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Abstract 

Short-term water demand forecasts inform decisions regarding budgeting, rate design, 

water supply system operations, and effective implementation of conservation policies.  This 

study develops a Linear Transfer Function (LTF) forecasting model for El Paso, Texas, a 

growing city located in the desert Southwest region of the United States.  The model is used to 

generate monthly-frequency out-of-sample simulations of water demand for periods when actual 

demand is known.  To measure the accuracy of the LTF projections against viable alternatives, a 

set of benchmark forecasts is also developed.  Both descriptive accuracy metrics and formal 

statistical tests are used to analyze predictive performance.  The LTF model outperforms the 

alternatives in predicting demand per customer but falls a little short in projecting growth in the 

customer base.  Changes in climatic and economic conditions are found to impact consumption 

per customer more rapidly than changes in water rates. 
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INTRODUCTION 

Water demand forecasting is a tool that utilities use for a variety of purposes including 

capacity planning, budget year planning, and rate design.  Forecasts also play a role in preparing 

for the possibility of water shortages (Wei et al., 2010; Kenward & Howard 1999).  In evaluating 

various alternative demand management policies, estimates of the water savings that are likely to 

accrue from specific initiatives may serve as useful decision-making tools (Levin et al., 2006; 

Froukh, 2001).  When drought conditions are expected, short-term forecasts can help determine 

the need for policies such as watering restrictions or temporary surcharges, as well as the 

appropriate timing of implementation (Fullerton & Elias 2004; Maidment et al., 1985).  Thus, 
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simulations of future water consumption dynamics can aid policymakers in targeting 

conservation measures for optimal effectiveness (Memon & Butler, 2006). 

 The objective of this study is to analyze short-term water consumption dynamics in El 

Paso, Texas.  A growing metropolitan economy located in the desert Southwest region of the 

United States, El Paso has historically faced pronounced water supply constraints.  Recurring 

droughts place additional pressure on local water supplies (Washington-Valdez, 2013).  In 

response to projected shortages, El Paso Water Utilities (EPWU) adopted a comprehensive 

conservation strategy in 1991 (Tennyson & Parker, 2007).  The subsequent moderation in the 

annual growth of water consumption is shown in Figure 1.  Water demand forecasts and 

simulations are useful for both designing and evaluating conservation policies such as those put 

in place by EPWU in recent decades (Little & Moreau, 1991; White et al., 2003).  Also, an arid 

climate, a growing population, and scarce water resources combine to make reliable forecasts 

essential to ensuring an adequate supply of water during peak-demand seasons in El Paso. 
 
 
Figure 1. Total water consumption in El Paso, 1959-2012 

 
This study employs monthly data to analyze and forecast water consumption in El Paso.  

A similar study was conducted for this region by developing a Linear Transfer Function (LTF) 

model with monthly data from 1994 to 2002 (Fullerton & Elias, 2004).  This effort expands the 

original sample size by 11 years.  The larger sample includes more business cycles, which may 

shed some light on how municipal water usage responds to fluctuations in economic conditions.  

The next section reviews the literature on water demand modeling and forecasting.  Section three 

includes a discussion of the data and the methodological framework employed.  Empirical results 

are then presented, followed by a conclusion and policy implications. 

 

LITERATURE REVIEW 

Water demand has an inverse and inelastic relationship with price (Martinez-Espiñeira & 

Nauges, 2004; Pint, 1999).  In a review of prior research, Arbues et al. (2003) finds that, 

although price coefficients vary depending on model specification and type of data employed, all 

of the reported elasticities are negative and less than unitary.  There is evidence that price 

sensitivities are higher in the long run (Agthe et al., 1986; Carver & Boland, 1980).  While there 

are no close substitutes for water, the possibility of installing low flow appliances, adopting 
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water-saving lawn irrigation technology, and introducing xeriscaping enhances the capacity of 

consumers to respond to price hikes by reducing water usage in the long-run. 

A long-running debate regarding the choice between average and marginal price 

measures is well documented.  Several studies concerned with estimating demand equations for 

water and electricity report that consumers react to average price (Ito, 2014; Nieswiadomy, 1992; 

Shin, 1985; Foster & Beattie, 1981).  Failure to understand block pricing structures, the small 

portion of income that the total bill represents, and high information costs are all possible 

explanations of consumer propensities for utilizing ex post average prices as proxies for marginal 

prices.  Other studies provide evidence in favor of marginal prices and suggest that endogeneity 

bias arises when average prices are employed (Williams & Suh, 1986; Williams, 1985).   

 Market and non-market conservation efforts are useful tools for managing water demand.  

Market conservation efforts consist of increasing price to achieve lower consumption levels.  

