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Abstract 
This paper sounds an alarm about disparate efficiencies among China’s regions in the 

allocation of innovation inputs. A theoretical measure of misallocation is adopted to 

gauge the distortions that exacerbate the inefficiency of resource allocations across 

geographic innovation units; these units’ usage of innovative inputs reveals the level 

of misallocations prevalent within the Chinese economy. The measure of innovation 

misallocation is computed by utilizing a micro dataset based on information from the 

China Statistical Yearbook for Science and Technology (CSYST) from 1999 to 2012. 

In addition, this paper probes the factors that co-move with China’s innovation 

resource misallocations. We find that, although an advanced financial market is 

beneficial to innovation efficiency in China, both the government’s extensive 

development of transportation infrastructure and the preferential treatment given to 

state-owned enterprises (SOEs) and foreign-invested enterprises (FIEs) negatively 

correlate with innovation efficiency. We conclude that emerging economies that are 

experiencing R&D input expansion, such as China, should be cautious in ensuring 

efficient resource allocations. 
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1. Introduction 

History has documented that different nations follow very different development 

paths. Whereas some countries have successfully evolved through many stages of 

growth—from traditional economies to modernized economies—other countries have 

halted their transformations or even collapsed after enjoying some early development 

success. In an influential work, Acemoglu and Robinson (2012) conclude that an 

economy dominated by extraction, in which only a few privileged people can access 

limited production resources, will cause a nation’s downfall. Specifically, failing 

nations often suffer from prevalent resource misallocation and stop embracing 

innovations that are critical to continuous development.1 

Resource misallocation has been identified as a major hurdle to the delivery of 

high productivity in all aspects of production, as surveyed by Syverson (2011). 2 

Because innovation is essential to sustaining long-run growth, timely awareness of 

disparate efficiencies in allocating resources across innovation units should be a 

priority for an economy (such as China) that is interested in modernization. 

Interestingly, whereas many aspects of growth have been extensively studied, the 

economic literature has almost entirely neglected the misallocation of innovation 

resources. An exception is a recent paper by Uras and Wang (2016), which emphasizes 

the importance of technique misallocation on industry-level total factor productivity 

(TFP). In their model, technique misallocations arise from heterogeneous technique 

capabilities, and these diverse capabilities could be thought of as a consequence of 

differing investments in process innovations. We further their study by investigating 

the determinants of misallocation in innovation activities.3  In particular, we study 

cross-region misallocations in the use of innovative inputs within China. As 

conceptually noted by Hsieh and Klenow (2009), relative to an ideal environment in 

which competitive input markets ensure equalization (among regions) of the marginal 

contribution of the last unit of innovation inputs, differences in regional distortion 

                                                      
1 As noted by Acemoglu and Robinson, one main reason that extractive economies may not be interested 
in innovations arises out of their elites’ concerns about creative destruction that may lead to their loss of 
power.  
2 For example, the relatively early work by Peek and Rosengren (2005) demonstrates that in Japan, such 
misallocation is severe. Greenwood and Krusell (2007) develop a model and argue that the level of 
financial development affects resource allocation across firms within an industry. 
3 While Uras and Wang (2016) emphasize the role played by process innovation, our analysis studies 
misallocation in innovation activities as a whole and does not explicitly differentiate between process 
and product innovations. 
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levels result in misallocations and lower aggregate performance.4  Some of these 

distortions reflect intentional government policies, such as capital subsidies or 

preferential tax treatments that favor particular innovation units. Other distortions 

reflect an exclusive seller’s power, which can lead to gigantic monopoly rents for their 

innovation outputs.  

In this paper, building upon Hsieh and Klenow’s (2009) insights into 

misallocation, we calculate a theory-based measure of innovation efficiency in China. 

This measure of innovation efficiency will assume a larger value if the dispersion of 

revenue productivity (TFPR), which is a function of the regional innovation input and 

output distortions, is smaller across regions. In other words, when the extent of 

distortion is similar across regions, our measure of innovation efficiency will be 

higher.5 During our computation of the innovation efficiency measure, we have also 

derived the TFPR for each region in each year.6 Because a region’s TFPR can be 

viewed as an inverse measure of that region’s distortions, in the second step of our 

analysis, we proceed by identifying the potential sources of regional distortions.  

We collect a new micro dataset with information on regional innovation inputs 

and outputs in China. We obtained these data from the China National Statistical 

Bureau’s China Statistical Yearbook for Science and Technology (CSYST) from 1998 

to 2013. Our analysis covered thirty provincial-level regions in China between 1999 

and 2012.7 Following the existing literature, we use the number of patent applications 

under the invention and utility model categories as the innovation output and assume 

that the utilization of R&D capital inventories and personnel are the main innovation 

inputs. 

Our measure of innovation efficiency increases substantially during the sample 

                                                      
4 Hsieh and Klenow (2009) focus on resource misallocations in India and China and attribute those 
countries’ losses in production efficiency primarily to differences in their government policies. These 
distortions influence the differences in TFP across industries in different countries. 
5 According to Bartelsman et al. (2013), the improvement in allocative efficiency is associated with the 
process whereby limited production inputs are reallocated from less-productive to more-productive units 
within an economy. 
6 The gauge of innovation productivity begins with a measurement of the idiosyncratic input distortions 
at the regional level. Thus, this first step requires intensive data support at the regional level, which we 
describe below. 
7 In our calculation, we allowed a one-year lag from the usage of innovation inputs to producing outputs. 
In addition, because the CSYST yearbook provides data for the previous year, our actual period of 
analysis is from 1999 to 2012. Furthermore, we do not include Tibet in our analysis because of a large 
amount of data are missing for that region. 
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period: it starts from 0.5023 in 1999 and rises to 0.8016 in 2012.8  This increase 

indicates substantial convergence in the extent of the distortions across the regions in 

China. However, our result also suggests that, whereas innovation efficiency 

constantly improved between 1999 and 2009, beginning in 2010, there was a sign of 

deterioration in innovation efficiency: the efficiency measure modestly decreased for 

the three consecutive years between 2010 and 2012. 

The second part of our empirical study further extends the literature by 

investigating the factors that affect innovation efficiency. A variety of setups have been 

adopted to robustly establish that an advanced financial market is beneficial to 

regional innovation efficiency in China. However, extensive development of a 

regional transportation infrastructure is negatively correlated with innovation 

efficiency. We argue that this pattern occurs because a sophisticated regional 

transportation infrastructure may not increase the efficient allocation of innovation 

resources; furthermore, devoting excessive government resources to the transportation 

infrastructure may have a distortive effect on public and private innovation 

investments. In addition, we find that preferential policy treatments issued by 

governments will be biased toward the misallocation of innovation inputs. More 

specifically, we find that higher shares of state-owned enterprises (hereafter, SOEs) 

and foreign invested enterprises (hereafter, FIEs) in regional industry output hurt 

innovation efficiency. Because SOEs and FIEs often have better access to credit or 

enjoy more tax deductions, preferential policies may have distortive effects on total 

innovation investment if SOEs and FIEs do not consider innovation activities their 

priority. SOEs and FIEs’ hindering effect on innovation efficiency is first proposed by 

this paper. However, we are not alone in indicating that low productivities are 

associated with SOEs and sometimes with FIEs. SOEs’ mediocre performance is well 

known (e.g., Brandt et al., 2012); recent studies also document the unexceptional 

performance of Chinese exporters, many of whom are FIEs (Dai et al., 2012; Lu, 2010; 

Yu, 2015).  

Studies on resource misallocation have become a focal point in the growth 

                                                      
8 This measure denotes the ratio of the actual and “efficient” production levels of innovation, where 
“efficient production” is defined as the output level that is obtained when there are no misallocations of 
resources across the regions within China. For example, a value of 0.5 means that innovation production 
would have doubled (1/0.5=2) had the misallocations been eliminated. 
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literature since the seminal work by Banerjee and Duflo (2005); those studies find that 

the large dispersion in the marginal product of capital among Indian firms results in 

significant loss of aggregate output.9 The more recent research wave on misallocation 

was initiated by Restuccia and Rogerson (2008) and Hsieh and Klenow (2009). 

Restuccia and Rogerson (2008) argue that policy distortions that cause an incorrect 

match between production input usage and firm-level productivity will be harmful for 

aggregate TFP.10 Furthermore, Hsieh and Klenow (2009) show that by reducing the 

extent of capital and output distortions in India and China to a degree that is 

comparable to US levels, those countries’ TFPs grew by 40%-60% and 30%-50%, 

respectively. Several papers study the growth implications of various channels of 

misallocation: Banerjee and Moll (2010), Midrigan and Xu (2014), Buera et al. (2013) 

and Moll (2014) construct dynamic general equilibrium models of misallocation with 

capital market imperfections, whereas Jones (2013) elaborates that the negative effects 

of misallocations may be amplified through the economy’s input-output structure, 

which would help explain cross-country TFP gaps. In addition, Jovanovic (2014) 

studies misallocation using an assignment framework with heterogeneous firms and 

workers and finds that more efficient assignments of human capital lead to faster long-

run growth, more inequality, and less turnover in the distribution of human capital. A 

more recent contribution has been provided by Uras and Wang (2016), who find that 

within-industry technological gaps, which could result from different levels of 

investment in process innovation, are important for determining industry-level TFP.  

