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Abstract

Advances in behavioral economics have made decision theoretic models
increasingly complex. Utility models incorporating insights from psychol-
ogy often lack additive separability, a major obstacle for decision the-
oretic axiomatizations. We address this challenge by providing repre-
sentation theorems which yield utility functions of the form u(x, y, z) =
f(x, z) + g(y, z). We call these representations conditionally separable as
they are additively separable only once holding fixed z. Our representa-
tion theorems have a wide range of applications. For example, extensions
to finitely many dimensions yield both consumption preferences with ref-
erence points

∑
i
ui(xi, r), as well as consumption preferences over time

with dependence across time periods
∑

t
ut(xt, xt−1).

1 Introduction

In an important contribution to utility theory, Debreu (1954) characterized what
is known as additively separable preferences. He showed that certain assump-
tions on the preferences of a consumer hold if and only if these preferences can
be represented by an additive utility function. For example, if preferences are
defined on a product space

∏
i∈I Xi of commodities xi ∈ Xi, then

∑
i∈I fi(xi)

is an additive utility function. A wide class of problems can be addressed with
such utility functions. In preferences over time, we often assume that the con-
sumption in one time period has no effect on the desirability of consumption
in another period. Constant elasticity of substitution preferences over goods
spaces have an additive representation. In economic policy evaluation, utilitar-
ian policy makers have additively separable preferences across individuals.

However, in the more recent literature, economic models have introduced
more nuanced preferences in many of these cases. Consumption preferences may
depend on reference points. In the case of preferences over time, the marginal
utility of consumption in one period may depend on the consumption in the
previous period. Policy makers who are not utilitarian may care about inequal-
ity, diversity, or the freedom of individuals, which usually lead to preferences
which are not additively separable.

In the present paper, we generalize the idea of additively separable prefer-
ences to what we call conditionally separable preferences. Consider the example
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of preferences over consumption xt in three periods of time t. Additively sepa-
rable preferences would yield a utility representation such as f1(x1) + f2(x2) +
f3(x3). If the marginal utility of consumption depends on the previous period’s
consumption, we may instead have a conditionally additive utility representa-
tion f2(x1, x2) + f2(x2, x3). In this representation we say that x1 and x3 are
additively separable conditionally on x2. We provide an axiomatization for such
conditionally additive utility representations. Maintaining the usual continuity
and order assumptions, our axiomatization differs from axiomatizations of ad-
ditive utility functions in two ways.

Firstly, we weaken the usual independence assumptions such that we require
only x1 and x3 to be independent of each other for fixed x2. Additive util-
ity functions over all three components would require x1 to be independent of
(x2, x3) and x2 to be independent of (x1, x3).

Secondly, we sharpen the so-called Reidemeister condition. The Reidemeis-
ter condition is a necessary condition for additive representations of the kind
f(x1) + f2(x2). Usually, in additive representations with at least three dimen-
sions the Reidemeister condition is implied by the two independence condi-
tions and continuity. However, even though our representation contains three
dimensions, we only have one (conditional) independence assumption, requir-
ing the use of the Reidemeister condition. The usual Reidemeister condition
on x1, x3 would however only yield representations of the type f1(f2(x1, x2) +
f3(x2, x3), x2). Our generalization of the Reidemeister condition ensures that
the additive utility functions across each value of x2 are cardinally comparable.

We generalize our results in two important ways. Firstly, we extend our
results to finitely many dimensions. Unlike additive representations, condition-
ally additive representations have more than one natural extension to higher
dimensions. We consider the representations

∑
i ui(xi, x1) and

∑
i ui(xi, xi−1)

and provide axiomatizations. The former has a natural interpretation as a util-
ity function with a reference point x1. The latter utility function can be used
to characterize preferences over time where an agent may be satiated from the
consumption in the previous period.

Secondly, our representation theorem holds for subsets of product spaces
with nonempty interiors. An important corollary of the latter generalization is
a representation theorem for additively separable utility functions on probability
spaces. To our knowledge, this is the first representation theorem of additively
separable utility functions on a space with an empty interior in the product
topology. Special cases of our representation are von Neumann-Morgenstern
preferences with arbitrary probability distortions.

The applications of our results are not limited to utility theory. As an inter-
esting example application to game theory, we provide a representation theorem
for ordinal beliefs in a Bayesian game. We consider an agent who can only com-
prehend i) the structure of the game and ii) whether any state s of the world is
more likely than another state s′. However, the agent cannot judge whether iii)
a state is twice (half, three times, etc.) as likely than another state. Using our
representation theorems, we provide a surprisingly simple representation for the
beliefs of this agent.

The paper continues as follows. First, we will introduce some basic notation
and definitions (Section 2). Next, we prove the representation theorem for the
basic case in Section 3. The following Section 4 covers the finite dimensional
case while Section 5 covers the case of subsets of a product space.
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2 Model and Notation

Let S = X×Y ×Z be a product space whereX,Y, Z are connected and separable
spaces. % is a relation on S, i.e., a subset of S × S. We say that s is weakly
preferred to s′ if s % s′. We assume throughout the paper that % is complete
and transitive and then call it a preference relation.1 Let ≻ be the strict part
of % and ∼ the symmetric part. X is independent (of Y ) given Z if for all
x, x′ ∈ X, y, y′ ∈ Y , and z ∈ Z, we have:

(x, y, z) % (x′, y, z)

⇔ (x, y′, z) % (x′, y′, z) (1)

% is independent with respect to X,Y given Z if X and Y are independent given
Z. % is continuous if the sets S(t) = {s ∈ S : s % t} and S(t) = {s ∈ S : t % s}
are closed with respect to the product topology for all t. X is essential if for
all x ∈ X there exist (y, z) ∈ Y × Z and (y′, z′) ∈ Y × Z such that (x, y, z) ≻
(x, y′, z′). X is essential given Z if for all x ∈ X and all z ∈ Z there exist y ∈ Y

and y′ ∈ Y such that (x, y, z) ≻ (x, y′, z). % is essential if X,Y, Z are essential.
% is essential given Z if X and Y are essential given Z.

Definition 1. % fulfills the generalized Reidemeister condition with respect to
X given Z if for all z, z̄ ∈ Z and all x, x′, x̄, x̄′ ∈ X and all y, y′, ȳ, ȳ′ ∈ Y such
that the following points exist, we have:

(x, y, z) ∼ (x̄′, ȳ′, z̄)

∧ (x′, y, z) ∼ (x̄, ȳ′, z̄)

∧ (x, y′, z) ∼ (x̄′, ȳ, z̄)

⇒ (x′, y′, z) ∼ (x̄, ȳ, z̄)

Definition 2. To simplify notation, in the following we will write X ⊥ Y | Z if
% is independent with respect to X,Y given Z, % fulfills the generalized Reide-
meister condition with respect to X given Z and X and Y are essential given Z.
Our borrowing of notation from the statistical literature will be justified when
we relate our axioms to statistical independence.

