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Abstract– The paper of Charoensook ((2015), [3]) extends

the results of the original model of two-way flow infor-

mation sharing network of Bala and Goyal ((2000),[1]),

given that a condition called Uniform Partner Ranking is

satisfied. In this technical note, we study what happen to

these results when this condition is violated. By providing

some examples, we conclude that a certain degree of agent

homogeneity needs to exist in order that the results of [3]

remains satisfied.

Index Terms– Network Formation, Strict Nash Network,

Two-way Flow Network, Branching Network, Agent Het-

erogeneity, Information Network

I Introduction

A game-theoretic model of network formation assume that

networks are form based upon self-interest agents who choose

to establish costly connections or links with each other in or-

der to exchange some benefits (eg., his private information) .

The original two-way flow model of Bala and Goyal (2000,

[1]), BG henceforth, further has in mind a situation in which

each agent pays for all information that he wishes to acquire

by (i) solely bears the cost of link establishment used for com-

munication, and (ii) promises to share his own private piece of

information with others. Since this model assumes agent ho-

mogeneity, it has inspired many extensions that allow for the

existence of agent heterogeneity. An interesting paper in this

literature is that of Charoensook (2015, [3]) that generalizes the

original results of BG and that of [4] and [2]. Importantly, the

generalization of [3] is achieved through imposing a condition

called Uniform Partner Ranking on the characteristics of the

structure of link establishment cost in order that the shapes of

SNNs can be predicted.
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Naturally, this raises the question of what happen when this

condition - Uniform Parter Ranking - is violated. In this tech-

nical note, we contribute to this literature by proposing some

answers to this question. Specifically, we provide some exam-

ples that show that (i) the results of [3] can still hold even if

the Uniform Partner Ranking condition, UPR henceforth, is vi-

olated, (ii) only partial results still hold, and (iii) even partial

results do not hold. Through these examples we conclude that

a certain degree of agent homogeneity needs to exist in order

that the results of [3] remain to hold.

We provide a brief introduction to related literature here. The

literature in game-theoretic model of network formation is in-

vented by two papers - [7] and [1]. These two papers are quite

different in terms of basic assumptions on the nature of benefits

that each agent possesses. On one hand, [7] assumes the ben-

efits that each agent possess may not necessarily be nonrival.

Therefore, a link is formed and the benefits are shared only if

both agents agree. For an elaborate review of the literature of

network formation, [6] and [5] provide a through introduction.

On the other hand, the original two-flow flow of network for-

mation of BG assumes that each agent owns a unique piece of

private information that is non-rival in the sense that each does

not mind sharing his information with other agents. He can in-

dependently choose to establish a link with any other agent in

the network by bearing a link establishment cost on his own.

In this paper, Nash and Strict Nash equilibrium in pure strate-

gies are adopted to predict the appearance of equilibrium net-

works. which are called Nash networks and Strict Nash net-

works, SNNs henceforth, respectively. An important assump-

tion is that Link establishment cost is assumed to be identical

across all agents. Thus, agent homogeneity is assumed in BG.

Several works in the literature extend this BG model to cases

at which link formation cost is heterogeneous across agents.

How this heterogeneity is imposed, though, varies among exist-

ing literature. A paper that is of our interest is that of Charoen-

sook (2015, [2]) since it establish a result that generalize the
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models of [1], [4], and [2]. This generalized result assumes that

link formation cost satisfies a condition called Uniform Partner

Ranking. Simply put, this condition states that agents may pay

different levels of link formation cost. However, each of them

has the same ranking in terms of partner preference. That is,

if an agent i finds that linking to j is cheaper than linking to

k, all other agents find likewise. This condition results in the

fact that every non-empty component of an SNN has at most

one agent who receives more than one link. Our paper, there-

fore, contributes to the literature by investigating what happen

to SNNs when this Uniform Partner Ranking is violated.

The paper proceeds as follows. In the next two sections,

model specifications and the definition of SNN as an equilib-

rium prediction criterion is introduced. We then proceed to

the main results section by giving examples of Strict Nash net-

works that violate the Uniform Partner Ranking condition. Fi-

nally, in the conclusion section we discuss on the insights from

these examples.

II The Model

II.I Basic Setting

Let N = {1, ..., n} be the set of all agents in the network.

Consider an agent i ∈ N , i establishes a link with an agent j

by paying the link formation cost ci,j . The incentive of i is to

acquire the information of j. Notice that ci,j depends on both

the identity of i and j. This is where agent heterogeneity is

introduced in our model. Whenever a link to j is established

by i, we say that i is a link sender and j is a link receiver.

Furthermore, we say that i accesses j.