Overall, our paper contributes to the existing literature in two important ways. 

First, we illuminate the current literature by conducting the first investigation of 

resource misallocation in innovation activities. Given that innovations have long been 

believed to be crucial to the sustainable growth of economies, quantifying the potential 

misallocation problems of R&D resource inputs is a critical first step for emerging 

economies (such as China) that hope to develop their innovation capacities for further 

development.11 Second, this paper elaborates on all accessible data sources to probe 

                                                      
9 An early paper by Baily et al. (1992) also emphasizes the importance of resource misallocation and 
suggests that the productivity growth in US manufacturing in the 1980s may be largely attributed to 
factor reallocations from low-productivity plants to high-productivity plants. 
10 Specifically, they study a class of distortions that lead to no changes in the aggregate prices and no 
changes in the aggregate factor accumulation but do have idiosyncratic distortions that create 
heterogeneity in the prices faced by individual producers. 
11  A strand of recent works also studies the innovation activities in China after the 1978 economic 
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the factors that co-move with innovation misallocations across regions within China. 

We conduct our analysis at the regional level—rather than at the firm level, as in Hsieh 

and Klenow (2009)—based on two considerations. The first is data constraints, as 

comprehensive panel datasets on distinct innovation inputs and outputs at the firm 

level are difficult to come by. Second, using a regional approach to study innovation 

activities is an important methodology in the innovation literature (e.g., Cooke et al., 

1997).12  This strand of literature, called the regional innovation system literature, 

argues that regional heterogeneity in innovation performance arises from differences 

not only in the involved agents performing innovation activities but also in the 

supporting roles played by regional institutions. As noted by Li (2009), Chinese 

provinces are administratively and economically independent geographical regions, 

so local governments have substantial autonomy in formulating economic 

development policies, and financial sectors also exhibit marked regional differences—

these features warrant our regional framework. That said, if more detailed datasets at 

the firm level become available, our setup could still be used for refined policy 

analyses.13 

The remainder of this article is organized as follows. In Section 2, we introduce 

the methodology. Section 3 demonstrates the unique dataset and details the data source 

and the construction process. Section 4 presents the results of our empirical analysis 

on the evolution of innovation efficiency and its determinants. Finally, Section 5 

concludes. 

 

2. Methodology 

In this section, we describe our measure of China’s innovation efficiency. Using 

the ideas mentioned in the previous section, we compute innovation efficiency by 

aggregating the extent of each individual region’s resource misallocation within China. 

 

                                                      

reforms. These studies document the great efforts devoted to innovation-related activities (Chen and 
Guan, 2011; Li, 2009; Sun, 2003). However, the Chinese innovation system currently lacks the 
commercialization capacity to advance technological developments into commercial applications (Chen 
and Guan, 2012). 
12 This approach has also been adopted in several studies of regional innovation performance in China 
(e.g., Li, 2009; Bai, 2013). 
13 For example, if we had similar data at the firm level, we could analyze how changing regulations 
regarding foreign ownership affect innovation misallocation. 
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2.1. Measure of Resource Misallocation across Regions 

To compute innovation efficiency in China, we develop a measurement of 

country-level resource misallocation in innovation production, which is governed by 

decreasing return-to-scale technology.14 This version of the gauge of misallocation is 

conceptually adapted from Hsieh and Klenow (2009).  

We begin by assuming a competitive innovation system that features a 

homogeneous product in terms of the generated patents. This system consists of 𝑀 

regions; the aggregate patented innovation output, which we denote Y, is simply the 

sum of the patents across all regions, that is,  

 𝑌 = ∑ 𝑌𝑖𝑀𝑖=1 .  ( 1 ) 
15 In equation (1), Yi  is the number of patents in region i, and we assume its 

production technology is determined by 

 𝑌𝑖 = 𝐴𝑖(𝐿𝑖𝛼𝐾𝑖1−𝛼)𝛾, 𝛾 ∈ (0,1) ( 2 ) 

This setup essentially captures the decreasing return-to-scale innovative 

production technology, with 𝛾 governing a regional “operative returns to scale” in 

the innovation system. In addition, the operative returns to scale are sometimes 

referred to as the “span-of-control” parameter described in Lucas (1978).16 

In our setup, the regions within the country are heterogeneous not only in terms 

of their innovation technology 𝐴𝑖 but also in the distortions associated with the use 

of capital and labor. Here, we follow Hsieh and Klenow (2009) by assuming that 

regions experience two types of distortions: output distortion 𝜏𝑌𝑖 , which 

simultaneously affects capital and labor productivities, and capital distortion 𝜏𝐾𝑖 , 
which drives up the productivity of capital relative to that of labor. A region’s 

innovation payoff is given by 

 𝜋𝑖 = (1 − 𝜏𝑌𝑖)𝑃𝑖𝑌𝑖 − 𝑤𝐿𝑖 − (1 + 𝜏𝐾𝑖)𝑅𝐾𝑖 ( 3 ) 

                                                      
14 As Jones and Williams (2000) and Weil (2013) state, innovation production function is characterized 
by decreasing returns to scale. 
15 In an influential work, Griliches (1979) suggests the use of the number of patents as the main measure 
for the innovation output. While some might question that individual patents differ greatly in “quality”, 
Scherer (1965) and Griliches (1990) both pointed out by invoking the “law of large number,” the number 
of patents is a reasonable indicator of innovation output. Along this reasoning, Hsu (2009) aggregate 
patent data and find that patent shocks have positive predictive power for China and other countries’ 
stock market returns. 
16 Although we use a decreasing returns to scale setup, our findings do not qualitatively change if we 
assume a constant returns to scale innovation production technology. This is not surprising, as Hsieh 
and Klenow (2009) already proved the isomorphic property between a constant returns to scale model 
with differentiated goods and a Lucas span of control model formation. 
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We assume that research input markets are both competitive. With homogeneous 

products and assuming the standard first-order condition on demand holds, the 

regional output price is  

 𝑃𝑖 = 𝑃, for every region i in the innovation system (4) 

We follow Hsieh and Klenow (2009) and solve the production input demand in 

perfectly competitive factor markets. The derived demand from (4) can be plugged 

into (3) to solve for both the input demand and the output supply, whose values are 

determined by the innovation technology 𝐴𝑖  and the distortion measures 𝜏𝑌𝑖  and 𝜏𝐾𝑖:  

 𝐿𝑖 = 𝐿𝑖(𝐴𝑖, 𝜏𝑌𝑖 , 𝜏𝐾𝑖) ( 5 ) 

 𝐾𝑖 = 𝐾𝑖(𝐴𝑖, 𝜏𝑌𝑖 , 𝜏𝐾𝑖) ( 6 ) 

 𝑌𝑖 = 𝑌𝑖(𝐴𝑖, 𝜏𝑌𝑖 , 𝜏𝐾𝑖) ( 7 ) 

Next, profit maximization implies that regions that experience greater output 

distortions (higher 𝜏𝑌𝑖 ) will exhibit higher marginal revenue products of labor. 

Similarly, regions will have a higher marginal revenue product of capital when they 

experience more output or capital distortions (𝜏𝐾𝑖): 
 MRPL𝑖 = MRPL𝑖(𝐴𝑖, 𝐿𝑖 , 𝐾𝑖) ≜ 𝑤 11−𝜏𝑌𝑖 ( 8 ) 

 MRPK𝑖 = MRPK𝑖(𝐴𝑖, 𝐿𝑖 , 𝐾𝑖) ≜ 𝑅 1+𝜏𝐾𝑖1−𝜏𝑌𝑖  ( 9 ) 

In addition, given decreasing returns, we can infer that highly distorted regions 

will have an equilibrium scale of production that is smaller than the optimal scale. 

Following Hsieh and Klenow (2009), we differentiate between “physical 

productivity”, which we denote TFPQ, and “revenue productivity”, which we denote 

TFPR. Whereas TFPQ is region-specific, TFPR will be country-specific if there is no 

difference in the extent of the distortions across regions. We will solve the reduced 

forms of TFPQ and TFPR for region i as follows: 

 TFPQ𝑖 ≜ 𝑌𝑖(𝐿𝑖𝛼𝐾𝑖1−𝛼)𝛾 ( 10 ) 

 TFPR𝑖 ≜ 𝑃𝑌𝑖𝐿𝑖𝛼𝐾𝑖1−𝛼 ( 11 ) 

 

In an ideal scenario, TFPR will be country-specific and will not vary across 
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regions. The only reason that the regions within China have different TFPRs is that 

they have different levels of output and capital distortions. Without the region-specific 

output and capital distortions, regions with a higher TFPQ will use more production 

resources until the TFPRs are equalized for those regions that experience the same 

resource prices within the innovation system. Similar to Hsieh and Klenow (2009), we 

can represent TFPRi in terms of the geometric average of the regional marginal 

revenue products of labor and capital. Specifically, we use equations (8), (9), and (11) 

to show that regional TFPR is, in effect, an indicator of the endured distortions: 

 TFPR𝑖 = TFPR𝑖(𝜏𝑌𝑖 , 𝜏𝐾𝑖) 

∝ [(MRPL𝑖𝑤 )𝛼 (MRPK𝑖𝑅 )1−𝛼]𝛾 ∝ [(1 − 𝜏𝑌𝑖)𝛼 [(1 − 𝜏𝑌𝑖)(1 + 𝜏𝐾𝑖)]1−𝛼]−𝛾
 

( 12 ) 

Because higher outputs and larger capital distortions raise the marginal products 

of capital and labor, region i will exhibit a smaller scale of output than the efficient 

scale if it experiences a large number of distortions.  

