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1.  Introduction 

In assuring data quality in forecasting, one would 

like to know that the data generation processes are free 

from anomalies.  One interpretation of this is that the data 

do not have unexplainable outliers.  In general, an outlier 

is an observation which departs from the norm (however 

defined) in a set of observations.  Outliers can indicate 

problems with their data generation processes (i.e., 

anomalies) or may be true, but unusual, statements about 

reality.1  In terms of Barnett and Lewis (1994, p. 37), we 

are testing for discordancy. This paper specializes the 

problem of detecting outliers to panel data, such as 

estimates and forecasts.  Panel data are cross-sectional 

time series, such as a time series of population estimates 

for a set of areas.2 Time may be either chronological or 

nominal.  Nominal time indexes different sets of 

predictions (i.e., estimates or forecasts) for the same 

cross-sectional units and chronological time.  Time is 

nominal in this context because the different predictions 

sets have no natural ordering.  Comparing cross-sectional 

estimates to their true values is an instance of nominal 

time.  The method this paper uses is to develop loss 

functions to identify discordant observations for further 

analysis.  The loss functions are developed for panels of 

two dates and then extended to panels with arbitrary 

numbers of observations with arbitrary differences 

between dates. 

Initially, the data are assumed to be positive.3  In 

this context, the subject matter analyst’s judgment is 

needed to determine the exact parametrization of the loss 

function, except for the special case described in 

Subsection 2.4.4  The exact parametrization thus depends 

on the subject matter analyst and context.  It is, thus, 

subjective.  When the data can take on any real value, 

mathematical considerations dictate the exact 

parametrization. 

The Population Division of the U.S. Census 

Bureau has been successfully using loss functions to 

detect outliers in the preparation of population estimates 

and geographic base files.  Loss functions have been 

                                                 
1 This is similar to Hoaglin’s (1983, p. 39-40) use of “outside cutoffs” 

to identify “outside values.” 
2 The bidimensionality of data searched for outliers is not unique:  

DuMouchel (1999), Albert (1997) and Rudas, Clogg and Lindsay 

(1994) search for outliers in contingency tables.  The contingency 

table approach differs in that time need not be a dimension and that 

parametric assumptions are made. 
3 Zeroes are permissible by adding a small constant, as discussed in 

Section 2 below. 
4 The subject matter analyst’s judgment may already be incorporated 

in discrete outlier criteria.  See Subsection 3.2. 

applied to input, intermediate and final data.  Rather than 

use actual data, a numerical example illustrates how loss 

functions are used and how they avoid the pitfalls 

associated with taking numerical and percent differences. 

 A map illustrates the use of loss functions with GIS and 

provides an illustration of the need for subject matter 

analyst expertise. 

Section 2 develops loss functions for positive 

data. No distributional assumptions are made, as the 

natures of the data generation processes are assumed 

unknown and nonidentical.5  Thus, this is an example of 

the nonparametric approach to outlier detection.6   An 

important upshot of this approach is that data from a wide 

range of values are put on the same basis.  This Section 

specifies the assumptions and develops the simplest loss 

function that satisfies these assumptions.  Loss functions 

are developed for more general settings.  Section 3  

discusses some applications, including general usage of 

loss functions, parametrizing loss functions from 

preexisting outlier criteria and  using loss functions with 

GIS.  These examples are based on actual Census Bureau 

applications.  Section 4 generalizes the framework to data 

that can take any real value.  Section 5 concludes this 

paper. 

 

2.  The Loss Function
7 

 This section describes the assumptions used to 

generate the loss function L(F;B) and its variants, where F 

is the future value and B is the base period value.  The 

loss function is the penalty, cost, or “badness” associated 

with the difference between F and B.  Roughly speaking, 

the greater the difference between F and B, the greater the 

loss.  Initially, F is assumed to be one period after B.  