Price elasticities are not uniform across all income levels; there is evidence that low income 

households exhibit elasticities up to five times higher than their wealthier counterparts (Agthe & 

Billings, 1987; Renwick & Archibald, 1998).  It follows that price conservation efforts 

disproportionately affect consumption in lower income households.  Non-market conservation 

programs such as public awareness initiatives, education campaigns, and provision of additional 

information on marginal rates effectively increase price responsiveness, thereby achieving 

desired conservation levels with smaller price increases (Michelsen et al., 1999; Moncur, 1987).  

Fullerton and Elias (2004) estimate short-term water demand forecasts in El Paso as a 

function of economic and climatic variables.  Monthly forecasts are generated employing a LTF 

methodology and are then compared to a random walk benchmark.  The study concludes that the 

LTF outperforms the benchmark at every forecast step-length.  Two subsequent studies 

conducted for Ciudad Juarez and Tijuana confirm these results (Fullerton et al., 2007; Fullerton 

et al., 2006).  The study at hand conducts a similar exercise using a larger sample that includes 

various episodes of economic downturns and recoveries.  In addition, a broader spectrum of 

forecast accuracy evaluation metrics will be employed as described in the next section. 

 

DATA AND METHODOLOGY 

Total water demand for El Paso is decomposed into per customer demand (Wpc) and the 

total number of customers (Cust), with each component modeled separately (Fullerton & 

Schauer, 2001).  Per customer water consumption is obtained by dividing total water billed by 

the number of customers and is then modeled as a function of average price (Price), days with 

peak temperatures above 90°F (Heat), total precipitation (Rain), and nonfarm employment 

(Emp).  Because price figures are not always available, other studies have circumvented this 

obstacle by dividing revenue over consumption to approximate average price (Shin, 1985).  This 

paper follows the same procedure.  While providing only an approximation of relevant rates, this 

approach has been shown to yield econometric results in line with other price measures 

(Dalhuisen et al., 2003; Nieswiadomy & Molina, 1991).  The average price figures are deflated 

using the consumer price index (CPI) to obtain real values in 1982-1984 dollars.   

The sample consists of monthly frequency time series data from 1994 to 2013.  Total 

water billed, total revenue, and the number of customers are obtained from Revenue Snapshot 

reports issued by EPWU.  Each of the aforementioned series has a gap of five observations.  The 

missing observations are estimated using related time series, which are available from another 

data source also compiled by EPWU (Fernandez, 1981; Friedman, 1962).  The number of days 

each month for which the maximum temperature exceeds 90°F and total monthly precipitation in 
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inches are retrieved from the National Oceanic and Atmospheric Administration.  Non-

seasonally-adjusted nonfarm employment and CPI are collected from the Bureau of Labor 

Statistics.  Due to the unavailability of monthly personal income series at the regional level, 

employment is used as a proxy for economic conditions.  Table 1 defines each variable and lists 

data sources. 

 

 

Table 1. Variables used for water demand and customer base modeling 

Variable Name Definition Units Source 

Wpc Demand per customer Thousands of gallons EPWU 

Price Real average revenue price Dollars per thousand gallons EPWU 

Cust Number of customers Water customers EPWU 

Heat Days over 90°F Days  NOAA 

Rain Total monthly precipitation Inches NOAA 

Emp 
Non-seasonally adjusted 

nonfarm employment 
Thousands BLS 

 

 

The LTF ARIMA (autoregressive integrated moving average) methodology is used to 

model demand.  This methodology is an extension of the process outlined by Box and Jenkins 

(1976).  Previous efforts have utilized LTF ARIMA for forecasting demand for water and natural 

gas (Fullerton & Elias, 2004; Fullerton & Nava, 2003; Liu & Lin, 1991).  Differencing is applied 

to each data series to achieve the required stationarity condition.  The cross-correlation functions 

between stationary components of the dependent and independent variables are plotted and 

inspected to determine potential lag structures of the explanatory variables.  Autoregressive (AR) 

and moving average (MA) components are subsequently introduced into the model to account 

for any systematic variation in the dependent variable not explained by the preliminary multiple 

input transfer function (Wei, 2006).  Potential ARMA (autoregressive and/or moving average) 

parameters are identified by looking for significant autocorrelation and partial autocorrelation 

coefficients in the correlogram of the residuals.  The specification of the LTF is shown in 

Equation (1); the hypothesized coefficient signs are included parenthetically. 

 𝐷𝑝𝑐𝑡 = 𝛼0 + ∑ 𝛽𝑎𝐴
𝑎=1 𝐴𝑝𝑡−𝑎 + ∑ 𝛽𝑏𝐻𝑒𝑎𝑡𝑡−𝑏𝐵

𝑏=1 + ∑ 𝛽𝑐𝑅𝑎𝑖𝑛𝑡−𝑐𝐶
𝑐=1 + ∑ 𝛽𝑑𝐸𝑚𝑝𝑡−𝑑𝐷

𝑑=1 + ∑ 𝜙𝑖𝐷𝑝𝑐𝑡−𝑖𝑝
𝑖=1 + ∑ θ𝑗𝑢𝑡−𝑗𝑞

𝑗=1 + 𝑢𝑡 

    (-)                 (+)                    (-)                   (+)                                                          (1) 

 

Consumers are expected to react to increases in the average price by decreasing water 

usage.  Because water consumption peaks during the summer months in El Paso, the number of 

days over 90°F should have a positive relationship with demand.  Precipitation partially 

alleviates the need for outdoor water use, so a negative relationship is anticipated.  Movements in 
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water demand are expected to be positively correlated with prevailing regional economic 

conditions.  Therefore the parameters for employment should be positive. 