Aggregate final innovation output can be derived by simply aggregating the 

individual region’s output production, as in equation (1). Suppose we implicitly define 

the innovation production efficiency TFP of the country as a whole by  

 𝑌 = TFP × 𝐿𝛼 × 𝐾1−𝛼 ( 13 ) 

where 𝐿 =  ∑ 𝐿𝑖𝑀𝑖=1  and 𝐾 =  ∑ 𝐾𝑖𝑀𝑖=1  represent the aggregate values of the labor 

and capital devoted to innovation activities, respectively. Next, by simplifying the 

linear aggregate of the production function in the innovation system, we can show that 

the countrywide innovation production efficiency TFP is represented by 

 TFP = 𝑌𝐿𝛼𝐾1−𝛼 = [∑ (TFPQ𝑖 TFPR̅̅ ̅̅ ̅̅ ̅̅TFPR𝑖) 11−𝛾𝑀𝑖=1 ]1−𝛾
(𝐿𝛼𝐾1−𝛼)1−𝛾  

( 14 ) 

where TFPR̅̅ ̅̅ ̅̅ ̅  is a harmonic average of the average marginal revenue product of 

capital and labor across the regions in China.17  

From equation (14), one can also readily show that the countrywide innovation 

TFP will be that of a CES function aggregated across all of the TFPQi if regional 

revenue productivities (TFPRi) are equalized across China’s regions. In this special 

case,  

                                                      

17 TFPR̅̅ ̅̅ ̅̅ ̅=[∑ (𝑌𝑗𝑌 (1 − 𝜏𝑌𝑗))𝑀𝑗=1 ]−𝛼𝛾 [∑ (𝑌𝑗𝑌 (1−𝜏𝑌𝑗)(1+𝜏𝐾𝑗))𝑀𝑗=1 ]−(1−𝛼)𝛾
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 TFP = �̅� = (∑ 𝐴𝑖 11−𝛾𝑀𝑖=1 )1−𝛾
(𝐿𝛼𝐾1−𝛼)1−𝛾   

( 15 ) 

With (14), we can now measure China’s aggregate innovation production 

efficiency, which we will describe in the next subsection. 

 

2.2. Computation of Misallocation 

To compute innovation efficiency, we adopt the following exogenous parameters: 

First, we set the rental rate of capital to be R=0.23. The rental rate is a combination of 

an interest rate (𝑖) of 3% and a depreciation rate (𝛿) of 20%. In our accounting, we 

adopt full depreciation amortization within five years for any newly bought fixed 

capital; thus, the depreciation rate is set at 20%. The interest rate is set at 3% within 

the sample period that we investigate in this research.18 

[Insert Table 1 Here.] 

Next, we turn to the choice of Lucas span-of-control parameter γ, and the labor 

share parameter α. 19  From past work on estimating the innovation production 

functions, such as Hausman et al. (1984), Crépon and Duguet (1997), and Cincera 

(1997), we know that innovation production is governed by decreasing returns to scale. 

Based on Zhang et al. (2003) and Bai (2013), we choose γ=0.8 because these studies 

show that, in China, the mean output elasticity of innovation with respect to R&D 

inputs is approximately 0.8.20 To determine the labor share parameter, Li (2009) and 

                                                      
18 We understand that this rental rate of capital could be inaccurate, but in terms of production efficiency 
calculation, the derived efficiency measurement does not depend on the true rental rate of capital R. 
Instead, 𝑅  affects only the capital distortion rate that we derive here. This occurs because, from 

equations (16) and (17), the measured capital and output distortion changes proportionally with R. 

However, the derived innovation efficiency depends on the ratio of the measured TFP of the entire 

innovation system relative to the efficient TFP of the entire innovation system. Therefore, the measured 

innovation efficiency will not depend on the chosen rental rate R. 
19 The span-of-control parameter (γ) records the operative returns to scale by labor (L) and fixed capital 
(K). This operative return-to-scale parameter is often referred to as the “span-of-control” parameter, as 
in Lucas (1978), Atkeson and Kehoe (2005) and many other studies. In the current context, our selection 
of γ can be viewed as replacing the elasticity of the substitution measure in Hsieh and Klenow (2009), 
and the gains from fewer distortions are increasing in γ. 
20 Depending on estimation methods, Hausman et al. (1984), Crépon and Duguet (1997), and Cincera 
(1997) show that the measured γ could be different. Hence, for robustness, we have also considered 
alternative values of γ: 0.5 and 0.9. Different choices of γ will affect only the numerical values of the 
measured innovation productivity, not the relative ordering or the trend in productivity. Since our 
primary goal is to document and explain the evolution of the innovation efficiency in China, the actual 
choice of γ should not be crucial. Indeed, our findings are qualitatively similar for different values of γ. 
These additional results are available upon request. 
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Bai (2013) estimate the Chinese innovation production function at the regional level, 

and they find that the labor share in innovation production is approximately 0.6; 

therefore, we set this value accordingly.21 A summary of our parameter configuration 

is provided in Table 1. 

We apply Hsieh and Klenow’s (2009) idea of resource misallocation to compute 

the idiosyncratic distortions in labor and capital adoption costs. Specifically, we can 

compute regional distortions in the labor and capital adoption costs and TFPQs as 

follows: 

Capital Distortion: 𝜏𝐾𝑖 = 1 − 𝛼𝛼 𝑤𝐿𝑖𝑅𝐾𝑖 − 1 ( 16 ) 

Output Distortion: 1 − 𝜏𝑌𝑖 = 1𝛼𝛾 𝑤𝐿𝑖𝑃𝑌𝑖  ( 17 ) TFPQ𝑖: 𝐴𝑖 = 𝑌𝑖[(𝑤𝐿𝑖)𝛼𝐾𝑖1−𝛼]𝛾 ( 18 ) 

The distortion measurement used here is easy to understand because a Cobb-

Douglas innovation production technology is adopted. Equation (16) comes from the 

standard Cobb-Douglas result regarding the relationship between the labor share and 

the capital share. If the ratio of the labor share to the capital share is greater 

than 𝛼/(1 − 𝛼), we can infer that capital distortion exists; equation (17) illustrates 

that if the labor share relative to the total output is smaller than 𝛼𝛾, we have output 

distortion. The TFPQ𝑖 measurement in equation (18) is conceptually similar to the 

TFP in a neoclassical production function. In our database, because we have 

information about the innovation output (patents) 𝑌𝑖  and the values of the total 

research inputs, we can calculate the measures given in equations (16) to (18) across 

China’s regions. Indeed, these measurements of distortion and regional productivities 

are the bases for us to gauge the efficiency loss of the innovation system. 

To define efficiency loss, we first must define what we mean by “efficient 

production.” Because we focus on understanding the efficiency loss associated with 

misallocations, “efficient production” is defined as the output level obtained when 

there are no idiosyncratic distortions across China’s regions. Under this optimal 

scenario, the marginal revenue products of the innovation inputs are equalized across 

the regions within the innovation system in China; thus, 

                                                      
21 For a robustness check, we also considered alternative values of α: 0.5 and 0.7. Our findings are 
very similar to these parameter values. The additional results are available upon request.  
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 𝑇𝐹𝑃𝑅𝑖 = TFPR̅̅ ̅̅ ̅̅ ̅ ( 19 ) 

As a result, from (15) we have 

�̅� = (∑ 𝐴𝑖 11−𝛾𝑀𝑖=1 )1−𝛾
(𝐿𝛼𝐾1−𝛼)1−𝛾  

Accordingly, we can write the ratio of the actual and efficient production levels 

of innovation outputs as22 

 𝑌𝑅 = 𝑌𝑌efficient = [∑ (𝐴𝑖�̅� 𝑇𝐹𝑃𝑅̅̅ ̅̅ ̅̅ ̅̅𝑇𝐹𝑃𝑅𝑖) 11−𝛾𝑀
𝑖=1 ]1−𝛾

 ( 20 ) 

We can see that the ratio YR increases as the dispersion of regional TFPRs 

decreases, and it will achieve its maximum value (=1) when the regional marginal 

payoffs of research inputs are equalized.23 Thus, 𝑌𝑅 may be viewed as a measure of 

innovation efficiency. Later in our empirical section, we will itemize our calculation 

of YR in a figure that demonstrates how this ratio of China’s actual and efficient 

production levels of innovation evolves across the sample period. 

 

3. Data Description 

Our empirical analysis consists of two parts. First, based on our theoretical 

derivation in Section 2, we will measure the extent of the misallocation in China’s 

innovation system. Second, we will discuss the determinants of this misallocation, i.e., 

we will examine the factors that cause a greater distortion in innovation. 