After the necessary assumptions are made, the simplest 

form of L is specified. Restrictions on the values of the 

parameters of L which make it increase in B for a given 

relative difference are then specified.  Subsection 2.1 

axiomatically develops the simplest unsigned loss 

function L which satisfies these properties for data exactly 

                                                 
5 This obviates the use of parametric techniques, in which 

observations are tested for departure from a predetermined, 

hypothesized distribution. 
6 Barnett and Lewis (1994, pp. 107, 364-365) provide some 

references to nonparametric approaches in other contexts.  Tukey 

(1977) proposed perhaps the most familiar nonparametric technique 

for detecting univariate outliers: the boxplot or box-and-whiskers 

plot.  Rouseeuw, Ruts and Tukey (1999) propose the bagplot, a 

bivariate generalization of the boxplot. 
7 This exposition is based on Coleman, Bryan and Devine (2003, Section 

2). 
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one period length apart.  Subsection 2.2 generalizes L to 

situations in which F and B may not be exactly one period 

apart.  Subsection 2.3 introduces the signed loss function 

for cases in which the sign of the difference is an 

additional important criterion.  Subsection 2.4 

parametrizes L for comparing two sets of estimates of the 

same parameters.  Throughout this paper, B and F are 

assumed positive.  Zeroes, which frequently arise in 

practice, are either recoded to small values or omitted 

from the analysis. 

 

2.1 The Unsigned Loss Function 

The unsigned loss function L is constructed by 

specifying three assumptions. The first assumption is that 

L is symmetric in the differences: 

Assumption 1 (symmetry):  );();( BBLBBL  

for all B,  > 0. 

This assumption is not as innocuous as it looks.  It is quite 

possible that, at least for some range of B, that positive 

and negative differences have differential impacts. 

However, the resulting asymmetry complicates the 

definition of L.   Subsection 2.3 relaxes this assumption 

by developing the signed loss function, which allows the 

possibility of asymmetrically incorporating the direction 

of the difference .  The symmetry of L allows us to use 

the equivalent notation ),(),( BFLB  where 

BF . 

 The next assumption makes L, or, equivalently,  

, increasing in the difference : 

Assumption 2 (monotonically increasing in difference): 

0  for all  > 0. 

Note that this assumption is stated in terms of , rather 

than L.  This assumption is quite intuitive, as it states that 

smaller differences are preferred to larger ones. 

 Finally, we want L, or, equivalently, , to 

decrease in B.  This means that for a given value of , the 

loss associated with it decreases with its associated initial 

value.  This has two justifications.  First, for example, a 

difference of 500 when the initial value is 1,000 is a 

whopping 50%, a highly significant difference.  However, 

the same difference, when the initial value is 1,000,000 is 

akin to a roundoff error.  Second, when performing 

estimates or taking samples, the coefficient of variation,  
22 , where 2 is the variance and µ is the expected 

value, decreases in B.  This author’s experience is that all 

areas tend to have about the same roundoff errors. Again, 

these are proportionately greater in small areas.  We state 

this formally as: 

Assumption 3 (monotonically decreasing in base 

value):  0B , or, equivalently 0BL ,   for all 

B > 0. 

 This simplest function which satisfies 

Assumptions 1–3 and admits Property 1 below is the 

Cobb-Douglas function8 

                                 q
BBFBFL );(                   (1a) 

or, equivalently, 

                                    q
BB),(                           (1b) 

where  > 0 and q < 0.9 

 An observed pair (F;B) is an outlier whenever 

L(F;B) > C, where C is a predetermined critical value.10   

We will also refer to outliers as being critical.  

Additionally, we will refer to the equation L(F;B) = C as 

the equation of criticality.  The choice of q and C is an 

empirical matter.11 Only a practitioner’s experience with 

data can determine when data are suspect and incorporate 

these suspicions into parameters.  One thing to note is that 

the loss function is ordinal: raising L and C to any positive 

power m leaves the rankings of losses unchanged.12  It is 

only the rankings of losses that are important.13  Another 

important quality is that loss is not necessarily 

interpretable.  This is generally true of loss functions 

(Lindley, 1953, p. 46). 

 A desirable property of the loss function is that it 

increases in B for a given absolute relative difference.  

The absolute relative difference is:  

                                   1
BBF                                   (2) 

Note that, in this case, q = –1.  Choosing q > –1 makes the 

loss function increase in B, for a given absolute relative 

difference.  We state this as Property 1: 

Property 1:  The loss function defined by equations (1a) 

and (1b) increases in B for any given absolute relative 

difference.  This is assured whenever q > –1.  

 The reader may note that q = 0 turns equations 

(1a) and (1b) into the absolute values of the differences.  

