
Munich Personal RePEc Archive

Placebo Tests for Synthetic Controls

Ferman, Bruno and Pinto, Cristine

Sao Paulo School of Economics - FGV

1 April 2017

Online at https://mpra.ub.uni-muenchen.de/78079/

MPRA Paper No. 78079, posted 03 Apr 2017 11:58 UTC



Placebo Tests for Synthetic Controls∗

Bruno Ferman
†

Cristine Pinto
‡

Sao Paulo School of Economics - FGV

First Draft: March, 2017

Please click here for the most recent version

Abstract

The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment
effects in comparative case studies. An important feature of the SC method is the inferential procedures
based on placebo studies, suggested in Abadie et al. (2010). In this paper, we evaluate the statistical
properties of these inferential techniques. We first show that the graphical analysis with placebos can be
misleading, as placebo runs with lower expected squared prediction errors would still be considered in the
analysis. Then we show that a test based on the the post/pre-intervention mean squared prediction error, as
suggested in Abadie et al. (2010), ameliorates this problem. However, we show that such test can still have
some size distortions, even if we consider a case in which the test statistic has the same marginal distribution
for all placebo runs. Finally, we show that the fact that the SC weights are estimated can lead to important
additional size distortions.
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1 Introduction

In a series of influential papers, Abadie and Gardeazabal (2003), Abadie et al. (2010), and Abadie et al. (2015)

proposed the Synthetic Control (SC) method as an alternative to estimate treatment effects in comparative

case studies when there is only one treated unit. The main idea of the SC method is to use the pre-treatment

periods to estimate weights such that a weighted average of the control units reconstructs the pre-treatment

outcomes of the treated unit. Then they use these weights to compute the counterfactual of the treated

unit in case it were not treated. According to Athey and Imbens (2016), “the simplicity of the idea, and the

obvious improvement over the standard methods, have made this a widely used method in the short period

of time since its inception”. An important feature of the SC method is the inferential procedure based on

placebo studies, suggested in Abadie et al. (2010).

In this paper, we consider the statistical properties of the inferential techniques proposed in Abadie et

al. (2010). In the absence of random assignment, Abadie et al. (2010) and Abadie et al. (2015) interpret

the p-value from their placebo tests as “the probability of obtaining an estimate at least as large as the one

obtained for the unit representing the case of interest when the intervention is reassigned at random in the

data set” (Abadie et al. (2015), page 500). While we agree this is a useful measure, it is important to

evaluate the statistical properties of such tests. Analyzing the SC method in a linear factor model setting as

the one considered in Ferman and Pinto (2016b), we derive the asymptotic distribution of the test statistics

used in these placebo tests. Moreover, we evaluate whether such tests satisfy the conditions for the theory of

randomization inference under an approximate symmetry assumption, developed in in Canay et al. (2014).

We first show that the graphical analysis proposed in Abadie et al. (2010) or a placebo test using the post-

treatment mean squared prediction error (MSPE) as test statistic might lead to important size distortions,

as the distribution of the post-treatment prediction errors for a given permutation might depend on, for

example, the variance of the transitory shocks or the concentration of the SC weights. Such distortions can

arise whether or not the SC estimator is asymptotically unbiased.1 We also note that the strategy suggested

in Abadie et al. (2010) of excluding placebos with a poor pre-treatment fit from the graphical analysis can

be misleading as, under this strategy, placebos with a better pre-treatment fit relative to the treated unit

would still be considered. Since placebos with a lower pre-treatment MSPE would tend to have a less volatile

post-intervention prediction error, this may lead researchers to over-estate the significancy of their results.

We recommend a slight modification in the graphical analysis to take this distortion into account.

1See Ferman and Pinto (2016b) for conditions under which the SC estimator is asymptotically unbiased.

2



Then we show that a placebo test using the ratio of post/pre-treatment MSPE as test statistic, also

suggested in Abadie et al. (2010), can ameliorate this problem. If the SC estimator is asymptotically unbiased,

then, under some conditions, the test statistics will have the same asymptotic (marginal) distribution for

all permutations.2 However, even under such conditions, we show that it is not possible to guarantee that

the test is asymptotically valid, as the test statistics are generally not based on functions of the data that

exhibit approximate symmetry, as would be required to apply the results on randomization tests under an

approximate symmetry assumption from Canay et al. (2014). We provide examples in which we can have

some size distortions even when the test statistics for all placebos have the same marginal distribution.

Finally, we show that the placebo test using the ratio of post/pre-treatment MSPE as test statistic can

have important size distortions for at least three additional reasons due to the fact that the SC weights are

estimated. First, if the SC estimator is asymptotically biased, then the expected value of the test statistic

for the treated unit should be higher than for the control units, leading to over-rejection. Interestingly,

our Monte Carlo (MC) simulations suggest that this over-rejection may appear even when the variance of

the transitory shocks is small, in which case the pre-treatment fit should be good and the bias of the SC

estimator should be small. This happens because, in this case, the variance of the SC estimator would be

relatively small as well, so even a small bias could generate relevant size distortions. Second, we show that

the post/pre ratio of MSPE may fail to properly correct the marginal distribution of the test statistics for

a finite number of pre-treatment periods (T0). This might happen because, with small T0, the model might

overfit the pre-treatment MSPE, so it might not provide a proper correction for the post-treatment MSPE.

Finally, the fact that the SC method should only be used when there is a good pre-treatment fit while the

placebos would be considered regardless of that can also lead to over-rejection. This happens because the

test statistic of the treated unit would be conditional on a denominator close to zero, while the test statistic

for the placebos would not.