 

3.1. Innovation Input and Output Variables 

To measure the misallocation in innovation, we will need information about both 

innovation inputs and outputs. We obtained this information from the China National 

Statistical Bureau’s China Statistical Yearbook for Science and Technology (CSYST) 

from 1999 to 2013. In this source, there is a one-year lag in the data; thus, the actual 

figures correspond to data from 1998 to 2012. Our analysis covered thirty provincial-

level regions in China, with the lone exception of Tibet (because of the insufficient 

                                                      
22  The subscript “efficient” means the removal of all idiosyncratic barriers or frictions that cause 
disparities in the marginal products of labor and capital. 
23 This result has been shown in Hsieh and Klenow (2009). 
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data in that region).24 

We will consider two types of innovation inputs: R&D capital and labor inputs. 

Both of these inputs are measured in value terms.25 For the values of the R&D labor 

inputs each year, we simply consider the real R&D expenditures that were used for 

personnel during that year;26  for the values of the R&D capital inputs, we follow 

Griliches (1980), Goto and Suzuki (1989), Wu (2006), and Bai (2013) to calculate the 

R&D capital inventory that could have been used as the capital input in that year. More 

specifically, the R&D inventory is calculated using the perpetual inventory method 

with the following equation (21): 

 𝐾𝑖𝑡 = (1 − 𝛿) × 𝐾𝑖(𝑡−1) + 𝐸𝑖𝑡  ( 21 ) 

where 𝐾𝑖𝑡 and 𝐾𝑖(𝑡−1) represent the R&D capital inventories in region i at times t 

and t-1, respectively. As in earlier work, such as Bai (2013), we set 𝛿, which is the 

depreciation rate, as 0.15. In addition, 𝐸𝑖𝑡 denotes the real R&D capital expenditures 

in region i at time t, and we construct the R&D price index to convert the capital 

expenditures into their equivalent 1998 values.27  

To use equation (21), we need to estimate the initial inventory as follows:28 𝐾𝑖,1998 = 𝐸𝑖,1998 /(𝛿 + 𝑔) 

Here, 𝐾𝑖,1998 denotes the initial inventory in 1998, 𝐸𝑖,1998 denotes the initial 

1998 R&D capital expenditure, and g is the average growth rate of real R&D capital 

expenditures between 1998 and 2012. 

We use patent applications as our measure of the innovation output. There are 

                                                      
24 The thirty provincial-level regions include 10 from the East Coast (Beijing, Tianjin, Shanghai, Fujian, 
Guangdong, Hainan, Hebei, Jiangsu, Shandong, and Zhejiang), 6 from the Central Area (Anhui, Henan, 
Hubei, Hunan, Jiangxi, and Shanxi), 4 from the Northeast Area (Liaoning, Heilongjiang, Jilin, and 
Neimenggu), and 10 from the Western Area (Chongqing, Gansu, Guangxi, Guizhou, Ningxia, Qinghai, 
Shaanxi, Sichuan, Xinjiang, and Yunnan). 
25 In CSYST, we have annual information about total R&D expenditures, and we decompose them into 
parts: one that is used for personnel expenditures and one that is used for the current period’s capital 
expenditures. Between 2009 and 2012, we have explicit information about the share of R&D 
expenditures that was used for personnel, so the decomposition is straightforward. However, between 
1998 and 2008, we do not have such information. Thus, we use the share of S&T (science and technology) 
expenditures used for personnel to conduct our decomposition of the total R&D expenditures. 
26 We use the consumer price index (CPI) to calculate the real R&D personnel expenditures. 
27  To construct the R&D price index, we use the equation EPI𝑖𝑡 = 𝛼 × 𝑅𝑀𝑃𝐼𝑖𝑡 + (1 − 𝛼) × 𝐼𝐹𝑃𝐼𝑖𝑡  . 
Here, 𝑅𝑀𝑃𝐼  denotes the raw material purchasing price index, and IFPI denotes the fixed asset 
investment price index. Both price indices are available from the China Statistics Yearbook; α is set to 
be 0.5, as in Wu (2006). 
28 This setup is made under the assumption that the capital-inventory growth rate equals the R&D capital 
growth rate. 
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three categories of patents in the Chinese patent system: inventions, utility models, 

and designs. Invention refers to “new technical solutions proposed for a product, a 

process or the improvement thereof,” and this category is considered to represent most 

of the major technological creations among the three categories. The utility model 

refers to “new technical solutions proposed for the shape and structure of a product, 

or the combination thereof, which are fit for practical use.” Design refers to the 

following: “with respect to a product, new designs of the shape, pattern, or the 

combination thereof, or the combination of the color with shape and pattern, which 

are rich in an aesthetic appeal and are fit for industrial application.”29 Although the 

last two models are more incremental in nature, many firms apply their patents under 

the utility model category instead of the invention category because the former is 

considered more cost effective.30  In this paper, we will include patents under the 

invention and utility model categories as the innovation output, and we will calculate 

the sum of the patent applications under these two categories as our main output 

measure.31 Nevertheless, our results would still hold if we considered invention patent 

applications the only innovation output. 

Finally, because innovations usually take time to be realized, we allow a one-year 

difference between innovation inputs and outputs.32  For example, we assume that 

patent applications in 1999 were determined by R&D capital and labor inputs in 1998. 

However, even if we ignore the time difference, all of our empirical findings hold 

qualitatively. 

 

3.2. Determinants of Misallocation 

The second part of our empirical analysis involves finding the determinants of 

misallocation; note that misallocation results from distortions in the input and output 

markets. Therefore, we hope to identify the factors that will cause greater distortions, 

                                                      
29 These definitions are contained in the Patent Law of the People's Republic of China. 
30 Whereas invention patents provide 20 years of protection compared with 10 years for utility model 
patents, it usually takes 3-5 years for approval of an invention patent. In contrast, approvals often occur 
within 1 year for utility model patents. In addition, annuity payments for granted utility model patents 
are lower. Therefore, if a particular invention has a short life cycle (likely because of the nature of the 
industry), applying for a utility model patent may be more cost effective. 
31 We have also used patent grants as our innovation output measure. Our findings are qualitatively 
similar when using this alternative measure. 
32 In our robustness checks, we also consider different time difference in the innovation input-output 
relationship. Our conclusions remain intact. 
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or equivalently in terms of equation (12), higher TFPR. As discussed in the 

Introduction, different sources of misallocation in goods production have been 

highlighted in the literature. For example, Hsieh and Klenow (2009) consider capital 

and output market distortions; several recent important studies further articulate the 

roles played by capital market imperfections; Jovanovic (2014) analyzes misallocation 

of human capital; Jones (2013) and Uras and Wang (2016) both demonstrate that 

industry characteristics matter. 33 Informed by the literature, we consider factors that 

might cause distortions in these aspects during the innovation process.  

In our baseline model, we first consider the maturity of a region’s financial 

market, as it has implications for capital market imperfections; we define this variable 

as (the log of) the ratio of the outstanding loans to the GDP. We consider the 

development of local transportation infrastructure, which we measure as (the log of) 

the ratio of the total road lengths to the region’s area because we suspect that 

transportation investment might affect the foci of governments’ or firms’ operational 

strategies. We further consider industry shares of SOEs and foreign firms, respectively, 

as we conjecture that the preferential treatments these firms receive might result in 

both capital and output market distortions. We additionally include a variable for the 

ratio of the regional exports to GDP because we believe that exporting firms may also 

be favored. Finally, we control for a catchall variable, the (log of) real GDP per capita, 

to capture a region’s general institutional environment. A variable indicating the (log 

of) regional population size is also included in our regression. 

Later in our robustness checks, we further control for regional human capital 

compositions and industry structures because these features might also affect 

misallocation, as the previously mentioned important papers suggest. Our data sources 

and the definitions for all variables are given in Table 2. 

[Insert Table 2 Here.] 

 

4. Empirical Results 

Our empirical results will be presented in three parts. First, based on equation 

(20), we will calculate the annual efficiency of the innovation system in China during 

our sample period. Next, we will examine how different areas perform in terms of 

                                                      
33 For example, Banerjee and Moll (2010), Midrigan and Xu (2014), Buera et al. (2013), and Moll 
(2014). 
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efficiency and discern whether there are any recognizable trends. Finally, we will 

discuss the determinants of regional differences in efficiency and attempt to identify 

the factors that cause distortions. 

 

4.1. Trends in Misallocation 

Our efficiency measure is based on equation (20) and measures the ratio of the 

actual production level of innovation to the “efficient” production level of innovation. 

The measure will have a larger value if the dispersion of TFPRs is smaller across 

regions or equivalently, if the extents of the distortions are similar across regions. This 

efficiency measure is calculated annually between 1999 and 2012, and the result is 

presented in Figure 1. 

[Insert Figure 1 Here.] 

As seen in Figure 1, during the sample period, our efficiency measure increases 

substantially; it starts from 0.5023 in 1999 and rises to 0.8016 in 2012. To gauge the 

qualitative significance of this improvement, notice that whereas in 1999 

approximately one-half of the efficiency level of innovation was actually realized, in 

2012, approximately 80 percent of the efficiency level of innovation had been attained. 

This improvement points to substantial convergence in the extent of the distortions 

across regions during the sample period.  