We say that % fulfills restricted solvability given Z if for all y ∈ Y, z ∈ Z, s ∈
S: If (x, y, z) % s % (x′, y, z) then there exists x′′ such that (x′′, y, z) ∼ s. If
(x, y, z) % s % (x, y′, z) then there exists y′′ such that (x, y′′, z) ∼ s

Lemma 1. Suppose % is a continuous preference relation on S. Then % satis-
fies restricted solvability given Z.

Proof. See Wakker (1989) Lemma III.3.3.

3 Representation theorem for 3 dimensions

In this section, we will state our representation theorems for three dimensions
and prove a lemma from which the main intuition of our result follows. The
three dimensional case is the key building block for higher dimensional cases.

The main representation result for the case of three dimensions is as follows.

1The results can possibly be generalized by dropping the completeness assumption. Vind
(1991) gives a representation theorem for additive utility functions.
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Theorem 1. Let % be a continuous preference relation on S = X × Y × Z

where X,Y, Z are connected and separable topological spaces. Then % fulfills
X ⊥ Y | Z if and only if:
a) there exists a representation v(x, y, z) = f(x, z) + g(y, z) + h(z) such that
for some x0, y0, f(x0, z) = 0 and g(y0, z) = 0 and all functions f, g, h are
continuous, and
b) the representation is unique up to affine transformations, i.e. if v̄(x, y, z) =
f̄(x, z) + ḡ(y, z) + h̄(z) is another representation fulfilling a) for some choice of
x̄0, ȳ0 , then v̄ = αv+βf +βg +βh, f̄ = αf +βf , ḡ = αg+βg, and h̄ = αh+βh

with α > 0, βf , βg, βh ∈ R.

The reader may be intrigued by our use of the function h and the requirement
that f(x0, z) = 0 and g(y0, z) = 0. While h is certainly superfluous in part
a) of the theorem, it is crucial for the uniqueness result b). To see this, let
hf (z) + hg(z) = h(z) and f̄ = f + hf and ḡ = g + hg. While it holds that
v = f+g+h = v̄ = f̄+ ḡ, it is for example not necessarily true that f = αf̄+β.
Intuitively, we may understand the function h as the separable part of the
preference of Z. Thus, once we fix some point x0, y0, h is the utility function
over the points (x0, y0, z). In the following, when we state the uniqueness of a
representation, it is always meant in the above way.

Due to its length, we delegate the proof of the representation theorem to
the appendix with the exception of a Lemma which provides the main intuition
behind the result and the proof of which links well with proofs of additive
representations, in particular the one in Wakker (1989).

Lemma 2. Let % be a continuous preference relation on S = X ×Y ×Z where
X,Y, Z are connected and separable topological spaces. Let % fulfill X ⊥ Y | Z.
Then:
a) For any pair z′, z′′ ∈ Z with some (x′, y′, z′), (x′, y′, z′), (x′′, y′′, z′′), and
(x′′, y′′, z′′) such that (x′′, y′′, z′′) ∼ (x′, y′, z′) ≺ (x′′, y′′, z′′) ∼ (x′, y′, z′) there
exists a utility representation u(x, y, z) = f(x, z) + g(y, z) + h(z) on X × Y ×
{z′, z′′}.
b) The representation is unique up to affine transformations v′ = αv + β, f ′ =
fα+ βf , g

′ = gα+ βg, h
′ = αh+ β − βf − βg.

We included Lemma 2 and its proof into the main text for two reasons. First,
it gives an insight into the utility construction process and how this process
differs from the procedure for additive representations. Second, Lemma 2 is
of independent interest. Our main representation theorem assumes Z to be
connected and separable. The lemma shows that our result would also hold for
finite Z with overlapping utility ranges.

Proof. We start out by constructing a utility function on X ×Y ×{z′}. We use
the same utility construction process as in Wakker (1989). Essentiality given Z

guarantees that there exist x0,x1 ∈ X and y0 y1 ∈ Y such that

(x0, y0, z
′) ≺ (x1, y0, z

′)

(x0, y0, z
′) ≺ (x0, y1, z

′)

(x1, y0, z
′) ∼ (x0, y1, z

′) (2)

Next, since the generalized Reidemeister condition implies the Reidemeister
condition on each z-layer X × Y × {z}, we can construct an order grid on the
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Figure 1: Extension of the utility grid from the z′ layer to the z′′ layer.

z′-layer such that for any rational numbers n, n′,m,m′ we have (xn, ym, z′) ∼
(xn′ , ym′ , z′) ⇔ n+m = n′ +m′. For details of how to construct this grid, see
Wakker (1989).

We next extend this representation to the z′′-layer. Since our grid is dense
in the z′-layer, we can find a grid point (xn1

, yn2
, z′) on the z′-layer such that

(x′, y′, z′) ≺ (xn1
, yn2

, z′) ≺ (x′, y′, z′). Therefore, by restricted solvability on
the z′′-layer, we can find a point (x̄, ȳ, z′′) ∼ (xn1

, yn2
, z′). Next, we construct

the grid on both z-layers in the following way. We use the point (x̄0, ȳ0, z
′′)

on the z′′-layer satisfying (x̄0, ȳ0, z
′′) ∼ (xn1

, yn2
, z′) as the center on the z′′-

layer and construct the grid with an initial point x̄1, ȳ0 satisfying (x̄1, ȳ0, z
′′) ∼

(xn1+1, yn2
, z′). These points exist by restricted solvability and by the fact that

we can choose our initial points (x0, y0, z
′) and (x1, y0, z

′) to be arbitrarily close
to each other.

We now show that the grid points are indeed consistent on both layers. That
is, we want to show that

(xn+1, ym, z′) ∼ (xn, ym+1, z
′)

(x̄n+1, ȳm, z′′) ∼ (x̄n, ȳm+1, z
′′)

(xn, ym, z′) ∼ (x̄n1+n, ȳn2+m, z′′) (3)

for all n,m.
Similar to the argument of Wakker (1989), we use induction on our subcripts.

For n + m = 0, the result directly follows from (x̄, ȳ, z′′) ∼ (xn1
, yn2

, z′). For
n+m = 1 the condition follows from the construction of the grid. For n+m ≥ 2,

5



z′
′

(x̄ 0,
ȳ 0)

(x̄ 0,
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Figure 2: Consistency of the utility grid between the z′ layer and the z′′ layer.

we simply notice that the generalized Reidemeister condition given Z implies

(xn1+n−2, yn2
, z′) ∼(x̄n−2, ȳ0, z

′′)

(xn1+n−1, yn2
, z′) ∼(x̄n−1, ȳ0, z

′′)

(xn1+n−2, yn2+1, z
′) ∼(x̄n−2, ȳ1, z

′′)

and therefore

(xn1+n−1, yn2+1, z
′) ∼(x̄n−1, ȳ1, z

′′). (4)

We can extend the integer-valued grid on the z′′-layer to a rational-valued
grid by the same method as in Wakker (1989). Via transitivity and the fact
that for any xn, n ∈ Q we can find ym such that there exist xn′ , n′ ∈ Z and
ym′ ,m′ ∈ Z such that n +m = n′ +m′ and thus (xn, ym, z′′) ∼ (xn′ , ym′ , z′′),
the extended grid on the rationals is also consistent.