As mentioned above, average price is calculated by dividing total revenue by water 

consumption.  Because the latter is also the dependent variable in Equation (1), it is necessary to 

test for endogeneity (Fullerton et al., 2013).  This is accomplished using an artificial regression 

test (Davidson & MacKinnon, 1989).  Two instrumental variables are used to conduct the test.  

The capital stock deflator for water supply facilities is obtained from the Bureau of Economic 

Analysis.  Another instrument, a unit labor cost index for water utilities, is retrieved from the 

Bureau of Labor Statistics.  Both instruments are adjusted for inflation using the CPI.  The 

artificial regression procedure is used to evaluate the null hypothesis that average price is 

uncorrelated with the error term in Equation (1).     

To estimate total water demand, it is necessary to model the number of customers in 

addition to per customer demand.  Multiple studies have estimated the customer base for water 

utilities in metropolitan areas as functions of economic variables (Fullerton et al., 2007; Fullerton 

et al., 2006).  Following a similar approach, this study constructs a single input transfer function 

where nonfarm employment and ARMA terms are used as regressors (Equation 2).  Employment 

is expected to be positively correlated with the size of the customer base.  The equation and the 

hypothesized sign are expressed below, followed by summary statistics for the sample data in 

Table 2. 

 𝐶𝑢𝑠𝑡𝑡 =  𝛼0 + ∑ 𝛽𝑎𝐴𝑎=1 𝐸𝑚𝑝𝑡−𝑎 + ∑ 𝜙𝑖𝐶𝑢𝑠𝑡𝑡−𝑖𝑝𝑖=1 +  ∑ θ𝑗𝑣𝑡−𝑗𝑞𝑗=1 + 𝑣𝑡          (2) 

                                (+)                

                                                                

Table 2. Summary statistics for El Paso water demand and customer base sample data 

Variable Mean Std. deviation Minimum Maximum No. 

Wpc 16.45 4.88 9.26 31.16 240 

Price 1.80 0.34 1.18 2.51 240 

Cust 178,057 24,077 138,322 217,406 240 

Heat 9.54 11.56 0 31 240 

Rain 0.70 0.96 0 6.85 240 

Emp 260.07 16.54 223.20 290.60 240 

 

Development of a vector autoregression (VAR) model provides a benchmark that allows 

for forecast accuracy comparisons with respect to the LTF ARIMA model.  Although VAR 

models are more commonly employed for macroeconomic simulations, some studies have 

utilized them for modeling and forecasting regional economies (Cargill & Morus, 1988; Kinal & 

Ratner, 1986).  A basic VAR model of order p can be written as shown in Equation (3). 𝑦𝑡 = 𝐴0 + 𝐴1𝑦𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡           (3) 

Where yt is a vector containing k time series variables, A0 is a vector of constant terms, the Ai’s 
for i = 1,…,p are k × k coefficient matrices, and ut is a vector of random disturbances (Lütkepohl 

& Krätzig, 2004).  Only predetermined variables are included on the right-hand-side of (3) and 

the error terms are assumed to be serially uncorrelated and homoscedastic.  If the assumptions 

are satisfied, ordinary least squares estimates of the VAR parameters are consistent and 

asymptotically efficient (Enders, 2010).   

A variety of statistics are available to help choose the appropriate lag order p.  The 

number of lags can be selected by considering metrics including the Akaike, Schwarz, and 
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Hannan-Quinn information criteria (Clarke & Mirza, 2006).  Optimal lag structures are those 

associated with the minimum values of these criteria.  The basic model shown in Equation (3) 

can be augmented by including exogenous stochastic variables as regressors in each of the k 

equations.  In the case that exogenous variables are added to the list of regressors, explanatory 

equations are not included for those variables as part of the system (Lütkepohl & Krätzig, 2004).  

Examples of exogenous variables that might be incorporated into a VAR model of economic 

conditions include weather indicators and dummy variables to account for calendar effects 

(Hendry & Nielsen, 2007). 