From Figure 1, we see that most of the improvement was achieved before 2003 

(the efficiency measure was 0.8034 in 2003). Although there was further improvement 

between 2003 and 2009 (the year the measure peaked at 0.8991), since 2010, there 

was a sign of deterioration in efficiency.  

 

4.2. Differences in Innovation Performance across Areas 

In Figure 1, we observe an overall large improvement in innovation efficiency 

between 1999 and 2012. A natural question that arises is what the regional differences 

in efficiency are and how these differences evolve over time. 

We use Figures 2a and 2b and Table 3 to address this issue. In Figure 2a, we plot 

the annual “demeaned” regional TFPRs for all regions, where a demeaned value is 

calculated by subtracting a region’s TFPR by the TFPR̅̅ ̅̅ ̅̅ ̅ in that year. This demeaning 

procedure allows us to look at the dispersions of TFPRs across years in the same 
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figure.34 To graphically categorize the relative position of each region’s TFPR to the TFPR̅̅ ̅̅ ̅̅ ̅ of that year, we explicitly draw three horizontal lines to define four zones in 

Figure 2a. The middle line represents zero; therefore, if a region's demeaned TFPR 

lies on this line, that region's TFPR equals the TFPR̅̅ ̅̅ ̅̅ ̅ of that particular year. The upper 

and lower lines represent one “across-years” standard deviation above and below the 

yearly TFPR̅̅ ̅̅ ̅̅ ̅, respectively.35 We call the zone below the lower line zone 1, and the 

TFPRs in this zone are farthest below TFPR̅̅ ̅̅ ̅̅ ̅, so zone 1 consists of regions with the 

best innovation efficiency;36 on the other hand, the zone above the upper line is zone 

4, and it consists of TFPRs that are farthest above TFPR̅̅ ̅̅ ̅̅ ̅, so it represents the least 

efficient zone. The middle two zones are divided by the zero line, and we call the 

zones within one standard deviation below and above the middle line zone 2 and zone 

3, respectively. Finally, in Figure 2a, we use different symbols for observations from 

different areas to help us better understand how TFPRs across areas evolve over time. 

[Insert Figure 2 Here.] 

There are several notable patterns in Figure 2a. First, we see that in earlier years, 

i.e., before 2003, many regions' demeaned TFPRs were in zone 1 and zone 4, which 

suggests great divergence in the TFPRs across regions. Moreover, some regions' 

demeaned TFPRs were deep into zone 4 in 1999 and 2000, resulting in especially low 

innovation efficiencies in these two years.37 Second, we observe that after 2003, the 

demeaned TFPRs across regions converged; thus, most observations are found in 

zones 2 and 3. This convergence pattern is clearest between 2006 and 2010, and 2007 

and 2008 are the two years with the fewest (2) regional demeaned TFPRs outside of 

the middle zones.38 Third, after 2010, the regional demeaned TFPRs appear to have 

diverged again, e.g., in 2012, 8 regions had demeaned TFPRs located in zones 1 or 4. 

                                                      
34 As our measure of innovation efficiency is defined separately for each year and this measure is 
inverse to the dispersion of TFPRs (but not the actual levels) in that year, we demean the TFPRs so that 
the average TFPR, TFPR̅̅ ̅̅ ̅̅ ̅, in that year is set to 0. 
35 To calculate this “across-years” standard deviation of demeaned TFPRs, we first demeaned all of the 
regional TFPRs by the TFPR̅̅ ̅̅ ̅̅ ̅ in the corresponding years, and then we calculated the standard deviation 
of these 420 (30 regions× 14 years= 420 observations) demeaned TFPRs. The main reason that we 
consider this “across-years” standard deviation instead of the yearly standard deviations is to highlight 
the convergence of the regional TFPRs throughout the sample period. 
36 Recall that a region’s TFPR is an inverse measure of its innovation efficiency. 
37 One might suspect that these outlier observations in 1999 and 2000 cause the low efficiency in those 
two years. However, when we take out these outlier regions (Guangxi and Zhejiang), we still see lower 
innovation efficiency in the early years, so our conclusion of improving innovation efficiency does not 
change. 
38 For 2009, however, the demeaned TFPRs located in zones 2 and 3 also converge. Thus, the measured 
innovation efficiency is actually the highest in that year. 
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We must assess whether there are specific patterns of TFPRs across different 

areas in China. A first hint is found in Figure 2b, in which we explicitly examine the 

distribution of demeaned TFPRs among regions in 1999 and 2012. From Figure 2b, 

we see improvement in innovation efficiency for the East Coast, Central Area, and 

Northeast Area, as in these areas, a higher percentage of regional TFPRs are in zones 

1 and 2 in 2012 than in 1999. However, the same cannot be said for the Western Area, 

where, compared with the situation in 1999, more regional TFPRs are in the inefficient 

zones 3 and 4 in 2012. For a more complete picture of the evolution of TFPRs, in 

Table 3, we distinguish among three time spans (1999-2003, 2004-2008, 2009-2012) 

and observe how each area's TFPRs evolve across time. From the top panel of Table 

3, which summarizes the distribution of the demeaned TFPRs for the four main 

economic areas (the East Coast, Central Area, Northeast Area, and Western Area) for 

the entire sample period, we observe that there are great differences in the TFPR 

distributions across these areas.39  Although the regions in Central and Northeast 

China have demeaned TFPRs that are located mostly in the middle zones, the 

demeaned TFPRs of the regions on the East Coast and in Western China are more 

dispersed. For the regions on the East Coast, 3% of their yearly TFPRs are one 

standard deviation below the yearly TFPR̅̅ ̅̅ ̅̅ ̅ (zone 1, which is the most efficient), and 

18% of their TFPRs are one standard deviation above the yearly  TFPR̅̅ ̅̅ ̅̅ ̅  (zone 4, 

which is the least efficient); for the regions in Western China, 9% of their demeaned 

TFPRs are located in zone 1, but 20% are located in zone 4. 

[Insert Table 3 Here.] 

When we compare the TFPRs in different time periods, we find interesting 

evolution patterns across areas. For the regions on the East Coast, we find that their 

innovation efficiency improves over time. Whereas in the early years (1999-2003) 

28% of these regions’ demeaned TFPRs were in zone 4, in the most recent period 

(2009-2012), only 9% of the demeaned TFPRs were in this least-efficient zone. 

However, whereas in 1999-2003 40% of their demeaned TFPRs were in zone 1 or 2, 

in 2009-2012, this figure jumped to 51%. For the regions in the Northeast Area, the 

improvement in their innovation efficiency is even more evident: in 1999-2003, all of 

their demeaned TFPRs were in zones 3 or 4; in 2004-2008, the demeaned TFPRs were 

                                                      
39 The definitions of the economic areas are given in footnote 20. 
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all found in the middle zones; and by 2009-2012, 81% of the TFPRs were in the most 

efficient zones 1 or 2, and 19% were in zone 1. 

Unfortunately, the regions in the Central and Western Areas do not exhibit this 

improving trend in their innovation efficiencies. For the regions in the Central Area, 

although comparing the distributions in 1999-2003 and those in 2004-2008 suggests 

some improvement in efficiency because more demeaned TFPRs were in zone 2 in 

2004-2008, in later years (2009-2012), a greater portion of the demeaned TFPRs fell 

into zone 4.40 For the regions in the Western Areas, we find many dispersed demeaned 

TFPRs in 1999-2003, with 14% in zone 1 and 26% in zone 4; in 2003-2008, there 

seems to have been some convergence in the innovation efficiency because 80% of 

the demeaned TFPRs were in the middle zones. However, in 2009-2012, signs of 

divergence returned, and 19% of the demeaned TFPRs were in zone 4, which is an 

increase from 14% in 2003-2008. 

As described earlier, the differences in the levels of the TFPRs across regions 

arise out of various levels of regional distortions, and these distortions may be from 

the input and output markets. In the next subsection, we will use regression analysis 

to detect the factors that induce the pattern observed above. 

 

4.3. Determinants of Innovation Efficiency 

Under our framework, regional differences in innovation efficiency are the 

result of regional discrepancies in the input and output markets’ distortions. To 

empirically explore the critical factors, we conduct the following regression analysis: 

   ln (TFPR𝑗𝑡TFPRt̅̅ ̅̅ ̅̅ ̅̅ ̅ ) = 𝛼 + 𝛽𝐼𝑁𝐹𝑅𝐴𝑗,𝑡−1 + 𝛾𝑃𝑇𝑗,𝑡−1 + 𝜃𝑡+ 𝜃𝑗 + 𝜀𝑗𝑡 

( 22 ) 

  

Here, the dependent variable is ln (TFPRjt / TFPR̅̅ ̅̅ ̅̅ ̅𝑡); it measures the deviation 

of region j’s TFPR in year t from the mean TFPR in that year. A lower value in the 

dependent variable suggests that region j faces less distortion. Our explanatory 

variables include 𝐼𝑁𝐹𝑅𝐴𝑗,𝑡−1, which denotes a vector of variables related with the 

infrastructure in year t-1, including the maturity of the financial market (lnFEF), the 

                                                      
40 However, for the Central Area, innovation efficiency in 2009-2012 is still better than that in 1999-
2003, as fewer regional demeaned TFPRs were in the least efficient zone 4. 
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development of the transportation infrastructure (lnLTRANS), the real GDP per capita 

(lnRGDPpc), and the regional population size (lnPOP). Here, we use one-year lag 

values of the explanatory variables because when we calculate the yearly TFPRs, the 

innovation inputs (R&D capital and labor) are also one-year lag values. In addition, 𝑃𝑇𝑗,𝑡−1 denotes a vector of variables related to preferential policy treatments, namely, 

the share of the regional industry output produced by SOEs (SOE_share), the share of 

the regional industry output produced by foreign-owned firms (FIE_share), and the 

ratio of the regional exports to the GDP (exp_ratio).41  We also include time-fixed 

effects 𝜃𝑡  to capture the unobservable macro environment, which may affect the 

distribution of the TFPRs in each year. Furthermore, because our data have a panel 

structure, 𝜃𝑗   captures the unobserved regional effects, and we use fixed effects 

models to allow for unrestricted correlations between the unobserved effects and the 

explanatory variables. Finally, 𝜀𝑗𝑡 denotes the error term. Summary statistics for the 

variables used in our regression analyses are given in Table 4. 