A few recent papers analyzed in detail the placebo tests proposed in Abadie et al. (2010). Firpo and

Possebom (2016) formalize the placebo test for the case where treatment is randomly assigned. In this

case, the inference method suggested in Abadie et al. (2010) would provide valid inference for unconditional

tests. Differently from Firpo and Possebom (2016), our paper considers the asymptotic properties of the

placebo tests when we relax the hypothesis of random assignment. Also, even under random assignment,

2This will be the case if linear combinations of the transitory shocks and common factors are stationary, serially uncorrelated,
and i.i.d. across units up to a scale parameter. We derive an alternative test statistic that guarantees the same asymptotic
expected value and variance for all permutations under weaker conditions.
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we can consider hypothesis testing conditional on the data on hand.3 Hahn and Shi (2016) point out to

the possibility of severe size distortions in placebo tests for the SC method in MC simulations. They focus,

however, on a test statistic based on the post-intervention MSPE. We show that such severe size distortions

can be strongly attenuated once we consider the post/pre ratio of MSPE as test the statistic, although

the test may still present size distortions even if the test statistics for all placebos have the same marginal

distribution. Finally, Ando and Sävje (2013) argue that the placebo test proposed by Abadie et al. (2010) is

generally not valid and derive an alternative inference method. Differently from Ando and Sävje (2013), we

consider the asymptotic properties of Abadie et al. (2010) placebo tests when the number of pre-intervention

is large. Moreover, Ando and Sävje (2013) focus on the case in which the placebo test could have size

distortions because the SC estimator would fail to reconstruct the factor loadings of the “treated” unit for

some placebo runs, while we show that there might be size distortions even if we consider weights that satisfy

this condition for all placebo runs.4

The remainder of this paper proceeds as follows. We present a brief review of the SC method in Section 2.

In Section 3, we show that the placebo tests might have size distortions even when we consider an “infeasible”

SC estimator that uses weights that correctly reconstruct the factor loadings of the treated unit. In Section

4, we consider additional sources of size distortions that are generated by the fact that the SC weights are

estimated. We conclude in Section 5.

2 A Brief Review of The Synthetic Control Model

2.1 Setting

We consider the SC estimator in a linear factor models setting, as in Ferman and Pinto (2016b). Suppose we

have a balanced panel of J + 1 units indexed by i observed on t = 1, ..., T periods. We want to estimate the

treatment effect of a policy change that affected only unit j = 1 from period T0 +1 ≤ T to T . The potential

outcomes are given by:





yit(0) = δt + λtµi + ǫit

yit(1) = αit + yit(0)

(1)

3See Ferman and Pinto (2016a) for details on why conditional tests should be preferable when there are few treated units.
4Carvalho et al. (2015), Carvalho et al. (2016) and Powell (2016) consider extensions of the SC estimator, and derive large

sample inferential techniques for hypothesis testing regarding the average effect across the post-treatment periods when both
the number of pre- and post-treatment periods go to infinity. In this paper, we focus on the case in which the number of
pre-treatment periods is large, but the number of post-treatment periods is finite.
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where δt is an unknown common factor with constant factor loadings across units, λt is a (1× F ) vector of

common factors, µi is a (F × 1) vector of unknown factor loadings, and the error terms ǫit are unobserved

transitory shocks. We only observe yit = dityit(1)+(1−dit)yit(0), where dit = 1 if unit i is treated at time t.

Note that the unobserved error uit = λtµi + ǫit might be correlated across units due to the presence of λtµi.

Since we hold the number of units (J + 1) fixed and look at asymptotics when the number of pre-treatment

periods goes to infinity, we treat the vector of unknown factor loads (µi) as fixed and the common factors

(λt) as random variables. In order to simplify the exposition of our main results, we consider the model

without observed covariates Zi.

An important feature of our setting is that the SC estimator is only well defined if it actually happened

that one unit received treatment in a given period. We define D(1, T0) as a dummy variable equal to 1 if

unit 1 is treat after T0 while all other units do not receive treatment.5 Assumption 1 makes it clear that the

sample a researcher observers when considering the SC estimator is always conditional on the fact that one

unit was treated in a given period.

Assumption 1 (conditional sample) We observe a realization of {y1t, ..., yJ+1,t} for t = 1, ..., T condi-

tional on D(1, T0) = 1.

We also impose that the treatment assignment is not informative about the first moment of the transitory

shocks.

Assumption 2 (transitory shocks) E[ǫjt|D(1, T0)] = E[ǫjt] = 0

Assumption 2 implies that, once we condition on the common factors λt, the transitory shocks are

mean-independent from the treatment assignment. This assumption implies that E[yjt(0)|D(1, T0), λt] =

E[yjt(0)|λt] and E[yjt(1)|D(1, T0), λt] = E[yjt(1)|λt]. Note that this assumption excludes the possibility that

treatment assignment is informative about the transitory shocks. However, we still allow for the possibility

that the treatment assignment to unit 1 is correlated with the unobserved common factors. More specifically,

we allow for E[λt|D(1, T0)] 6= E[λt].

We define Φ1 as the set of weights such that a weighted average of the factor loadings of the control units

reconstructs the factor loadings of the treated unit. That is:

Φ1 =



w∗

1 ∈ RJ | µ1 =
∑

j 6=1

wj
1

∗
µj ,

∑

j 6=1

wj
1

∗
= 1, and wj

1

∗ ≥ 0





5That is, one can think of D(1, T0) as a product between two indicator variables, one for the event that the treated unit is
unit 1, and the other one that the treatment starts after T0.
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where wj
1 is the weight associated to unit j when we re-construct the factor loadings of unit 1. Note that it

may be that Φ1 = ∅.

If we knew w∗
1 ∈ Φ1, then we could consider an infeasible SC estimator using these weights, α̂∗

1t =

y1t −
∑

j 6=1 w
j
1

∗
yit. For a given t > T0, we have that:

α̂∗
1t = y1t −

∑

j 6=1

wj
1

∗
yit = α1t +


ǫ1t −

∑

j 6=1

wj
1

∗
ǫjt


 (2)

Therefore, under Assumption 2, we have that E[α̂∗
1t|D(1, T0) = 1] = α1t, which implies that this infeasible

SC estimator is unbiased.

2.2 The SC estimator

The main idea of the SC method consists of estimating the SC weights ŵ1 = {ŵj
1}j 6=1 using information on

the pre-treatment period, so that we can construct the SC estimator α̂1t = y1t −
∑

j 6=1 ŵ
j
1yjt for t > T0.

Abadie et al. (2010) suggest a minimization problem to estimate these weights using the pre-intervention

data. They define a set of K economic predictors where X1 is a (K × 1) vector containing the economic

predictors for the treated unit and X0 is a (K × J) matrix of economic predictors for the control units.6

The SC weights are estimated by minimizing ||X1 − X0w1||V subject to
∑J+1

i=2 wj
1 = 1 and wj

1 ≥ 0, where

V is a (K ×K) positive semidefinite matrix. They discuss different possibilities for choosing the matrix V ,

including an iterative process where V is chosen such that the solution to the ||X1 −X0w1||V optimization

problem minimizes the pre-intervention prediction error. In other words, let YP
1 be a (T0 × 1) vector of pre-

intervention outcomes for the treated unit, whileYP
0 be a (T0×J) matrix of pre-intervention outcomes for the

control units. Then the SC weights would be chosen as ŵ1(V
∗) such that V ∗ minimizes ||YP

1 −YP
0 ŵ1(V )||.