Thus, values of q between 0 and –1 represent various 

                                                 
8 It should be noted that an infinite number of loss functions satisfy 

Assumptions 1-3 and admit Property 1.  This one is merely the 

simplest. 
9 Unlike Coleman (2000, 2002, 2003), no exponent on the difference 

is needed due to a Lie symmetry.  See Coleman, Bryan and Devine 

(2003) for the explanation. 
10Alternatively, C can also be determined from the data by taking a 

predetermined quantile or a multiple of the interquartile range of L 

(Tukey 1977). 
11 Subsection 2.4 below investigates a case in which q can be 

determined exactly. 
12 This is at the heart of the Lie symmetry noted in footnote 9. 
13 This is similar to the economic concept of ordinal utility.  Coleman 

(2000, 2002, 2003) differs in using a cardinal framework: the values 

of the loss function can be compared to each other and operated upon 

arithmetically. 
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tradeoffs of absolute differences and absolute relative 

differences.  Consider the product of the rth power of the 

absolute difference and the sth power of the absolute 

relative difference, where r, s > 0:  
sr

BBFBF
1 . 

By the Lie symmetry invoked in footnote 9, this function 

is isomorphic to the loss function sr

s

BBF .  Thus, 

any value of q corresponds to an infinite number of pairs 

(r, s) where q = –s / (r + s).  Geometrically, the same loss 

function is generated for all (r, s) lying on the line r  =  –

(1 + q) s. 

 

2.2 The Time-Invariant Loss Function 

Instead of considering the single set of future 

data, 
n

ii
F

1
F , where i indexes the n observations, 

consider the sets 
n

iitt F
1

F , where t is the amount of 

time elapsed since the base date and i indexes the cross-

sectional units.  We wish to develop a loss function which 

allows us to make comparisons across time on the same 

basis, by explicitly incorporating t into the loss function.  

One way of incorporating time-invariance is to substitute 

the geometric average absolute relative change  

                      

t

iit

B

BF
1

                             (3) 

for the absolute relative change implicit in equation (1a) 

to create the time-invariant loss function14 

 
1

),;(
ttq

iiitiit BBFtBFL .              (4) 

Given this paper’s framework, equation (4) should be 

used to make comparisons across time, as it puts the 

geometric average absolute relative difference on the 

same basis for all t.  The reader can verify that –1 < tq + t 

– 1 < 0 for t > 0 and 0 > q > –1. 

 

2.3 The Signed Loss Function 

 At times, not only is the value of the loss 

function important, but also the sign of the difference.  

Different outlier generation processes may manifest 

themselves by producing predominantly positive or 

negative differences. We can account for these by creating 

the signed loss function S, which is simply the loss 

function L, multiplied by the signum function of the 

difference:
                                  qq

BBFBFBBFBFS )()sgn();(        (5) 

where sgn x = +1 for x > 0, 0 for x = 0, and –1 for x < 0. 

                                                 
14 For details, see Coleman, Bryan and Devine (2003), Subsection 2.3. 

Using S, one can create different critical values for loss, 

depending on whether the difference is positive or 

negative.  To wit, one can pick C+, C–, C+  –C–, such that 

a pair (F; B) is declared an outlier if either S(F;B) < C– or 

S(F;B) > C+.  Again, the choice of whether to use S and 

then use asymmetric critical bounds is an empirical 

matter.15   For example, since, by assumption, negative 

values of F are impossible, then asymmetric critical 

bounds and/or parameters may be necessary to detect 

cases in which F becomes very small relative to B. 

 The time-invariant signed loss function is 

 
1

),;(
ttq

iiitiit BBFtBFS .                    (6) 

 

2.4 Comparing Two Sets of Data: A Specialization of 

the Loss Function 

Often, one is interested in comparing two sets of estimates 

of the same cross-sectional units.  Suppose that the sets 

iBB  and iFF  represent two versions of 

estimates of the true values iAA .   This is an instance 

of nominal time.  Suppose that both the Bi and Fi are 

unbiased estimators of the Ai and that their variances are 

proportionate to the Ai (i.e., Var(Bi) = Var(Fi) = 2
Ai.)   

One way one can think of this situation as that both Bi and 

Fi are constructed summing Ai jointly uncorrelated 

random variables with mean 1 and variance 2.16  In this 

situation, we can use the loss functions (1a) and (1b) with 

q = –½.  Since the null distributions of B and F are 

assumed unknown, it is impossible to do any significance 

testing.  Moreover, since we are usually dealing with the 

entire population, sampling theory is not appropriate. 

 Of course, if the processes generating B and F 

are not as assumed, no theoretical guidance is available 

for the choice of q. 

 Again, the signed loss function (5) can be used 

with q = –½. 