[Insert Table 4 Here.] 

Our results are given in Table 5. Observe from the first column of Table 5 that 

among the infrastructure variables, when the regional financial market is more 

matured, the region’s TFPR is lower. This pattern suggests that a more developed 

financial market may help reduce distortions and enhance innovation efficiency. With 

respect to the two variables, i.e., the log of the real GDP per capita (lnRGDPpc) and 

the log of the regional population size (lnPOP), we do not find any significant effects.  

One might expect a denser transportation system to help allocate innovation 

resources more efficiently, but interestingly, we actually find that development of the 

transportation infrastructure is associated with higher TFPRs, though marginally 

insignificantly.42 A potential reason for our finding may simply be that, for innovation 

activities, unlike for production activities – whose coordination may involve many 

physical movements – allocations of R&D inputs may not need many physical 

interactions. For example, we seldom hear of the need to move R&D equipment or 

“intermediate goods”. Even for R&D personnel, although a better transportation 

system may help people interact, R&D personnel may not travel often (if they do travel, 

instead of traveling within provinces, they often travel across provinces or even 

                                                      
41 The definitions of the variables are given in Table 2. 
42 With a p-value of 0.11. 
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countries). Note that the need for physical transportation is currently even less, as 

many communications can be conducted over the Internet. All of these circumstances 

suggest that the development of the regional transportation infrastructure may not 

augment the efficient allocation of innovation resources. Moreover, when the 

government devotes excessive resources to the transportation infrastructure, there may 

be a distortive effect on the innovation investment. There may be two reasons for this 

effect: first, given that government budgets are not infinite, investing more in 

transportation implies investing less in innovation; second, transportation 

infrastructure may be crucial for production activities. Thus, if a region devotes more 

resources to transportation, it will also encourage firms to expand their production 

activities and may crowd out their innovation endeavors.43 We are interested in seeing 

if the effects of transportation infrastructure differ across areas, and from column 2 of 

Table 5, we find that, while the effect is basically null for the more developed East 

Coast and Northeastern Area (EN_areas), the development of transportation 

significantly negatively affects innovation efficiency in the Central and Western Areas 

(CW_areas). Though far from conclusive, this finding hints at the potential crowd-out 

effect of massive expansion of transportation investments on innovation in these less 

developed areas during our study’s time frame.  

[Insert Table 5 Here.] 

With regard to the variables that are related to preferential policy treatments, we 

find that SOEs and FIEs’ shares of regional industry output are detrimental to regional 

innovation efficiency. At first, these results may seem surprising because in China, 

relative to firms of other ownership types, SOEs and FIEs usually have better access 

to credit or enjoy tax deductions. Consequently, these entities’ borrowing costs are 

relatively low, and regions with higher shares of SOEs and FIEs should have lower 

TFPRs (or equivalently, higher innovation efficiencies). However, there are also 

reasons to believe that this scenario may not be accurate. For example, whereas SOEs 

have better access to credits, these credits do not necessarily need to be used for 

innovation activities. Because the fruits of innovation investment will be realized only 

                                                      
43 Although we argue that infrastructure investment negatively affects innovation activities, in the long 
run it is still possible that these investments will promote innovation efficiency if infrastructure induces 
more production, which with a larger scale or lengthier experience will be conducive to innovation. 
However, to test this conjecture, one would need data for a longer period of time for this potential effect 
to be realized.  
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after several years, it may not be in an SOE’s best interest to channel these easy credits 

to risky innovation activities (relative to more predictable production activities).44 

Similarly, although FIEs are often considered more innovation-oriented than SOEs, 

with easy credits, they may not consider R&D a priority. In addition, FIEs are not 

necessarily more productive than domestic private firms. For example, Dai et al. (2012) 

and Yu (2015) have found that firms that conduct processing trade, which are mostly 

FIEs, are less productive, less capital-intensive, and more unskilled than non-

exporting firms.45  Their focus on low-quality goods suggests that some FIEs may 

place less emphasis on innovation activities; moreover, the preferential treatments that 

they receive may crowd out domestic private firms’ access to innovation funding. 

Furthermore, sometimes FIEs are reluctant to file patents in China because of concerns 

about disclosures and potential leakages of their technology. This reluctance would 

result in an underestimation of the innovation productivities of regions with many 

FIEs. Finally, we do not find the ratio of regional exports to GDP to be significantly 

correlated with TFPRs. 

Our use of a fixed effects model controls for any time-invariant unobserved 

characteristics that might bias our estimation, but there may also be time-varying 

regional characteristics that have been omitted and may cause endogeneity problems. 

For example, given the data constraints, we have not distinguished between the patents’ 

industry categories. Therefore, if a region is more concentrated in industries that are 

more likely to issue patents (e.g., IT industries or some highly skilled service 

industries), then its measured innovation efficiency may be higher. Thus, we construct 

variables that indicate the regional industry structures and calculate the regional output 

shares of the following sectors: the primary sector, the labor-intensive manufacturing 

sector, the capital-intensive manufacturing sector, the high-tech manufacturing sector, 

the skill-intensive service sector, and the other service sector. In addition, the regional 

differences in the quality of the labor force may also result in different regional 

innovation efficiencies. For instance, if it is difficult for workers to migrate in China 

and if a region lacks an abundant supply of high-skilled workers, then this dearth may 

become a source of regional distortions. To account for this problem, we calculate the 

                                                      
44 It is well documented that SOEs often must comply with the local government’s economic growth 
priorities, which often involve achieving performance targets based on short-run GDP-related figures. 
45 In fact, Lu (2010) and Dai et al. (2012) both find that in China, exporters (among whom FIEs play a 
crucial role) have lower average productivity than non-exporters. Dai et al. (2012) suggest that this 
statistic results from the unexceptional performance of processing trade exporters. 
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regional population shares of the following educational levels: elementary school and 

below, middle school, high school, and tertiary schools. Our regression results with 

these industry structure and human capital composition controls are shown in column 

3 of Table 5. We do not find a substantial difference from our findings in column 1. 

We are slightly surprised that a region’s overall institutional environment, which 

is measured by its real GDP per capita, is not significantly correlated with the values 

of the TFPRs. One possibility is that inasmuch as R&D represents a very specific and 

small portion of economic activities, a catchall variable such as real GDP per capita 

does not determine the unobserved institutional factors that may affect distortions in 

innovation activities. To resolve this conundrum, in column 4 of Table 5, we consider 

regional R&D intensity an additional variable and use it to perform a supplementary 

measure of the innovation-related regional institutional environment. We are 

interested in knowing whether a region’s involvement or experience in innovation 

improves its efficiency. We find a marginally significantly negative coefficient, 

implying that, when a region is more experienced in innovation activities, it also 

experiences less distortion. Nevertheless, after comparing the coefficients of the other 

main explanatory variables with those in column 1, we do not find many changes in 

either the signs or the magnitudes. 

Finally, in column 5, we add interactions of the maturity of the regional financial 

market (lnFEF) with industry shares of the SOE’s (SOE_share) and the FIE’s 

(FIE_share) outputs, respectively, in our regression model. We find that the interaction 

of financial market maturity and the SOE’s share is significantly positively associated 

with a region’s TFPR, suggesting that deeper SOE involvement will dampen the 

positive effect of a matured financial market. However, we do not find a greater FIE 

share to exert a negative effect on the effectiveness of financial markets in enhancing 

efficiency. 

 

Robustness Checks 

We conduct a battery of robustness checks, and the results are presented in Table 

6. For ease of comparison, we put our baseline result (column 1 of Table 5) in the first 

column of Table 6. When calculating TFPRs, we use the sum of the invention and 

utility model patents as our measure of the innovation output. Some may argue that 

only invention patents should be considered innovation output because they represent 
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the most substantial improvement in technology. However, although invention patents 

are by definition the most prestigious type of patents and are given the longest 

protection time (20 years), it usually takes 3-5 years for approval, and they are more 

expensive to maintain. As a result, many businesses apply for the more cost-effective 

utility model patents. 46  Furthermore, at least in earlier years, when China’s 

capabilities were still catching up, many technological improvements were relatively 

minor and were captured only by utility model patents. Thus, we believe that the sum 

of these two types of patents should be the more appropriate measure of innovation 

output. Nevertheless, in column 2, we first recalculate the TFPRs using invention 

patents only and redo our regression analysis. It is clear that our results in columns 1 

and 2 of Table 6 are very similar, which suggests that using an alternative measure of 

innovation output does not alter our conclusions. 