Here we focus on the specification that uses all pre-treatment outcome lags as economic predictors. In

this case, the optimization problem to derive the SC weights simplifies to:

ŵ1 = argmin
w∈W

1

T0

T0∑

t=1


y1t −

∑

j 6=1

wj
1yjt



2

where W = {w1 ∈ RJ |wj
1 ≥ 0 and

∑
j 6=1 w

j
1 = 1}.

Ferman and Pinto (2016b) show that the SC weights will, in general, converge to weights that do not

6Economic predictors can be, for example, linear combinations of the pre-intervention values of the outcome variable or
other covariates not affected by the treatment.
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reconstruct the factor loadings of the treated unit. That is, in general, ŵ1 →p w̄1 /∈ Φ1, even if Φ1 6= ∅. In

a setting in which the pre-treatment averages of the first and second moments of the common factors and

transitory shocks converge, they show that SC estimator will converge to:

α̂1t = y1t −
∑

j 6=1

ŵj
1yit

d→ α1t +


ǫ1t −

∑

j 6=1

w̄j
1ǫjt


+ λt


µ1 −

∑

j 6=1

w̄j
1µj


 (3)

where, in general, µ1 6=∑j 6=1 w̄
j
1µj . This implies that the SC estimator will be asymptotically biased when

the fact that treatment was assigned to unit 1 after time T0 is informative about the unobserved common

factors.

Ferman and Pinto (2016b) also show that, in a setting in which a subset of the common factors include

a linear time trend or I(1) processes, then the SC weights will converge to weights that reconstruct the

factor loadings associated to the linear time trend of to the I(1) processes. In this case, the SC estimator

would be asymptotically unbiased even if treatment assignment is informative about these non-stationary

common factors. However, the SC weights would still fail to reconstruct the factor loadings associated to the

stationary common factors, so it will be asymptotically biased if treatment assignment is informative about

the stationary common factors.

2.3 Inference: placebo tests

As argued in Abadie et al. (2010), large sample inferential techniques are not well suited to comparative case

studies when the number of units in the comparison group is small.7 They propose instead placebo tests

where they apply the SC method to every potential control in the sample. First, they consider a graphical

analysis where they compare the post-treatment prediction error of the SC estimator with the prediction

error for each of SC placebo estimator. Then they consider whether the prediction error when one considers

the actual treated unit is “unusually” large relative to the distribution of prediction errors for the units in

the donor pool. Note that the graphical analysis suggested in Abadie et al. (2010) does not provide a clear

decision rule on whether the null hypothesis should be rejected. Still, this analysis would implicitly reject

the null when the post-intervention MSPE for the SC estimate is greater than the post-intervention MSPE

for the placebo estimates. We consider, therefore, the post-intervention MSPE as the test statistic in order

7Carvalho et al. (2015), Carvalho et al. (2016) and Powell (2016) rely on large sample inferential techniques. Instead of
testing the null hypothesis of no effect for all post-treatment periods, they test whether the average effect across time is equal to
zero. If both the number of pre- and post-intervention periods is large, then they are able to derive the asymptotic distribution
of the estimator. This method would not work if one wants to test the null of no effect for all post-treatment periods or if the
number of post-intervention periods is finite.
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to analyze potential distortions in such graphical analysis:

tpost

i =
1

T − T0

T∑

t=T0+1


yit −

∑

j 6=i

ŵj
i yjt



2

(4)

Then they also suggest a placebo test comparing the post/pre-treatment MSPE as test statistic.

tratioi =

1
T−T0

∑T
t=T0+1

[
yit −

∑
j 6=i ŵ

j
i yjt

]2

1
T0

∑T0

t=1

[
yit −

∑
j 6=i ŵ

j
i yjt

]2

Abadie et al. (2010) and Abadie et al. (2015) recognize that the assumptions required in the classical

randomization inference setting (in particular, random treatment assignment) are rather restrictive in the

SC setting. Still, they argue that it is possible to interpret the p-values from their placebo tests as “the

probability of obtaining an estimate at least as large as the one obtained for the unit representing the case

of interest when the intervention is reassigned at random in the data set” (Abadie et al. (2015), page 500).

While we agree that this interpretation of the placebo tests p-values is useful, it is important to consider the

statistical properties of such tests.

3 Placebo tests with “infeasible” SC estimator

We start considering the properties of the placebo test using an infeasible SC estimator which uses weights

that correctly reconstruct the factor loadings of the treated unit. This way we are able to disentangle the

potential problems that arise due to the estimation of the SC weights as compared to problems that would

arise even for an infeasible SC estimator.

3.1 Graphical analysis & post-MSPE

We consider first the graphical analysis suggested in Abadie et al. (2010). As mentioned in Section 2.3, the

graphical analysis would suggest that the treatment effect is different from zero if tpost

1 is “unusually” large

relative to the distribution of {tpost

i }J+1
i=1 . Assuming that we know w∗

i ∈ Φi for all i = 1, ..., J + 1, then we
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have that:8

tpost

i =
1

T − T0

T∑

t=T0+1


ǫit −

∑

j 6=i

wj
i

∗
ǫjt



2

(5)

There are at least three reasons why this test statistic might not have the same (marginal) asymptotic

distribution for all permutations. First, the transitory shock might be heteroskedastic. Ferman and Pinto

(2016a) show that this would usually be true in the Differences-in-Differences setting if we have unit x time

aggregate values and there is variation in the number of observations per unit. This would be the case, for

example, if one uses the Current Population Survey (CPS). Note that, in this case, tpost

i would tend to attain

higher values when the treated unit is small relative to the units in the donor pool. Second, even if the

transitory shock is homoskedastic, the variance of ǫit −
∑

j 6=i w
j
i

∗
ǫjt will depend on the weights {wj

i

∗}j 6=i. If

the weights for unit i are more concentrated around a few units in the donor pool, then the variance of tpost

i

should be higher than if the weights were more evenly distributed. Finally, tpost

i would not have the same

distribution as tpost

1 if, for some i, Φi = ∅. In this case, the distribution of tpost

i would also depend on the

common factors λt. Hahn and Shi (2016) provide MC simulations showing that a permutation test using

tpost

i as test statistic may severely over-reject under the null, even if one uses an infeasible SC estimator that

relies on weights that correctly reconstruct the factor loadings of the treated unit.