Next, we define the functions

f(xn, z
′) := n

f(x̄n, z
′′) := n

g(ym, z′) := m

g(ȳm, z′′) := m

h(z′′) := n1 + n2

h(z′) := 0 (5)

Since our grid is dense in the z′ and z′′-layers, due to continuity we can extend
the utility functions on the entire z′ and z′′-layers by taking the limit to obtain
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a continuous additive utility representation u(x, y, z) = f(x, z) + g(y, z) + h(z)
on both layers.

b) The uniqueness of the representation on the z′ layer follows from the arbi-
trary choices of u(x0, y0, z) = 0, u(x1, y0, z) = 1 the choice of f(x0, z

′) = 0, and
h(z′) = 0 when constructing the grid on the z′ layer. Given the representation
on the z′ layer, the extension to the z′′ layer is unique.

In summary, the construction of the utility representation on a single layer
follows the construction by Wakker (1989). In this step, our generalized Reide-
meister condition fulfills the same role as the Reidemeister condition in Wakker
(1989): if a preference relation over a product space X × Y is continuous and
independent, the Reidemeister condition is required to ensure that an additive
representation exists.

However, when extending the representation to the second layer, the gener-
alized Reidemeister condition fulfills an additional role: it makes the additive
representations on both layers consistent with each other. Assuming only the
Reidemeister condition without our generalization, we could obtain an additive
representation on each layer. But notice that for example the preference in-
duced by the utility function (f(x) + g(y))h(z) has an additive representation
on each layer z, but does not have a utility representation of the desired form.
The generalized Reidemeister condition excludes such preferences.

3.1 Example: Ordinal belief systems

We now present an interesting connection of our axioms to the theory of prob-
ability. Suppose our relation s % s′ on a state space S = X × Y × Z can be
interpreted as s being at least as likely as s′. Then it turns out that X ⊥ Y | Z
holds if and only if there exists a probability measure p on S fulfilling conditional
independence in the statistical sense.

Corollary 1. Let % be a continuous preference relation on S = X×Y ×Z where
X,Y, Z are connected, separable, and compact topological spaces. Let X ⊥ Y | Z.
Then for all finite measures µ = µxµyµz there exists a representation of % of
the form

p(x, y, z) = pX|Z(x, z) · pY |Z(y, z) · pZ(z) (6)

where ∫
Z

pZ(z)dµz =1 (7)

∫
X×Z

pX|Z(x, z)pZ(z)dµxdµz =1 (8)

∫
Y×Z

pY |Z(y, z)pZ(z)dµydµz =1 (9)

∫
S

p(x, y, z)dµ =1 (10)

The probability representation is not unique, exponentiating all functions
by a common exponent (and renormalizing) yields another representation of %.
This is not surprising since % provides only ordinal information. In order to
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fix a unique probability representation, in addition we would need a statement
such as “(x, y, z) is twice as likely as (x′, y′, z′)”.

In many cases the assumption of boundedly rational agents having beliefs
consistent with the laws of probability is implausible. Nonetheless, boundedly
rational agent may have well defined ordinal beliefs whether state s or s′ is more
likely.

Consider a game where Alice, Bob, and Charlie observe a signal from Nature.
Next, Alice gets to make a hidden choice followed by a hidden choice by Bob.
Finally, it is Charlie’s turn to make a choice and he ponders what Alice and
Bob have previously chosen. Charlie may have an idea of the structure of the
game (Bob and Alice’s actions are independent given the public signal) and may
have an ordinal ranking of what is more or less likely (given a certain signal z
from Nature, Alice is more likely to play x than x′). However, Charlie may be
unable to state precisely how much more likely it is that Bob will play y instead
of y′. This type of boundedly rational belief system is made precise by our
axiomatization: Charlie’s beliefs can be described by a set of probability density
functions p(x, y, z) which are all independent in Alice’s and Bob’s strategies x

and y given the signal z and which are exponential transformations of each
other.

Charlie’s decision problem can therefore be written as a decision under
Knightian uncertainty, where the set of probability distributions is given by
all exponential transformations of a single joint probability distribution over
the actions of Nature, Alice and Bob.

4 Representation theorems for higher dimensions

In the following, we will extend our representation result to product spaces of
higher dimensions. Notice that as soon as there are more than three dimen-
sions, different extensions are possible. In terms of utility functions, we may for
example be interested in the conditions which yield a representation of the kind
f(x,w) + g(y, w) + h(z, w) or f(x, y) + g(y, z) + h(z, w). In the following, we
will consider what we believe are the most interesting cases. We hope that our
treatment of these cases is instructive for the cases we omit.

In this section we therefore assume that our space is a product space S =∏
i∈I Xi with finite index set I = {1, 2.., n}. We first note that our definition

of X =
∏

i∈IX
Xi being independent of Y =

∏
i∈IY

Xi given Z =
∏

j∈I−IX−IY

continues to work well in higher dimensions if IX ∩ IY = ∅ and IX , IY ⊆ I. The
same holds for our generalized Reidemeister condition with respect to X given
Z.

Theorem 2. Let % be a continuous preference relation on S =
∏n

i=1 Xi, 3 ≤
i < ∞ where all Xi are connected and separable topological spaces. Then %

fulfills Xi ⊥
∏

j 6=i,1 Xj | X1 for all i 6= 1 if and only if:

a) % can be represented by v(s) =
∑n

i=2 fi(xi, x1) + h(x1) where each fi is
continuous, h is continuous, and fi(x

0
i , x1) = 0 for all i, and all x1.

b) the representation is unique up to affine transformations.

A natural application of this representation theorem are preferences which
are reference dependent (Sugden (2003)). x1 can be interpreted as being the
reference point of the utility of an n − 1-dimensional consumption space. For
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example, the reference point x1 of a consumer may be the consumption bundle
of the Jones’s. It is straightforward to add further structure onto the utility rep-
resentation. If we impose that the elasticity of substitution is constant between
any two goods, we get the representation v(s) =

∑n

i=2(xi)
θwi(x1) + h(x1). We

therefore have CES preferences where the Jones’s consumption influences the
weight attached to each consumption good. Note that deriving a representation
theorem for these preferences from scratch would be a nontrivial task. Most
likely, the above result would need to be derived somewhere along the way.

The above theorem covers the case where all additive component functions
fi share one argument z. Another interesting case arises if none of the functions
fi share an argument:

Theorem 3. Let % be a continuous preference relation on S =
∏n

i=1 Xi, 3 ≤
i < ∞ where all Xi are connected and separable topological spaces. Then %

fulfills
∏i−1

j=1 Xj ⊥
∏n

k=i+1 Xk | Xi for all i = 2, . . . , n− 1 if and only if:

% can be represented by v(s) =
∑n

i=2 fi(xi, xi−1) where each fi is continuous.