Another issue is the gestation lag (time to maturity) in regard to the timing of 

R&D investment and the realization of innovation output. In our setup, we assume this 

to be one year, but one might expect it to be longer. In columns 3 and 4 of Table 6, we 

assume the time difference to be 2 and 3 years, respectively, and we conduct our 

analyses. Again, our findings are qualitatively similar to what we see in column 1. 

We use the number of patent applications as our preferred measure of innovation 

output because, while the timing of an application can be controlled by its inventors, 

the time of its approval cannot. However, an application for a patent does not 

necessarily imply that a patent will be granted, so our choice of output could be a 

source of bias if regions’ patent approval rates are systematically different. Therefore, 

in columns 5 and 6, we show the results when using patent grants as the measure of 

innovation output. In column 5, we still assume the time difference between 

innovation inputs and output to be one year, and we see that the results are very similar 

in columns 1 and 5, though the coefficient on the maturity of the financial market 

becomes insignificant. We suspect that this might be due to the approval time issue we 

described earlier, so in column 6, we lengthen the time difference between inputs and 

output to three years. We find the effect to be statistically significant, suggesting that 

                                                      
46 For example, China’s IPR SME Helpdesk, which is an EU-funded organization, suggests that 
European SMEs use utility model patents as part of their IP strategies. http://www.china-
iprhelpdesk.eu/sites/all/docs/publications/China_IPR_Guide-
Guide_to_Patent_Protection_in_China_EN-2013.pdf. Furthermore, experience suggests that utility 
model patents are also enforced. For instance, a Chinese company, the Chint Group, was awarded 
approximately US $45 million (though it later settled for $23 million) in damages for the alleged 
infringement of its utility model patent protecting a miniature circuit breaker (Stembridge, 2010). 

http://www.china-iprhelpdesk.eu/sites/all/docs/publications/China_IPR_Guide-Guide_to_Patent_Protection_in_China_EN-2013.pdf
http://www.china-iprhelpdesk.eu/sites/all/docs/publications/China_IPR_Guide-Guide_to_Patent_Protection_in_China_EN-2013.pdf
http://www.china-iprhelpdesk.eu/sites/all/docs/publications/China_IPR_Guide-Guide_to_Patent_Protection_in_China_EN-2013.pdf
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the uncertain time to approval could indeed be a reason for our finding. 

 

5. Concluding Remarks 

In this paper, using Hsieh and Klenow’s (2009) insights into misallocation, we 

calculate a theory-based measure of innovation efficiency in China for 1999-2012. 

Overall, our measure of innovation efficiency considerably improved during the 

sampling period, suggesting substantial convergence in the extent of the distortions 

across regions. However, a more detailed analysis suggests that whereas innovation 

efficiency improved between 1999 and 2009, beginning in 2010, our efficiency 

measure modestly decreased for three consecutive years. We probe the potential 

factors that correlate with innovation efficiency and we find that a matured financial 

market has a beneficial effect. However, extensive, government-related development 

of the transportation infrastructure negatively correlates with innovation efficiency. 

SOEs and FIEs’ output shares of local production are also detrimental to innovation 

efficiency. The hindering effect of SOEs and FIEs on innovation is first proposed by 

this paper.  

We have conducted the first empirical analysis of misallocation in innovation 

activities within China, and following the insightful exercise by Hsieh and Klenow 

(2009), a natural extension of this paper is to conduct a cross-country comparison and 

quantify the potential improvement in innovation productivity that can be achieved 

should the distortions be removed. However, although performing such comparisons 

is conceptually possible, some major data hurdles must be overcome before one can 

successfully implement this analysis. In particular, while we use patent counts as our 

measure of innovation output, it is generally difficult to compare patent statistics 

across countries. This difficulty arises because the technology sophistication 

requirements for new patents and the patenting behaviors of innovators could vary 

considerably across nations, resulting in substantial heterogeneity in patent values and 

quality across patent offices. Finding a method to align this diverse patent information 

will be a critical first step for conducting cross-country comparisons. 

As in the existing innovation literature, we investigate innovation efficiencies in 

China at the regional level to acknowledge the crucial roles played by regional 

institutions, such as local governments and financial sectors. Alternatively, one may 

want to adopt a setup that considers innovation production at the plant level, as has 
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been done in discussions of goods production. However, this process calls for plant- 

or firm-level data on both innovation inputs and outputs. Although our current analysis 

is carried out at the regional level due to data constraints, we provide a framework that 

may be used for more detailed policy analyses once more disaggregated datasets 

become available. 
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Figures and Tables 

 

Figure 1 Trends in Chinese Innovation Efficiency (1999-2012) 

 

Note: The efficiency measure is calculated based on equation (20), and the 
parameters we use are given in Table 1. 
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Figure 2a Distribution of Regional Demeaned TFPRs (1999-2012) 

 

Note: Regional demeaned TFPRs are calculated by subtracting a region’s TFPR by 
the TFPR̅̅ ̅̅ ̅̅ ̅ in that year. 
 

Figure 2b Distribution of Demeaned TFPRs across Areas (1999 and 2012) 
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Table 1: Parameters Used in Calibrations 

 α 

R=δ + i γ δ i 
Parameter values  0.60 0.20 0.03 0.8  

 

 

Table 2 Variable Definitions and Data Sources 

Variable Description Definition Data Source 

Innovation inputs and output variables 

Innovation 
output: 

Patent applications 

(invention patents + utility 
model patents) applications in 
year t 

China Statistical 
Yearbook for Science 
and Technology 
(CSYST) 1999-2012 

R&D labor input Share of R&D expenditures used 
in personnel in year t-1 

CSYST 1998-2011 

R&D capital input 
R&D capital inventory in year t-
1 calculated using a perpetual 
inventory method 

CSYST 1998-2011 

Determinants of misallocation 

Dependent 
variable: 

Deviation of region j’s TFPR 
from the mean of TFPR in 
year t, lnTFPR_ratio 

ln (TFPR𝑗𝑡TFPR𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ ) 
Calculated from 
equation (22) 

Explanatory 
variable: 

Maturity of the financial 
market, lnFEF 

(Log of) Outstanding Loan/GDP 
in year t-1 

Almanac of China's 
Finance and Banking 
1998-2011 for 
outstanding loans; China 
Economic & Industry 
Data Database (CEIC) 
for GDP 

Development of 
transportation infrastructure, 
lnLTRANS 

(Log of) road length/region area 
in year t-1 

Year Book of China 
Transportation & 
Communications 1998-
2012 

Real GDP per capita, 
lnRGDPpc 

(Log of) Real GDP/population in 
year t-1 

CEIC 

Population size, lnPOP (Log of) population in year t-1 CEIC 

Industry output share by 
state-owned enterprises 
(SOEs), SOE_share 

Share of industry output by 
SOEs in year t-1 

CEIC 

Industry output share by 
foreign invested enterprises 
(FIEs), FIE_share 

Share of industry output by FIEs 
in year t-1 

CEIC 
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Ratio of exports and GDP, 
exp_ratio 

(Log of) exports/GDP in year t-1 
CSY for exports; CEIC 
for GDP 

Ratio of R&D expenditure 
and GDP, RD_ratio 

R&D expenditures/GDP in year 
t-1 

CEIC 

Industry composition 

Output shares of the following 
sectors: primary, labor-intensive 
manufacturing, capital-intensive 
manufacturing, high-tech 
manufacturing, skill-intensive 
service, and other service in year 
t-1 

Statistical yearbooks for 
each region 1998-2011 

Human capital composition 

Population shares for the 
following education levels: 
elementary school and below, 
middle-school, high school, and 
tertiary school in year t-1 

Statistical yearbooks for 
each region 1998-2011 
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Table 3 Distribution of Demeaned TFPRs across Areas 

All years (1999-2012) 

 East Coast Central Northeast West Entire China 

Zone 1 4 (3%) 0 (0%) 3 (5%) 13 (9%) 20 (5%) 

Zone 2 55 (39%) 38 (45%) 18 (32%) 47 (34%) 158 (38%) 

Zone 3 56 (40%) 36 (43%) 29 (52%) 52 (37%) 173 (41%) 

Zone 4 25 (18%) 10 (12%) 6 (11%) 28 (20%) 69 (16%) 

Total 140 (100%) 84 (100%) 56 (100%) 140 (100%) 420 (100%) 

Years 1999-2003 

 East Coast Central Northeast West Entire China 

Zone 1 3 (6%) 0 (0%) 0 (0%) 7 (14%) 10 (7%) 

Zone 2 17 (34%) 11 (37%) 0 (0%) 12 (24%) 40 (27%) 

Zone 3 16 (32%) 13 (43%) 14 (70%) 18 (36%) 61 (41%) 

Zone 4 14 (28%) 6 (20%) 6 (30%) 13 (26%) 39 (26%) 