Abadie et al. (2010) correctly noticed that the outcome variable may not be well reproduced for some units

by a convex combination of the other units for the pre-intervention periods, and that the post-intervention

MSPE for these units should be high as well. For this reason, they exclude placebos in which the pre-

intervention MSPE is 20 times (or 5 times) larger than the pre-intervention MSPE for the treated unit.

Note that, considering the infeasible SC estimator and using that wi ∈ Φi for all i, then the prediction error

would be ǫit−
∑

j 6=i w
j
i

∗
ǫjt whether time t is either pre- or post-intervention. Therefore, assuming that ǫit is

stationary, then it would be likely that, in our setting, tpost

i under the null has the same asymptotic marginal

distribution as tpost

1 if the pre-intervention MSPE for unit i and unit 1 are similar. Note, however, that Abadie

et al. (2010) procedure only excludes placebos with pre-intervention MSPE higher than the pre-intervention

MSPE for the treated unit. Therefore, if there are many placebos with lower pre-intervention MSPE, then

8Ando and Sävje (2013) argue that in most applications it would not be reasonable to assume that this assumption is valid
for all i. We believe that this condition might be reasonable in some applications. For example, this condition is satisfied if we
have different groups of units where time trends are different across groups but parallel within groups, as considered in Ferman
et al. (2016) and Ferman and Pinto (2016b). We analyze this case in detail in our MC simulations. In this case, the main idea
of the SC estimator would be to select the control units that follow the same time trend as the treated unit. We consider below
the implications in case assumption 1 is not valid for all i.
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the test would over-reject the null since tpost

1 would tend to attain larger values. In this case, Abadie et al.

(2010) graphical analysis could be misleading, even if we consider weights that in that correctly reconstruct

the factor loadings of the treated unit.

One possibility to ameliorate this problem is to re-scale the post- and pre-intervention prediction errors

of the control units using the pre-intervention MSPE. More specifically, for placebo i, we can divide its

prediction error by its the squared root of its pre-intervention MSPE, and multiply it by the squared root

of unit 1 pre-intervention MSPE. As described in detail below in Section 3.2, under some conditions, this

strategy would imply in prediction errors with the same variance for all placebos. Note that this strategy

precludes the necessity of choosing arbitrary cut-offs for the exclusion of ill-fitting placebo runs.9

3.2 Post/pre-MSPE ratio

A second inference procedure suggested by Abadie et al. (2010) is a placebo test using the ratio of post/pre-

intervention MSPE (tratioi ). According to them, “the main advantage of looking at ratios is that it obviates

choosing a cut-off for the exclusion of ill-fitting placebo runs”.

Assuming again an infeasible SC estimator which uses weights that correctly reconstruct the factor

loadings of the treated unit, we have that:

tratioi =

1
T−T0

∑T
t=T0+1

[
ǫit −

∑
j 6=i w

j
i

∗
ǫjt

]2

1
T0

∑T0

t=1

[
ǫit −

∑
j 6=i w

j
i

∗
ǫjt

]2 (6)

Note that, if we let T0 → ∞, then:

tratioi →d

1

T − T0

T∑

t=T0+1


 ǫit −

∑
j 6=i w

j
i

∗
ǫjt√

var(ǫit −
∑

j 6=i w
j
i

∗
ǫjt)



2

(7)

Therefore, tratioi will have the same asymptotic (marginal) distribution for all i if Qit = ǫit −
∑

j 6=i w
j
i

∗
ǫjt

is stationary, serially uncorrelated, and i.i.d. across i up to a scale parameter. If we assume that
E[Q4

it
]

(E[Q2
it
])2

is

constant, and still maintain that errors are serially uncorrelated and stationary, then the test statistic has,

asymptotically, the same expected value and variance for all placebos.

9If we constraint the SC unit to convex combinations of the control units, as in Abadie et al. (2010), then there is no guarantee
that the pre-treatment prediction error will have mean zero. This will be particularly relevant for cases in which the SC weights
are estimated or when Φj = ∅ for some j. An alternative would be to use a demeaned SC estimator, as recommended in
Ferman and Pinto (2016b). This is equivalent to relaxing the no-constant constraint, as presented in Doudchenko and Imbens
(2016).
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Note that if we relax the assumption that errors are serially uncorrelated, then there is no guarantee that

the variance of tratioi will be the same for all i. This happens because the denominator in 7 will not correctly

re-scale the variance of the post-intervention MSPE, due to the serial correlation. Instead, we can construct

an alternative test statistic t̃i that has asymptotically the same expected value and variance for all placebos.

Define Si =
1

T−T0

∑T
t=T0+1

[
ǫit −

∑
j 6=i w

j
i

∗
ǫjt)
]2
. We can use:

t̃i =

1
T−T0

∑T
t=T0+1

[
yit −

∑
j 6=i w

j
i

∗
yjt

]2
− Ê[Si]

√
̂var(Si)

(8)

where Ê[Si] is an estimator for E[Si] and ̂var(Si) is an estimator for var[Si]. With large T0, we can construct

a new time serie Sit =
1

T−T0

∑t+T−T0

t′=t

[
yit′ −

∑
j 6=i w

j
i

∗
yjt′
]2

using the pre-treatment periods and calculate

Ê[Si] and ̂var(Si). In Appendix A.1, we provide conditions such that these are consistent estimators, and

show that, in this case, the asymptotic distribution of t̃i has expected value equal to zero and variance equal

to 1 for all placebos.10

The test statistics tratioi and t̃i help prevent that test statistics for different placebos have wildly different

asymptotic (marginal) distributions, which could generate severe size distortions. However, it is important

to note that, even if the test statistics for all placebos have the same asymptotic (marginal) distributions,

it is not possible to guarantee that the placebo test is asymptotically valid. Following Canay et al. (2014),

such test would be asymptotically valid if the test statistics are based on a function of the data that exhibits

approximate symmetry. In the SC setting, this will not generally be the case, because the SC estimator

is a function of transitory shocks of the treated and control units, which induces correlation between test

statistics in different permutations. With fixed J , this correlation will not vanish, even when T0 → ∞, as

noticed in Powell (2016). We provide now examples in which the test statistics can have the same asymptotic

distribution for all permutations, but we still can have size distortions.