A natural application for this representation theorem are preferences over
time. Preferences over consumption streams need not be additively separa-
ble if individuals experience satiation, addiction, or form consumption habits
(Rozen (2010)). In this case, preferences over consumption periods sufficiently
distant in time may be additively separable when holding fixed the consump-
tion in between. The above representation theorem captures the case where
the marginal utility of consumption depends on the previous period’s consump-
tion. The overlapping number of dimensions can of course be increased by a
corresponding change in the independence conditions.

5 Subsets of a Product Space

So far we have only discussed the case of product spaces. However, from the
proofs of Lemma 2 it is obvious that our analysis extends to any axiomatic struc-
ture which yields an additive representation on each z-layer (or x1-layer, xi-layer
in Theorems 2 and 3, respectively). We continue our analysis by considering
an important generalization in which our set S is no longer a product space.
Instead, we allow S to be a subset of a product space. More precisely, we allow
S ⊂

∏n

i=1 Xi×Z and assume that for each z∗ ∈ Z, the set {(x, z) ∈ S} : z = z∗

has a nonempty interior in the product topology of
∏n

i=1 Xi.

Definition 3. S ⊂
∏n

i=1 Xi × Z, (Xi, Z connected, separable sets) is well
behaved given Z if for all z∗ ∈ Z

i) S is connected, int(S) is connected and nonempty
ii) for all i, x∗

i , z
∗ {(x, z) ∈ S : xi = x∗

i , z = z∗} is connected
ii)b) for all z∗ {(x, z) ∈ S : z = z∗} is connected
iii) all equivalence classes in int({(x, z) ∈ S : z = z∗}) are connected
iv) all boundary points of S are limit points of interior points.

These assumptions correspond to the structural assumptions of Wakker and
Chateauneuf (1993) and guarantee the existence of additive representations on
each z-layer.
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Lemma 3. Suppose % is a continuous preference relation on a well behaved
space S ⊆

∏n

i=1 Xi × Z and Xi ⊥
∏

j 6=i Xi for all i. Suppose for some, z′

and z′′ ∈ Z there exist sz′ ∈ int(Sz′) = int({(x, z) ∈ S : z = z′}) and sz′′ ∈
int(Sz′′) = int({(x, z) ∈ S : z = z′′}) such that sz′ ∼ sz′′ . Then there exists a
utility representation

u(x, y, z) :=

n∑
i=1

ui(xi, z) + h(z)

on Sz′ ∪ Sz′′ .

Proof. Since Sz′ is connected, the projections of Sz′ on each coordinate are
connected. The open connect subset of topological space induced by the order
topology would be a preference interval. Therefore, we can write each projection
πi(S(z

′)) on coordinate i as (xz′

i , x̄z′

i ). By Wakker and Chateauneuf (1993),
there exists additive representation on Sz′ and Sz′′ . That means that we can
uniquely define the utility level on open cubes Oz′ :=

∏N

i=1(x
z′

i , x̄z′

i )× {z′} and

Oz′′ :=
∏N

i=1(x
z′′

i , ¯xz′′

i )×{z′′}. Note that Sz′ ⊂ Oz′ and Sz′′ ⊂ Oz′′ . We can use
exactly the same argument as in Lemma 2 to construct a utility representation
on Oz′ ∪Oz′′ .

Theorem 4. Suppose % is a preference relation on a well behaved space S ⊆∏n

i=1 Xi×Z satisfying continuity and Xi ⊥
∏

j 6=i Xi for all i. Then there exists
a representation u(x, z) =

∑
i ui(xi, z) on S.

Proof. The proof is almost literally identical to the proof of Theorem 1 with
Lemma 2 replaced by Lemma 3.

We can use the above theorem to provide an interesting new result on addi-
tive representations. So far, additive representations have only been axiomatized
for sets with nonempty interiors in the product topology. However, an important
space in economics which does not fulfill this requirement is the lottery space.
The reason for this is that the classical independence axiom is not well defined
for lottery spaces. Take a statement such as (x, y) % (x′, y) ⇒ (x, y′) % (x′, y′)
where x is the probability of the first state and y the probability of the second
state. Then by the laws of probability x = x′, y = y′ and the axiom is not
meaningful.

In order to provide a meaningful account of independence in probability
spaces we need our conditional independence axiom. Let us first expand the
probability space to 4 dimensions with pi being the probability of state i. Next,
let x = (p1, p2) and y = (p3, p4). Now a statement such as (x, y) % (x′, y) ⇒
(x, y′) % (x′, y′) is meaningful as long as p1 + p2 = p′1 + p′2.

An interesting corollary of the above result is the following additive repre-
sentation on a probability space.

Corollary 2. Suppose S = {x ∈
∏n

i=1 Xi : xn = 1 −
∑n−1

i=1 xi} and each
Xi = [0, 1]. Let % be a continuous preference relation fulfilling for all i, j:

• (Xi, Xn) ⊥
∏

k 6=i,n Xk given
∑

k 6=i,n Xk,

10



• comeasurability of (Xi, Xn) and (Xj , Xn):

(. . . , xi + α, xj , xk, xn − α)

∼(. . . , xi, xj + β, xk − β, xn)

∼(. . . , xi, xj + γ, xk, xn − γ)

∼(. . . , xi + δ, xj , xk − δ, xn)

⇒

(. . . , xi + α, xj + β, xk − β, xn − α)

∼(. . . , xi + δ, xj + γ, xk − δ, xn − γ) (11)

for all xi, xj , xk, xn, α, β, γ, δ for which the above elements of S are defined.

Then % can be represented by:

u(x) =

n∑
i=1

ui(xi) (12)

To our knowledge, so far no representation theorems for additively separable
utility function have been provided for probability spaces. We attribute this to
the fact that probabilities can never be fully independent, but only indepen-
dent conditional on some subset of the probability space, keeping the sum of
certain probabilities constant. Our novel axiom system allows us to bypass this
challenge.

This representation theorem can be further sharpened to give more structure
to the functions ui. For example, ui(x) = φ(x)vi would yield an expected utility
model with vNM utilities vi and a probability distortion function φ in the spirit
of loss aversion models (Kahneman and Tversky (1979)).

6 Future Research

As a final remark, we note that the generalized Reidemeister condition can be
used to extend any additively separable representation to other layers. Thus,
we see potential extensions of our representation theorems to mixture spaces
from Herstein and Milnor (1953). Moreover, some applications may have more
complex conditioning structures than a single variable. We are currently working
on a general framework to combine conditional independence assumptions and
generalized Reidemeister conditions across multiple variables. We believe that
such results will be a valuable toolbox for economic theorists.

11
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A Proof of Theorem 1

We first state and proof some further intermediate results before turning to the
proof of the representation theorem.

