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Abstract

We characterize all domains for which the set of unanimous and strategy-proof social
choice functions coincides with the set of min-max rules. As an application of our result, we
obtain a characterization of unanimous and strategy-proof social choice functions on maxi-
mal single-peaked domains (Moulin (1980), Weymark (2011)), minimally rich single-peaked
domains (Peters et al. (2014)), maximal regular single-crossing domain (Saporiti (2009)), and
distance based single-peaked domains. We further consider domains that exhibit single-peaked
property only over a subset of alternatives. We call such domains top-connected partially
single-peaked domains. We characterize the unanimous and strategy-proof social choice
functions on such domains. As an application of this result, we obtain a characterization of
the unanimous and strategy-proof social choice functions on multiple single-peaked domains
(Reffgen (2015)), single-peaked domains on graphs, and several other domains of practical
significance.
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1. INTRODUCTION

We consider a standard social choice problem where an alternative has to be chosen based on

privately known preferences of the agents in a society. Such a procedure is known as social choice

function (SCF). Agents are strategic in the sense that they misreport their preferences whenever it is

strictly beneficial for them. An SCF is called strategy-proof if no agent can benefit by misreporting

her preferences. Moreover, an SCF is called unanimous if whenever all the agents in the society

agree on their best alternative, that alternative is chosen.

Most of the subject matter of social choice theory concerns the study of unanimous and strategy-

proof SCFs for different admissible domains of preferences. In the seminal works by Gibbard

(1973) and Satterthwaite (1975), it is shown that in a society with at least three alternatives, if

the admissible domain of preferences for each individual is unrestricted, then every unanimous

and strategy-proof SCF is dictatorial. An SCF is dictatorial if a particular individual in the

society determines the outcome regardless of the preferences of others. The celebrated Gibbard-

Satterthwaite theorem hinges crucially on the assumption that the admissible domain of each

individual is unrestricted. However, it is well established that there are natural restrictions on

such domains in many economic and political applications. For instance, the problem of locating

a firm in a unidimensional spatial market (Hotelling (1929)), setting the rate of carbon dioxide

emissions (Black (1948)), setting the level of public expenditure (Romer and Rosenthal (1979)),

and so on admit naturally restricted preferences widely known as single-peaked preferences. The

crucial property of a single-peaked preference is that there is a prior order over the alternatives

such that the preference decreases as one moves away (with respect to the prior order) from her

best alternative.

The study of single-peaked domains dates back to Black (1948). Moulin (1980) and Weymark

(2011) have characterized the unanimous and strategy-proof SCFs defined over such a domain

as min-max rules.1,2 The characterization by Moulin (1980) and Weymark (2011) rests upon the

crucial assumption that the domain is the maximal single-peaked domain, i.e., it contains all the

single-peaked preferences with respect to a given prior order over the alternatives. However,

demanding the existence of all single-peaked preferences is a strong prerequisite in many practical

1Barberà et al. (1993) and Ching (1997) provide equivalent presentations of this class of SCFs.
2A rich literature has developed around the single-peaked restriction by considering various generalizations and

extensions (see Barberà et al. (1993), Demange (1982), Schummer and Vohra (2002), Nehring and Puppe (2007a), and
Nehring and Puppe (2007b)).
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situations and hence, it is justified to impose further restrictions on the maximal single-peaked

domain.3

In continuity with the above discussion, we characterize the minimal subsets of a single-peaked

domain so that every unanimous and strategy-proof SCF on it is a min-max rule. Such a domain

contains 2m − 2 preferences whereas a maximal single-peaked domain contains 2m−1 preferences,

where m is the number of alternatives. We also characterize the domains for which the set of

unanimous and strategy-proof SCFs coincides with the set of min-max rules. We call such a

domain a min-max domain. We show that a domain is a min-max domain if all the preferences

in it are single-peaked and it satisfies the top-connected property. Top-connectedness property

with respect to a prior order requires that for every two alternatives x and y that are adjacent

(consecutive) in that prior order, there exists a preference that places x at the top and y at the

second-ranked position.4

A regular single-crossing domain (Saporiti (2009)) is an example of a top-connected single-

peaked domain.5,6 Saporiti (2009) shows that an SCF is unanimous, anonymous, and strategy-

proof on a maximal single-crossing domain if and only if it is a median rule. We extend Saporiti

(2009)’s result by relaxing the anonymity assumption on the SCF and the maximality assumption

on the domain. However, we assume the domains to be regular. In particular, we show that

an SCF is unanimous and strategy-proof on a regular single-crossing domain satisfying top-

connectedness property if and only if it is a min-max rule. Note that a maximal single-crossing

domain requires m(m − 1)/2 preferences, whereas a regular single-crossing domain satisfying

top-connectedness property requires 2m − 2 preferences.

Although single-peaked domains are used to model many practical situations, several empirical

studies (Niemi and Wright (1987), Feld and Grofman (1988), Pappi and Eckstein (1998)) fail to

support the assumption that all the preferences of an agent are single-peaked. In view of this, we

3Further examples of such restricted single-peaked domains include the preference restriction considered in
models of voting (Tullock (1967), Arrow (1969)), taxation and redistribution (Epple and Romer (1991)), determining
the levels of income redistribution (Hamada (1973), Slesnick (1988)), and measuring tax reforms in the presence of
horizontal inequity (Hettich (1979)) and recently, Puppe (2015) shows that under mild conditions these domains
form subsets of maximal single-peaked domains.

4The top-connectedness property is well studied in the literature (see Barberà and Peleg (1990), Aswal et al. (2003),
Chatterji and Sen (2011), Chatterji et al. (2014), Chatterji and Zeng (2015), and Puppe (2015)).

5A domain is regular if every alternative appears as a top in some preference in the domain.
6Single-crossing domains appear in models of taxation and redistribution (Roberts (1977), Meltzer and Richard

(1981)), local public goods and stratification (Westhoff (1977), Epple and Platt (1998), Epple et al. (2001)), coalition
formation (Demange (1994), Kung (2006)), selecting constitutional and voting rules (Barberà and Jackson (2004)), and
designing policies in the market for higher education (Epple et al. (2006)).

3



consider domains which satisfy single-peakedness only for a strict subset of alternatives. We call

such domains partially single-peaked domains. We characterize the unanimous and strategy-proof

SCFs on a class of partially single-peaked domains as partly dictatorial generalized median voter

schemes (PDGMVS). Loosely put, a PDGMVS acts like a min-max rule over the subset of the

domain where single-peakedness is satisfied and acts like a dictatorial rule everywhere else.

Our result generalizes those in Reffgen (2015). He introduces the notion of multiple single-peaked

domains and characterizes the unanimous and strategy-proof SCFs on such domains. A multiple

single-peaked domain is a union of several maximal single-peaked domains with respect to

different prior orders over the alternatives. A plausible justification for such a domain restriction

is provided by Niemi (1969) who argues that alternatives can be ordered differently using different

criteria (which he calls an impartial culture) and it is not publicly known which individual uses

what criterion. On one extreme, such a domain becomes an unrestricted domain if there is no

consensus among the individuals on the prior order over the alternatives, and on the other

extreme, it becomes a maximal single-peaked domain if all the individuals agree on a single prior

order over the alternatives. We extend Reffgen (2015)’s result in two directions: (i) by requiring

minimum knowledge about the prior orders over the alternatives as perceived by individuals

and (ii) by requiring a minimal set of single-peaked preferences for each of these prior orders.

We further show that this class of domains contains almost all domains for which the set of

unanimous and strategy-proof SCFs coincides with the set of PDGMVS. Note that a multiple

single-peaked domain with respect to k prior orders over the alternatives requires approximately

(depending on the prior orders) k × 2m−1 preferences. On the contrary, the partially single-peaked

domains that we consider require only 2m preferences.

Lastly, we consider group strategy-proofness. Barberà et al. (2010) provides a sufficient con-

dition for the equivalence of strategy-proofness and group strategy-proofness on a domain.

Top-connected single-peaked domains satisfy their condition, and hence we obtain a characteriza-

tion of unanimous and group strategy-proof SCFs on these domains as a corollary of their result.

However, our partially single-peaked domains do not satisfy their condition and consequently,

we show that strategy-proofness and group strategy-proofness are equivalent on these domains.

In particular, we provide a characterization of unanimous and group strategy-proof SCFs on such

domains.

We conclude this section by relating our paper to the existing literature. For every given min-

max rule, Serizawa (1995) and Barberà et al. (1999) characterize maximal domains under which it
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is strategy-proof. However, we characterize domains where all min-max rules are strategy-proof.

Arribillaga and Massó (2016) provide necessary and sufficient conditions for the comparability

of two min-max rules in terms of their vulnerability to manipulation. Our results identify the

set of all min-max rules that remain strategy-proof on a domain that violate single-peakedness

around the middle of the linear order. Chatterji et al. (2013) show that if a domain admits an

anonymous (and hence non-dictatorial), tops-only, unanimous, and strategy-proof SCF, then it is

a semi-single-peaked domain. Semi-single-peaked domains violate single-peakedness around

the tails of the linear order. However, our results show that if the single-peakedness is violated

around the middle of the linear order, then there is no unanimous, strategy-proof, and anonymous

SCF. Thus, our results complement that in Chatterji et al. (2013).

The rest of the paper is organized as follows. We describe the usual social choice framework in

Section 2. In Section 3, we study the unanimous and strategy-proof SCFs on the top-connected

single-peaked domains. Section 4 studies the unanimous and strategy-proof SCFs on a class

of partially single-peaked domains. Section 5 deals with group strategy-proofness and the last

section concludes the paper. All the omitted proofs are collected in Appendix A and Appendix B.

2. PRELIMINARIES

Let N = {1, ..., n} be a set of at least two agents, who collectively choose an element from a finite

set X = {a, a + 1, . . . , b − 1, b} of at least three alternatives, where a is an integer. For x, y ∈ X

such that x ≤ y, we define the intervals [x, y] = {z ∈ X | x ≤ z ≤ y}, [x, y) = [x, y] \ {y},

(x, y] = [x, y] \ {x}, and (x, y) = [x, y] \ {x, y}. A preference P over X is a complete, transitive,

and asymmetric binary relation (also called a linear order) defined on X. We denote by L(X)

the set of all preferences over X. An alternative x ∈ X is called the kth ranked alternative in a

preference P ∈ L(X), denoted by rk(P), if |{a ∈ X | aPx}| = k − 1. By D ⊆ L(X), we denote

a domain of admissible preferences. An element PN = (P1, . . . , Pn) ∈ Dn is called a preference

profile. The top-set of a preference profile PN, denoted by τ(PN), is defined as τ(PN) = {x ∈ X |

r1(Pi) = x for some i ∈ N}. A domain D of preferences is regular if for all x ∈ X, there exists a

preference P ∈ D such that r1(P) = x. All the domains we consider in this paper are assumed

to be regular. For notational convenience, whenever it is clear from the context, we do not use

braces for singleton sets, i.e., we denote sets {i} by i.

Definition 2.1. A social choice function (SCF) f on Dn is a mapping f : Dn → X.
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Definition 2.2. An SCF f : Dn → X is unanimous if for all PN ∈ Dn such that r1(Pi) = x for all

i ∈ N and some x ∈ X, we have f (PN) = x.

Definition 2.3. An SCF f : Dn → X is manipulable if there exists an agent i ∈ N, a preference

profile PN ∈ Dn, and a preference P
′

i ∈ D such that f (P
′

i , PN\i)Pi f (PN). An SCF f is strategy-proof

if it is not manipulable.

Definition 2.4. An SCF f : Dn → X is called dictatorial if there exists an agent i ∈ N such that for

all preference profiles PN ∈ Dn, f (PN) = r1(Pi).

Definition 2.5. Two preference profiles PN, P′
N are called tops-equivalent if r1(Pi) = r1(P′

i ) for all

i ∈ N.

Definition 2.6. An SCF f : Dn → X is called tops-only if for any two tops-equivalent preference

profiles PN, P′
N ∈ Dn, f (PN) = f (P′

N).

Definition 2.7. A domain D is called dictatorial if every unanimous and strategy-proof SCF

f : Dn → X is dictatorial. A domain that is not dictatorial is called a non-dictatorial domain.

Definition 2.8. A domain D is called tops-only if every unanimous and strategy-proof SCF

f : Dn → X is tops-only.

Definition 2.9. A preference P ∈ L(X) is called single-peaked if for all x, y ∈ X, [x < y ≤

r1(P) or r1(P) ≤ y < x] implies yPx. A domain S is called a single-peaked domain if each preference

in it is single-peaked, and a domain S̄ is called maximal single-peaked if it contains all single-peaked

preferences.