There is some controversy surrounding whether the data used to estimate a VAR need to 

be stationary (Enders, 2010).  To obtain parameter estimates that appropriately describe the 

relationships between variables, Ashley and Verbrugge (2009) recommend differencing any non-

stationary data prior to estimating the VAR unless the variables are cointegrated.  Because the 

variables in the sample are non-stationary in level form, cointegration testing is conducted.  If the 

variables are found to be cointegrated, the VAR will be estimated using data in level form; 

otherwise, the data will be differenced to achieve stationarity.  Finally, a VAR Lagrange 

Multiplier (LM) test is carried out on the residuals to test for serial correlation at the selected lag 

order. 

Once the LTF ARIMA and VAR models are developed, each is used to generate ex-post 

forecasts of water demand.  Random Walk (RW) and Random Walk with Drift (RWD) 

benchmark forecasts are also calculated. For the customer base, the RW forecast is equal to the 

number of customers in the month before the start of the forecast period.  For demand per 

customer, the RW projection is equal to the level of consumption recorded in the same month of 

the previous year.  The RWD forecast is equal to the RW forecast plus the average monthly 

change over the course of a year.  To evaluate the four sets of projections, several measures of 

forecast accuracy are employed: the Theil inequality coefficient, an error differential regression 

test, and a non-parametric test for directional accuracy.   

The Theil inequality coefficient, also called a U-statistic, is based on the root-mean 

squared error and provides a descriptive measure of forecast accuracy with values ranging from 

zero to one (Theil, 1961).  A value of zero indicates the best possible fit is attained; the converse 

is true when the statistic equals one.  The second moment of the U-statistic can be further 

decomposed into three proportions of inequality to extract additional information about forecast 

accuracy: bias (U
M

), variance (U
S), and covariance (U

C
).  The bias proportion provides a 

measure of systematic divergence between the means of actual and predicted demand.  The 

variance proportion reflects the forecast’s ability to replicate variation in water consumption.  

The covariance proportion represents unsystematic error.  The sum of the three proportions is 

equal to one with an ideal distribution of 𝑈𝑀 = 𝑈𝑆 = 0 and 𝑈𝐶 = 1 (Pindyck & Rubinfield, 

1998).  

An error differential regression test is used to determine whether the difference between 

the errors from two competing forecasts is statistically significant (Ashley et al., 1980).  The 

procedure consists of testing the null hypothesis shown in Equation (4). 

 H0: MSE(𝑒1) − MSE(𝑒2) = 0           (4) 

 

where e1 and e2 are the forecast errors of the competing forecasts and MSE stands for mean 

squared error.  By defining Δt = e1t – e2t and Σt = e1t + e2t, the MSE differential for a sample of 

forecasts can be rewritten as shown in Equation (5). 
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 MSÊ(𝑒1) − MSÊ(𝑒2) = [cov̂(Δ, Σ)] + [m(𝑒1)2 − m(𝑒2)2]                     (5) 

 

Where cov̂ is the sample covariance and m denotes sample mean.  Assuming the means of both 

sets of errors have the same sign, a test of cov(Δ,Σ) = μ(Δ) = 0 can be used to evaluate the null 

hypothesis.  Equation (6) provides a specification suitable for testing that hypothesis. When the 

error means have opposite signs, Equation (7) is utilized instead. 

 Δ𝑡 = 𝛽1 + 𝛽2[Σ𝑡 − 𝑚(Σ𝑡)] + 𝑢𝑡           (6) Σ𝑡 = 𝛽1 + 𝛽2[Δ𝑡 − 𝑚(Δ𝑡)] + 𝑢𝑡           (7) 

 

In Equations (6) and (7), ut is a randomly distributed error term.  A positive value for 𝛽2 indicates that the second forecast outperforms the first one.  The interpretation of β1 depends 

on the sign of e1’s mean.  If β1 has the same sign as e1, the second forecast is judged superior.  

Guidelines on determining whether or not to reject the null hypothesis based on t- and F-

statistics are given in Ashley et al. (1980).  

Directional forecast evaluations assess the ability of a model to correctly predict the 

direction of change in the variable of interest.  A contingency table, like Table 3, is usually 

employed in these procedures to compare the forecasted increases and decreases in demand to 

the actual directions of change.  The probability values p1 and p2 reflect the proportion of correct 

predictions of directional change while the off-diagonal probabilities reflect the proportion of 

incorrect predictions. 

 

 

Table 3. Probability value contingency table 

  Forecast  

  Increase Decrease Total 

Actual 
Increase p1 1 – p1 1 

Decrease 1 – p2 p2 1 

The table is based on directions of movement in the dependent variable relative to 

the prior observation and whether the current value is higher or lower than that of 

the previous period. 

 

 

Henriksson and Merton (1981) propose a test of the null hypothesis that a set of forecasts 

provides no useful information regarding the direction of change in a given variable.  This 

hypothesis can be stated in terms of the probabilities shown in Table 3 as H0: p1+p2 = 1.  For a 

model that always predicts the correct direction of change, p1 and p2 will each be equal to one 

and p1+p2 = 2. Conversely, a model that always generates the wrong predictions will have values 

of zero for both of those probabilities and the probability values for the off-diagonal elements 

will sum to two.  Under the null hypothesis the forecasts of directional change are independent of 

the actually observed directional changes. 

