unit 10 0.0251 0.2904 0.0423 0.2780 0.0656 -0.2065 -0.074 -0.1678 
to Hidden Unit 11 -0.0201 0.3393 0.0859 0.4052 0.0406 -0.3144 0.0581 -0.0525 
to Hidden Unit 12 0.0269 0.3442 0.0993 0.3788 0.0072 -0.3166 0.0331 -0.0728 
to Hidden Unit 13 -0.0265 0.4407 0.0603 0.4770 -0.0953 -0.5211 0.0510 -0.0506 
to Hidden Unit 14 0.0729 0.0205 0.0454 -0.0049 0.0812 0.0398 0.0411 -0.0472 
to Hidden Unit 15 0.0935 0.7405 0.0783 0.6618 0.0382 -0.5259 -0.0865 -0.1940 
to Hidden Unit 16 0.0536 0.2845 0.0461 0.2475 -0.0826 -0.3396 0.0754 -0.0235 
to Hidden Unit 17 0.0714 0.4191 0.0007 0.3104 -0.0193 -0.3629 0.0441 -0.0606 
to Hidden Unit 18 -0.0288 0.1483 -0.0149 0.1440 0.0210 -0.1846 0.0520 -0.0414 
to Hidden Unit 19 -0.0737 -0.1998 O.Q151 -0.0986 -0.0486 -0.0233 0.0495 -0.0276 
to Hidden Unit 20 0.0780 -0.0512 -0.0344 -0.1507 0.0945 0.1178 -0.0229 -0.1031 
to Hidden Unit 21 -0.0014 0.3241 0.0135 0.3032 -0.0559 -0.3749 0.0369 -0.0601 
to Hidden Unit 22 -0.0408 -0.0891 -0.0593 -0.1013 -0.0236 -0.0540 0.0182 -0.0607 
to Hidden Unit 23 -0.0835 -0.4889 -0.0225 -0.3865 0.0454 0.2853 0.0784 0.0126 
to Hidden Unit 24 -0.0288 0.2170 -0.0195 0.1998 -0.0629 -0.3207 0.0732 -0.0214 
to Hidden Unit 25 0.0596 0.1735 -0.0745 0.0264 -0.0183 -0.1775 0.0304 -0.0589 
to Hidden Unit 26 -0.0787 -0.4814 -0.0585 -0.4193 0.0566 0.3126 -0.0502 -0.0976 
to Hidden Unit 27 -0.0383 -0.1429 -0.0089 -0.1026 -0.0031 0.0053 0.0366 -0.0425 
to Hidden Unit 28 -0.0138 -0.2159 0.0405 -0.1424 0.0372 0.1190 -0.0453 -0.1182 
to Hidden Unit 29 0.0619 -0.1300 -0.0393 -0.2139 -0.0700 0.0060 -0.0849 -0.1535 
to Hidden Unit 30 -0.0251 0.1863 0.0369 0.2245 0.0070 -0.2300 0.0805 -0.0181 

Weights W2 i i to Output Unit i3 = 1 
I 2 1 3 

Start Final 

from Hidden Unit 1 -0.0590 -0.2391 
from Hidden Unit 2 0.0410 0.1182 
from Hidden Unit 3 -0.0448 -0.7077 
from Hidden Unit 4 -0.0297 -0.3492 
from Hidden Unit 5 -0.0787 -0.1551 
from Hidden Unit 6 -0.0362 -0.1870 
from Hidden Unit 7 -0.0206 -0.0704 
from Hidden Unit 8 0.0929 0.6580 
from Hidden Unit 9 -0.0103 -0.6427 
from Hidden Unit 1 O -0.0466 -0.0925 
from Hidden Unit 11 0.0603 0.3939 
from Hidden Unit 12 0.0802 0.5462 
from Hidden Unit 13 0.0234 0.5274 
from Hidden Unit 14 0.0795 0.7475 
from Hidden Unit 15 -0.0460 -0.0629 
from Hidden Unit 16 0.0997 10.0524 
from Hidden Unit 17 -0.0166 0.4209 
from Hidden Unit 18 0.0517 0.5621 
from Hidden Unit 19 0.0834 0.2221 
from Hidden Unit 20 -0.0118 -0.2163 
from Hidden Unit 21 -0.0212 -0.2186 
from Hidden Unit 22 0.0658 0.5064 
from Hidden Unit 23 0.0395 -0.1266 
from Hidden Unit 24 -0.0286 -0.7038 
from Hidden Unit 25 0.0755 0.3575 
from Hidden Unit 26 0.0365 0.1629 
from Hidden Unit 27 -0.0098 -0.7256 
from Hidden Unit 28 0.0029 -0.1940 
from Hidden Unit 29 -0.0502 -0.3205 
from Hidden Unit 30 -0.0834 -0.2587 

from Bias Unit 
i2 =31 -0 .. 590 -0.2357 

R2 0.1022 0.7161 

R2 adjusted 0.1021 0.7159 
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Table A2: Parameter Estimates of the Gravity Model 

Gravity Model (4) 

Constant -19.5976 

A 

a1 0.7297 (52.41 O)* 

A 

a2 0.7035 (49.366)* 

A 

Cl3 -0.7156 (-31.650)* 

R2 (adjusted) 0.5390 (0.5387) 

!·values 
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