Definition 2.10. An SCF f : Dn → X is called uncompromising if for all PN ∈ Dn, all i ∈ N, and

all P′
i ∈ D:

(i) if r1(Pi) < f (PN) and r1(P′
i ) ≤ f (PN), then f (PN) = f (P′

i , P−i), and

(ii) if f (PN) < r1(Pi) and f (PN) ≤ r1(P′
i ), then f (PN) = f (P′

i , P−i).

REMARK 2.1. If an SCF f satisfies uncompromisingness, then by definition, f is tops-only.

Definition 2.11. Let β = (βS)S⊆N be a list of 2n parameters satisfying: (i) βS ∈ X for all S ⊆ N,

(ii) β∅ = b, βN = a, and (iii) for any S ⊆ T, βT ≤ βS. Then, an SCF f β : Dn → X is called a

min-max rule with respect to β if:

f β(P1, . . . , Pn) = min
S⊆N

{max
i∈S

{r1(Pi), βS}}.
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REMARK 2.2. Every min-max rule is uncompromising.7

Now, we introduce a few graph theoretic notions. A directed graph G is defined as a pair 〈V, E〉,

where V is the set of nodes and E ⊆ V × V is the set of directed edges, and an undirected graph

G is defined as a pair 〈V, E〉, where V is the set of nodes and E ⊆ {{u, v} | u, v ∈ V and u 6= v}.

For two graphs (directed or undirected) G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉, the graph G1 ∪ G2 is

defined as G1 ∪ G2 = 〈V1 ∪ V2, E1 ∪ E2〉.

All the graphs we consider in this paper are of the kind G = 〈X, E〉, i.e., whose node set is the

set of alternatives.

Definition 2.12. A directed (undirected) graph G = 〈X, E〉 is called the directed (undirected) line

graph on X if (x, y) ∈ E ({x, y} ∈ E) if and only if |x − y| = 1.

Definition 2.13. A node-path in a directed (undirected) graph G = 〈X, E〉 from a node x to a node

y, denoted by πG(x, y), is defined as a sequence of nodes x1, . . . , xk such that x1 = x, xk = y, and

(xi, xi+1) ∈ E ({xi, xi+1} ∈ E) for all i = 1, . . . , k − 1.

Definition 2.14. A cycle in a directed (undirected) graph G is defined as a node-path from a node

to itself such that all the edges involved in the path are distinct. A cycle in a directed (undirected)

graph is called essential if it involves more than two nodes and it is not a union of two cycles.

Definition 2.15. Let G = 〈X, E〉 be a directed graph and let x, y ∈ X be such that x < y − 1.

Then, G is called a directed (undirected) partial line graph with respect to x, y if G = G1 ∪ G2, where

G1 = 〈X, E1〉 is the directed (undirected) line graph on X and G2 = 〈[x, y], E2〉 is a directed

(undirected) graph such that for all z ∈ {x, y} there is an essential cycle involving the node z.

Definition 2.16. The top-graph of a domain D is defined as the directed graph 〈X, E〉, where

(x, y) ∈ E if and only if there exists a preference P ∈ D such that r1(P) = x and r2(P) = y.

Definition 2.17. An undirected graph G = 〈X, E〉 is called connected if for all x, y ∈ X, there is a

node-path from x to y.

Definition 2.18. An undirected graph G = 〈X, E〉 is called a tree if for every two distinct nodes

x, y ∈ X, there is a unique path from x to y in G. A spanning tree T of an undirected connected

graph G is defined as a connected subgraph of G that is a tree. For an undirected connected graph

G, we denote by TG the set of all spanning trees of G.

7For details, see Weymark (2011).
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3. TOP-CONNECTED SINGLE-PEAKED DOMAINS

In this section, we introduce the notion of top-connected single-peaked domains and characterize

the unanimous and strategy-proof SCFs on these domains. We begin with a few formal definitions.

Definition 3.1. A domain D satisfies top-connectedness property if for all x, x + 1 ∈ X, there are

preferences P, P′ ∈ D such that r1(P) = r2(P′) = x and r2(P) = r1(P′) = x + 1.

Note that a domain satisfies top-connected property if and only if its top-graph is the directed

line graph on X.

Definition 3.2. A domain Ŝ is called a top-connected single-peaked domain if it is a single-peaked

domain, and it satisfies top-connectedness property.

Note that a top-connected single-peaked domain with m alternatives can be constructed with

2m − 2 preferences. Also, since a maximal single-peaked domain is top-connected single-peaked,

such a domain can contain at most 2m−1 preferences. Thus, the class of top-connected single-

peaked domains is quite big ranging from domains with 2m − 2 preferences to domains with

2m−1 preferences. In what follows, we provide an example of a top-connected single-peaked

domain with five alternatives.

Example 3.1. Let the set of alternatives be X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5.

Then, the domain in Table 1 is a top-connected single-peaked domain.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

x1 x2 x2 x2 x2 x3 x3 x3 x3 x4 x4 x5

x2 x1 x3 x3 x3 x2 x4 x4 x4 x3 x5 x4

x3 x3 x4 x1 x4 x4 x2 x5 x2 x5 x3 x3

x4 x4 x1 x4 x5 x5 x5 x2 x1 x2 x2 x2

x5 x5 x5 x5 x1 x1 x1 x1 x5 x1 x1 x1

Table 1: A top-connected single-peaked domain

In Figure 1, we present the top-graph of the domain in Example 3.1.
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x1 x2 x3 x4 x5

Figure 1: Top-graph of the domain in Example 3.1

3.1 UNANIMOUS AND STRATEGY-PROOF SCFS

In this subsection, we provide a characterization of the unanimous and strategy-proof SCFs on

top-connected single-peaked domains.

Theorem 3.1. Let Ŝ be a top-connected single-peaked domain. Then, an SCF f : Ŝn → X is unanimous

and strategy-proof if and only if it is a min-max rule.

The proof of the Theorem 3.1 is relegated to Appendix A.

The following corollary is immediate from Theorem 3.1.

Corollary 3.1 (Moulin (1980); Weymark (2011)). Let S̄ be a maximal single-peaked domain. Then, an

SCF f : S̄n → X is unanimous and strategy-proof if and only if it is a min-max rule.

3.2 MIN-MAX DOMAINS

In this section, we introduce the notion of min-max domains and provide a characterization of

these domains. A domain is called a min-max domain if the set of unanimous and strategy-proof

SCFs coincides with the set of min-max rules. Below, we provide a formal definition of min-max

domains.

Definition 3.3. A domain D is called a min-max domain if:

(i) every min-max rule on Dn is strategy-proof, and

(ii) every unanimous and strategy-proof SCF on Dn is a min-max rule.

Our next theorem provides a characterization of the min-max domains.

Theorem 3.2. A domain D is a min-max domain if and only if D is a top-connected single-peaked domain.

Proof. The proof of the if-part follows from Theorem 3.1. We proceed to prove the only-if part.

Let D be a min-max domain. We show that D is a top-connected single-peaked domain. First,

we show that D is a single-peaked domain. Assume for contradiction that there is Q ∈ D and
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x, y ∈ X such that x < y < r1(Q) and xQy. Consider the min-max rule f β with respect to (βS)S⊆N

such that βS = x for all ∅ ( S ( N. Consider PN ∈ Dn such that P1 = Q and r1(Pi) = y for

all i ∈ N \ 1. By the definition of f β, f β(PN) = y. Consider P′
1 ∈ D with r1(P′

1) = x. Again, by

the definition of f β, f β(P′
1, PN\1) = x. This means agent 1 manipulates at PN via P′

1, which is a

contradiction to the assumption that D is a min-max domain. Hence, D must be a single-peaked

domain.

Now, we show that D satisfies top-connectedness property. Note that since D is single-peaked,

r1(P) = a (or b) implies r2(P) = a + 1 (or b − 1). Consider some x ∈ X \ {a, b}. Since D is

single-peaked, for all P ∈ D, r1(P) = x implies r2(P) ∈ {x − 1, x + 1}. Without loss of generality,

assume for contradiction to the top-connectedness property that for all P ∈ D, r1(P) = x implies

r2(P) = x − 1. Consider the following SCF8:

f (PN) =



















x if r1(P1) = x and xPj(x − 1) for all j ∈ N \ 1,

x − 1 if r1(P1) = x and (x − 1)Pjx for some j ∈ N \ 1,

r1(P1) otherwise.

It is left to the reader to verify that f is unanimous and strategy-proof. We show that f is not

uncompromising, which in turn means that f is not a min-max rule. Let PN ∈ Dn be such that

r1(P1) = x and r1(Pj) = x − 1 for some j 6= 1 and let P′
1 ∈ D be such that r1(P′

1) = x + 1. Then,

by the definition of f , f (PN) = x − 1 and f (P′
1, PN\1) = x + 1. However, this is a violation of

uncompromisingness. This completes the proof of the only-if part. �

3.3 APPLICATIONS

3.3.1 REGULAR SINGLE-CROSSING DOMAINS

In this subsection, we introduce the notion of regular single-crossing domains and provide a

characterization of the unanimous and strategy-proof SCFs on these domains. First, we present

the formal definition of single-crossing domains.

Definition 3.4. A domain D is called a single-crossing domain if there is a linear order ⊳ on D such

8Here D satisfies the unique seconds property defined in Aswal et al. (2003) and the construction of the SCF f is
motivated from the arguments employed in the proof of Theorem 5.1 in Aswal et al. (2003).
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that for all x, y ∈ X and all P, P̂ ∈ D,

[x < y, P ⊳ P̂, and xP̂y] ⇒ xPy.

Definition 3.5. A single-crossing domain S̄c is called maximal if there is no single-crossing domain

D such that S̄c ( D.

In what follows, we provide an example of a maximal regular single-crossing domain with

five alternatives.

Example 3.2. Let the set of alternatives be X = {x1, x2, x3, x4, x5}, where x1 < x2 < x3 < x4 < x5.

Then, the domain D in Table 2 is a maximal regular single-crossing domain with respect to the

linear order ⊳∈ L(D) given by P1 ⊳ P2 ⊳ P3 ⊳ P4 ⊳ P5 ⊳ P6 ⊳ P7 ⊳ P8 ⊳ P9 ⊳ P10 ⊳ P11. To

see this, consider two alternatives, say x2 and x4. Then, x2Px4 for all P ∈ {P1, P2, P3, P4, P5, P6}

and x4Px2 for all P ∈ {P7, P8, P9, P10, P11}. Therefore, x2P̂x4 for some P̂ ∈ D implies x2Px4 for all

P ⊳ P̂.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

x1 x2 x2 x2 x2 x3 x3 x3 x4 x4 x5

x2 x1 x3 x3 x3 x2 x4 x4 x3 x5 x4

x3 x3 x1 x4 x4 x4 x2 x5 x5 x3 x3

x4 x4 x4 x1 x5 x5 x5 x2 x2 x2 x2

x5 x5 x5 x5 x1 x1 x1 x1 x1 x1 x1

Table 2: A maximal regular single-crossing domain

In the following lemma, we show that every regular single-crossing domain is single-peaked.

Lemma 3.1. Every regular single-crossing domain Sc is a single-peaked domain.

Proof. Let Sc be a regular single-crossing domain. Let ⊳∈ L(Sc) be such that for all x, y ∈ X and

all P, P̂ ∈ Sc,

[x < y, P ⊳ P̂, and xP̂y] ⇒ xPy.

We show that each P ∈ Sc is single-peaked. Without loss of generality, assume for contradiction

that there are x, y ∈ X and Q ∈ Sc such that x < y < r1(Q) and xQy. Since x < y and xQy,

by the definition of single-crossing domain, xPy for all P ∈ Sc with P ⊳ Q. This, in particular,
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means r1(P) 6= y for all P ∈ Sc with P ⊳ Q. Moreover, since y < r1(Q), by the definition of

single-crossing domain, r1(Q)Py for all P ∈ Sc with Q ⊳ P. This, in particular, means r1(P) 6= y

for all P ∈ Sc with Q ⊳ P. This, together with the fact that r1(Q) 6= y, means r1(P) 6= y for all

P ∈ Sc, which is a contradiction to the regularity of Sc. Therefore, Sc is single-peaked. �

Our next lemma shows that every maximal regular single-crossing domain satisfies top-

connected property.

Lemma 3.2. Every maximal regular single-crossing domain S̄c satisfies top-connectedness property.