 Henriksson and Merton (1981) argue that it is unlikely that the sum of p1 and p2 will be 

significantly less than one because that would imply that the forecasts systematically predict 
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changes in the opposite direction of the changes that are actually observed.  Therefore, a one 

tailed test is recommended for the modified null hypothesis: p1+p2 ≤ 1.  Cumby and Modest 

(1987) point out that the null hypothesis can be evaluated using a Fisher exact test. 

 
EMPIRICAL RESULTS 

Table 4 shows LTF ARIMA estimation results for the per customer water demand 

equation.  The series are seasonally and first differenced prior to estimation to induce 

stationarity.  All of the independent variables affect demand within three months.  The estimated 

coefficients associated with every explanatory variable are significant at the 95% confidence 

level and the coefficient signs are as hypothesized.  One AR and two MA parameters are 

included to correct for residual serial correlation (a statistical glossary is included in Table 8). 

Movements in the real average price negatively affect water demand with a lag of three 

months.  A number of other studies also find evidence that consumers respond to lagged, rather 

than contemporaneous, values of average price (Fullerton et al., 2007; Arbues & Villanua, 2006; 

Arbues et al., 2004; Fullerton & Nava, 2003).  This is consistent with the argument that 

customers base consumption decisions on price information acquired from bills for water that 

has already been consumed in prior periods (Charney & Woodard, 1984).  The elasticity estimate 

calculated by multiplying the own-price coefficient from Table 4 by the ratio of mean price to 

mean demand is -0.32.  This is somewhat smaller in magnitude than the average price elasticity 

estimate of -0.41 reported by Dalhuisen et al. (2003) in a meta-analysis of previous water 

demand studies. 

Because total water consumption is used to calculate both average price and the 

dependent variable, it is possible that the price variable may be endogenous.  However, the 

results of an artificial regression test indicate the absence of feedback between water demand and 

contemporaneous values of average price (Davidson & MacKinnon, 1989).  Some previous 

studies also report that average water price variables are exogenous (Mylopoulos et al., 2004; 

Nauges & Thomas, 2000; Nieswiadomy, 1992).  Repeating the artificial regression test for 

lagged values of average price yields conflicting results.  However, lagged values of the average 

price variable are predetermined and are treated as exogenous for the purposes of this study.  

This is in line with research on electricity demand that uses lagged average price as an 

instrumental variable for contemporaneous average price on the grounds that the lagged values 

are exogenous (Aroonruengsawat et al., 2012). 

The number of days when the temperature exceeds 90° Fahrenheit and its first order lag 

indicate higher temperatures exert a positive impact on water usage.  Conversely, precipitation is 

associated with lower consumption levels after a one month lag.  The effects of weather 

conditions on per customer water consumption are similar to those reported for the same region 

in Fullerton and Elias (2004).  The number of days with rain and monthly maximum temperature 

are not found to exert statistically significant impacts on demand and are therefore excluded from 

the model.   

Total nonfarm employment is positively correlated with demand.  The employment 

coefficient in Table 4 indicates that the addition of one thousand jobs in El Paso is expected to 

increase monthly per customer water consumption by 121 gallons.  Labor market conditions may 

affect the consumption decisions of various types of water customers.  The size of payrolls 

reflects prevailing economic conditions, which often impact the demand for water by firms (Wei 

et al., 2010; Williams & Suh, 1986).  Business cycle fluctuations may also affect the intensity of 

water use by residential consumers (Bithas & Stoforos, 2006).  The positive effect of 
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employment levels on per customer water consumption in El Paso is consistent with the results 

of previous studies for this region and others (Musolesi & Nosvelli, 2011; Fullerton & Elias, 

2004).   

 

 

 Table 4. LTF ARIMA – El Paso water demand per customer model results 

Dependent Variable: Wpc 

Sample (adjusted): May 1996 – December 2013 

Variable Coefficient Standard error t-Statistic Probability 

C 
0.001451 0.003646 0.397972 0.6911 

Price(-3) 
-2.898840 0.778962 -3.721412 0.0003 

Heat 
0.088971 0.017208 5.170437 0.0000 

Heat(-1) 
0.130562 0.018816 6.939010 0.0000 

Rain(-1) 
-0.395477 0.071969 -5.495121 0.0000 

Emp 
0.120658 0.038938 3.098746 0.0022 

AR(12) 
-0.295368 0.068062 -4.339688 0.0000 

MA(1) 
-0.705800 0.044613 -15.82044 0.0000 

MA(12) 
-0.265299 0.047262 -5.613349 0.0000 

R-squared 0.702113     Mean dependent variable 0.003356 

Adjusted R-squared 0.690373     S.D. dependent variable 1.611280 

S.E. of regression 0.896582     Akaike info criterion 2.661072 

Sum of squared residuals 163.1836     Schwarz criterion 2.803569 

Log likelihood -273.0737     Hannan-Quinn criterion 2.718666 

F-statistic 59.80824     Durbin-Watson statistic 1.962049 

Probability (F-statistic) 0.000000   

 

 

The importance of periodic model re-estimation as new data become available is 

underscored by comparing the results in Table 4 to those reported in Fullerton and Elias (2004).  