Lemma 4. Let % be a continuous preference relation on S = X ×Y ×Z where
X,Y, Z are connected and separable topological spaces. Let u : X×Y ×Z → R be
a continuous representation of %. Then for every u∗ ∈ int(u(X×Y ×Z)) there
exists an open interval around u∗ and Ẑ ⊆ Z such that there exists a continuous
representation v : X × Y × Ẑ → R with v(x, y, z) = f(x, z) + g(y, z) + h(z) and
f(x0, z) = 0 and g(y0, z) = 0 covering the indifference classes of the interval.

Proof. We claim that there exists a layer z′ such that

inf
a∈X,b∈Y

u(a, b, z′) < u∗ < sup
a∈X,b∈Y

u(a, b, z′). (13)

Since u∗ is in the interior of u(X × Y × Z), there must exist a z′ such
that u∗ < supa∈X,b∈Y u(a, b, z′). By continuity of u, supx,yu(x, y, z) is lower
semicontinuous. Thus, the set Z ′ = {z′| supa∈X,b∈Y u(a, b, z′) > u∗} of all such
z′ is open. Since Z is connected, the boundary of Z ′ is nonempty (unless Z ′ = Z

in which case u∗ is not in the interior). Let z∗ be a boundary point of Z ′. Clearly,
supx,y u(x, y, z

∗) = u∗.
Since z∗ is a boundary point of Z ′, the 2.14 Theorem of Aliprantis and

Border (2006) guarantees that there exists a net {zα}%∗ → z∗ with zα ∈ Z ′. By
essentiality, there exists u(x′, y′, z∗) < supa∈X,b∈Y u(a, b, z∗).

Since u is continuous, we have {u(x′, y′, zα)} → u(x′, y′, z∗). Therefore, there
exists for some ǫ < u∗ −u(x′, y′, z) an α0 such that u(x′, y′, zα) < u(x′, y′, z∗)+
ǫ < u∗ for all α %∗ α0. Thus, there is a z′ ∈ Z ′ such that infa∈X,b∈Y u(a, b, z

′) <
u∗ < supa∈X,b∈Y u(a, b, z′).

By the existence of a layer z′ such that Equation (13) holds and the fact
that all assumptions of Lemma 2 are fulfilled for layers z′, z∗, we can construct
the utility function v on Ẑ = {z′, z∗} to obtain the result.

Lemma 5. Let % be a continuous preference relation on S = X × Y × Z

where X,Y, Z are connected and separable topological spaces. Moreover, S′ ⊆ S

such that S′ covers all indifference classes. Then for all z ∈ Z, there exists
(x′, y′, z′) ∈ S′ such that there exist points fulfilling (x, y, z) % (x′, y′, z′) ≻
(x′′, y′′, z) % (x′′′, y′′′, z′).

Proof. Let u be a continuous representation on S. If u(x, y, z) = supa∈X,b∈Y u(a, b, z)
then we claim that there exists another layer z′ and x′′, y′′ such that u(x′′, y′′, z′) <
u(x, y, z) < supa∈X,b∈Y u(a, b, z′). Since u∗ is in the interior of u(X × Y × Z),
there must exist a z′ such that u(x, y, z) = u∗ < supa∈X,b∈Y u(a, b, z′). Since
sup is lower semicontinuous, the set Z ′ = {z′| supa∈X,b∈Y u(a, b, z′) > u∗} of
all such z′ is open and there exists a boundary point z∗ of the set Z ′ with
u∗ = supa∈X,b∈Y u(a, b, z∗). Therefore, by the 2.14 Theorem of Aliprantis and
Border (2006) there exists a net {zα} → z∗ with zα ∈ Z ′. By continuity
of u, supx,yu(x, y, z) is lower continuous. By the 2.42 Lemma of Aliprantis
and Border (2006) limα infαsupx,yu(x, y, z) ≥ u∗. Since u is continuous and
there exists u(x′, y′, z∗) < u(x, y, z∗), we have {u(x′, y′, zα)} → u(x′, y′, z∗).
Therefore, there exists for some ǫ < u(x, y, z∗) − u(x′, y′, z∗) an α0 such that
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u(x′, y′, zα) < u(x′, y′, z∗) + ǫ for all α ≥ α0. Thus, there is a z′ ∈ Z ′ such that
infx,yu(x, y, z) < u∗ < supx,y u(x, y, z

′).

We now turn to the proof of the main representation theorem.

Proof. Let u : X × Y × Z → R be a continuous representation of % which
exists by continuity. From Essentiality given Z we have that the interior of
u(X,Y, Z) is nonempty. From Lemma 4 there exists a representation v covering
the indifference classes of an open interval containing u∗ ∈ int(u(X,Y, Z)).
We claim that we can extend this representation to all indifference classes in
int(u(X,Y, Z)). Let Û be the set of utility values which we cannot extend our
representation to. We will show that we can extend our representation to an
open set around infÛ∩{u ∈ R ≥ u∗}. By Lemma 4 there exists a representation
v′ on a layer z′ covering the indifference classes of an open interval containing
infÛ ∩ {u ∈ R ≥ u∗}. We can extend v as follows. Take some layer z which
overlaps in its utility with z′. Then by the uniqueness of the representations
v and v′ we can use an affine transformation A to obtain A[v(s)] = v′(s′) for
points s on the z layer and s′ on the z′ layer with s ∼ s′. Without loss of
generality, assume A to be the identity transformation. We know that for all
points such that s ∼ s′, s ∈ dom(v), s′ ∈ dom(v′), we have T (v(s)) = T (v′(s′)).
Moreover, for every z, we can obtain a representation on layers z, z′, which we
may name v′′′. v′′′ must be both an affine transformation of v and v′. Thus, T
is locally affine everywhere and thus the identity transformation.

We can extend v(x, y, z) defined on X×Y ×Z ′ to X×Y ×Z as follows: Let
z ∈ Z−Z ′. Since v covers all indifference classes of %, every (x, y, z) ∼ (x′, y′, z′)
such that z′ ∈ Z ′. We then choose v(x, y, z) = v(x′, y′, z′). Moreover, define
h(z) = v(x0, y0, z), f(x, z) = v(x, y0, z), and g(y, z) = v(x0, y, z). By Lemma
5 for every z there exists a layer z′ ∈ Z ′ such that their indifference classes
overlap. Notice that a continuous representation u on the entire space X×Y ×Z

exists. Moreover, by strict essentiality, inf u(X,Y, z) < supu(X,Y, z). Take
now some z′ such that u(x, y, z′) ∈ (inf u(X,Y, z) < supu(X,Y, z)). Then by
strict essentiality and continuity of u, there exist points such that u(x′, y′, z′) <
supu(X,Y, z). By Lemma 2 a) there then exists a representation v′ on z, z′

layers fulfilling
v′(x, y, z) = f ′(x, z) + g′(y, z) + h′(z) (14)

with f ′(x0) = 0 and g′(y0) = 0. By Lemma 2 b) we can assume that v′ = v.
We will now show that v is continuous. To do so, we will show that each

additive component is continuous.
We claim h(z) is continuous. Let {zk} → z be a sequence in Z. Then, there

exists z′ ∈ Z ′ with points (x′, y′, z′) ≻ (x′′, y′′, z′) ∼ (x0, y0, z) ≻ (x′′′, y′′′, z′).
Since the representation on z′ is continuous, there exists some m ∈ N such
that for all k ≥ m there exist xk, zk such that (x0, y0, zk) ∼ (xk, yk, z

′). Since
v is continuous in x and y in each layer {v(x0, y0, zk)} = {v(xk, yk, z

′)} →
v(x′′, y′′, z′) = v(x0, y0, z).