Proof. Let S̄c be a maximal regular single-crossing domain. Then, by Lemma 3.1, S̄c is regular

single-peaked. Take x ∈ X \ {a, b}. We show that there exist P, P′ ∈ S̄c such that r1(P) = r2(P′) =

x and r2(P) = r1(P′) = x + 1. Without loss of generality, assume for contradiction that for all

P ∈ S̄c with r1(P) = x, r2(P) 6= x + 1. Because S̄c is single-peaked, it must be that x 6= a and

r2(P) = x − 1 for all P ∈ S̄c with r1(P) = x. Let ⊳∈ L(S̄c) be such that for all x, y ∈ X and all

P, P̂ ∈ S̄c,

[x < y, P ⊳ P̂, and xP̂y] ⇒ xPy.

Let P̂ ∈ S̄c be such that r1(P̂) = x and for all P ∈ S̄c with P̂ ⊳ P, r1(P) 6= x. Consider the

preference P̃ with r1(P̃) = x and r2(P̃) = x + 1 such that for all x, y ∈ X \ {x, x + 1}, xP̃y if and

only if xP̂y. Clearly, P̃ /∈ S̄c. Since S̄c is single-peaked, it follows that S̄c ∪ P̃ is single-crossing

with respect to the ordering ⊳′∈ L(S̄c ∪ P̃), where ⊳′ is obtained by placing P̃ just after P̂ in the

ordering ⊳, i.e., for all P, P′ ∈ S̄c, P ⊳′ P′ if and only if P ⊳ P′, and for all P ∈ S̄c with P̂ ⊳ P,

P̂ ⊳′ P̃ ⊳′ P. However, this contradicts the maximality of S̄c, which completes the proof. �

The following corollaries are obtained from Theorem 3.1, Lemma 3.1, and Lemma 3.2. They

characterize the unanimous and strategy-proof SCFs on the top-connected regular single-crossing

domains and the maximal regular single-crossing domains. Note that a top-connected regular

single-crossing domain with m alternatives can be constructed with 2m − 2 preferences, whereas

a maximal regular single-crossing domain requires m(m − 1)/2 preferences.

Corollary 3.2. Let Sc be a top-connected regular single-crossing domain. Then, an SCF f : Sn
c → X is

unanimous and strategy-proof if and only if it is a min-max rule.

Corollary 3.3. Let S̄c be a maximal regular single-crossing domain. Then, an SCF f : S̄n
c → X is

unanimous and strategy-proof if and only if it is a min-max rule.
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3.3.2 MINIMALLY RICH SINGLE-PEAKED DOMAINS

In this subsection, we present a characterization of unanimous and strategy-proof SCFs on

minimally rich single-peaked domains. The notion of minimally rich single-peaked domains is

introduced in Peters et al. (2014). For the sake of completeness, we present below the formal

definition of such domains.

Definition 3.6. A single-peaked preference P is called left single-peaked (right single-peaked) if for

all u < r1(P) < v, we have uPv (vPu). Moreover, a single-peaked domain Sm is called minimally

rich if it contains all left and all right single-peaked preferences.

Clearly, a minimally rich single-peaked domain is a top-connected single-peaked domain. So,

we have the following corollary from Theorem 3.1.

Corollary 3.4. Let Sm be a minimally rich single-peaked domain. Then, an SCF f : Sn
m → X is

unanimous and strategy-proof if and only if it is a min-max rule.

3.3.3 DISTANCE BASED SINGLE-PEAKED DOMAINS

In this subsection, we introduce the notion of single-peaked domains that are based on distances.

Consider the situation where a public facility has to be developed at one of the locations x1, . . . , xm.

Suppose that there is a street connecting the locations, and for every two locations xi and xi+1,

there are two types of distances, a forward distance from xi to xi+1 and a backward distance from

xi+1 to xi. An individual bases her preferences on such distances, i.e., whenever a location is

strictly closer than another to her most preferred location, she prefers the former to the latter.

Moreover, ties are broken on both sides. We show that such a domain is a top-connected single-

peaked domain under some condition on the distances. Below, we present a formal definition of

such domains.

Consider the directed line graph G = 〈X, E〉 on X. A function d : E → (0, ∞) is called a distance

function on G. Given a distance function d, define the distance between two nodes x, y ∈ X as

d(x, y) = d(x, x + 1) + . . . + d(y − 1, y) if y > x and d(x, y) = d(x, x − 1) + . . . + d(y + 1, y) if y <

x. A distance function satisfies adjacent symmetry if d(x, x + 1) = d(x, x − 1) for all x ∈ X \ {a, b}.

A preference P ∈ L(X) respects a distance function d if for all x, y ∈ X, d(r1(P), x) < d(r1(P), y)

implies xPy. A domain D respects a distance function d if D = {P ∈ L(X) | P respects d}.

Below, we provide an example of a distance based single-peaked domain.
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Example 3.3. Let X = {x1, x2, x3, x4, x5}. The directed line graph G = 〈X, E〉 on X and the

adjacent symmetric distance function d on E are as given below:

x1 x2 x3 x4 x5

1

5

5

2

2

3

3

6

Figure 2: The directed line graph G on X and an adjacent symmetric distance function on G

Then, the single-peaked domain based on the distance function d is:

D ={x1x2x3x4x5, x2x3x1x4x5, x2x1x3x4x5, x3x4x2x5x1, x3x2x4x5x1, x4x5x3x2x1,

x4x3x5x2x1, x5x4x3x2x1}.

In the following lemma, we show that a single-peaked domain based on an adjacent symmetric

distance function is a top-connected single-peaked domain.

REMARK 3.1. Let G = 〈X, E〉 be the directed line graph on X and let d : E → (0, ∞) be an adjacent

symmetric distance function. Suppose a domain D respects d. Then, D is a top-connected

single-peaked domain.

The following corollary is obtained from Theorem 3.1 and Remark 3.1.

Corollary 3.5. Let G = 〈X, E〉 be the directed line graph on X and let d : E → (0, ∞) be an adjacent

symmetric distance function. Suppose a domain D respects d. Then, f : Dn → X is unanimous and

strategy-proof if and only if it is a min-max rule.

4. PARTIALLY SINGLE-PEAKED DOMAINS

In this section, we consider a particular class of non-single-peaked domains. These domains

exhibit single-peaked property only over a strict subset of alternatives. We call such domains

partially single-peaked domains which are formally defined below.

Definition 4.1. Let x, y ∈ X such that x < y − 1. Then, a domain S̃ is called partially single-peaked

with respect to x, y if:

(i) for all P ∈ S̃ with r1(P) ∈ [x, y] and all u, v /∈ (x, y),
[

v < u ≤ r1(P) or r1(P) ≤ u < v
]

implies uPv,
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(ii) for all P ∈ S̃ with r1(P) /∈ [x, y] and all u, v ∈ X such that u /∈ (x, y),
[

v < u ≤

r1(P) or r1(P) ≤ u < v
]

implies uPv, and

(iii) there exist Q, Q′ ∈ S̃ with r1(Q) = x and r1(Q
′) = y such that either

[

r2(Q) ∈ (x +

1, y) and r2(Q
′) ∈ (x, y − 1)

]

or
[

r2(Q) = y and r2(Q
′) = x

]

.

Condition (i) in Definition 4.1 implies that if the top alternative of a preference in a partially

single-peaked domain lies in the interval [x, y], then it maintains single-peaked property over

the alternatives in the interval [a, x] and in the interval [y, b]. Note that Condition (i) does not

impose any restriction on the relative ordering of an alternative in [x, y] and an alternative outside

[x, y]. The interpretation of Condition (ii) is as follows. Consider a preference P in a partially

single-peaked domain such that r1(P) /∈ [x, y]. Suppose, for instance, r1(P) ∈ [a, x). Then, P

maintains single-peaked property over the alternatives in the interval [a, r1(P)]. Moreover, if

an alternative u lies in the interval (r1(P), x] or in the interval [y, b], then it is preferred to any

alternative v in the interval (u, b]. Note that if u lies in the interval (r1(P), x], then it is preferred

to an alternative in [x, y]. Thus, Condition (ii) imposes some restriction on the relative ordering

of an alternative in [x, y] and an alternative outside [x, y]. Further, note that Conditions (i) and

(ii) do not impose any restriction on the relative ordering of two alternatives in the interval

[x, y]. Finally, Condition (iii) ensures that the intervals [a, x] and [y, b] are the maximal intervals

over which every preference in a partially single-peaked domain maintains the single-peaked

property. To see this, first note that both Q and Q′ are non-single-peaked preferences. Q violates

single-peakedness for the alternatives x + 1 and r2(Q), and Q′ violates single-peakedness for the

alternatives y − 1 and r2(Q
′). Therefore, the intervals [a, x] and [y, b] are the maximal intervals

over which every preference in a partially single-peaked domain maintains the single-peaked

property. In Section 4.2, we show that the particular restrictions on the second ranked alternatives

of Q and Q′ given by Condition (iii) are necessary for our results.

We illustrate the notion of partially single-peaked domains in Figure 3. Figure 3(a) and

Figure 3(b) present a partially single-peaked preference P with r1(P) ∈ [x, y] and r1(P) ∈ [a, x),

respectively. Figure 3(c) presents the partially single-peaked preferences Q and Q′ with r1(Q) = x,

r2(Q) ∈ (x + 1, y), r1(Q
′) = y, and r2(Q

′) ∈ (x, y − 1) while Figure 3(d) presents partially single-

peaked preferences Q and Q′ with r1(Q) = x, r2(Q) = y, r1(Q
′) = y, and r2(Q

′) = x. Note that

all these preferences are single-peaked over the intervals [a, x] and [y, b]. Furthermore, for the

preference depicted in Figure 3(a), there is no restriction on the alternatives in the interval (x, y),
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and for that shown in Figure 3(b), there is no restriction on the alternatives in the interval (x, y)

except that x is preferred to all the alternatives in (x, b]. Also, for the preferences in Figures 3(c)

and 3(d), there is no restriction on the alternatives in (x, y) other than the one on the second

ranked alternatives.

a x y br1(P)

(a) Partially single-peaked preference P with r1(P) ∈ [x, y]

a x y br1(P)

(b) Partially single-peaked preference P with r1(P) ∈ [a, x)

a byr1(Q) = x r2(Q) = x′ a bx r1(Q
′) = yr2(Q

′) = y′

(c) Partially single-peaked preferences Q, Q′ with x + 1 < r2(Q) < y and x < r2(Q
′) < y − 1

a br1(Q) = x r2(Q) = y a br1(Q
′) = yr2(Q

′) = x

(d) Partially single-peaked preferences Q, Q′ with r2(Q) = y and r2(Q
′) = x

Figure 3: Partially single-peaked preferences

In the following, we define a top-connected partially single-peaked domain.

Definition 4.2. A domain S̃ is called a top-connected partially single-peaked domain with respect to

alternatives x, y with x < y − 1 if:

(i) S̃ is a partially single-peaked domain with respect to x, y, and

(ii) S̃ contains a top-connected single-peaked domain.

We interpret Definition 4.2 in terms of its top-graph. Let G be the top-graph of a top-connected

partially single-peaked domain with respect to alternatives x and y. Then, G is a directed partial
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line graph with respect to x and y since G = G1 ∪ G2, where G1 = 〈X, E1〉 is the directed line

graph on X and G2 = 〈[x, y], E2〉 is a directed graph such that (x, r2(Q), r2(Q)− 1, . . . , x) is an

essential cycle involving x and (y, r2(Q
′), r2(Q

′) + 1, . . . , y) is an essential cycle involving y. In

Example 4.1, we present a top-connected partially single-peaked domain with seven alternatives,

and in Figure 4, we present the top-graph of the domain.

Example 4.1. Let the set of alternatives be X = {x1, x2, x3, x4, x5, x6, x7}, where x1 < x2 < x3 <

x4 < x5 < x6 < x7. Then, the domain in Table 3 is a top-connected partially single-peaked domain

with respect to x3 and x6. To see this, first consider a preference with its top alternative in the set

{x3, x4, x5, x6}, say P7. Note that x3P7x2P7x1 and x6P7x7, which means P7 is single-peaked over

the subsets of alternatives {x1, x2, x3} and {x6, x7}. Moreover, the position of x5 is completely

unrestricted (here at the bottom) in P7. Next, consider a preference with the top alternative in

the set {x1, x2, x3}, say P2. Note that P2 is single-peaked over the sets {x1, x2, x3} and {x6, x7}.