In general, the results shown in Table 4 are similar to those in the earlier study.  The lag structure 

for per customer water usage using the longer sample of the current study has changed some and 

the sensitivity of water consumption has changed relative to what was previously documented 

for El Paso.  In particular, per customer consumption is found to be less reactive to price, 

rainfall, and employment variations in the current study.  Those developments may be related to 

the income growth that has occurred in El Paso during the intervening years between the two 

studies, making water more affordable for most household budgets.  A more complicated lag 
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structure is also shown in Table 4.    Those changes may also result as a consequence of using a 

larger data set that potentially allows for more accurate statistical inference.  Although wholesale 

changes to this model specification do not occur, failure to regularly update parameter estimates 

as new data become available will tend to increase the risk of predictive inaccuracy. 

Another observation on model characteristics can be made with respect to Table 4.  The 

data for this study are for municipal water consumption in El Paso, a fairly unique metropolitan 

economy located in a semi-arid geographical region.  The basic framework is applicable to other 

metropolitan economies that may receive higher volumes of precipitation and observe lower 

annual average temperatures (Fullerton et al., 2013).  Even though the model specifications for 

other regions may be similar to that shown in Table 4, the parameter magnitudes can differ 

substantially.  For example, residential water consumption in a rainy environment is likely to be 

less responsive to precipitation than is the case in El Paso.  A coefficient estimate for such a data 

sample would likely be smaller, in absolute magnitude, than what is reported in Table 4.  

Similarly, temperature variations may not cause consumption to react as much in regions where 

the climate is more moderate than it is in the desert southwest of the United States. 

 

 

Table 5. LTF ARIMA – El Paso customer base model results 

Dependent Variable: Cust 

Sample (adjusted): May 1996 – December 2013 

Variable Coefficient Standard error t-Statistic Probability 

C 345.1983 22.65783 15.23527 0.0000 

Emp (-32) 42.43972 12.24930 3.464666 0.0007 

AR(12) 0.368860 0.067597 5.456777 0.0000 

AR(18) -0.175113 0.062910 -2.783540 0.0060 

MA(1) -0.299312 0.072622 -4.121496 0.0001 

MA(3) 0.157147 0.072865 2.156673 0.0324 

R-squared 0.236645     Mean dependent variable 346.9096 

Adjusted R-squared 0.214324     S.D. dependent variable 319.6505 

S.E. of regression 283.3329     Akaike info criterion 14.16443 

Sum of squared residuals 13727458     Schwarz criterion 14.27210 

Log likelihood -1247.552     Hannan-Quinn criterion 14.20810 

F-statistic 10.60219     Durbin-Watson statistic 2.013352 

Probability (F-statistic) 0.000000   

 

 

A second LTF ARIMA model is developed for the customer base.  The estimation results 

are presented in Table 5.  The customer base series only requires first differencing to achieve 

stationarity.  Every estimated parameter satisfies the 5 % significance criterion.  The positive 
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sign and statistical significance of the constant term denotes a very steady rate of growth in the 

customer base.  Nonfarm employment enters the equation with a lag of 32 months.  The 32 

period lag suggests it takes almost three years for the customer base to respond to movements in 

employment.  Previous research on border region water demand also reports that the response to 

business cycle fluctuations occurs after relatively long delays.  Studies conducted for Tijuana and 

Ciudad Juarez find that the customer base reacts to changes in maquiladora employment levels 

after lags of up to 16 and 18 months, respectively (Fullerton et al., 2007; Fullerton et al., 2006).    

ARMA parameters are introduced to correct for serial correlation.  

This paper follows the approach of a previous study that employed a Bayesian VAR 

model as a benchmark for structural forecasts in the El Paso-Juarez border region (Fullerton, 

2001).  VARs provide a natural alternative to transfer functions since they require imposing 

fewer exclusion restrictions (Enders, 2010; Sims, 1980).  Two VAR models are developed as 

benchmarks to allow for forecast accuracy comparisons with respect to the LTF models.  The 

first model estimates water demand per customer and real average price.  The second model 

includes the number of customers and nonfarm employment. 

As described in the previous section, non-stationary time series must be differenced prior 

to estimating a VAR unless those series are cointegrated.  A Johansen cointegration test 

conducted for the residuals in the demand-price VAR yields conflicting results (Johansen, 1991).  