Next, we need to show continuity of f(x, z) and g(y, z). Consider any se-
quence {xk, zk} → x, z. There exists some z′ such that (x′, y′, z′) ∼ (x, y, z) is
neither minimal nor maximal in the z′ layer. Since the representation on z′ is
continuous, there exists some m ∈ N such that for all k ≥ m there exist x′

k, y
′
k

such that (xk, y, zk) ∼ (x′
k, y

′
k, z

′). Since v is continuous in x and y in each layer
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{f(xk, zk)} = {v(xk, y, zk)− h(z)− g(y, zk)} = {v(x′
k, y

′
k, z

′)} → v(x′′, y′′, z′) =
v(x0, y0, z). The continuity of g follows by a similar argument.

According to our construction of the grid, we arbitrarily set f(x0, z
∗) = 0,

g(y0, z
∗) = 0, and f(x1, z

∗) = 1. Moreover, we arbitrarily set h(z∗) = 0. The
remainder of the construction has been unique. Thus, suppose we set f(x0, z

∗) =
b1, g(y0, z

∗) = b2, and f(x1, z
∗) = a1 + b1, and h(z∗) = b3 − b1 − b2. Then

the remainder of the construction of the utility function is unique. Moreover,
the constructed functions f1, g1, h1 fulfill f1 = a1f + b1, g1 = a1g + b2, and
h1 = a1h+ b3.

We note that any preference relation induced by a continuous utility function
of the form in Theorem 1 a) will also fulfill our axioms. Thus, we have indeed
provided both necessary and sufficient conditions for our representation.

B Proof of Corollary 1

Proof. By Theorem 1 we have a representation u(x, y, z) = f(x, z) + g(y, z) +
h(z). If u represents % then so does eu. Since eu is a continuous function
on a compact measurable space, it is Lebesgue measurable with upper bound
µ(S)max(x,y,z)∈S eu(x,y,z). We define

pZ(z) =
eh(z)c∫

Z
eh(z)cdµz

(15)

pX|Z(x, z) =
ef(x,z)c∫

X×Z
ef(x,z)cpZ(z)dµxdµz

(16)

pY |Z(y, z) =
eg(y,z)c∫

Y×Z
eg(y,z)cpZ(z)dµydµz

(17)

p(x, y, z) =
eu(x,y,z)c∫

S
eu(x,y,z)cdµ

. (18)

Since p(x, y, z) = pX|Z(x, z) · pY |Z(y, z) · pZ(z) is the result of a monotone
transformation of u(x, y, z), it also represents %. Note that p(x, y, z) is unique
up to changes in the constant c, i.e. up to exponential transformations.

C Proof of Theorem 2

Proof. We prove this by induction on the number n of elements of I. By
Theorem 1, we have the case where n = 3. Suppose the result holds for
n − 1. Then for each x∗

n ∈ Xn, we can obtain a continuous representation

vx∗

n
(s) =

∑n−1
i=2 fi(xi, x1) + h(x1) over s ∈

∏n−1
i=2 Xi × {x∗

n}. Since
∏n−1

i=2 Xi

is a connected and separable set, by independence given X1, the generalized
Reidemeister condition with respect to Xn given X1, and essentiality given X1,
we have a representation v(s) = fn(xn, x1) + g((x2, . . . , xn−1), x1) + ĥ(x1) on
S. Without loss of generality, assume f1(x

∗
n, z) = 0, g((x0

2, . . . , x
0
n−1), x1) = 0,

ĥ(x0
1) = h(x0

1) = 0, and ĥ(x1
1) = h(x1

1) = 1. Then T (g((x2, . . . , xn−1), x1) +

ĥ(x1)) =
∑n

i=2 fi(xi, z) + h(x1) for some increasing function T . From this,

we can derive T (ĥ(x1)) = h(x1) and
∑n

i=2 fi(xi, z) = T (g((x2, . . . , xn−1), x1)).
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By Cauchy’s functional equation2 T is linear and in fact T (1) = 1. Thus,
v(s) =

∑n

i=1 fi(xi, z) + h(x1).

D Proof of Theorem 3

Proof. Again the proof goes by induction on n. For n = 3 the result holds in
virtue of Theorem 1.

Suppose our result holds for n = k. We have X1×, . . . , Xk−1 ⊥ Xk+1 | Xk.
Thus, we have a representation u(x) = f(x1, . . . , xk) + g(xk, xk+1) by the case
of n = 3. Since our result holds for n = k,

T [f(x1, . . . , xk) + g(xk, xk+1)] =

k−1∑
i=2

fi(xi, xi−1)

+ fk((xk, xk+1), xk−1) (19)

for some montone transformation T . Fixing xl = x0
l for all l 6= k + 1, k − 2, we

have:

T [f((x0
l )

k−3
l=1 , xk−2, x

0
k−1, x

0
k) + g(x0

k, xk+1)] =

k−3∑
i=2

fi(x
0
i , x

0
i−1)

+ fk−2(xk−2, x
0
k−3)

+ fk−1(x
0
k−1, xk−2)

+ fk((x
0
k, xk+1), x

0
k−1) (20)

Noticing that both the term inside T [. . .] and the RHS are additive represen-
tations on the Xk−2 × Xk+1 ×

∏
l 6=k−2,k+1{x

0
l } space, by the uniqueness of

additive representations follows that T is affine. We may assume without loss
of generality that T [f ] = f . Thus,

f(x1, . . . , xk) + g(xk, xk+1) =

k−1∑
i=2

fi(xi, xi−1)

+ fk((xk, xk+1), xk−1) (21)

From which follows

f(x0
1, . . . , x

0
k−2, xk−1, xk) + g(xk, xk+1) =

k−2∑
i=2

fi(x
0
i , x

0
i−1)

+ fk−1(xk−1, x
0
k−2)

+ fk((xk, xk+1), xk−1) (22)

Thus, we can write fk in the form: fk((xk, xk+1), xk−1) = gk(xk, xk−1) +
gk+1(xk+1, xk) which concludes the proof.

2We actually need Cauchy’s functional equation for an interval of R. The derivation of this
is straightforward and not very insightful, and thus omitted.
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E Proof of Theorem 4

We provide a proof for the three dimensional case. Future versions of the paper
will include the more general case of a subset of a finite dimensional product
space. We again state our intermediate results (this time for subsets of the
product space) before turning to the proof of the representation theorem.