Further, note that x3 is preferred to the alternatives x4, x5, x6, x7, and that there is no restriction on

the relative ordering of the alternatives x4 and x5 (here x5P2x4). Finally, consider the preferences

Q and Q′. Since r1(Q) = x3, r2(Q) = x5, r1(Q
′) = x6, and r2(Q

′) = x4, they satisfy Condition (iii)

in Definition 4.1.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Q Q′

x1 x2 x2 x2 x3 x3 x4 x4 x4 x5 x5 x6 x6 x7 x3 x6

x2 x1 x1 x3 x2 x4 x6 x3 x5 x4 x6 x5 x7 x6 x5 x4

x3 x3 x3 x1 x4 x2 x3 x5 x3 x3 x4 x4 x5 x5 x2 x3

x4 x6 x4 x4 x5 x5 x2 x2 x2 x6 x3 x3 x4 x4 x6 x7

x5 x5 x5 x5 x6 x6 x1 x6 x1 x7 x2 x2 x3 x3 x1 x2

x6 x7 x6 x6 x7 x1 x7 x1 x6 x2 x7 x7 x2 x2 x7 x1

x7 x4 x7 x7 x1 x7 x5 x7 x7 x1 x1 x1 x1 x1 x4 x5

Table 3: A top-connected partially single-peaked domain

The top-graph G of the domain in Example 4.1 is given in Figure 4. Note that G = G1 ∪ G2,

where G1 is the directed line graph on {x1, x2, x3, x4, x5, x6, x7} and G2 is a directed graph on

{x3, x4, x5, x6} containing two essential cycles (x3, x5, x4, x3) and (x6, x4, x5, x6) involving the

nodes x3 and x6, respectively.
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x1 x2 x3 x4 x5 x6 x7

Figure 4: Top-graph of the Domain in Example 4.1

4.1 UNANIMOUS AND STRATEGY-PROOF SCFS

In this subsection, we characterize the unanimous and strategy-proof SCFs on top-connected

partially single-peaked domains as partly dictatorial generalized median voter schemes. A formal

definition of such SCFs is presented below:

Definition 4.3. Let x, y ∈ X be such that x < y − 1. Then, a min-max rule f β : Dn → X with

parameters β = (βS)S⊆N is a partly dictatorial generalized median voter scheme (PDGMVS) with

respect to x, y if there exists an agent d ∈ N, called the partial dictator of f β, such that βd ∈ [a, x]

and βN\d ∈ [y, b].

REMARK 4.1. Reffgen (2015) defines PDGMVS in a different fashion but it can be shown that their

definition is equivalent to Definition 4.3.9

The following lemma justifies why the agent d in Definition 4.3 is called the partial dictator.

Lemma 4.1. Let x, y ∈ X be such that x < y − 1 and let f β : Dn → X be a PDGMVS with respect to

x, y. Let agent d be the partial dictator of f β. Then,

(i) f β(PN) ∈ [a, x] if r1(Pd) ∈ [a, x),

(ii) f β(PN) ∈ [y, b] if r1(Pd) ∈ (y, b], and

(iii) f β(PN) = r1(Pd) if r1(Pd) ∈ [x, y].

Proof. We prove (i) and (iii), the proof of (ii) can be established using symmetric arguments.

Assume for contradiction that r1(Pd) ∈ [a, x) and f β(PN) > x. Since f β is a min-max rule, f β

is uncompromising. Therefore, f β(P′
d, PN\d) = f β(PN), where r1(P′

d) = a. By the definition

of f β, we have f β(P′
N) ≥ f β(PN), where r1(P′

i ) = b for all i 6= d. Because f β(PN) > x, we

have f β(P′
N) > x. However, by the definition of f β, f β(P′

N) = βd. Since βd ∈ [a, x], this is a

contradiction. This completes the proof of (i).

9For details see the proof of Theorem 3.1 in Reffgen (2015).
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Now, we prove (iii). Without loss of generality, assume for contradiction that r1(Pd) ∈ [x, y]

and f β(PN) > r1(Pd). Using similar logic as in the proof of (i), we have f β(P′
N) ≥ f β(PN), where

r1(P′
d) = a and r1(P′

i ) = b for all i 6= d. Since f β(P′
N) = βd ∈ [a, x], this is a contradiction. This

completes the proof of (iii). �

The following theorem characterizes the unanimous and strategy-proof SCFs on top-connected

partially single-peaked domains.

Theorem 4.1. Let x, y ∈ X be such that x < y − 1 and let S̃ be a top-connected partially single-peaked

domain with respect to x, y. Then, an SCF f : S̃n → X is unanimous and strategy-proof if and only if it is

a PDGMVS with respect to x, y.

The proof of the Theorem 4.1 is relegated to Appendix B.

Our next corollary is a consequence of Lemma 4.1 and Theorem 4.1. It characterizes a class of

dictatorial domains, and thereby it generalizes the celebrated Gibbard-Satterthwaite (Gibbard

(1973), Satterthwaite (1975)) results. Note that our dictatorial result is independent of those in

Aswal et al. (2003), Sato (2010), Pramanik (2015) and so on.

Corollary 4.1. Let D be a top-connected partially single-peaked domain with respect to a and b. Then, D

is a dictatorial domain.

4.2 A RESULT ON PARTIAL NECESSITY

In this subsection, we consider domains for which the set of unanimous and strategy-proof SCFs

coincides with the set of PDGMVS. We call such domains PDGMVS domains. A formal definition

is given below.

Definition 4.4. A domain D is called a PDGMVS domain if there are x, y ∈ X with x < y − 1 such

that:

(i) every PDGMVS with respect to x, y on Dn is strategy-proof, and

(ii) every unanimous and strategy-proof SCF on Dn is a PDGMVS with respect to x, y.

Conditions (i), (ii), and (iii) in Definition 4.1 are obviously strong conditions. Are they necessary

for PDGMVS domains? The question appears to be extremely difficult to resolve completely.

However, the following lemma shows that Conditions (i) and (ii) in Definition 4.1 are necessary,
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and the subsequent discussion shows that Condition (iii) is also close to being necessary in an

appropriate sense.

Lemma 4.2. Let D be a PDGMVS domain. Then, D satisfies Conditions (i) and (ii) in Definition 4.1.

Proof. First, we show that D satisfies Condition (i) in Definition 4.1. Without loss of generality,

assume that there exists P̃ ∈ D with r1(P̃) ∈ [x, y] such that uP̃v for some u < v ≤ x. Consider

the PDGMVS f β such that:

βS =



















v if S = {1},

x − 1 if {1} ( S,

r1(P1) if 1 /∈ S.

Note that agent 1 is the partial dictator of f β. Consider the preference profile PN ∈ Dn such that

r1(P1) = a, P2 = P̃, and r1(Pj) = b for all j 6= 1, 2. Then, by the definition of f β, f β(PN) = v. Let

P′
2 ∈ D be such that r1(P′

2) = u. Then, f β(P′
2, PN\2) = u. Since uP̃v, agent 2 manipulates at PN via

P′
2.

Now, we show that D satisfies Condition (ii) in Definition 4.1. Without loss of generality,

assume for contradiction that there exist P̃ ∈ D with r1(P̃) ∈ [a, x) and u, v ∈ X with u /∈ (x, y)

such that
[

v ≺ u � r1(P) or r1(P) � u ≺ v
]

and vP̃u. If v ∈ [a, x], then using similar argument

as in the proof of the necessity of Condition (i), it follows that there is a PDGMVS on Dn that is

manipulable. So, assume r1(P̃) ≤ u ≤ x < v. Consider the PDGMVS f β : Dn → X such that:

βS =







u if 1 ∈ S and S 6= N,

b if 1 /∈ S and S 6= N.

Let PN ∈ Dn be such that P1 = P̃ and r1(Pj) = b for all j 6= 1. Then, f β(PN) = u. Let P′
1 ∈ D be

such that r1(P′
1) = b. Then, f β(P′

1, PN\1) = v. Since vP̃u, agent 1 manipulates at PN via P′
1. �

Coming to Condition (iii) in Definition 4.1, it is to be noted that it can be violated in many

ways, we consider those domains obtained through mild violations of the same and show that

there do exist unanimous and strategy-proof SCFs on such domains that are not PDGMVS.

Recall that Condition (iii) requires two non-single-peaked preferences Q and Q′ in D such

that r1(Q) = x, r2(Q) = x′, r1(Q
′) = y, and r2(Q

′) = y′, where either
[

x′ ∈ (x, y − 1) and y′ ∈

(x + 1, y)
]

or
[

x′ = x and y′ = x
]

. Suppose a domain D satisfies Conditions (i) and (ii) in

Definition 4.1. Suppose further that D contains a non-single-peaked preference of the form Q, but
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no preference of the form Q′. In the following example, we construct a two-agent unanimous and

strategy-proof SCF on such a domain D that is not a PDGMVS.

Example 4.2. Let X = {x1, x2, x3, x4, x5}, where x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5. By P = x1x2x3x4x5, we

mean a preference P such that x1Px2Px3Px4Px5. Consider the domain:

D ={x1x2x3x4x5, x1x3x4x5x2, x2x1x3x4x5, x2x3x4x5x1, x3x2x1x4x5, x3x4x5x2x1, x4x3x2x1x5,

x4x5x3x2x1, x5x4x3x2x1}.

Note that D \ {x1x3x4x5x2} is a top-connected single-peaked domain and the preference

x1x3x4x5x2 is of the form Q with x = x1 and x′ = x3. However, there is no preference in D of the

form Q′. In Table 4, we present a two-agent SCF that is unanimous and strategy-proof but not a

PDGMVS.

P1
P2 x1x2x3x4x5 x1x3x4x5x2 x2x1x3x4x5 x2x3x4x5x1 x3x2x1x4x5 x3x4x5x2x1 x4x3x2x1x5 x4x5x3x2x1 x5x4x3x2x1

x1x2x3x4x5 x1 x1 x2 x2 x2 x2 x2 x2 x2

x1x3x4x5x2 x1 x1 x2 x2 x3 x3 x3 x3 x3

x2x1x3x4x5 x2 x2 x2 x2 x2 x2 x2 x2 x2

x2x3x4x5x1 x2 x2 x2 x2 x2 x2 x2 x2 x2

x3x2x1x4x5 x2 x3 x2 x2 x3 x3 x3 x3 x3

x3x4x5x2x1 x2 x3 x2 x2 x3 x3 x3 x3 x3

x4x3x2x1x5 x2 x3 x2 x2 x3 x3 x4 x4 x4

x4x5x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x4

x5x4x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x5

Table 4: A unanimous and strategy-proof SCF which is not a PDGMVS

It is left to the reader to verify that f is unanimous and strategy-proof. Note that f violates

tops-onlyness at the preference profiles (x3x4x5x2x1, x1x2x3x4x5) and (x3x4x5x2x1, x1x3x4x5x2),

and hence f is not a PDGMVS.

Now, suppose that D contains two non-single-peaked preferences Q and Q′ which do not

satisfy Condition (iii) in Definition 4.1 for their second ranked alternatives. In the following

example, we construct a two-agent unanimous and strategy-proof SCF on such a domain D that

is not a PDGMVS.
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Example 4.3. Let X = {x1, x2, x3, x4, x5}, where x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5. Consider the domain:

D ={x1x2x3x4x5, x1x3x4x5x2, x2x1x3x4x5, x2x3x4x5x1, x3x2x1x4x5, x3x4x5x2x1, x4x3x2x1x5,

x4x5x3x2x1, x5x4x3x2x1, x5x1x4x3x2}.

Let Q = x1x3x4x5x2 and Q′ = x5x1x4x3x2. Note that D \ {Q, Q′} is a top-connected single-peaked

domain. Further, since r2(Q) = x3 and r2(Q
′) = x1, Q and Q′ do not satisfy Condition (iii) in

Definition 4.1. In Table 5, we present a two-agent SCF that is unanimous and strategy-proof but

not a PDGMVS.

P1
P2 x1x2x3x4x5 x1x3x4x5x2 x2x1x3x4x5 x2x3x4x5x1 x3x2x1x4x5 x3x4x5x2x1 x4x3x2x1x5 x4x5x3x2x1 x5x4x3x2x1 x5x1x4x3x2

x1x2x3x4x5 x1 x1 x2 x2 x2 x2 x2 x2 x2 x1

x1x3x4x5x2 x1 x1 x2 x2 x3 x3 x3 x3 x3 x1

x2x1x3x4x5 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2

x2x3x4x5x1 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2

x3x2x1x4x5 x2 x3 x2 x2 x3 x3 x3 x3 x3 x3

x3x4x5x2x1 x2 x3 x2 x2 x3 x3 x3 x3 x3 x3

x4x3x2x1x5 x2 x3 x2 x2 x3 x3 x4 x4 x4 x4

x4x5x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x4 x4

x5x4x3x2x1 x2 x3 x2 x2 x3 x3 x4 x4 x5 x5

x5x1x4x3x2 x1 x1 x2 x2 x3 x3 x4 x4 x5 x5

Table 5: A unanimous and strategy-proof SCF which is not a PDGMVS

It is left to the reader to verify that f is unanimous and strategy-proof. Note that f violates

tops-onlyness at the preference profiles (x3x4x5x2x1, x1x2x3x4x5) and (x3x4x5x2x1, x1x3x4x5x2),

and hence f is not a PDGMVS.