Individual’s strategy and network representation. Let

gi,j = 1 represents the fact that i accesses j and gi,j = 0
represents the fact that i does not access j. A strategy of i,

represented by gi, is gi = {gi,1, ..., gi,i−1...gi,n}. A strategy

profile is, therefore, g = (g1, ..., gn). Since all links form the

network, we set g also represents the network. Graphically, we

let an agent i be presented by a node i. A point from node i to

node j then represents the fact that i accesses j

Structure of information flow. Information flow is two-way

in the sense that if i has an entry to the information j then j

also has an entry to the information of i. i has an entry to

the information of j whenever a path between i and j exists.

Formally, let ḡij = max {gij , gji}. A path between i and j or

ij−path in a network g is then defined as a sequence Pi,j (g) =
ḡi,j1 , ḡj1j2 , ..., ḡjmj such that each element in this sequence is

1. If an ij− path exists, i is said to observe j.

Individual’s payoff. Let Nd (i; ḡ) and N (i; ḡ) be the set of

all agents that i accesses and observes respectively. Let Vi,j be

the value of information of j that i receives. Then, the payoff

of i in g is defined as:

(1a)Πi (g) =
∑

j∈N(i;g)

Vi,j −
∑

j∈Nd(i;g)

ci,j

Graph-theoretic notations. Consider a network g. A net-

work is connected if i observes j for for all i, j ∈ N and i 6= j.

A subnetwork g′ is a subset of a network g, ie., g′ ⊂ g. A

component of a network is a subnetwork that is maximally con-

nected. That is, i observe j if and only if i and j belong to the

same component. A network is said to be minimal if every path

between i and j is unique. That is, there exists one and only

one path through which i observes j. An agent who observes

no other agent is said to be isolated. If all agents in the network

are isolated, the network is said to be an empty network.

Bi and branching networks. The definitions of these terms

are borrowed from [2]. A branching network is a minimally

connected such that there is a unique agent i who receives no

link and every other agent receives exactly one link. That is,

a branching network rooted at i is a minimally connected net-

work such that |Ii (g) |= 0 and |Ij (g) |= 1 for all j 6= i and

j ∈ N (I and O should be defined somewhere !!!).

To define Bi network, we first introduce the following no-

tations. Let QN ′ = N ′ ∪ j ∈ N |apathfromitojexist (a

path needs to be defined somewhere!!!). A point contrabasis

of a network g, B(g), is a minimal set of players such that

QB(g) = N . Intuitively, QB(g) carries the intuition that there

is a set of agents that can be used to observe all other agents

through the existence of the path between an agent in this set

and an agent outside of this set. An i-point contrabasis, Bi(g),
is a point contrabasis of g such that all players j ∈ Bi(g)
accesses i. Finally, A network g is a Bi-network if |Ii(g)|2,

|Ij(g)|< 2 for all j 6= i, and Ii(g) = Bi(g).

II.II The Definitions of Nash Network

Consider a network g. Let g−i be the set of all links in g that

i does not establish. That is, g−i = g\gi. Put differently, a

union of g−i and gi is exactly the network g. These notations

are used to define the following terms.

Definition 1 (Best response). A strategy gi is a best response

of i to g−i if

Πi (i; gi ⊕ g−i) ≥ Πi

(

i; g′i ⊕ g−i

)

, for all g′i ∈ Gi

Definition 2 (Nash network). A network g is a Nash network if

gi is a best response to g−i for every agent i ∈ N .
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Moreover, if the inequality is strict for all i ∈ N , Nash

network is a Strict Nash Network. We abbreviate the term Strict

Nash Network by SNN .

II.III Cost Structure and the Uniform Parter

Ranking Condition

A cost structure C is defined as a collection of all link formation

costs C = {ci,j : i, j ∈ N, i 6= j}. We use this definition to

define the following two terms, which are borrowed from [3].

Definition 3 (Better Partner). Consider a set X ⊂ N and

agents j, k ∈ X, j is at least as good a partner as k with

respect to the set X if ci,j ≤ ci,k for any i ∈ X, i 6= j 6= k.

Moreover, if the inequality is strict then j is said to be a better

partner than k with respect to the set X.

That is, if j is at least as good a partner as k with respect

to set of agents X, then every agent in the set X finds that

accessing j is at least as costly as accessing k. Put differently,

all agents in X ‘rank’ j as a preferred partner than k in terms of

costliness of link establishment. The Uniform Partner Ranking

condition below simply adds that the set X is exactly N and

that all agents can be ranked.

Definition 4 (Uniform Partner Ranking). A cost structure C is

said to satisfy Uniform Partner Ranking condition if for any

distinct pair j, k ∈ N it holds true that j is at least as good

a partner as k or k is at least as a good a partner as j with

respect to the set N .

Intuitively, since all agents can be ranked if C satisfies the

UPR condition, there exists an agent who is ranked ‘first’ in

the sense that he is at least as good a partner as every other

agent. This leads to the following definition.