Again, we assume that we know wi ∈ Φi and that we know the variance of yit −
∑

j 6=i w
j
i yjt. Consider

first a model with two common factors, λt = (λ1
t , λ

2
t ), where µi = (1, 0) for i = 1, 2, 3 and µi = (0, 1) for

i = 4, ..., 20. Assume also that ǫit
i.i.d.∼ N(0, 1) for all i and t. An (infeasible) SC estimator for the treatment

effect at time t in this model for units i = 1, 2, 3 uses the average of the other 2 units that have the same

factor loadings to construct the SC estimator, while for units i = 4, ..., 20 it uses the average of the the other

10Note that this test statistic can also be used with the feasible SC estimator. In this case, we also need to impose assumptions
on the time series of the common factors λt.
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16 units that have the same factor loadings. Now consider the vector

(
α̂1√

var(α̂1)
, α̂2√

var(α̂2)
, ..., α̂20√

var(α̂20)

)′

,

where α̂j is the SC estimator using unit j as treated. For all i, α̂i√
var(α̂i)

∼ N(0, 1). However:

cov

(
α̂i√

var(α̂i)
,

α̂k√
var(α̂k)

)
=





−0.5 if i ∈ {1, 2, 3} and k ∈ {1, 2, 3}/{i}

0 if i ∈ {1, 2, 3} and k ∈ {4, ..., 20}

−0.06 if i ∈ {4, ..., 20} and k ∈ {4, ..., 20}/{i}

(9)

Therefore, while all elements in this vector have the same marginal distribution, the conditional distri-

butions are not the same for all placebos. This implies a mild under-rejection of 4.3% for a 5% test when

we consider unit 1 as treated.11 Intuitively, this happens because the high correlation between α̂1

var(α̂1)
and

α̂2

var(α̂2)
implies that, when α̂1

var(α̂1)
is extreme, the realization of α̂2

var(α̂2)
is likely to be extreme as well. On

the contrary, when a realization of α̂i

var(α̂i)
for i > 3 is extreme, it does not imply that the realizations of

other α̂k

var(α̂k)
for k 6= i are likely to be extreme as well. Of course, if we do have random assignment, then

this placebo test would still have the correct size for unconditional tests, as the conditions for randomiza-

tion inference would be satisfied (see Fisher (1935)). However, if the probability that a unit with the same

characteristics as unit 1 is more likely to receive treatment, then we would have under-rejection.

We now show another example in which heteroskedasticity can also generate size distortions, even if the

linear factor structure is symmetric. Assume now that we have 20 units in total. We have 5 common factors

λt = (λ1
t , ..., λ

5
t ), and µi = (1, 0, 0, 0, 0) for units i = 1, ..., 4, µi = (0, 1, 0, 0, 0) for units i = 5, ..., 8, and so on.

Consider that var(ǫ1t) = σ2 and var(ǫit) = 1 for all i > 1. We calculate the infeasible SC estimator α̂i as

the minimum variance estimator such that wi ∈ Φi.
12 In this case, a higher σ2 implies a lower correlation

between α̂1 and α̂i for i ∈ {2, 3, 4}. This happens because, when σ2 is higher, then the SC estimator α̂i for

i ∈ {2, 3, 4} will assign lower weights for y1t. If σ2 = 2, then rejection rate is 5.3%, while rejection rate is

5.5% if σ2 = 5. If σ2 < 1, then we increase the correlation between α̂1 and α̂i for i ∈ {2, 3, 4}. If σ2 = 0.5,

then rejection rate is 4.6%, while if σ2 = 0.1, then rejection rate is 4%. Again, these results suggest that

heteroskedasticity can generate size distortions in the permutation test even when the marginal distributions

of the test statistics are the same for all permutations. However, based on our examples, size distortions are

relatively mild even if we consider a highly heteroskedastic model.

11This rejection rate was calculated based on 10.000.000 MC simulations.
12In this case, if i = 1 or i > 4, then we construct the SC unit as the simple average of the other units that have the same

factor loading as the treated unit. If i ∈ {2, 3, 4}, then we construct the SC unit assigning weight equal to 1

2σ2+1
for unit 1 and

σ2

2σ2+1
for the other two units.
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4 Placebo tests with estimated SC weights

The results from Section 3 show that, even considering an infeasible SC estimator that correctly reconstructs

the factor loadings of the treated unit, the placebo tests may have (mild) size distortions. We now con-

sider additional problems that may arise due to the fact that the SC weights are estimated. We consider

three possibilities: (i) when the SC estimator is asymptotically biased; (ii) when the transitory shocks are

heteroskedastic, and; (iii) when the SC analysis is conditional on a good pre-treatment fit.

For these three cases, we consider MC simulations of a linear factor model in which all units are divided

into groups that follow different time trends. In our first DGP, we consider a model with stationary common

factors:

Y 0
j,t = δt + λk

t + ǫj,t (10)

for some k = 1, ...,K. We consider the case in which J +1 = 20 and K = 10. Therefore, units 1 and 2 follow

the trend λ1
t , units 3 and 4 follow the trend λ2

t , and so on. We consider that λk
t is normally distributed with

variance equal to one, and we vary the serial correlation of λt and the variance of ǫj,t ∼ N(0, 0.1).

In our second DGP, we modify the linear factor model such that a subset of the common factors is I(1).

In this case, we consider DGP which includes a non-stationary trend φr
t that follows a random walk:

Y 0
j,t = δt + λk

t + φr
t + ǫjt (11)

for some k = 1, ...,K and r = 1, ..., R. We consider in our simulations K = 10 and R = 2. Therefore, units

j = 2, ..., 10 follow the same non-stationary path φ1
t as the treated unit, although only unit j = 2 also follows

the same stationary path λ1
t as the treated unit.

In both models, we impose that there is no treatment effect, i.e., Yj,t = Y 0
j,t = Y 1

j,t for each time period

t ∈ {1, ..., T0}. We fix the number of post-treatment periods T − T0 = 10 and we vary the number of

pre-intervention periods in the DGPs, T0 ∈ {12, 32, 100, 400}.
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4.1 SC estimator is asymptotically biased

Once we consider that the SC estimator relies on estimated weights, we have that:

tratioi =

1
T−T0

∑T
t=T0+1

[
yit −

∑
j 6=i ŵ

j
i yjt

]2

1
T0

∑T0

t=1

[
yit −

∑
j 6=i ŵ

j
i yjt

]2

d→ 1

T − T0

T∑

t=T0+1


 ǫit −

∑
j 6=i w̄

j
i ǫjt + λt(µi −

∑
j 6=i w̄

j
iµj)√

var(ǫit −
∑

j 6=i w̄
j
i ǫjt + λt(µi −

∑
j 6=i w̄

j
iµj))



2

(12)

where ŵj
i

p→ w̄j
i .