 

3.  Applications 

 This section illustrates the use of loss functions 

by first outlining a general procedure for using loss 

functions in Subsection 3.1.  Next, three different 

examples of loss functions are shown.  In the first 

example, in Subsection 3.2, preexisting outlier criteria in 

terms of critical ratios by size class are transformed into a 

loss function. The second example, in Subsection 3.3, 

uses real-world data and GIS to compare two sets of real-

                                                 
15 The asymmetry need not be limited to the critical values.  The 

signed loss function can incorporate different values of q, depending 

on the sign of the difference. 
16 Note that independent, identically distributed variables are a special 

case of this assumption. 
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world estimates using the q = –½ loss function of 

Subsection 2.4.  The results of using absolute and absolute 

relative differences to evaluate differences between these 

two sets of estimates are discussed for comparison.  

Coleman et al.’s (2003, Subsection 3.4) method of using a 

reference variable to detect outliers is not discussed. 

 

3.1 General Procedure for Using Loss Functions 

Loss function evaluations usually begin by 

recoding zero base values to a small positive value,17 (the 

exact value determined by the range and smallest value of 

the data and smaller than the smallest value) and setting q 

= –0.5.  If time is chronological, the subject matter analyst 

then has to examine the data and the rankings of their 

associated losses.18  If, in the subject matter analyst’s 

opinion, too many observations with small changes 

occurring to small base values are ranked highly, then q 

should be increased.19  If, on the other hand, too many 

observations with small changes to large base values are 

ranked highly, then q should be decreased.  This process 

continues until the analyst is satisfied with the loss 

rankings.  This author has found that changing q by 

increments of .1 is satisfactory.  Finer increments appear 

to have little effect. 

 

3.2  Creating Loss Functions From Discrete Outlier 

Criteria 

Sometimes, discrete outlier criteria have already 

been developed.  These discrete outlier criteria can be 

converted into a loss function using regression.  Given a 

set of critical pairs ( , B), the regression 

                       errorloglog KBq                 (7) 

is estimated.  q is immediately obtained from equation (7). 

C is then obtained as C = eK. 

 Often, outlier criteria do not come in discete 

pairs.  Instead, they come in ranges BB,  for which an 

outlier is declared whenever  / B exceeds a prescribed 

value.  Coleman et al. (2003, Subsection 3.3) recommend 

using the midpoints of these ranges to form the pairs ( , 

B).  If an unbounded uppermost range is present, its lower 

bound is used. 

 A further complication is that the outlier criteria 

may be inconsistent with the assumptions used to develop 

a loss function.  For example, two different ranges may 

                                                 
17 In some instances, this step should be omitted, as it can cause 

spurious identification of true zeroes as outliers.  Only examination of 

the results can determine whether this is the case. 
18 The same can be done in nominal time.  If the assumptions of 

Subsection 2.4 are violated, then no particular value of q is 

prescribed. 
19 That is, q is made closer to zero, say, –0.4. 

have the same minimum , thereby violating Assumption 

3.  In these cases, the offending ranges have to be either 

modified or removed.  They may be modified if a 

developer of outlier criteria can be queried to produce 

satisfactory criteria.  If this is not possible, these ranges 

must be omitted from regression (7). 

 

3.3  A Numerical Example 

  Table 1 presents an example of two cross-

sectional series, their absolute differences and their 

absolute percent differences and loss functions with q = –

0.5 using Column ‘Bi’ as the base.  These data are 

presented in increasing order of Bi (or, equivalently, Fi).  

Normally, the data are presented to the subject matter 

analyst in decreasing order of loss (or absolute difference 

or absolute percent difference). 

 

Table 1 

Numerical Example of Loss Functions 

 

 

 

  i          Bi        Fi 

Absolute 

Difference 

Absolute 

Percent 

Difference Loss

1 1 2 1 100 1.00

2 100 105 5 5 0.50

3 500 525 25 5 1.12

4 600 624 24 4 0.98

5 700 735 35 5 1.32

6 1000 1040 40 4 1.26

7 10000 10100 100 1 1.00

 

 Note that the absolute difference is increasing in 

B (and, equivalently, in F.)  If one were to use absolute 

difference as the measure of “outlierhood,” one would 

generally find that the observations with the largest base 

values are the most likely to be outliers.  Conversely, 

focusing on the percent absolute differences would cause 

the observations with the smallest base values to generally 

be classified as outliers.  The extreme case of this is 

shown in the first row of Table 1.  The pair (1, 2) has an 

absolute percent difference of 100%.  Yet, in many 

contexts, this difference is meaningless.  For example, one 

data source may show one birth in a county, while another 

shows two.  If a component method is used to estimate 

population in that county, the two data sources will 

produce a difference of exactly one person.  This 

difference is generally meaningless.  For example, the 

difference between population estimates of 10,000 and 

10,001 is meaningless, falling well within the overall error 

of the estimates. 