Definition 5 (Common Best Partner). An agent i∗ is said to be

Common Best Partner if i∗ is at least as good a partner as i′

with respect to the set N , where i′ 6= i∗.

III Main Results

III.I Case 1: UPR is violated but the results of

Charoensook 2015 still hold

1 3

5

2

6

7

8

9

4

10 11

Figure 1: Example 1

agents 1 2 3 4 5 6 7 8 9 10

1 - 0.1 0.2 0.3 0.4 0.5 0.6 20 20 20

2 0.1 - 0.2 0.3 0.4 0.5 0.6 20 20 20

3 0.1 0.2 - 0.3 0.4 0.5 0.6 20 20 20

4 0.1 0.2 0.3 - 0.4 0.5 0.6 20 20 20

5 0.1 0.2 0.3 0.4 - 0.5 0.6 20 20 20

6 0.1 0.2 0.3 0.4 0.5 - 0.6 20 20 20

7 0.1 0.2 0.3 0.4 0.5 0.6 - 20 20 20

8 20 20 20 20 20 20 20 - 0.3 0.4

9 20 20 20 20 20 20 20 0.4 - 0.5

10 20 20 20 20 20 20 20 0.5 0.6 -

Table 1: Cost Structure for Example 1

Example 1. Let Vi,j = 1 for all i, j ∈ N and i 6= j. Let the

cost structure be represented by the above table, where each

row represents an agent i, each column represents an agent

j, and each number in the table represents the cost ci,j . This

cost structure divides agents into two groups, where agents 1

to 7 belong to group I and agents 8 to 10 belongs to group II.

Accordingly, the table is divided into four quadrants at agent 7.

Observe further that link formation costs between agents from

the same group are at most 0.6, while the link formation costs

between agents across groups are set at 20. Hence, accessing

an agent from the other group is never a best response. This

cost structure, therefore, is reminiscent of the insider-outsider

model of [4]. A major difference, though, is that in this example

link formation cost ci,j is not identical among agents in the

same group.

It is easy to show that this cost structure violates UPR, yet

every non-empty SNNs consists of non-empty components that

are either branching or Bi. To show the violation, consider

agent 1 and agent 8. We can see that c1,2 < c1,7 but c8,2 > c8,7.

Therefore, UPR is violated. Indeed, this is due to the fact that

agents 1 and 8 belong to different groups. Observe further

that Vi,j = 1 and ci,j = 20 for any i, j that do not belong

to the same group. Therefore, agents that do not belong to the

same group will not establish links with each other. On the con-

trary, it is easy to see that links between agents from the same

group are established since Vi,j = 1 but ci,j =< 1 for any i, j

that belong to the same group. Consequently, it is guaranteed

that every SNN has exactly two non-empty components, each is

composed of agents from the same group.

Finally, it remains to be shown that each non-empty compo-

nent of SNN is either branching or Bi. First, observe that UPR

is not violated if we consider only agents from the same group.

Indeed, all agents in Group I (II) have agent 1 (agent 8) as their

common best partner, and each agent i finds that ci,j < ci,j+1

for any i, j, j + 1 that belong to the same group. Therefore,

inside each component, UPR is not violated. As a result, it can

be predicted that each component of SNN is either branching

or Bi. Figure 1 above illustrates an SNN based upon this cost

structure.
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agent 1 2 3 4 5

1 - 0.4 0.3 0.1 0.2

2 0.1 - 0.2 0.3 0.4

3 0.1 0.4 - 0.3 0.2

4 0.1 0.2 0.3 - 0.4

5 0.1 0.4 0.2 0.3 -

Table 2: Cost Structure for Example 2

13

5

2

4

Figure 2: Example 2

Example 2. Let the cost structure be represented by the above

table and let Vi,j = 1 for all i, j ∈ N and i 6= j. In this

example, UPR is violated because c4,2 = 0.2 < c4,3 = 0.3
but c5,2 = 0.4 > c5,3 = 0.2. However, we have an SNN that

is B1. It is easy to see why UPR is violated but SNN remains

a Bi network. First, observe that every agent (except agent

1) agrees that agent 1 is the common best partner. Therefore,

agent 2 and agent 3 access agent 1 in this SNN.

III.II Case 2: UPR is violated and the results of

Charoensook 2015 do not hold

agents 1 2 3 4

1 - 7 8 9

2 0.1 - 5 5

3 0.1 5 - 5

4 5 5 0.1 -

Table 3: Cost Structure for Example 3

13 24

Figure 3: Example 3

Example 3. Let the cost structure be represented by the above

table and let Vi,j = 1 for all i, j ∈ N and i 6= j. In this

example, UPR is violated because c1,2 = 7 < c1,3 = 8 but

c4,2 = 5 < c4,3 = 0.1. Indeed, agent 2 and 3 agree that agent

1 is the best partner. However, agent 4 has agent 3 as his best

partner. This results in the fact that agent 4 accesses agent 3

in this SNN, while both agent 2 and agent 3 access agent 1. It

is easy to see that this SNN is neither branching nor Bi. First,

it is not branching because there is no agent who receives no

link. Second, it is not Bi because a point contrabasis of this

network is the set {2, 3, 4} so that agent 2 cannot be a 2−point

contrabasis of this network.