4.3 APPLICATIONS

4.3.1 MULTIPLE SINGLE-PEAKED DOMAIN

In this subsection, we consider a well-known class of domains called multiple single-peaked

domains and present a characterization of the unanimous and strategy-proof SCFs on such

domains. However, before formally defining such domains below we first provide a formal

definition of such domains. First, we define the notion of single-peaked domain with respect to

an arbitrary order over X.
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Definition 4.5. Let ≺∈ L(X) be a prior order over X. Then, a preference P ∈ L(X) is single-peaked

with respect to ≺ if for all x, y ∈ X, [x ≺ y � r1(P) or r1(P) � y ≺ x] implies yPx. A domain

S≺ is called a single-peaked domain with respect to ≺ if each preference in it is single-peaked with

respect to ≺, and a domain S̄≺ is called maximal single-peaked with respect to ≺ if it contains all

single-peaked preferences with respect to ≺.

Similarly, one can define the notion of top-connected partially single-peaked domains and

PDGMVS with respect to some prior order ≺ over X. For the sake of completeness, we provide

the formal definitions of these concepts in what follows.

For x, y ∈ X such that x � y, we define the intervals [x, y]≺ = {z ∈ X | x � z � y},

[x, y)≺ = [x, y]≺ \ {y}, (x, y]≺ = [x, y]≺ \ {x}, and (x, y)≺ = [x, y]≺ \ {x, y}. Also, for ≺∈ L(X)

and x ∈ X, by x+≺ and x−≺ we denote the alternatives that appear just after and just before x in

the ordering ≺, respectively. More formally, x+≺ = y if x ≺ y and there does not exist z ∈ X with

x ≺ z ≺ y, and x−≺ = y if y ≺ x and there does not exist z ∈ X with y ≺ z ≺ x.

Definition 4.6. Let ≺∈ L(X) be a prior order over X and let x, y ∈ X be such that x ≺ y−≺. Then,

a domain S̃ is called partially single-peaked with respect to ≺ and x, y if:

(i) for all P ∈ S̃ with r1(P) ∈ [x, y]≺ and all u, v /∈ (x, y)≺,
[

v ≺ u � r1(P) or r1(P) � u ≺ v
]

implies uPv,

(ii) for all P ∈ S̃ with r1(P) /∈ [x, y]≺ and all u, v ∈ X such that u /∈ (x, y)≺,
[

v ≺ u �

r1(P) or r1(P) � u ≺ v
]

implies uPv, and

(iii) there exist Q, Q′ ∈ S̃ with r1(Q) = x and r1(Q
′) = y such that either

[

r2(Q) ∈ (x+≺, y)≺

and r2(Q
′) ∈ (x, y−≺)≺

]

or
[

r2(Q) = y and r2(Q
′) = x

]

.

Definition 4.7. Let ≺∈ L(X) be a prior order over X and let x, y ∈ X be such that x ≺ y−≺. A

domain S̃ is called a top-connected partially single-peaked domain with respect to ≺ and x, y if:

(i) S̃ is a partially single-peaked domain with respect to ≺ and x, y, and

(ii) S̃ contains a top-connected single-peaked domain with respect to ≺.

Definition 4.8. Let ≺∈ L(X) be a prior order over X. Further, let β = (βS)S⊆N be a list of 2n

parameters satisfying: (i) βS ∈ X for all S ⊆ N, (ii) β∅ = max
≺

(X), βN = min
≺

(X), and (iii) for all
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S ⊆ T, βT � βS. Then, an SCF f β : Dn → X is called a min-max rule with respect to ≺ and β if:

f β(P1, . . . , Pn) = min
S⊆N

{max
i∈S

{r1(Pi), βS}},

where all the minimums and maximums are taken with respect to the prior order ≺.

Definition 4.9. Let x1 ≺ . . . ≺ xm be a prior order over X. Let x, y ∈ X be such that x ≺ y−≺. Then,

a min-max rule f β : Dn → X with parameters (βS)S⊆N is a partly dictatorial generalized median

voter scheme with respect to ≺ and x, y if there exists an agent d ∈ N called the partial dictator of f β

such that βd ∈ [x1, x]≺ and βN\d ∈ [y, xm]≺.

Definition 4.10. Let L = {≺1, . . . ,≺q}, where ≺k∈ L(X) for all k ≤ q be a set of q prior orders

over X. A domain is called a multiple single-peaked domain with respect to L, denoted by SL, if

SL =
⋃

k∈{1,...,q}

S̄≺k
, where S̄≺k

is the maximal single-peaked domain with respect to the prior

order ≺k. A multiple single-peaked domain with respect to L is called trivial if S̄≺ = S̄≺′ for all

≺,≺′∈ L.

Definition 4.11. Let SL be a non-trivial multiple single-peaked domain with respect to a set of

prior orders L. Then, alternatives u, v ∈ X are called break-points of SL if:

(i) for all preferences P ∈ SL, all ≺∈ L, and all c, d ∈ X such that {c, d} ∩ [u, v]≺ = ∅,
[

d ≺ c � r1(P) or r1(P) � c ≺ d
]

implies cPd, and

(ii) there exist ≺∈ L and P, P′ ∈ SL such that u ≺ v−≺, r1(P) = u, r2(P) ∈ (u+
≺, v]≺, r1(P′) = v,

and r2(P′) ∈ [u, v−≺)≺.

REMARK 4.2. Let SL be a non-trivial multiple single-peaked domain with respect to L. Then, the

break-points of SL are unique.10

REMARK 4.3. Let u, v be the break-points of a non-trivial multiple single-peaked domain SL and

let ≺∈ L. Suppose min
≺

(X) = x1 and max
≺

(X) = xm. Then, u, v induce the partition {XL, XM, XR}

of X, where XL = [x1, u)≺, XM = [u, v]≺, and XR = (v, xm]≺. Such a partition is called the

maximal common decomposition of X. It can be verified that the maximal decomposition does not

depend on the choice of the prior order ≺∈ L. Reffgen (2015) calls the sets XL, XM, and XR as the

left component, the middle component, and the right component of alternatives respectively.

10The proof of this fact is available upon request.
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In the following, we illustrate the notion of break-points of a non-trivial multiple single-peaked

domain by means of an example.

Example 4.4. Let X = {x1, x2, x3, x4, x5, x6, x7} be the set of alternatives. Consider the set of

prior orders L = {≺1,≺2,≺3,≺4}, where ≺1= x1x2x3x5x4x6x7, ≺2= x1x2x5x4x3x6x7, ≺3=

x1x2x3x4x5x6x7, and ≺4= x1x2x4x3x5x6x7. Let SL be the multiple single-peaked domain with

respect to L. Clearly, SL is non-trivial since S̄≺1
6= S̄≺2 . We claim u = x2 and v = x6 are the break

points of SL. To see this, note that ≺1, ≺2, ≺3, and ≺4 have same relative orderings over the sets

{x1, x2} and {x6, x7}. Therefore, Condition (i) in Definition 4.1 is satisfied for all P ∈ S̄≺i
and all

i = 1, 2, 3, 4. For Condition (ii), consider the prior order ≺2. Then, x2 ≺2 x3 ≺2 x6 and there are

preferences P, P′ ∈ S̄≺2 ⊆ SL such that r1(P) = x2, r2(P) = x5, r1(P′) = x6, and r2(P′) = x3. To

obtain the maximal common decomposition, consider a prior order in L, say ≺1. Then, x2 and x6

induce the maximal common decomposition of X given by XL = {x1}, XM = {x2, x3, x4, x5, x6},

and XR = {x7}. It can be verified that the maximal common decomposition of X does not change

if we consider some prior order in L other than the order ≺1.

REMARK 4.4. Let SL be a non-trivial multiple single-peaked domain with break-points u, v and

let ≺∈ L be arbitrary. Then, SL is a top-connected partially single-peaked domain with respect to

≺ and u, v.

Corollary 4.2 (Reffgen (2015)). Let SL be a non-trivial multiple single-peaked domain with break-points

u, v and let ≺∈ L be arbitrary. Then, an SCF f : Sn
L → X is unanimous and strategy-proof if and only if

it is a PDGMVS with respect to ≺ and u, v.

4.3.2 SINGLE-PEAKED DOMAINS ON GRAPHS

In this subsection, we introduce the notion of single-peaked domains on graphs. All the graphs

considered in this subsection are undirected.

Definition 4.12. Let T = 〈X, E〉 be a tree. A domain is called single-peaked with respect to T,

denoted by DT, if for all P ∈ DT and all distinct x, y ∈ X,

[x ∈ πT(r1(P), y)] =⇒ [xPy].

Definition 4.13. Let G = 〈X, E〉 be a undirected connected graph. A domain is called single-peaked

with respect to G, denoted by DG, if DG = ∪T∈TG
DT.
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Note that if T is the undirected line graph on X, then DT is a maximal single-peaked domain.

In our next lemma, we show that if a domain is single-peaked with respect to an undirected

partial line graph, then it is a top-connected partially single-peaked domain.

Lemma 4.3. Let x < y − 1 and let G be an undirected partial line graph with respect to x and y. Then,

DG is a top-connected partially single-peaked domain with respect to x, y.

Proof. Let G be an undirected partial line graph with respect to x, y, where x < y − 1. We show

that DG is a top-connected partially single-peaked domain. Let G = G1 ∪ G2, where G1 = 〈X, E1〉

is the undirected line graph on X and G2 = 〈[x, y], E2〉 is an undirected graph such that for all

z ∈ {x, y} there is a cycle involving z.

First, we show that DG is partially single-peaked. Take P ∈ DG with r1(P) ∈ [x, y] and take

u, v ∈ X \ (x, y). Suppose [v < u ≤ r1(P) or r1(P) ≤ u < v]. Consider an arbitrary spanning

tree T of G. Then, by the definition of G, u ∈ πT(r1(P), v). Therefore, uPv. Using similar

logic, it follows that DG satisfies Condition (ii) in Definition 4.1. Finally, we show that there are

Q, Q′ ∈ DG satisfying Condition (iii) in Definition 4.1. Let C be a cycle in G2 involving the node x.

Then, there must be an edge {x, x′} in C such that x′ ∈ (x + 1, y]. Consider the tree T = 〈X, E〉

such that E = (E1 \ {x, x + 1}) ∪ {x, x′}. Since G1 = 〈X, E1〉 is the undirected line graph on X,

T is a spanning tree of G. Because {x, x′} ∈ E, there is a preference P ∈ DT with r1(P) = x

and r2(P) = x′. Therefore, P satisfies Condition (iii) in Definition 4.1 for Q. Similarly, it can be

shown that there is P′ ∈ DG that satisfies Condition (iii) in Definition 4.1 for Q′. Now, suppose

x′ = y. That means there is an edge in T connecting x and y. Therefore, there is P′ ∈ DT such

that r1(P′) = y and r2(P′) = x. Therefore, P and P′ satisfy the restrictions on the second ranked

alternatives of Q and Q′ given by Condition (iii) in Definition 4.1, respectively.

Now, we show that DG contains a top-connected single-peaked domain. Since G1 is the

undirected line graph on X, DG1
is a top-connected single-peaked domain. Moreover, since G1 is

a spanning tree of G, DG1
⊆ DG. This completes the proof of the lemma. �

Now, we have the following corollary.

Corollary 4.3. Let x, y ∈ X be such that x < y − 1 and let G = 〈X, E〉 be a undirected partial line

graph with respect to x, y. Suppose DG is the single-peaked domain with respect to G. Then, an SCF

f : Dn
G → X is unanimous and strategy-proof if and only if it is a PDGMVS.
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5. GROUP STRATEGY-PROOFNESS

In this section, we consider group strategy-proofness and obtain a characterization of the unani-

mous and group strategy-proof SCFs on top-connected single-peaked domains and top-connected

partially single-peaked domains. We begin with the definition of group strategy-proofness.

Definition 5.1. An SCF f : Dn → X is called group manipulable if there is a preference profile PN,

a non-empty coalition C ⊆ N, and a preference profile P′
C ∈ D|C| of the agents in C such that

f (P′
C, PN\C)Pi f (PN) for all i ∈ C. An SCF f : Dn → X is called group strategy-proof if it is not

group manipulable.

Barberà et al. (2010) established a sufficient condition that ensures the equivalence of strategy-

proofness and group strategy-proofness on a domain. It can be easily verified that top-connected

single-peaked domains satisfy their sufficient condition. Thus, we have the following corollary.