 The loss function effectively trades off the 
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absolute and absolute percent differences.20  The large 

absolute percent difference in row 1 is severely 

downweighted by its small absolute difference.  Likewise, 

the last row has a large absolute difference, but small 

absolute percent difference.  These two cases have the 

same loss. 

 Rows 5 and 6 have similar loss.  Because loss is 

ordinal, no meaning can be placed on this difference, 

other than row 5 is “worse” than row 6. Instead, the 

subject matter analyst examines the data process 

generating row 5 before examining row 6.  If, in his 

opinion, the losses are not properly reflecting the severity 

of the outliers, the loss functions should be recomputed 

with a different value of q. 

 

3.4 An Example Using GIS 

  Geographic information systems can be used 

with loss functions to find outliers.  GIS is particularly 

helpful for finding geographic patterns in outliers.  Map 1 

at the end of this paper shows the q = –1/2 loss function 

applied to two different sets of county population 

estimates.21  This is an example of nominal time.  The 

base population is the Vintage 1998 published number 

obtained by the “tax method” component change model.22 

The comparison population is the county household 

population implied by the subcounty population estimates 

system, including overrides, 23 before constraining to any 

higher level totals. 24,25  Southern California, the Dallas-

Fort Worth Metropolitan Area, northern Nevada and 

northern Maine stand out, among others.  Most of the 

counties in the Great Plains that stood out on a map of 

absolute percentage differences26 no longer stand out.  

This is because their populations are very small.  Other 

areas stand out which do not appear on maps of absolute 

and absolute percent differences include the outer suburbs 

of Detroit and the Denver area.  Northern Maine and 

Nevada have large enough populations to make their 

                                                 
20 The discussion in the last paragraph of Subsection 2.1 formally 

demonstrated this. 
21 Counties with “no data” on this map are those which have no 

subcounty geography per the Census Bureau’s Population Estimates 

Branch’s definitions. 
22 These are contained in the Census Bureau’s file 98C8_00.txt, which 

was released to the public in 1999. 
23 The overrides, or administrative changes, consist of numbers 

obtained by special censuses, challenges and other corrections to the 

initial estimates. 
24 In terms of Section 2, the published populations are the Bi and the 

subcounty estimate-derived data are the Fi. 
25 The subcounty estimates methodology may be found at 

http://www.census.gov/population/methods/e98scdoc.txt. 
26 Coleman et. al (2003) Map 2.  Map 1 of that paper displays 

absolute differences. 

percentage changes stand out. In the cases of Southern 

California and Dallas-Fort Worth, the populations are so 

large that small percentage changes create large losses.  

This may lead the subject matter analyst to conclude that a 

different value of q should be used.  In the other cases, it 

is the combination of moderate population bases and 

moderate percentage changes that causes high loss.  In 

any case, the interpretation of the losses is clear: high 

losses indicate large divergences between the two 

methods.  It is these areas upon which an analyst should 

focus his attention.  By varying q and examining maps 

and ranked lists of outliers, the analyst can obtain an 

appropriate value of q, which yields the greatest 

information about the outliers. 

 

4. Extending the Loss Function to All Real Pairs
27

 

 Sections 1 through 3 developed a loss function to 

find outliers in positive data.  In many cases, however, 

data can take on any real value, such as the Census 

Bureau’s net migration data.  Thus, the arguments to the 

loss function are a real pair.  For this problem, a new set 

of assumptions is required.  An important difference is 

that the parameter q is no longer adjusted as a result of 

subject matter analyst’s review.  Instead, geometric 

considerations dictate the choice of q.  Another difference 

is that the assumptions involved become more elaborate.  

The Census Bureau has used this loss function to find 

outliers in raw net migration data. 

Subsection 4.1 axiomatically develops the 

simplest unsigned loss function L.  Subsection 4.2 

develops the signed loss function, similar to that 

developed earlier.  Subsection 4.3 uses geometry to 

determine q. 