III.III Case 3: UPR is violated but the results of

Charoensook 2015 partially hold

1 2 3 4 5 6 7 8 9 10 11

1 - 0.1 0.2 0.3 0.4 0.5 0.6 20 20 20 20

2 0.1 - 0.2 0.3 0.4 0.5 0.6 20 20 20 20

3 0.1 0.2 - 0.3 0.4 0.5 0.6 20 20 20 20

4 0.1 0.2 0.3 - 0.4 0.5 0.6 20 20 20 20

5 0.1 0.2 0.3 0.4 - 0.5 0.6 20 20 20 20

6 0.1 0.2 0.3 0.4 0.5 - 0.6 20 20 20 20

7 0.1 0.2 0.3 0.4 0.5 0.6 - 20 20 20 20

8 20 20 20 20 20 20 20 - 7 8 9

9 20 20 20 20 20 20 20 7 - 8 9

10 20 20 20 20 20 20 20 7 8 - 9

11 20 20 20 20 20 20 20 7 8 9 -

Table 4: Cost Structure for Example 4

1 3
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6

7
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Figure 4: Example 4

Example 4. The cost structure of this example is simply a com-

bination of Example 1 and Example 3. Observe that the link

formation costs of agent 1 to agent 7 is identical to that of ex-

ample 1 and that the link formation costs of agent 8 to agent

11 is identical to that of example 3 (agent 1 to agent 4 in Ex-

ample 3). We therefore divide agents into two groups, where

agent 1 to agent 7 belong to the group I and agent 8 to agent

11 belong to group II. Observe further that link formation cost

ci,j is set to be 20 if i and j belong to different groups. Similar

to Example 1, we have an SNN that consists of two non-empty

components, each is composed of agents from the same group.

Moreover, the shape of each component is precisely that of Ex-

ample 1 and Example 3. Consequently, we have an SNN such

that one of its components is Bi and the other is neither branch-

ing or Bi. This entails that UPR is violated and the results of

Charoensook 2015 hold only partially.

IV Discussion and Conclusion

This paper shows various effects of the violation of UPR

condition on Strict Nash networks. Let us summarize these

effects as follows:
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1. If it can be predicted that SNN consists of multiple com-

ponents, and that we know which agent belongs to which

component, the shape of each component depends merely

on the cost structure pertaining to agents in this compo-

nent. This insight can be seen from Example 1 and Exam-

ple 4.

2. Following the first effect, whether the cost structure of all

agents violates UPR or not does not matter. Indeed, if

UPR is not violated when considering the cost structure

pertaining to agents in the same component, the results of

Charoensook 2015 still holds. Alternatively, it may par-

tially hold in the sense that the shape of some components

are predicted to be branching or Bi due to the fact that

UPR is not violated inside that each of these components.

This insight is illustrated in Example 1 and Example 4.

3. Even if the cost structure pertaining to agents in the same

component does violate UPR, SNN can still be Bi. This

insight is seen in Example 2.

4. In contrast to (3), there exists also cases such that a com-

ponent of SNN is neither branching or Bi when the cost

structure pertaining to agents in the same component vio-

lates UPR. This insight is seen in Example 3.

At this point, we further provide an important observation

from point (3) and point (4) above. To do so, we first remark

that in both Example 2 and Example 3 UPR is violated, yet

only SNN in Example 3 remains Bi while SNN in Example

is neither Bi nor branching. What explain this difference? In

Example 2, we have that all agents (except agent 1) agree that

agent 1 is their best common partner. However, this form of

agreement between agents does not exist in Example 3, where

agent 4 does not agree with agent 2 and agent 3 that agent 1

is the best partner. Therefore, we remark that some forms of

agreement between all agents inside the component need to ex-

ist in order the results of the results of Charoensook 2015 - a

component of SNN being branching or Bi - remains to hold.

Indeed, a similar argument is also applied to point 1 and 2

above, which illustrate that what matters is whether UPR is vi-

olated inside each component rather than the violation of UPR

when considering all agents in the network. Since UPR in a

component requires that all agents in the component agree on

which agent is superior as a partner than which in terms link

formation cost, one can interpret that some forms of agreement

between all agents inside the component need to exist in order

the results of the results of Charoensook 2015 - a component

of SNN being branching or Bi - remains to hold.

Finally, we remark that these examples raise a question of

what a necessary and sufficient condition for a component of

SNN to be branching or Bi is. We leave this question as a

research to be explored in the future.
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