Corollary 5.1. Let Ŝ be a top-connected single-peaked domain. Then, an SCF f : Ŝn → X is unanimous

and group strategy-proof if and only if it is a min-max rule.

In the following theorem, we present a characterization of the unanimous and group strategy-

proof SCFs on top-connected partially single-peaked domains. It is worth mentioning that these

domains do not satisfy the sufficient condition for the equivalence of strategy-proofness and

group strategy-proofness provided in Barberà et al. (2010).

Theorem 5.1. Let x, y ∈ X be such that x < y − 1 and let S̃ be a top-connected partially single-peaked

domain with respect to x, y. Then, an SCF f : S̃n → X is unanimous and group strategy-proof if and only

if it is a PDGMVS with respect to x, y.

Proof. Let x, y ∈ X be such that x < y − 1 and let S̃ be a top-connected partially single-peaked

domain with respect to x, y. Suppose f : S̃n → X is a PDGMVS with respect to x, y with partial

dictator d. It is enough to show that f is group strategy-proof. Clearly, no group can manipulate f

at a preference profile PN ∈ S̃n, where r1(Pd) ∈ [x, y]. Consider a preference profile PN ∈ S̃n such

that r1(Pd) ∈ [a, x). We show that f is group strategy-proof at PN. By the definition of PDGMVS,

f (PN) ∈ [a, x]. Let C′ = {i ∈ N | r1(Pi) ≤ f (PN)} and C′′ = {i ∈ N | r1(Pi) > f (PN)}. Suppose

a coalition C manipulates f at PN. Then, there is P′
C ∈ S̃ |C| such that f (P′

C, PN\C)Pi f (PN) for all

i ∈ C. If f (P′
C, PN\C) < f (PN), then by the definition of S̃ , we have C ∩ C′′ = ∅. However, by
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the definition of PDGMVS, f (P′
C, PN\C) ≥ f (PN) for all C ⊆ C′ and all P′

C ∈ S̃ |C|, a contradiction.

Again, if f (P′
C, PN\C) > f (PN), then by the definition of S̃ , we have C ∩ C′ = ∅. However, by the

definition of PDGMVS, f (P′
C, PN\C) ≤ f (PN) for all C ⊆ C′′ and all P′

C ∈ S̃ |C|, a contradiction.

The proof for the case where r1(Pd) ∈ (y, b] follows from symmetric argument. �

6. CONCLUSION

In this paper, we have introduced a class of restricted domains which we call top-connected

single-peaked domains and have characterized the unanimous and strategy-proof SCFs on such

domains as min-max rules. Outstanding examples of top-connected single-peaked domains are

maximal single-peaked domains (Moulin (1980), Weymark (2011)), minimally rich single-peaked

domains (Peters et al. (2014)), distance based single-peaked domains, and regular single-crossing

domains (Saporiti (2009)). Further, we have introduced the notion of min-max domains, for which

the set of unanimous and strategy-proof SCFs coincides with the set of min-max rules. We show

that a domain is a min-max domain if and only if it is a top-connected single-peaked domain.

Next, we have considered domains that violate single-peaked property over a subset of

alternatives. We call such domains top-connected partially single-peaked domains. For such

a domain, there are two alternatives x, y with x < y − 1 such that the domain satisfies single-

peaked property over [a, x] and [y, b], and violate the property over (x, y). We have shown that

an SCF is unanimous and strategy-proof on such a domain if and only if it is a PDGMVS with

respect to x, y. We have also shown that the top-connected partially single-peaked domains

includes almost all domains with the property that the set of unanimous and strategy-proof

SCFs coincides with the set of PDGMVS. Outstanding examples of top-connected partially single-

peaked domains are multiple single-peaked domains (Reffgen (2015)) and single-peaked domains

on graphs. Our result on partial necessity shows that top-connected partially single-peaked

domains are the minimal subsets of a multiple single-peaked domain such that every unanimous

and strategy-proof SCF is a PDGMVS.

Finally, we have considered group strategy-proofness. It follows from Barberà et al. (2010) that

strategy-proofness and group strategy-proofness are equivalent on top-connected single-peaked

domains. However, their result does not apply on top-connected partially single-peaked domains.

In this paper, we have shown that strategy-proofness and group strategy-proofness are equivalent

on these domains, and in particular, we have provided a characterization of unanimous and
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group strategy-proof SCFs on such domains.

APPENDIX A. PROOF OF THEOREM 3.1

Proof. (If-part) Suppose f : Ŝn → X is a min-max rule. Then, f is unanimous and strategy-

proof on the maximal single-peaked domain (Weymark (2011)). Since every top-connected

single-peaked domain is a subset of the maximal single-peaked domain, f is unanimous and

strategy-proof on Ŝn.

(Only-if part) Let f : Ŝn → X be a unanimous and strategy-proof SCF. We show that f is a

min-max rule. In what follows, we establish a few properties of f in the following sequence of

lemmas.

In the following lemma, we show that the outcome of f at every preference profile PN ∈ Ŝn

must lie in-between min(τ(PN)) and max(τ(PN)).

Lemma A.1. It must be that f (PN) ∈ [min(τ(PN)), max(τ(PN))] for all PN ∈ Ŝn.

Proof. Assume to the contrary that f (PN) /∈ [min(τ(PN)), max(τ(PN))] for some PN ∈ Ŝn. With-

out loss of generality, assume that f (PN) = x < min(τ(PN)). Then, f (PN) = x < x + 1 ≤

min(τ(PN)) ≤ r1(Pi) for all i ∈ N. Since Pi is single-peaked, this means (x + 1)Pix for all

i ∈ N. For each i ∈ N, consider P′
i ∈ Ŝ such that r1(P′

i ) = x + 1 and r2(P′
i ) = x. Then,

by strategy-proofness, f (P′
i , PN\i) = x. By moving the agents i ∈ N from the preference

Pi to the preference P′
i one-by-one and applying strategy-proofness at every step, we have

f (PN) = f (P′
1, PN\1) = f (P′

1, P′
2, PN\{1,2}) = . . . = f (P′

1, . . . , P′
n−1, Pn) = x. However, by una-

nimity, f (P′
1, . . . , P′

n) = x + 1. This means agent n manipulates at (P′
1, . . . , P′

n−1, Pn) via P′
n, a

contradiction. This completes the proof. �

Our next lemma and its corollary establish a restricted version of uncompromisingness. The

implication of the lemma is as follows. Consider a preference profile PN . Fix an alternative y ∈ X.

Construct another preference profile P′
N where each agent with top-ranked alternatives at PN on

the left (right) of y move to a preference with top-ranked alternative y, while all other agents keep

their preferences unchanged. Then, (i) if f (PN) was on the right (left) of y, then f (P′
N) = f (PN),

and (ii) if f (PN) was on the left (right) of y, then f (P′
N) = y.

Lemma A.2. Let PN, P′
N ∈ Ŝn and y ∈ X be such that for all i ∈ N, if r1(Pi) < y then r1(P′

i ) = y,

otherwise Pi = P′
i . Then, f (P′

N) = max{ f (PN), y}.
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Proof. Suppose f (PN) = x. Suppose further that y ≤ x. Note that if y ≤ min(PN), then

P′
N = PN, and hence, by Lemma A.1, y ≤ f (PN). Therefore, there is nothing to prove. Suppose

min(PN) < y. Let i ∈ N be such that r1(Pi) = min(PN). Take P′
i ∈ Ŝ such that r1(P′

i ) =

y. We show that f (P′
i , PN\i) = x. Suppose f (P′

i , PN\i) > x. Since P′
i is single-peaked and

r1(P′
i ) ≤ x < f (P′

i , PN\i), it must be that xP′
i f (P′

i , PN\i). This means agent i manipulates at

(P′
i , PN\i) via Pi, a contradiction. Now suppose f (P′

i , PN\i) < x. Since r1(Pi) < r1(P′
i ), we have

min(PN) ≤ min(P′
i , PN\i). Because r1(Pi) = min(PN) and min(PN) ≤ min(P′

i , PN\i), by Lemma

A.1, it must be that r1(Pi) ≤ f (P′
i , PN\i). Since Pi is single-peaked and r1(Pi) ≤ f (P′

i , PN\i) < x,

it follows that f (P′
i , PN\i)Pix. This means agent i manipulates at PN via P′

i , a contradiction.

Therefore, f (P′
i , PN\i) = x. Now, if y ≤ min(P′

i , PN\i), then by the condition of the lemma,

P′
N = (P′

i , PN\i), and the proof is complete. Suppose min(P′
i , PN\i) < y. Consider j ∈ N such

that r1(Pj) = min(P′
i , PN\i). Let P′

j be such that r1(P′
j ) = y. Using similar argument as before, it

follows that f (P′
i , P′

j , PN\{i,j}) = f (P′
i , PN\i) = f (PN). Continuing in this manner, it follows that

f (P′
N) = f (PN). This completes the proof of the lemma for y ≤ x.

Now, suppose y > x. Let y = x + k for some positive integer k. Let P̂N ∈ Ŝn be such that

r1(P̂i) = x for all i ∈ N with r1(Pi) ≤ x and P̂i = Pi for all other agents. By strategy-proofness,

f (P̂N) = x. Let Nx = {i ∈ N | r1(P̂i) = x}. Suppose P̄ ∈ Ŝ is such that r1(P̄) = x + 1 and

r2(P̄) = x. Take i ∈ Nx and let P̄i = P̄. Then, by strategy-proofness, f (P̄i, P̂N\i) ∈ {x, x + 1} as

otherwise agent i manipulates at (P̄i, P̂N\i) via P̂i. Using similar argument, f (P̄i, P̄j, P̂N\{i,j}) ∈

{x, x + 1}, where i, j ∈ Nx and P̄j = P̄. Continuing in this manner, we have f (P̄N) ∈ {x, x + 1},

where P̄i = P̄ for all i ∈ Nx and P̄i = P̂i for all i ∈ N \ Nx. However, min(P̄N) = x + 1. Hence,

by Lemma A.1, f (P̄N) = x + 1. Suppose Nx+1 = {i ∈ N | r1(P̄i) = x + 1}. Let P̃ ∈ Ŝ be such

that r1(P̃) = x + 2 and r2(P̃) = x + 1. Further, let P̃N ∈ Ŝn be such that P̃i = P̃ if i ∈ Nx+1

and P̃i = P̄i otherwise. Then, by using arguments similar to the above, we have f (P̃N) = x + 2.

Continuing in this manner, we have f (P′′
N) = x + k, where P′′

N ∈ Ŝn is such that for all i ∈ N, if

r1(Pi) < y then r1(P′′
i ) = y and r2(P′′

i ) = y − 1, otherwise Pi = P′′
i . By strategy-proofness, this

means f (P′
N) = x + k, which completes the proof of the lemma for y > x. �

Corollary A.1. Let PN, P′
N ∈ Ŝn and y ∈ X be such that for all i ∈ N, if r1(Pi) > y then r1(P′

i ) = y,

otherwise Pi = P′
i . Then, f (P′

N) = min{ f (PN), y}.
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Our next lemma shows that f is uncompromising.11

Lemma A.3. The SCF f is uncompromising.

Proof. Let PN ∈ Ŝn, i ∈ N, and P′
i ∈ Ŝ be such that r1(Pi) < f (PN) and r1(P′

i ) ≤ f (PN). It is

sufficient to show f (P′
i , PN\i) = f (PN). Suppose f (PN) = x, r1(Pi) = y, and r1(P′

i ) = y′. Assume

for contradiction that f (P′
i , PN\i) = x′ 6= x. By strategy-proofness, it must be that x′ < y as

otherwise agent i manipulates either at PN via P′
i or at (P′

i , PN\i) via Pi. Consider P̄N ∈ Ŝn such

that r1(P̄j) = y for all j ∈ N with r1(Pj) ≤ y, and P̄j = Pj for all other agents. Since f (PN) = x,

by Lemma A.2, we have f (P̄N) = max{x, y} = x. On the other hand, since f (P′
i , PN\i) = x′, by

Lemma A.2, we have f (P̄N) = max{x′, y} = y, a contradiction. This completes the proof of the

lemma. �

The following lemma establishes that f is a min-max rule.

Lemma A.4. The SCF f is a min-max rule.

Proof. For all S ⊆ N, let (Pa
S , Pb

N\S
) ∈ Ŝn be such that r1(Pa

i ) = a for all i ∈ S and r1(Pb
i ) = b for

all i ∈ N \ S. Define βS = f (Pa
S , Pb

N\S
) for all S ⊆ N. Clearly, βS ∈ X for all S ⊆ N. By unanimity,

β∅ = b and βN = a. Also, by uncompromisingness, βS ≤ βT for all T ⊆ S.