Lemma 6. Let % be a continuous preference relation on a well-behaved space
S ⊆ X × Y × Z where X,Y, Z are connected and separable topological spaces.
Let u : S → R be a continuous representation of %. Then for every u∗ ∈
int(u(X×Y ×Z)) there exists an open interval around u∗ and Ẑ ⊆ Z such that
there exists a continuous representation v : X × Y × Ẑ → R with v(x, y, z) =
f(x, z)+g(y, z)+h(z) and f(x0, z) = 0 and g(y0, z) = 0 covering the indifference
classes of the interval.

Proof. We claim that there exists a layer z′ such that

inf
a∈X,b∈Y

u(a, b, z′) < u∗ < sup
a∈X,b∈Y

u(a, b, z′). (23)

Since u∗ is in the interior of u(S), there must exist a z′ such that u∗ <

supa∈X,b∈Y :(a,b,z′)∈S u(a, b, z′). By continuity of u, supx,yu(x, y, z) is lower semi-
continuous. Thus, the set Z ′ = {z′| supa∈X,b∈Y :(a,b,z′)∈S u(a, b, z′) > u∗} of all
such z′ is open. Since Z is connected, the boundary of Z ′ is nonempty (unless
Z ′ = Z in which case u∗ is not in the interior). Let z∗ be a boundary point of
Z ′. Clearly, supa,b:(a,b,z′)∈S u(a, b, z∗) = u∗.

Suppose (x′, y′, z∗) ∈ int(S). Then there exists some neighborhood N =
Nx′ ×Ny′ ×Nz∗ around (x′, y′, z∗) in S where NX , NY , NZ are neighborhoods
of x′, y′, z∗ in X,Y, Z, respectively. Let Z ′′ = Z ′ ∩Nz∗ where Nz∗ . Since z∗ is a
boundary point of Z ′, one can show that it is also a boundary point of Z ′′. Since
z∗ is a boundary point of Z ′′, the 2.14 Theorem of Aliprantis and Border (2006)
guarantees that there exists a net {zα}%∗ → z∗ with zα ∈ Z ′′. By essentiality,
there exists u(x′, y′, z∗) < supa∈X,b∈Y u(a, b, z∗).

Since u is continuous, we have {u(x′, y′, zα)} → u(x′, y′, z∗). Therefore, there
exists for some ǫ < u∗ −u(x′, y′, z) an α0 such that u(x′, y′, zα) < u(x′, y′, z∗)+
ǫ < u∗ for all α %∗ α0. Thus, there is a z

′ ∈ Z ′′ such that infa∈X,b∈Y u(a, b, z
′) <

u∗ < supa∈X,b∈Y u(a, b, z′).
By the existence of a layer z′ such that Equation (23) holds and the fact

that all assumptions of Lemma 2 are fulfilled for layers z′, z∗, we can construct
the utility function v on Ẑ = {z′, z∗} to obtain the result.

Lemma 7. Let % be a continuous preference relation on a well behaved space
S ⊆ X × Y × Z where X,Y, Z are connected and separable topological spaces.
Moreover, S′ ⊆ S such that S′ covers all indifference classes. Then for all
z ∈ Z, there exists (x′, y′, z′) ∈ S′ such that there exist points fulfilling (x, y, z) %
(x′, y′, z′) ≻ (x′′, y′′, z) % (x′′′, y′′′, z′).

Proof. Let u be a continuous representation on S. If u(x, y, z) = supa∈X,b∈Y u(a, b, z)
then we claim that there exists another layer z′ and x′′, y′′ such that u(x′′, y′′, z′) <
u(x, y, z) < supa∈X,b∈Y u(a, b, z′). Since u∗ is in the interior of u(X × Y × Z),
there must exist a z′ such that u(x, y, z) = u∗ < supa∈X,b∈Y u(a, b, z′). Since
sup is lower semicontinuous, the set Z ′ = {z′| supa∈X,b∈Y u(a, b, z′) > u∗} of all
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such z′ is open and there exists a boundary point z∗ of the set Z ′ with u∗ =
supa∈X,b∈Y u(a, b, z∗). Therefore, by the 2.14 Theorem of Aliprantis and Border
(2006) there exists a net {zα} → z∗ with zα ∈ Z ′. Without loss of generality, we
will assume that the net lies entirely in an open set NZ where NX ×NY ×NZ

is an open set in S. By continuity of u, supx,yu(x, y, z) is lower continuous.
By the 2.42 Lemma of Aliprantis and Border (2006) limα infαsupx,yu(x, y, z) ≥
u∗. Since u is continuous and there exists u(x′, y′, z∗) < u(x, y, z∗), we have
{u(x′, y′, zα)} → u(x′, y′, z∗). Therefore, there exists for some ǫ < u(x, y, z∗)−
u(x′, y′, z∗) an α0 such that u(x′, y′, zα) < u(x′, y′, z∗) + ǫ for all α ≥ α0. Thus,
there is a z′ ∈ Z ′ such that infx,yu(x, y, z) < u∗ < supx,y u(x, y, z

′).

For the proof of the representation theorem, we note that we previously
only used the topological assumption of S being a product space when invoking
Lemma 4 and Lemma 5. Lemma 6 and Lemma 7 acting as replacements for
these two lemmas, the proof of Theorem 1 also holds for Theorem 4.

F Proof of Corollary 2

Proof. The assumptions of Definition 3 are satisfied for X̂1(z) = {(xi, xn) ∈
Xi × Xn : xi + xn = z}, X̂2(z) = {x−i ∈

∏
j 6=i,n Xj :

∑
j 6=i,n = 1 − z},

Z = [0, 1]. From Theorem 4 we have the following representations for all i < n:

Ui(x) = fi(xi,
∑
k 6=i,n

xk) + gi((xk)k 6=i,n) (24)

Using comeasurability, we can ensure during the utility construction process of
Ui, Uj that

Ui(x) = Uj(x) = U(x). (25)

for all i, j < n. Therefore,

fi(xi,
∑

m 6=i,n

xm) + gi((xm)m 6=i,n) = (26)

fj(xj ,
∑

m 6=i,n

xm) + gj((xm)m 6=i,n). (27)

Setting xm = 0 for all m 6= i, j, k, we obtain:

fi(xi, xj + xk) + gi(0, . . . , 0, xj , xk) = (28)

fj(xj , xi + xk) + gj(0, . . . , 0, xi, xk). (29)

By Lemma 8, this functional equation has the solution fi(xi, xj+xk) = ui(xi)+
ūi(xi + xj + xk) + ûi(xj + xk) and fj(xj , xi + xk) = uj(xj) + ūj(xi + xj + xk) +
ûj(xi + xk). We therefore have for all i

U(x) = ui(xi) + ūi(
∑
m 6=n

xm) + ĝi((xm)m 6=i,n)