The trace rank test indicates the equations are cointegrated, whereas the maximum eigenvalue 

rank test suggests there are no cointegrated series.  Further testing is required to determine 

whether the series are cointegrated.  An Engle-Granger two-step procedure finds no evidence of 

cointegration at the 95% confidence level (Engle & Granger, 1987).  As a result, the series are 

first and seasonally differenced to achieve stationarity.  A lag order of 12 is selected based on the 

Akaike information criterion.  One- and two-month lags of three exogenous variables are also 

included in the VAR.  The exogenous variables are monthly precipitation, employment, and days 

with temperatures exceeding 90°F.  The results from a VAR residual LM test suggest serial 

correlation is not problematic (Johansen, 1995). 

 

 
Figure 2. Response of Wpc to a one standard deviation innovation in Ap ± 2 standard errors 
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Impulse response functions trace how each endogenous variable responds over time to a 

shock in a particular variable (Pindyck & Rubinfield, 1998).  The impulse response function for 

demand and average price is presented in Figure 2, where a change of one standard deviation is 

applied to the residual of average price at period t.  A shock in average price has a strong 

negative effect on demand after four months and subsequent reactions oscillate around zero.   

The second VAR is estimated with customers and nonfarm employment as the 

endogenous variables.  Both components of the Johansen cointegration test indicate there is no 

evidence of cointegration at the 95% confidence level.  Employment requires seasonal and first 

differencing; the customer base requires only first differencing.  Similarly to the first VAR, the 

Akaike information criterion favors a 12 order lag specification.  The exogenous variables are 

not found to exert statistically reliable impacts on either of the endogenous variables and 

inclusion of exogenous variables results in higher values of the information criteria for the 

overall system.  Because of this, the model is re-estimated using only the two endogenous 

variables.  The impulse response function for customers and employment is provided in Figure 3.  

The external shock in employment does not generate a pronounced effect on the customer base 

within twelve months; the response fluctuates around zero and disappears after 5 periods.   

 
 
Figure 3. Response of Cust to a one standard deviation innovation in Emp ± 2 standard error

 

 

OUT-OF-SAMPLE SIMULATION RESULTS 

Out-of-sample simulations are generated in order to assess the forecasting performance of 

each model. To provide a sufficient number of observations for statistical analysis of predictive 

accuracy, multiple sets of forecasts are produced by sequentially adding one additional month to 

the historical period, re-estimating the models, and generating new forecasts (Fullerton & Nava, 

2003).  The first set of forecasts runs from January 2011 to December 2011, the next set runs 

from February 2011 to January 2012, and so on.  The process is repeated until the historical 

period extends through November 2013.  The multiple sets of forecasts generated by this 

procedure are then grouped by step-length.  The number of forecasts ranges from 36 one-step 

length predictions to 25 twelve-step length predictions.   
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Theil Inequality Coefficients for per customer demand forecasts indicate that the LTF 

model outperforms the alternatives across all forecast periods.  Furthermore, the second moment 

decompositions of the U-statistics suggest that the LTF model successfully replicates systematic 

movements in water usage.  For the VAR demand forecasts, the distribution of the proportions of 

inequality rapidly deviates from the optimal distribution as the step lengths increase.  These 

results are in line with a previous study where VAR models were found to generate less accurate 

forecasts than structural macroeconomic models for several variables of interest (Bischoff et al., 

2000). 

 

 

Table 6. Error differential regression test results for El Paso water usage and customer base 

forecasts 

  Benchmark Forecast 

Step length 
Forecasted 

Variable 
VAR 

 
RW 

 
RWD 

One month 
Wpc -  Reject  Reject 

Cust -  Reject  - 

Two months 
Wpc -  Reject  Reject 

Cust -  Reject  - 

Three months 
Wpc Reject  Reject  Reject 

Cust -  Reject  - 

Four months 
Wpc Reject  Reject  Reject 

Cust -  Reject  - 

Five months 
Wpc Reject  Reject  Reject 

Cust -  Reject  - 

Six months 
Wpc Reject  Reject  Reject 

Cust -  Reject  - 

Seven months 
Wpc Reject  Reject  Reject 

Cust -  Reject  - 

Eight months 
Wpc Reject  Reject  Reject 

Cust -  Reject  - 

Nine months 
Wpc Reject  Reject  Reject 

Cust -  Reject  - 

Ten months 
Wpc Reject  Reject  Reject 

Cust -  Reject  - 

Eleven months 
Wpc Reject  Reject  Reject 

Cust -  -  Reject 

Twelve months 
Wpc Reject  Reject  Reject 

Cust -  -  Reject 

The null hypothesis tested is that of mean squared error equality. 

Rejection of the null hypothesis indicates that the LTF equation forecasts are most accurate. 