Take PN ∈ Ŝn. We show f (PN) = min
S⊆N

{max
i∈S

{r1(Pi), βS}}. Suppose S1 = {i ∈ N | r1(Pi) <

f (PN)}, S2 = {i ∈ N | f (PN) < r1(Pi)}, and S3 = {i ∈ N | r1(Pi) = f (PN)}. By uncompro-

misingness, βS1∪S3
≤ f (PN) ≤ βS1

. Now, consider the expression min
S⊆N

{max
i∈S

{r1(Pi), βS}}. Take

S ⊆ S1. Then, by Condition (iii) in Definition 2.11, βS1
≤ βS. Since r1(Pi) < f (PN) for all i ∈ S and

f (PN) ≤ βS1
≤ βS, we have max

i∈S
{r1(Pi), βS} = βS. Similarly, for all S ⊆ N such that S ∩ S2 6= ∅,

we have max
i∈S

{r1(Pi), βS} > f (PN). Consider S ⊆ N such that S ∩ S2 = ∅ and S ∩ S3 6= ∅.

Then, S ⊆ S1 ∪ S3, and hence, βS1∪S3
≤ βS. Therefore, max

i∈S
{r1(Pi), βS} = max{ f (PN), βS} ≥

max{ f (PN), βS1∪S3
}. Since βS1∪S3

≤ f (PN), we have max{ f (PN), βS1∪S3
} = f (PN). Combining

all these, we have min
S⊆N

{max
i∈S

{r1(Pi), βS}} = min{βS1
, f (PN)}. Because f (PN) ≤ βS1

, we have

min{βS1
, f (PN)} = f (PN). This completes the proof. �

The proof of the only-if part of Theorem 3.1 follows from Lemmas A.1 - A.4. �

11Since every SCF satisfying uncompromisingness is tops-only, Lemma A.3 shows that a top-connected single-
peaked domain is a tops-only domain. It can be easily verified that top-connected single-peaked domains fail to
satisfy the sufficient conditions for a domain to be tops-only identified in Chatterji and Sen (2011) and Chatterji and
Zeng (2015).
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APPENDIX B. PROOF OF THEOREM 4.1

Proof. (If-part) Let x, y ∈ X be such that x < y − 1 and let f β be a PDGMVS on S̃n with respect

to x, y. Then, f β is unanimous by definition. We show that f β is strategy-proof. Let d be the

partial dictator of f β. Since f β(PN) = r1(Pd) whenever r1(Pd) ∈ [x, y], f β cannot be manipulated

at a preference profile PN ∈ S̃n, where r1(Pd) ∈ [x, y]. Take PN ∈ S̃n such that r1(Pd) ∈ [a, x).

Then, by Lemma 4.1, f β(PN) ∈ [a, x]. Take i ∈ N such that r1(Pi) ≤ f β(PN). By the definition of

f β, f β(P′
i , PN\i) ≥ f β(PN) for all P′

i ∈ S̃ . Since f β(PN) ≤ x, by the definition of partially single-

peaked domain, r1(Pi) ≤ f β(PN) means f β(PN)Piz for all z > f β(PN). Therefore, agent i cannot

manipulate f β at PN. By symmetric argument, it follows that agent i cannot manipulate f β at a

preference profile where r1(Pi) ≥ f β(PN). Using similar logic, it follows that f β is strategy-proof

when r1(Pd) ∈ (y, b]. This completes the proof of the if-part.

(Only-if part) Let x, y ∈ X be such that x < y − 1 and let S̃ be a top-connected partially single-

peaked domain with respect to x, y. Suppose f : S̃n → X is a unanimous and strategy-proof SCF.

We show that f is a PDGMVS with respect to x, y. Let Ŝ be a top-connected single-peaked domain

contained in S̃ . Such a domain must exist by Definition 4.2. By Theorem 3.1, f restricted to Ŝn

must be a min-max rule. We establish a few properties of f in the following sequence of lemmas.

Our next lemma shows that f satisfies tops-onlyness for a particular type of preference profiles.

It says the following. Let c be an arbitrary alternative. Consider a preference profile PN where

each Pi is single-peaked with the top alternative either x or c. Construct another preference

profile P′
N where some agents with top alternatives x change their preferences (possibly to a

non-single-peaked preference) keeping x at the top, while all other agents keep their preferences

unchanged. Suppose the outcome of f at PN is c. Then, the outcome of f at P′
N must be c.

Lemma B.1. Let ∅ ( S ( N and let c ∈ X. Suppose (PS, PN\S) ∈ Ŝn and (P′
S, PN\S) ∈ S̃n are two

tops-equivalent preference profiles such that r1(Pi) = x for all i ∈ S, and r1(Pj) = c for all j ∈ N \ S.

Then, f (PS, PN\S) = c implies f (P′
S, PN\S) = c.

Proof. Take S such that ∅ ( S ( N. We prove the lemma using induction on |c− x|. By unanimity,

the lemma holds for c = x. Suppose the lemma holds for all c such that |c − x| ≤ k. We prove

the lemma for all c such that |c − x| = k + 1. Take c such that |c − x| = k + 1. Let (PS, PN\S) ∈ Ŝn

and (P′
S, PN\S) ∈ S̃n be two tops-equivalent preference profiles such that r1(Pi) = x for all i ∈ S,

and r1(Pj) = c for all j ∈ N \ S. Suppose f (PS, PN\S) = c. We show f (P′
S, PN\S) = c. We show
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this for x < c, the proof for the case x > c is similar. Since x < c and |c − x| = k + 1, we

have c = x + k + 1. Let (PS, P̂N\S) ∈ Ŝn be such that r1(P̂j) = x + k and r2(P̂j) = x + k + 1

for all j ∈ N \ S. Because f is a min-max rule on Ŝn and f (PS, PN\S) = x + k + 1, we have

f (PS, P̂N\S) = x + k. Since (PS, P̂N\S) and (P′
S, P̂N\S) are tops-equivalent and r1(P̂j) = x + k for all

j ∈ N \ S, we have by the induction hypothesis f (P′
S, P̂N\S) = x + k. For all j ∈ N \ S, let P̄j ∈ Ŝ

be such that r1(P̄j) = x + k + 1 and r2(P̄j) = x + k. Since f (P′
S, P̂N\S) = x + k, by moving the

agents j ∈ N \ S from P̂j to P̄j one-by-one and applying strategy-proofness at every step, we have

f (P′
S, P̄N\S) ∈ {x + k, x + k + 1}. We claim f (P′

S, P̄N\S) = x + k + 1. Assume for contradiction

that f (P′
S, P̄N\S) = x + k. Recall that Pi ∈ Ŝ for all i ∈ S. Since (x + k)Pi(x + k + 1) for all

i ∈ S, by moving the agents i ∈ S from P′
i to Pi one-by-one and applying strategy-proofness

at every step, we have f (PS, P̄N\S) ≤ x + k. Since r1(Pj) = r1(P̄j) = x + k + 1 for all j ∈ N \ S,

by strategy-proofness, we have f (PS, PN\S) 6= x + k + 1. This contradicts our assumption that

f (PS, PN\S) = x + k + 1. Therefore, f (P′
S, P̄N\S) = x + k + 1. Since r1(Pj) = r1(P̄j) = x + k + 1

for all j ∈ N \ S, we have by strategy-proofness, f (P′
S, PN\S) = x + k + 1. This completes the

proof. �

Corollary B.1. Let ∅ ( S ( N and let c ∈ X. Suppose (PS, PN\S) ∈ Ŝn and (P′
S, PN\S) ∈ S̃n are two

tops-equivalent preference profiles such that r1(Pi) = y for all i ∈ S, and r1(Pj) = c for all j ∈ N \ S.

Then, f (PS, PN\S) = c implies f (P′
S, PN\S) = c.

Our next lemma shows that the outcome of f at a boundary preference profile cannot be strictly

in-between x and y.12

Lemma B.2. Let PN ∈ S̃n be such that r1(Pi) ∈ {a, b} for all i ∈ N. Then, f (PN) /∈ (x, y).

Proof. Assume for contradiction that f (PN) = z ∈ (x, y) for some PN ∈ S̃n such that r1(Pi) ∈

{a, b} for all i ∈ N. Let S = {i ∈ N | r1(Pi) = a}. Then, it must be that ∅ ( S ( N as otherwise

we are done by unanimity. Let r2(Q) = x′ and r2(Q
′) = y′, where Q, Q′ ∈ S̃ are as given in

Condition (iii) of Definition 4.1. We distinguish a few cases based on the relative positions of x′,

y′, and z.

CASE 1. Suppose x′ ∈ (x + 1, y − 1), y′ ∈ (x + 1, y − 1), and z ∈ (x, y′] ∪ [x′, y). We consider

the case where z ∈ (x, y′], the proof for the case where z ∈ [x′, y) follows from symmetric

argument. Let P′
N ∈ Ŝn be such that r1(P′

i ) = y′ for all i ∈ S and r1(P′
j ) = y − 1 for all

12A boundary preference profile is one where the top alternative of each agent is either a or b.
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j ∈ N \ S and let P̂N ∈ Ŝn be such that r1(P̂i) = x for all i ∈ S and r1(P̂j) = x + 1 for all

j ∈ N \ S. Suppose that for all j ∈ N \ S, r2(P′
j ) = y. Because f is a min-max rule on Ŝn and

f (PS, PN\S) = z, we have f (P′
S, P′

N\S
) = y′ and f (P̂S, P̂N\S) = x + 1. As f (P̂S, P̂N\S) = x + 1, by

Lemma B.1, we have f (QS, P̂N\S) = x + 1, where Qi = Q for all i ∈ S. Consider the preference

profile (Q′
S, P′

N\S
), where Q′

i = Q′ for all i ∈ S. Note that f (P′
S, P′

N\S
) = y′, r1(Q

′) = y, and

r2(Q
′) = y′. Therefore, by moving the agents i ∈ S from P′

i to Q′ one-by-one and using strategy-

proofness at every step, we have f (Q′
S, P′

N\S
) ∈ {y, y′}. We claim f (Q′

S, P′
N\S

) = y. Assume

for contradiction that f (Q′
S, P′

N\S
) = y′. Since yP′

j y
′ for all j ∈ N \ S, by moving the agents

j ∈ N \ S from P′
j to Q′ one-by-one and applying strategy-proofness at every step, we have

f (Q′
S, Q′

N\S
) 6= y. However, this contradicts unanimity. So, f (Q′

S, P′
N\S

) = y. For all i ∈ S, let

P̃i ∈ Ŝ be such that r1(P̃i) = y. By strategy-proofness, f (P̃S, P′
N\S

) = y. Since f is a min-max

rule on Ŝn, this means f (P̃S, P̂N\S) = y. For all i ∈ S, let P̃′
i ∈ Ŝ be such that r1(P̃′

i ) = x′.

Because (P̃S, P̂N\S), (P̃′
S, P̂N\S) ∈ Ŝn and f is a min-max rule on Ŝn, f (P̃S, P̂N\S) = y implies

f (P̃′
S, P̂N\S) = x′. Note that f (P̃′

S, P̂N\S) = x′, r1(Q) = x, and r2(Q) = x. Therefore, by moving

agents i ∈ S from P̃′
i to Q one-by-one and applying strategy-proofness at every step, we have

f (QS, P̂N\S) ∈ {x, x′}. However, {x + 1} ∩ {x, x′} = ∅ by our assumption. This is a contradiction

to our earlier finding that f (QS, P̂N\S) = x + 1. This completes the proof for Case 1.

CASE 2. Suppose x′ ∈ (x + 1, y − 1), y′ ∈ (x + 1, y − 1), y′ < x′ − 1, and z ∈ (y′, x′). Let P′
N ∈ Ŝn

be such that r1(P′
i ) = x′ for all i ∈ S and r1(P′

j ) = y for all j ∈ N \ S and let P̂N ∈ Ŝn be such that

r1(P̂i) = x for all i ∈ S and r1(P̂j) = y′ for all j ∈ N \ S. Because f is a min-max rule on Ŝn and

f (PS, PN\S) = z, we have f (P′
S, P′

N\S
) = x′ and f (P̂S, P̂N\S) = y′. As f (P̂S, P̂N\S) = y′, by Lemma

B.1, we have f (QS, P̂N\S) = y′, where Qi = Q for all i ∈ S. Again, as f (P′
S, P′

N\S
) = x′, by Lemma

B.1, we have f (P′
S, Q′

N\S
) = x′, where Q′

i = Q′ for all j ∈ N \ S. Note that f (QS, P̂N\S) = y′,

r1(Q
′) = y, and r2(Q

′) = y′. Therefore, by moving agents j ∈ N \ S from P̂j to Q′ one-by-one

and using strategy-proofness at every step, we have f (QS, Q′
N\S

) ∈ {y, y′}. Further, note that

f (P′
S, Q′

N\S
) = x′, r1(Q) = x, and r2(Q) = x′. So, by moving agents i ∈ S from P′

i to Q one-by-one

and using strategy-proofness at every step, we have f (QS, Q′
N\S

) ∈ {x, x′}. However, by our

assumption {x, x′} ∩ {y, y′} = ∅, which is a contradiction. This completes the proof for Case 2.