Following Ferman and Pinto (2016b), it will generally be the case that w̄i /∈ Φi, so µi 6=
∑

j 6=i w̄
j
iµj . As

a consequence, the SC estimator will be asymptotically biased if the fact that unit 1 was treated after T0 is

informative about the common factors. In this case, since the test statistic depends on the common factors

even when T0 → ∞, the expected value of the test statistic of the treated unit will usually be higher than

the expected value of the placebo test statistics, leading to over-rejection.

We explore the implications of the bias of the SC estimator for the placebo tests in the MC simulations

described above. We set var(ǫit) = σ2
ǫ ∈ {0.1, 0.5, 1} and we set λt as an AR(1) process with 0.5 serial

correlation. Note that the permutation test would work in this case if we were able to use w∗
i ∈ Φi.

13

In columns 1 to 3 of Table 1 we present rejection rates in a stationary model when we have that

E[λ1
t |D(1, T0) = 1] = 1 for t > T0, while in columns 4 to 6 we present rejection rates when E[λ1

t |D(1, T0) =

1] = 2 for t > T0. As expected, the placebo test over-rejects the null, as the expected value of the test statistic

is higher for the treated unit. Interestingly, we find the largest over-rejection when σ2
ǫ = 0.1, in which case

we found that the misallocation of weights (and, therefore, the asymptotic bias) should be relatively lower.

This happens because, while the bias is lower in this case, the variance of the SC estimator is also lower. We

present in columns 7 to 12 of Table 1 the same results for the non-stationary model. The placebo test still

over-rejects the null, but not as much as in the stationary model. The reason is that the variance of the SC

estimator is higher in the non-stationary model, due to the small discrepancy in the factor loadings of the

treated and SC units associated with the non-stationary common factor for a fixed T0. Overall, these results

suggest that, when the SC estimator is biased, then the placebo test can over-reject the null even when the

bias of the SC estimator is relatively small.

13In this case, the infeasible SC estimator is equal to yit − yi′t, where i′ is the pair that follows the same parallel trend as i.
Therefore, for all i, the correlation between i and j will be equal to one if j is the pair of j, and zero otherwise.

14



4.2 Heteroskedasticity with finite and large T0

We consider next whether heteroskedasticity can generate size distortions in this model. In this case, we

consider the same model where J + 1 = 20 units are divided into 10 groups of 2 units each, but we set the

variance of the transitory shocks of the treated unit equal to 0.1, while the variance of the transitory shocks

of the control units is equal to one. We present in column 1 of Table 2 rejection rates when transitory shocks

and common factors are serially uncorrelated, using the test statistic proposed in Abadie et al. (2010) (tratioi ).

With T0 = 1000, rejection rate is around 5%. This was expected given that, with serially uncorrelated

transitory shocks and common factors, tratioi would have the same asymptotic marginal distribution for all

placebos.14 With finite T0, however, our simulation results suggest that the size distortion can actually be

relevant even if the common factors are serially uncorrelated. We over-reject the null when the treated unit

has a lower variance. Note that, with a finite T0, t
ratio

i is given by:

tratioi =

1
T−T0

∑T
t=T0+1

[
ǫit −

∑
j 6=i ŵ

j
i ǫjt + λt(µi −

∑
j 6=i ŵ

j
iµj)

]2

1
T0

∑T0

t=1

[
ǫit −

∑
j 6=i ŵ

j
i ǫjt + λt(µi −

∑
j 6=i ŵ

j
iµj)

]2 (13)

While both numerator and denominator of the test statistic depend on a linear combination of common

and transitory shocks, the weights ŵj
i are chosen as to minimize the denominator. If T0 is not large enough

relative to J , we might “over-fit” the model. As a consequence, the denominator (in-sample prediction

error) would not provide an adequate correction for the variance of the numerator (out-of-sample prediction

error), so the marginal distribution of the test statistic would depend on the variance of the treated unit.

One possible solution to this problem is to use pre-treatment periods not used in the estimation of the SC

weights in the denominator. However, this implies not using all pre-treatment outcome lags as economic

predictors exactly when T0 is small. Also, the variance of the denominator should be large if one leaves out

only a few pre-treatment lags, which would imply in a test with low power. Another possible solution might

be to avoid over-fitting using a different method to estimate the SC weights that takes into account the fact

that the number of parameters might be large relative to the number of pre-treatment periods. Doudchenko

and Imbens (2016) consider the use of regularization methods such as best subset regression or LASSO to

estimate the SC weights.

We present in column 3 of Table 2 rejection rates when common factors follow an AR(1) process with

14Differently from the infeasible SC estimator, the actual SC estimator will not assign 100% of the weight to the pair of the
treated unit, even when T0 → ∞. Therefore, there is no guarantee the the placebo test is asymptotically valid even in this case.
Still, our MC simulations suggest that asymptotic size distortions are negligible for this particular DGP.
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serial correlation equal to 0.9. In this case, the test statistic tratioi does not have the same asymptotic marginal

distribution for all placebos. The problem is that the test statistic tratioi does not properly take into account

the serial correlation in the common factors. This implies an over-rejection even when T0 is large. In this

case, an alternative test statistic, t̃i, that properly corrects the marginal distributions of the test statistics

when T0 → ∞ provides rejection rates close to 5% when T0 is large (column 4 of Table 2). With finite

T0, however, we have over-rejection when the treated unit has a lower variance, whether we use tratioi or t̃i,

as in the case with serially uncorrelated common factors. The results using the non-stationary DGP are

qualitatively similar (columns 5 to 8 of Table 2).

4.3 Conditional on a good pre-fit

Finally, note that Abadie et al. (2010) and Abadie et al. (2015) suggest that the SC estimator should not be

used if the pre-treatment fit is poor. However, when they recommend the placebo test using the tratioi test

statistic, they suggest that all placebos should be considered. In other words, tratio1 is conditional on a good

pre-treatment fit, while tratioi for i > 1 is unconditional. This may lead to over-rejection because it will be

more likely that the denominator of tratio1 should be close to zero relative to the denominator of tratioi . We

evaluate now whether this might generate size distortions. We consider an homoskedastic model in which

the SC estimator is asymptotically unbiased (that is, treatment assignment is uncorrelated with common

factors). Note that this model is consistent with random assignment of the treated unit. The only difference

is that we will only consider simulations in which the pre-treatment fit for the actual SC estimator is good.