= uj(xj) + ūj(
∑
m 6=n

xm) + ĝj((xm)m 6=j,n) (30)
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where ĝi((xm)m 6=i,n) = gi((xm)m 6=i,n) − û(
∑

m 6=i,n xm) and ĝj((xm)m 6=j,n) =
gj((xm)m 6=j,n)− û(

∑
m 6=j,n xm). Setting un(xn) = ū(1− xn) we obtain:

U(x) = ui(xi) + un(xn) + ĝi((xm)m 6=i,n) (31)

Our initial choice of n was arbitrary. We have thus shown that for any i, n, the
utility representation is additively separable. Thus,

U(x) =

n∑
i=1

ui(xi) (32)

Lemma 8. Let S,+ be a cancellative abelian monoid and let f̄ , ḡ, f and g be
real valued functions defined on S2 and satisfy the relation

f̄(x3, x1 + x2) + ḡ(x1, x2) = f(x2, x1 + x3) + g(x1, x3)

for all x1, x2, x3 in S. Then f(x2, x1 + x3) + g(x1, x3) = v123(x1 + x2 + x3) +
v1(x1) + v2(x2) + v3(x3). In particular, f(a, b) = a1(a) + a2(b) + a3(a+ b).

Proof. The functional equation to be solved is3

ḡ(x1, x2) = f(x2, x1 + x3) + g(x1, x3)− f̄(x3, x1 + x2). (33)

We set x3 = 0 and define ū1(x1) = g(x1, 0) and ū(x1) = f̄(0, x1) to obtain:

ḡ(x1, x2) = f(x2, x1) + ū1(x1) + ū3(x1 + x2) (34)

By a symmetric argument with x2 = 0, we have

g(x1, x3) = f̄(x3, x1) + u1(x1) + u3(x1 + x3). (35)

Inserting the above result into Equation (33), we have

f(x2, x1 + x3) + f̄(x3, x1) + u1(x1) + u3(x1 + x3)

= f̄(x3, x1 + x2) + f(x2, x1) + ū1(x1) + ū3(x1 + x2) (36)

Let x1 = 0 in Equation (36). Then we get the following relation between f̄ and
f

f̄(x3, x2) = f(x2, x3) +A1(x2) +A2(x3)

for some suitably defined functions A1, A2. Inserting this result into Equation
(36) we get

f(x1 + x2, x3) + f(x2, x1) + Ū1(x1) + Ū2(x2) + Ū3(x1 + x2)

= f(x2, x1 + x3) + f(x1, x3) + U1(x1) + U2(x3) + U3(x1 + x3). (37)

We want to characterize the function f , for any (x1, x2) ∈ S2. Gathering terms,
we have

f(x1, x2) = f(x1, x2 + x3) + f(x2, x3)− f(x1 + x2, x3)

+v1(x2) + v2(x1) + v3(x3) + v12(x1 + x2) + v13(x2 + x3) (38)

Our goal is to prove f(x, x2) = a1(x) + a2(x2) + a3(x+ x2). To achieve this, we
provide the following Lemma.

3In the remainder of the proof, we will omit stating that equations such as (33) hold for
all x1, x2, x3. It will be clear from the context whether a variable is a free variable or not.
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Lemma 9. Let g : S2 → R. Then g(x1, x2) = g1(x1) + g2(x2) if and only if
g(x′

1, x
′
2)− g(x′

1, 0)− g(0, x′
2) + g(0, 0) = 0 ∀ x1, x2.

Proof. If g(x1, x2) = g1(x1)+g2(x2) then, g(x
′
1, x

′
2)−g(x′

1, 0)−g(0, x′
2)+g(0, 0) =

g1(x
′
1) + g2(x

′
2)− g1(x

′
1)− g2(0)− g1(0)− g2(x

′
2) + g1(0) + g2(0) = 0.

On the other hand, suppose g(x1, x2) satisfies the condition g(x′
1, x

′
2) −

g(x′
1, 0) − g(0, x′

2) + g(0, 0) = 0. Then we define the g1(x1) := g(x1, 0) and
g2(x2) := g(0, x2) − g(0, 0). Then, by the condition, g(x1, x2) = g(0, x2) +
g(x1, 0)− g(0, 0) = g1(x1) + g2(x2).

By Lemma 9, f(x1, x2) = a1(x1) + a2(x2) + a3(x1 + x2) if and only if
f(x1, x2)− f(x1, 0)− f(0, x2)− f(0, 0) = a3(x1 + x2)− a3(x1)− a3(x2) + a3(0).
Therefore, we define

G(x1, x2) ≡ f(x1, x2)− f(x1, 0)− f(0, x2)− f(0, 0). (39)

Substituting Equation (38) for f(x1, x2), we get

G(x1, x2) = f(x1, x2 + x3) + f(x2, x3)− f(x1 + x2, x3)− f(0, x2 + x3)

+(v12(x1 + x2)− v12(x1)− v12(x2) + v12(0)) (40)

Thus f has the desired functional form if and only if

N(x1, x2) ≡f(x1, x2 + x3) + f(x2, x3)− f(x1 + x2, x3)− f(0, x2 + x3) (41)

=a(x1 + x2)− a(x1)− a(x2) + a(0) (42)

for some real-valued function a. To show that this is the case, notice that

N(x1 + x2, x3) = −[f(x1 + x2 + x3, c)− f(x3, c)] + [f(x1 + x2, x3 + c)− f(0, x3 + c)]

N(x1, x2) = −[f(x1 + x2, c)− f(x2, c)] + [f(x1, x2 + c)− f(0, x2 + c)]

N(x1, x2 + x3) = −[f(x1 + x2 + x3, c)− f(x2 + x3, c)] + [f(x1, x2 + x3 + c)− f(0, x2 + x3 + c)]

N(x2, x3) = −[f(x2 + x3, c)− f(x3, c)] + [f(x2, x3 + c)− f(0, x3 + c)]
(43)

We choose c = 0 in N(x1+x2, x3), N(x1, x2+x3) and N(x2, x3), and c = x3 in
N(x1, x2) to obtain N(x1 + x2, x3) + N(x1, x2) = N(x1, x2 + x3) + N(x2, x3).
By M.Hosszu (1971), N(x1, x2) = B(x1, x2) + a(x1 + x2)− a(x1)− a(x2) where
B(x1, x2) is a skew-symmetric biadditive function. Since N(0, 0) = N(x1, 0) =
N(0, x2) = 0, B(x, x2) = B(0, 0) = a(0) = 0. Thus, the function f has the
functional form

f(a, b) = a1(a) + a2(b) + a3(a+ b). (44)

To show that f(x2, x1 + x3) + g(x1, x3) has the desired functional form, we
substitute Equation (44) in Equation (37). Then we obtain

U1(x1) + U2(x2) + U3(x3) + U4(x1 + x2)

=Ū1(x1) + Ū2(x2) + Ū3(x3) + Ū4(x1 + x3). (45)

Letting x3 = 0, we obtain that U4(x1 + x2) is additively separable in variables
x1 and x2. Similarly, letting x2 = 0, Ū4 is additively separable in x1 and x3.
The desired result follows.
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