CASE 3. Suppose x′ = y, y′ = x, and z ∈ (y′, x′). Let P′
N ∈ Ŝn be such that r1(P′

i ) = x for all i ∈ S

and r1(P′
j ) = y for all j ∈ N \ S. Because f is a min-max rule on Ŝn and f (PS, PN\S) = z, we have

f (P′
S, P′

N\S
) = z. Take i ∈ N and consider the preference profile (Qi, P′

S\i
, P′

N\S
), where Qi = Q.
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Since r1(P′
i ) = r1(Qi) = x and f (P′

S, P′
N\S

) 6= x, by strategy-proofness, f (Qi, P′
S\i

, P′
N\S

) 6= x.

Continuing in this manner, it follows that f (QS, P′
N\S

) 6= x, where Qi = Q for all i ∈ S. Moreover,

since r2(Qi) = y for all i ∈ S and r1(P′
j ) = y for all j ∈ N \ S, by unanimity and strategy-proofness,

f (QS, P′
N\S

) ∈ {x, y}. Since f (QS, P′
N\S

) 6= x, this means f (QS, P′
N\S

) = y. Let Q′
j = Q′ for all

j ∈ N \ S. As f (QS, P′
N\S

) = y and r1(Q
′) = y, by strategy-proofness, f (QS, Q′

N\S
) = y. Now, if

we first move the agents j ∈ N \ S from P′
j to Q′ and then move the agents i ∈ S from P′

i to Q,

then it follows from similar logic that f (QS, Q′
N\S

) = x. Since x 6= y, this is a contradiction to our

earlier finding that f (QS, Q′
N\S

) = y. This completes the proof for Case 3, and hence, the proof of

the lemma. �

Let (βS)S⊆N be the parameters of f restricted to Ŝn. In Lemma B.3 and Lemma B.4, we establish

a few properties of these parameters.

Lemma B.3. For all S ⊆ N, βS ∈ [a, x] if and only if βN\S ∈ [y, b].

Proof. Take S ⊆ N. It is enough to show that βS ∈ [a, x] implies βN\S ∈ [y, b]. Assume for

contradiction that βS, βN\S ∈ [a, x]. Let Q′ ∈ S̃ with r1(Q
′) = y be as given in Condition (iii)

of Definition 4.1. Suppose r2(Q
′) = y′. Take z ∈ (y′, y). Let (PS, PN\S) ∈ Ŝn be such that

r1(Pi) = a for all i ∈ S and r1(Pj) = b for all j ∈ N \ S. Since f restricted to Ŝn is a min-max rule,

f (PS, PN\S) = βS ∈ [a, x]. Let (P′
S, P′

N\S
) ∈ Ŝn be such that r1(P′

i ) = y′ for all i ∈ S and r1(P′
j ) = z

for all j ∈ N \ S. Since f (PS, PN\S) ∈ [a, x], by uncompromisingness of f restricted to Ŝn, we have

f (P′
S, P′

N\S
) = y′. Because r1(Q

′) = y and r2(Q
′) = y′, by moving the agents i ∈ S one-by-one

from P′
i to Q′ and applying strategy-proofness at every step, we have f (Q′

S, P′
N\S

) ∈ {y, y′},

where Q′
i = Q′ for all i ∈ S.

Now, let (P̄S, P̄N\S) ∈ Ŝn be such that r1(P̄i) = b for all i ∈ S and r1(P̄j) = a for all j ∈ N \ S.

Again, since f restricted to Ŝn is a min-max rule, f (P̄S, P̄N\S) = βN\S ∈ [a, x]. Recall that

for j ∈ N \ S, P′
j ∈ Ŝ with r1(P′

j ) = z. Consider (P′′
S , P′

N\S
) ∈ Ŝn such that r1(P′′

i ) = y for

all i ∈ S. Since f (P̄S, P̄N\S) ∈ [a, x], by uncompromisingness of f restricted to Ŝn, we have

f (P′′
S , P′

N\S
) = z. Because r1(P′′

i ) = y = r1(Q
′) for all i ∈ S, by Lemma B.1, it follows that

f (Q′
S, P′

N\S
) = z. However, as z /∈ {y, y′}, this is a contradiction to our earlier finding that

f (Q′
S, P′

N\S
) ∈ {y, y′}. �

The following lemma says that there is exactly one agent i such that βi ∈ [a, x].

Lemma B.4. It must be that |{i ∈ N | βi ∈ [a, x]}| = 1.
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Proof. Suppose there are i 6= j ∈ N such that βi, β j ∈ [a, x]. By Lemma B.3, βi ∈ [a, x] implies

βN\i ∈ [y, b]. Since j ∈ N \ i and βT ≤ βS for all S ⊆ T, βN\i ∈ [y, b] implies β j ∈ [y, b], a

contradiction. Hence, there can be at most one agent i ∈ N such that βi ∈ [a, x].

Suppose βi ∈ [y, b] for all i ∈ N. By Lemma B.3, this means βN\i ∈ [a, x] for all i ∈ N.

Therefore, there must be S ⊆ N such that βS ∈ [a, x] and for all S′ ( S, βS′ ∈ [y, b]. By unanimity,

S 6= ∅. If S is singleton, say i for some i ∈ N, then βi ∈ [a, x] and we are done. So assume that

there are j 6= k ∈ S.

Consider the preference profile PN ∈ Ŝn such that r1(Pi) = x for all i ∈ S \ j, r1(Pj) = x + 1,

r2(Pj) = x, and r1(Pi) = x′ for all i /∈ S. Since βS ∈ [a, x] and βS′ ∈ [y, b] for all S′ ( S, it follows

from the definition of min-max rule that f (PN) = x + 1. Let P′
k ∈ Ŝ be such that r1(P′

k) = x′.

Since βS\k ∈ [y, b] and f restricted to Ŝn is a min-max rule, it follows that f (P′
k, PN\k) = x′.

Consider the preference profile (Qk, PN\k), where Qk = Q. Note that f (P′
k, PN\k) = x′, r1(Qk) = x,

and r2(Qk) = x′. Therefore, by strategy-proofness, we have f (Qk, PN\k) ∈ {x, x′}. Suppose

f (Qk, PN\k) = x. Because f (PN) = x + 1 and r1(Pk) = x, this means agent k manipulates at PN

via Qk. So, f (Qk, PN\k) = x′. Let P′
j ∈ Ŝ be such that r1(P′

j ) = x. Since βS ∈ [a, x] and x is the

top-ranked alternative of the agents in S at preference profile (P′
j , PN\j), we have f (P′

j , PN\j) = x.

As r1(Pk) = r1(Qk) = x, this means f (P′
j , Qk, PN\{j,k}) = x. Note that f (Qk, PN\k) = x′, r1(Pj) =

x + 1, and r2(Pj) = x. Hence, agent j manipulates at (Qk, PN\{k}) via P′
j . This completes the proof

of the lemma. �

REMARK B.1. By Lemma B.3 and Lemma B.4, it follows that f restricted to Ŝn is a PDGMVS.

Our next lemma establishes that f is uncompromising.13 First, we introduce few notations

that we use in the proof of the lemma. For PN ∈ S̃n, let Ñ(PN) = {i ∈ N | Pi /∈ Ŝ} be the

set of agents who do not have single-peaked preferences at PN. Moreover, for 0 ≤ l ≤ n, let

S̃n
l = {PN ∈ S̃n | |Ñ(PN)| ≤ l} be the set of preference profiles where at most l agents have

non-single-peaked preferences. Note that S̃n
0 = Ŝn and S̃n

n = S̃n.

Lemma B.5. The SCF f is uncompromising.

Proof. Since S̃n
0 = Ŝn, f restricted to S̃n

0 is uncompromising. Suppose f restricted to S̃n
k is

uncompromising for some k < n. We show that f restricted to S̃n
k+1 is uncompromising. It is

13Since every SCF satisfying uncompromisingness is tops-only, Lemma B.5 shows that a top-connected partially
single-peaked domain is a tops-only domain. As in the case of Lemma A.3, it can be easily verified that top-connected
partially single-peaked domains fail to satisfy the sufficient conditions for a domain to be tops-only identified in
Chatterji and Sen (2011) and Chatterji and Zeng (2015).
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enough to show that f restricted to S̃n
k+1 is tops-only. To see this, note that if f restricted to S̃n

k+1

is tops-only, then f is uniquely determined on S̃n
k+1 by its outcomes on Ŝn. Therefore, since f

restricted to Ŝn is uncompromising, f is uncompromising on S̃n
k+1.

Take PN ∈ S̃n
k+1 and j ∈ Ñ(PN). Let P̂j ∈ Ŝ be such that r1(P̂j) = r1(Pj). Then, PN and (P̂j, PN\j)

are tops-equivalent and (P̂j, PN\j) ∈ S̃n
k . It is sufficient to show that f (PN) = f (P̂j, PN\j). Assume

for contradiction that f (PN) 6= f (P̂j, PN\j). Assume without loss of generality that the partial

dictator of f restricted to Ŝn is agent 1. By the induction hypothesis, agent 1 is the partial dictator

of f restricted to S̃n
k , i.e., for all PN ∈ S̃n

k , if r1(P1) ∈ [a, x) then f (PN) ∈ [a, x], if r1(P1) ∈ (y, b]

then f (PN) ∈ [y, b], and if r1(P1) ∈ [x, y] then f (PN) = r1(P1). We distinguish a few cases based

on the position of the top-ranked alternative of agent 1.

CASE 1. Suppose r1(P1) ∈ [a, x) ∪ (y, b]. We consider the case where r1(P1) ∈ [a, x) as the proof

for the case where r1(P1) ∈ (y, b] follows from symmetric arguments. Since r1(P1) ∈ [a, x),

we have f (P̂j, PN\j) ∈ [a, x]. Because P̂j is single-peaked, if f (P̂j, PN\j) < f (PN) ≤ r1(P̂j) or

r1(P̂j) ≤ f (PN) < f (P̂j, PN\j), then agent j manipulates at (P̂j, PN\j) via Pj. Moreover, since

f (P̂j, PN\j) ∈ [a, x], if f (PN) < f (P̂j, PN\j) ≤ r1(P̂j) or r1(Pj) ≤ f (P̂j, PN\j) < f (PN), then by the

definition of top-connected partially single-peaked domain, agent j manipulates at (Pj, PN\j) via

P̂j. Now, suppose f (P̂j, PN\j) < r1(P̂j) < f (PN). Let P̄j ∈ Ŝ be such that r1(P̄j) = f (PN). Since

f restricted to S̃n
k is uncompromising and f (P̂j, PN\j) < r1(P̂j) < r1(P̄j), we have f (P̄j, PN\j) =

f (P̂j, PN\j). Because r1(P̄j) = f (PN), it follows that agent j manipulates at (P̄j, PN\j) via Pj. Using

similar logic, it can be shown that f (PN) < r1(P̂j) < f (P̂j, PN\j) leads to a manipulation by agent

j. Therefore, we have f (PN) = f (P̂j, PN\j) when r1(P1) ∈ [a, x).

CASE 2. Suppose r1(P1) ∈ [x, y]. This means f (P̂j, PN\j) = r1(P1). Consider P̄j ∈ Ŝ such that

r1(P̄j) = f (PN). Since (P̄j, PN\j) ∈ S̃n
k , by the induction hypothesis, we have f (P̄j, PN\j) = r1(P1).

Because r1(P̄j) = f (PN) and f (P̄j, PN\j) = r1(P1) 6= f (PN), agent j manipulates at (P̄j, PN\j) via

Pj. Therefore, f (PN) = f (P̂j, PN\j) when r1(P1) ∈ [x, y].

This completes the proof of the lemma by induction. �

Now, we complete the proof of the only-if part of Theorem 4.1. Since f is uncompromising on

S̃n and f restricted to Ŝn is a min-max rule with parameters (βS)S⊆N satisfying the properties as

stated in Lemma B.3 and Lemma B.4, it follows that f is a PDGMVS. �
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