As a measure of goodness of pre-treatment fit, we consider a pre-treatment normalized mean squared error

index, as suggested in Ferman et al. (2016):

R̃2 = 1−
1
T0

∑T0

t=1 (y1t − ŷ1t)
2

1
T0

∑T0

t=1 (y1t − y1)
2

(14)

where y1 =
∑T0

t=1 y1t

T0
. Note that this measure is always lower than one, and it is close to one when the

pre-treatment fit is good. If this measure is equal to one, then we have a perfect fit.15

We present in Table 3 rejection rates conditional on a good pre-treatment fit for the treated unit. We

also present in this table the probability of having a good pre-treatment match. The results suggest that

the test may over-reject when the probability of finding a good match is not high. As an extreme example,

if we set a threshold for good fit as R̃ > 0.9 and look at the (T0, σ
2
ǫ ) = (20, 0.1) case, then we would have a

15Differently from the R2 measure, this measure can be negative, which would suggest a poor pre-treatment fit.
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probability of 13% of having a good pre-treatment fit, and we would have a rejection rate of 10.3% for a 5%

test if we consider only SC estimators that provided a good pre-treatment fit. If the probability of having a

good fit is close to one (which is usually the case in the non-stationary model), then over-rejection is very

mild.

5 Conclusion

We consider the statistical properties of the placebo tests proposed in Abadie et al. (2010). We first show that

the graphical analysis based on placebos may be misleading even if we consider an infeasible SC estimator.

Then we show that, under some conditions, the placebo test that uses the ratio of the post/pre-intervention

MSPE ameliorates the problem as, under some conditions, the test statistics for all placebo runs will have

the same asymptotic marginal distribution. However, even under such conditions, we show that the test

statistics may still have some size distortions. We provide examples in which we can have size distortions even

when we consider an infeasible SC estimator that correctly reconstructs the factor loadings of the treated

unit. While the size distortions we find in these examples are relatively small, further research is necessary

to determine whether there might be examples in which size distortions could be more severe, or whether

there is a bound to the size distortions we might have in the SC placebo test, when we consider this infeasible

SC estimator. Finally, we show that, once we take into account that the SC weights are estimated, then we

can have important size distortions. This will be the case when the SC estimator is asymptotically biased,

when we have heteroskedasticity with a finite number of pre-treatment periods, and when we consider that

the SC estimator should only be used when there is a close-to-perfect pre-treatment fit.
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Table 1: Permutation test with asymptotically biased estimator

Stationary model
E[λ1

t |D(1, T0) = 1, t > T0] = 1 E[λ1
t |D(1, T0) = 1, t > T0] = 2

σ2
ǫ = 0.1 σ2

ǫ = 0.5 σ2
ǫ = 1 σ2

ǫ = 0.1 σ2
ǫ = 0.5 σ2

ǫ = 1
(1) (2) (3) (4) (5) (6)

T0 = 5 0.068 0.064 0.062 0.128 0.107 0.099
[0.001] [0.001] [0.001] [0.002] [0.002] [0.001]

T0 = 20 0.126 0.092 0.082 0.321 0.220 0.182
[0.002] [0.001] [0.001] [0.002] [0.002] [0.002]

T0 = 50 0.157 0.115 0.100 0.392 0.297 0.243
[0.002] [0.002] [0.002] [0.002] [0.002] [0.002]

T0 = 100 0.174 0.127 0.109 0.416 0.324 0.270
[0.002] [0.002] [0.002] [0.002] [0.002] [0.002]

Non-stationary model
E[λ1

t |D(1, T0) = 1, t > T0] = 1 E[λ1
t |D(1, T0) = 1, t > T0] = 2

σ2
ǫ = 0.1 σ2

ǫ = 0.5 σ2
ǫ = 1 σ2

ǫ = 0.1 σ2
ǫ = 0.5 σ2

ǫ = 1
(7) (8) (9) (10) (11) (12)

T0 = 5 0.057 0.056 0.055 0.080 0.072 0.069
[0.001] [0.001] [0.001] [0.001] [0.001] [0.001]

T0 = 20 0.073 0.066 0.063 0.121 0.104 0.096
[0.001] [0.001] [0.001] [0.002] [0.002] [0.001]

T0 = 50 0.082 0.072 0.068 0.136 0.120 0.110
[0.001] [0.001] [0.001] [0.002] [0.002] [0.002]

T0 = 100 0.090 0.080 0.075 0.142 0.127 0.118
[0.001] [0.001] [0.001] [0.002] [0.002] [0.002]

Notes: this table presents MC simulations results on a permutation test where the SC estimator
is asymptotically biased. Columns 1 to 6 present results for a stationary model, while columns
7 to 12 present results for a model with both non-stationary and stationary common factors.
Standard errors in brackets.
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Table 2: Permutation Test with Heteroskeadsticity

Stationary model Non-stationary model
without serial with 0.9 serial without serial with 0.9 serial
correlation correlation correlation correlation

tratioi t̃i tratioi t̃i tratioi t̃i tratioi t̃i
(1) (2) (3) (4) (5) (6) (7) (8)

T0 = 5 0.137 - 0.240 - 0.116 - 0.186 -
[0.002] - [0.003] - [0.002] - [0.003] -

T0 = 20 0.089 0.082 0.178 0.158 0.076 0.071 0.136 0.117
[0.002] [0.002] [0.003] [0.003] [0.002] [0.002] [0.002] [0.002]

T0 = 50 0.071 0.070 0.129 0.118 0.061 0.058 0.108 0.091
[0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002]

T0 = 100 0.062 0.063 0.104 0.092 0.057 0.053 0.093 0.080
[0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002]

T0 = 1000 0.050 0.050 0.071 0.054 0.048 0.048 0.072 0.053
[0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002]