 

4.1  The Unsigned Loss Function 

The unsigned loss function L is constructed by 

making five assumptions.  The first assumption is that L is 

defined everywhere in the real plane 2: 

Assumption 4 (unrestricted domain):  For all (F, B)  
2, L(F, B) is defined and single valued. 

The next assumption is that L is symmetric in the 

difference between B and F: 

Assumption 5 (symmetry in difference): 

);();( BBLBBL  and L F F L F F( , ) ( , )  

for all B, F and   . 

Like Assumption 1, this assumption is not as innocuous as 

it looks.  It is quite possible that, at least for some ranges 

of B and F, that positive and negative differences have 

differential impacts. However, the resulting asymmetry 

                                                 
27 This Section is based on Coleman and Bryan (2003). 
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complicates the definition of L.   Subsection 4.2 relaxes 

this assumption somewhat by developing the signed loss 

function, which allows the possibility of incorporating the 

direction of the difference .  However, as Subsection 4.2 

states, this relaxation only affects the critical values used. 

 A desirable property is that L be symmetric with 

respect to its arguments.  To give a concrete example, we 

want L( 1,1000) = L(1000, 1).  This stated formally as 

Assumption 6: 

Assumption 6 (symmetry in arguments):  L(B, F) = 

L(F, B). 

At this point, it useful to introduce some new 

notation.  Let X=|F| and Y=|B|.  Let the new loss function 

( , ) ( , )L F B , where F B  and  = (X,Y) is a 

function such that X 0  and Y 0 .  

Assumption 6 implies that (X,Y) = (Y,X), so that  is 

symmetric in its arguments.  The remaining Assumptions 

are stated in terms of . 

 Assumption 2 of Section 2 is repeated to make  

(and L) increase in the difference : 

Assumption 2 (monotonically increasing in difference): 

0  for all   0. 

 Finally, we want to create an assumption 

analogous to Assumption 3 of Section 2 to make  to 

decrease in , for similar reasons.  We state this formally 

as: 

Assumption 7 (monotonically decreasing in 

arguments):  0  for all  > 0. 

 This simplest function which satisfies 

Assumptions 2 and 4–7 is (after invoking a Lie 

symmetry)28 

( , ) q 0

0 0
             (8) 

where q < 0.  Note that equation (8) is stated in terms of  

and .  The simplest form of  will be determined in 

equation (9) below.  Theorem 1 of Coleman and Bryan 

(2003) shows that setting ( , )0 0 0  makes  continuous 

at (0,0), when q > –1.  This way of determining ( , )0 0  

avoids division by 0. 

 

4.1.1 Determination of  and L 

From equation (1), it is clear that ( , )0 0  for 

all  > 0.  We would like to define  so that whenever 

either X or Y  0,  > 0.  We would also like  (0,0) = 0.  

The simplest equation for  is: 

                                                 
28 It should be noted again that an infinite number of loss functions 

satisfy Assumptions 1-3.  This one is merely the simplest. 

 (X,Y) = X + Y  = |B| + |F|                    (9) 

From equation (9) we can determine L to be 

00

0or  ),(

FB

FBBFBFBFL
q

                  (10) 

 A desirable property of the loss function is that it 

rises in |F – B| for a given average absolute percentage 

difference.  The average absolute relative difference is 

defined as:29 

F B F B
1

             (11) 

Note that, in this case, q = –1.  Choosing q > –1 makes the 

loss function rise in |F| + |B|, for a given average absolute 

relative difference.  This is also required by Theorem 1 of 

Coleman and Bryan (2003).  We state this as Property 1 : 

Property 1 :  The loss function defined by equations (5) 

increases in |F| + |B| for any given average absolute 

percentage difference.  This is assured whenever q > –1. 

 The reader may note that q = 0 turns equation 

(10) into the absolute values of the difference.  Thus, 

values of q between 0 and –1 represent various tradeoffs 

between the absolute value of the difference and average 

absolute percentage difference.  Consider the product of 

the rth power of the absolute difference and the sth power 

of the average absolute relative difference, where r, s > 0: 

 F B
F B

F B

r

s

.  By Lie symmetry, this function is 

isomorphic to the loss function F B F B
r

r s .  

Thus, these intermediate values of q correspond to an 

infinite number of pairs (r, s) where q = –r / (r + s).  

Geometrically, the same loss function is generated for all 

pairs (r, s) lying on the line s = –(1 – 1/q) r. 