Total 50 (100%) 30 (100%) 20 (100%) 50 (100%) 150 (100%) 

Years 2004-2008 

 East Coast Central Northeast West Entire China 

Zone 1 0 (0%) 0 (0%) 0 (0%) 3 (6%) 3 (7%) 

Zone 2 19 (38%) 15 (50%) 8 (40%) 20 (40%) 62 (47%) 

Zone 3 24 (48%) 14 (47%) 12 (60%) 20 (40%) 70 (39%) 

Zone 4 7 (14%) 1 (3%) 0 (0%) 7 (14%) 15 (7%) 

Total 50 (100%) 30 (100%) 20 (100%) 50 (100%) 150 (100%) 

Years 2009-2012 

 East Coast Central Northeast West Entire China 

Zone 1 1 (3%) 0 (0%) 3 (19%) 3 (8%) 7 (6%) 

Zone 2 19 (48%) 12 (50%) 10 (62%) 15 (38%) 56 (47%) 

Zone 3 16 (40%) 9 (38%) 3 (19%) 14 (35%) 42 (35%) 

Zone 4 4 (9%) 3 (12%) 0 (0%) 8 (19%) 15 (12%) 

Total 40 (100%) 24 (100%) 16 (100%) 40 (100%) 120 (100%) 

Note: The values within each cell are the frequency (outside the parentheses) and the 
share (within the parentheses) of the regional demeaned TFPRs located in a 
particular zone for the area during a specific time period. 
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Table 4 Summary Statistics 

Variable Name Obs. Mean 
Standard 
Deviation 

Min. Max. 

lnTFPR_ratio 390 0.038 0.322 -0.884 1.159 

lnFEF 390 0.050 1.585 -9.348 2.587 

lnLTRANS 390 2.450 0.933 -0.030 4.463 

lnRGDPpc 390 -2.018 0.681 -3.698 -0.403 

lnPOP 390 8.128 0.770 6.234 9.260 

SOE_share 390 0.500 0.208 0.107 0.899 

FIE_share 390 0.135 0.121 0.002 0.540 

exp_ratio 390 0.160 0.196 0.002 0.917 

RD_ratio 390 0.011 0.010 0.001 0.058 

Industry Composition      

Primary 363a 0.185 0.079 0.017 0.396 

Labor-intensive manufacturing 363a 0.072 0.033 0.013 0.170 

Capital-intensive manufacturing 363a 0.107 0.045 0.016 0.240 

High-tech manufacturing 363a 0.127 0.065 0.018 0.265 

Skill-intensive service 390 0.146 0.039 0.079 0.300 

Other service 363a 0.360 0.050 0.256 0.589 

Human capital composition      

Elementary school and below 390 0.422 0.114 0.124 0.720 

Middle school 390 0.373 0.060 0.205 0.499 

High school 390 0.134 0.043 0.036 0.290 

Tertiary school 390 0.071 0.050 0.009 0.339 

Note a. For some regions, there are missing values in the industry shares for some 
years. 
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Table 5 Determinants of Regional Distortions 

 

 

Note: 

The 

standard errors are in parentheses. *** <0.01, **<0.05, *<0.1. 

Dependent Variable: 

ln_TFPRratio 

(1) 

Baseline Model 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

lnFEF -0.0328** -0.0329*** -0.0261** -0.0297** -0.106*** 

 (0.0123) (0.0114) (0.0123) (0.0127) (0.0315) 
lnLTRANS 0.319  0.346** 0.421** 0.341* 

 (0.193)  (0.154) (0.174) (0.189) 
lnLTRANS*EN_areas  0.00601    

  (0.334)    

lnLTRANS*CW_areas  0.422**    

  (0.163)    

SOE_share 1.316*** 1.395*** 1.441*** 1.432*** 1.342*** 

 (0.397) (0.370) (0.362) (0.369) (0.398) 
FIE_share 1.311*** 1.494*** 1.493*** 1.238*** 1.337*** 

 (0.329) (0.314) (0.385) (0.321) (0.360) 
exp_ratio 0.0790 0.326 -0.0526 0.406 0.0315 

 (0.402) (0.390) (0.318) (0.339) (0.403) 
lnRGDPpc -0.301 -0.174 -0.379 -0.372 -0.304 

 (0.565) (0.499) (0.539) (0.506) (0.572) 
lnPOP -1.221 -0.684 -2.241*** -0.914 -1.258 

 (0.760) (0.724) (0.611) (0.787) (0.783) 
RD_ratio    -29.07*  

    (16.35)  

lnFEF*SOE_share     0.0807* 

     (0.0451) 
lnFEF*FIE_share     0.561 

     (0.435) 
Observations 390 390 363 390 390 

Ind. Composition Vlbs.  No No Yes No No 

Human Capital Vlbs No No Yes No No 

Year-Fixed Effects Yes Yes Yes Yes Yes 

Patent Types invention + UM invention + UM invention + UM invention + UM invention + UM 

Model Type Fixed Effects Fixed Effects Fixed Effects Fixed Effects Fixed Effects 
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Table 6 Robustness Checks 

Dependent Variable: 

ln_TFPRratio 

(1) 

Baseline Model 

(2) 

Invention Only 

(3) 

Lag 2 years 

(4) 

Lag 3 years 

(5) 

Grant-Lag 1 year 

(6) 

Grant-Lag 3 years 

lnFEF -0.0328** -0.0293*** -0.0289** -0.0254* -0.0248 -0.0280* 

 (0.0123) (0.00544) (0.0138) (0.0139) (0.0161) (0.0158) 
lnLTRANS 0.319 0.298 0.359* 0.334* 0.293 0.446*** 

 (0.193) (0.217) (0.192) (0.190) (0.175) (0.159) 
SOE_share 1.316*** 1.407*** 1.110** 0.864* 0.966*** 0.811** 

 (0.397) (0.463) (0.420) (0.453) (0.337) (0.350) 
FIE_share 1.311*** 1.427*** 1.140*** 0.844** 1.413*** 1.363*** 

 (0.329) (0.416) (0.333) (0.373) (0.345) (0.417) 
exp_ratio 0.0790 0.370 -0.0846 -0.269 -0.00819 -0.429 

 (0.402) (0.452) (0.417) (0.447) (0.402) (0.380) 
lnRGDPpc -0.301 -0.141 -0.376 -0.453 -0.589 -0.632 

 (0.565) (0.587) (0.556) (0.568) (0.509) (0.475) 
lnPOP -1.221 -1.682* -1.270* -1.337* -0.763 -0.901 

 (0.760) (0.884) (0.738) (0.728) (0.658) (0.615) 
Year-Fixed Effects Yes Yes Yes Yes Yes Yes 

Patent Types invention + UM invention invention + UM invention + UM invention + UM invention + UM 

Model Type Fixed Effects Fixed Effects Fixed Effects Fixed Effects Fixed Effects Fixed Effects 

Note: The standard errors are in parentheses. *** <0.01, **<0.05, *<0.1.  
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Appendix 

 

Table A1 Sector Classification 

Primary Sector 
Agriculture, Forestry, Animal Husbandry and Fisheries 

Mining and Washing of Coal 
Extraction of Petroleum and Natural Gas 

Mining and Processing of Ferrous Metal Ores 

Mining and Processing of Non-Ferrous Metal Ores 

Mining and Processing of Nonmetal Ores 

Mining of Other Ores 

Labor-Intensive Manufacturing Sector 
Processing of Food from Agriculture Products 

Manufacture of Foods 

Manufacture of Beverages 

Manufacture of Tobacco 

Manufacture of Textile 

Manufacture of Textile Wearing Apparel, Footwear and Caps 

Manufacture of Leather, Furs, Feather (Down) and Related Products 

Processing of Timber, Manufacture of Wood, Bamboo, Rattan, Palm 
and Straw Products 

Manufacture of Furniture 

Manufacture of Paper and Paper Products 

Printing, Reproduction of Recording Media 

Manufacture of Articles for Culture, Education and Sports Activities 

Capital-Intensive Manufacturing Sector 
Processing of Petroleum, Coking, Processing of Nuclear Fuel 
Manufacture of Rubber 
Manufacture of Plastics 

Manufacture of Non-Metallic Mineral Products 

Smelting and Pressing of Ferrous Metals 

Smelting and Pressing of Non-Ferrous Metals 

Manufacture of Metal Products 

High-Tech Manufacturing Sector 
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Manufacture of Raw Chemical Materials and Chemical Products 

Manufacture of Medicines 

Manufacture of Chemical Fibers 

Manufacture of General Purpose Machinery 

Manufacture of Special Purpose Machinery 

Manufacture of Transport Equipment 
Manufacture of Electrical Machinery and Equipment 
Manufacture of Communication Equipment, Computers and Other 
Electronic Equipment 
Manufacture of Measuring Instruments and Machinery for Culture 
Activity and Office Work 

Skill-Intensive Service Sector 
Transport, Storage, and Post 
Financial Intermediation 

Real Estate 

Other Service Sectors 

Production and Distribution of Electric Power and Heat Power 
Production and Distribution of Gas 

Production and Distribution of Water 
Wholesale and Retail Trades 

Retail Trades 

Hotels and Catering Services 

Real Estate 

Construction 

 