Notes: this table presents rejection rates when the variance of the transitory shocks for the treated unit is 0.1
while the variance of the transitory shocks for the control unit is 1. Columns 1 and 2 consider the stationary
model when the common factor is serially uncorrelated using, respectively, the test statistic suggested in Abadie
et al. (2010) and the one suggested in equation 8. Columns 3 and 4 present results when the serial correlation
of the common factor is 0.9. Columns 5 to 8 present results for the non-stationary model. It is not possible to
calculate t̃i with T0 = 5. Standard errors in brackets.
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Table 3: Conditional Permutation Test
Stationary model Non-stationary model

σ2
ǫ = 0.1 σ2

ǫ = 0.5 σ2
ǫ = 1 σ2

ǫ = 0.1 σ2
ǫ = 0.5 σ2

ǫ = 1
(1) (2) (3) (4) (5) (6)

Panel i: conditional on R̃2 > 0.8
T0 = 5 0.068 0.099 0.105 0.059 0.081 0.091

[0.000] [0.001] [0.001] [0.000] [0.001] [0.001]
(0.732) (0.504) (0.474) (0.848) (0.614) (0.546)

T0 = 20 0.059 0.222 0.395 0.050 0.064 0.081
[0.000] [0.006] [0.022] [0.000] [0.001] [0.001]
(0.644) (0.013) (0.001) (0.982) (0.556) (0.296)

T0 = 50 0.056 0.240 - 0.050 0.052 0.056
[0.000] [0.085] - [0.000] [0.000] [0.000]
(0.703) (0.000) (0.000) (1.000) (0.832) (0.552)

T0 = 100 0.054 - - 0.050 0.050 0.052
[0.000] - - [0.000] [0.000] [0.000]
(0.767) (0.000) (0.000) (1.000) (0.972) (0.819)

Panel ii: conditional on R̃2 > 0.9
T0 = 5 0.101 0.159 0.168 0.074 0.122 0.141

[0.001] [0.001] [0.001] [0.001] [0.001] [0.001]
(0.489) (0.313) (0.296) (0.668) (0.405) (0.352)

T0 = 20 0.103 0.302 0.000 0.054 0.086 0.122
[0.001] [0.063] [0.000] [0.000] [0.001] [0.002]
(0.130) (0.000) (0.000) (0.841) (0.194) (0.062)

T0 = 50 0.109 - - 0.050 0.057 0.063
[0.003] - - [0.000] [0.001] [0.001]
(0.035) (0.000) (0.000) (0.985) (0.445) (0.189)

T0 = 100 0.105 - - 0.050 0.052 0.054
[0.007] - - [0.000] [0.000] [0.001]
(0.005) (0.000) (0.000) (1.000) (0.738) (0.439)

Notes: this table presents rejection rates conditional on the a good pre-treatment fit for the
treated unit. Columns 1 to 3 present results for the stationary model, while columns 4 to
6 present results for the non-stationary model. Panel i defines good pre-treatment fit as a
R̃2 > 0.8 for the regression of the pre-treatment outcomes of the treated unit on the pre-
treatment outcomes of the SC unit. Panel ii defines good pre-treatment fit as R̃2 > 0.9. In
parenthesis, we present the probability of having a good match. Standard errors in brackets.
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A Supplemental Appendix: Placebo Tests for Synthetic Controls

A.1 Permutation test

We now prove that that the test statistic t̃i has, asymptotically, the same expected value and variance for

all permutations. We have that:

t̃i =

1
T−T0

T∑
t=T0+1

[
yit −

∑
j 6=i

ŵj
i yjt

]2
− Ê [Si]

√
̂V ar [Si]

where Si = 1
T−T0

T∑
t=T0

[
ǫit −

∑
j 6=i

wj
i ǫjt + λt

(
µi −

∑
j 6=i

wj
iµj

)]2
. We use T − T0 blocks of a combination of

pre-treatment variables defined by P̂ik = 1
T−T0

k+T−T0−1∑
s=k

(
yis −

∑
j 6=i

ŵj
i yjs

)2

for k = 1, ..., 2T0 − T . In this

case, the expectation of Si is estimated by:

Ê [Si] =
1

2T0 − T

2T0−T∑

k=1

[
P̂ik

]

and the estimator of the variance is:

̂V ar [Si] =
1

2T0 − T

2T0−T∑

k=1

[
P̂ik − Ê [Si]

]2

We need to impose the following assumptions. Consider the sequence {Pik}2T0−T
k=1 . We assume that:

1. Pik is a covariance-stationary sequence.

2. Pik is α-mixing with size − r
r−1 , r > 4.

3. E
[
|Pik|r+δ

]
< ∆ < 0 for some δ > 0 at all s.

4. 1
T0

∑T0

s=1 P
2
ik →p E

[
P 2
ik

]

Lemma 1 Under assumptions 1-5, and assuming that ŵj
i →p wj

i , then we have that the expected value of

the asymptotic distribution of t̃i is equal to zero and the asymptotic variance is equal to 1.
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Proof. Using the result that ŵj
i →p wj

i ,

1

2T0 − T

2T0−T∑

k=1

[
P̂ik

]
=

1

2T0 − T

2T0−T∑

k=1

[Pik] + op (1)

Under assumptions 1-5, and using Corollary 3.48 in White(1999),

1

2T0 − T

2T0−T∑

k=1

[
P̂ik

]
→p E [Pik] = E


 1

T − T0

T∑

t=T0


yis −

∑

j 6=i

wj
iyjs




2



Under assumption 2 in the main text,

E


 1

T − T0

T∑

t=T0


yis −

∑

j 6=i

wj
iyjs




2

 = E





yis −

∑

j 6=i

wj
iyjs




2



Using the model for yis and under the condition that
J+1∑
j=2

wj
i = 1 ,

E





yis −

∑

j 6=i

wj
iyjs




2

 = E





ǫis −

∑

j 6=i

wj
i ǫjs + λs


µis −

∑

j 6=i

wj
iµj






2



At the end,

Ê [S] →p E [S]

Using a proof analogous to the lemma above, we can show that V̂ ar [S] →p V ar [S].

Therefore:

t̃i →d

1
T−T0

T∑
t=T0+1

(
εit −

∑
j 6=i

wj
iεjt + λt

(
µi −

∑
j 6=i

wj
iµj

))2

− E


 1

T−T0

T∑
t=T0+1

(
εit −

∑
j 6=i

wj
iεjt + λt

(
µi −

∑
j 6=i

wj
iµj

))2



√√√√√V ar


 1

T−T0

T∑
t=T0+1

(
εit −

∑
j 6=i

wj
iεjt + λt

(
µi −

∑
j 6=i

wj
iµj

))2
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