  

4.2 The Signed Loss Function 

Again, we create the signed loss function S, which is 

again simply the loss function L, multiplied by the signum 

function of the difference: 

S F B F B F B F B

F B F B

B F

B F

q

q

( , ) sgn( )
 or 0

0 0

  .    

                                                      (12) 

Using S, one can create different critical values for 

loss, depending on whether the difference is positive or 

                                                 
29 This is obtained by taking the average of absolute relative 

differences formed with B and F in the denominators: F B B
1

 

and F B F
1

 and assuming that B  F. 
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negative, similar to Subsection 2.3.  Again, one can pick 

C+, C–, C+  –C–, such that a pair (F, B) is declared an 

outlier if either S(F;B) < C– or S(F;B) > C+.  Again, the 

choice of whether to use S and then use asymmetric 

critical bounds is an empirical matter.30   However, since 

S has been developed using strong symmetry assumptions, 

using asymmetric bounds is probably not worthwhile for 

detecting outliers.  The next Section relies on geometric 

analysis of S to suggest the best choice for q. 

 

4.3 Choice of Loss Function 

The loss functions L and S exhibit wildly 

different behaviors depending on the value of q.  The 

choice of q requires examination of plots of S for various 

values of q, –1  q  0, to obtain a reasonable loss 

function.31  The limiting functions when q = 0 and q = –1 

are of particular interest.  q = 0 implies that S(F,B) = F – 

B.  This defines a plane in 3, which is not useful for 

outlier detection in this paper’s framework.  Setting q = –

1 produces some strange behavior. Whenever B and F are 

of opposite signs, S(F,B) = sgn F.  This can be seen by 

substituting q = –1 into equations (12) when B or F is 

nonzero: 

S F B F B F B( , ) ( ) /                   (13) 

Noting that |x| = x when x > 0 and |x| = –x when x < 0, we 

can examine the behavior of S when B and F are of 

opposite signs.  When F > 0 and B < 0, equation (13) 

becomes 

S F B F B F B

F B F B

F B F B F

( , ) ( ) /

sgn1

            (14) 

The reader may verify that S(F,B) = –1 = sgn F when F < 

0 and B > 0.  These equalities easily generalize to the 

cases in which either B or F is zero. 

  Another problem occurs at the origin when q = –

1: from the previous paragraph we can observe that S 

simultaneously acquires the values 1, which contradicts 

the assumption that S is single-valued.32  

                                                 
30 The asymmetry need not be limited to the critical values.  The 

signed loss function can incorporate different values of q, depending 

on the sign of the difference.  However, as Subsection 3.2 shows, 

there is little latitude in the choice of q. 
31 This is done in Coleman and Bryan (2003).  This is a different sort 

of subjectivity than that of Section 2. There, the coefficient q is 

determined empirically, often from the data.  In this Section, the 

subjectivity lies in the choice of the form of the loss function. 
32 This argument does not even consider approaching the origin along 

rays in the positive and negative orthants, which may produce yet 

other values for S. 

  Finally, cusps exist along the axes for every q < 

0, but are most severe for q = –1.33   

  Given all of the anomalies and degeneracies 

associated with this family of loss functions, the problem 

is to decide on a value of q which produces reasonable 

behavior, in his mind.  It appears that intermediate choices 

of q are best behaved: these offer a good compromise 

between simply taking the difference between F and B (q 

= 0) and the bizarre behavior of S when q approaches –1.  

In particular, the value q = –0.5 shows the best tradeoff of 

the different attributes.  Thus, the recommended unsigned 

loss function is 

00

0or  ),(
5.0

FB

FBBFBFBFL
                 (15) 

with the corresponding signed loss function 

00

0or  ),(
5.0

FB

FBBFBFBFS
.             (16) 

Again, note that no subject matter analyst’s judgment is 

used to parametrize these loss functions.  Instead, the 

parametrization is based on an evaluation of the geometry 

of these functions. 

 

6.  Conclusion 

This paper has used time as an explicit 

dimension in constructing loss functions for detecting 

outliers in panel data.  Loss functions put all differences 

on the same basis so that data ranging several orders of 

magnitude can be compared.  When the data are positive, 

interaction with the subject matter analyst is necessary to 

properly parametrize the loss function.  When the data can 

assume any real value, geometric considerations dictate 

the parametrization of the loss function.  Some examples 

have been provided. 
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