 

 

Though not shown here, U-statistics for the customer base forecasts indicate that the LTF 

outperforms the benchmarks for only two step lengths.  The VAR and RWD predictions are 
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more accurate for five step lengths each.  The LTF, VAR, and RWD forecasts are very close to 

one another in terms of accuracy for the twelve step lengths.  The bias proportion increases 

rapidly for the LTF and VAR forecast errors as the horizon increases and, after six months, it 

accounts for more than half of the out-of-sample errors.  The RWD forecast errors do not exhibit 

such a rapid increase in the proportion of bias, but the variance proportion increases faster than 

in the rest of the forecasts. 

 

 

Table 7. Directional accuracy tests for El Paso water demand per customer forecasts 

 LTF  VAR 

Step Length HM p-val. Conclusion  HM p-val. Conclusion 

One Month 
9.15E-06 

Reject 
 

3.16E-06 Reject 

Two Months 
5.85E-05 

Reject 
 

0.0004 Reject 

Three Months 
2.79E-05 

Reject 
 

0.0090 Reject 

Four Months 
0.0063 

Reject 
 

0.0810 - 

Five Months 
0.0003 

Reject 
 

0.0185 Reject 

Six Months 
0.0002 

Reject 
 

0.0009 Reject 

Seven Months 
0.0008 

Reject 
 

0.0369 Reject 

Eight Months 
1.43E-05 

Reject 
 

0.0176 Reject 

Nine Months 
0.0001 

Reject 
 

0.0426 Reject 

Ten Months 
0.0002 

Reject 
 

0.2209 - 

Eleven Months 
0.0002 

Reject 
 

0.1768 - 

Twelve Months 
0.0022 

Reject 
 

0.3064 - 

The null hypothesis is that the forecasts fail to predict directional changes in demand. 

Rejection of the null hypothesis indicates that the forecasts provide useful information regarding 

directional changes in demand. 

 

 

An error differential regression is used to formally test whether the difference between 

forecast errors from two models is statistically significant (Ashley et al., 1980).  Because the test 

can only be used to compare two sets of forecasts at a time, the LTF forecasts are compared 

sequentially against VAR, RW, and RWD benchmarks.  Rejection of the null hypothesis implies 

that the LTF model represents a significant improvement over the benchmark forecast.  The 
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results for demand and customers are shown in Table 6.  In the case of per customer demand, the 

LTF outperforms the VAR by a statistically significant margin for ten forecast step-lengths and 

improves on the accuracy of the random walks in every period.  By contrast, the errors from the 

VAR and LTF forecasts of the customer base are nearly identical in size and thus the hypothesis 

of equality cannot be rejected at any step-length.  The LTF represents a significant improvement 

over the RW for the first 10 step lengths but it only outperforms the RWD projections by a 

statistically significant margin for the last two step lengths.   

Directional forecast evaluations determine a model’s ability to accurately predict the 

direction of change in a variable of interest.  These tests are only conducted for water demand 

because the customer base increases in nearly every period throughout the forecast sample.  The 

null hypothesis states that the forecast fails to predict directional changes in demand per 

customer (Henriksson & Merton, 1981).  Consequently, rejection of the null implies the model 

successfully predicts the direction of the movements in water usage.  The results for the LTF and 

VAR forecasts are summarized in Table 7.  The null is rejected at every step length for the LTF 

and for eight of twelve step-lengths in the case of the VAR.  This indicates that the LTF is more 

suitable for out of sample simulations than the VAR.  

 

CONCLUSION 

 This study applies various methodologies to estimate models of water demand in El Paso, 

Texas, and compares the short-run forecasting accuracy of each model.  The LTF ARIMA 

parameter estimates indicate that a 10 % rate increase will lead to a 3.2 % decline in water 

demand after a lag of three months.  Impulse response functions generated using the VAR model 

also suggests that prices negatively impact demand after a multi-month lag.  These outcomes 

imply that price increases can serve as an instrument for controlling the growth of water 

consumption in El Paso.  However, the results also indicate that the full effect of rate changes 

may not be felt immediately as price information is typically gleaned from bills for water already 

consumed.  Furthermore, consumers in El Paso appear to react rather quickly, within one month, 

to changing weather conditions.  Thus, in the event of a severe drought, it is likely that non-price 

conservation measures such as public information campaigns will be needed in addition to 

appropriate price signals in order to rapidly curtail water use. 

 Water demand forecasts facilitate proactive responses to changing economic and climatic 

conditions.  Simulations of consumption dynamics also serve to clarify the likely consequences 

of policy changes such as rate increases.  In particular, such simulations have the potential to aid 

in the effective design and implementation of conservation measures.  To ensure that forecasts 

provide reliable inputs for planning efforts, techniques have been developed for assessing 

multiple dimensions of predictive accuracy.  This study uses U-statistics, an error differential 

regression test, and a directional accuracy test to evaluate LTF forecasts against three alternative 

benchmark forecasts.  The results highlight the importance of systematically assessing predictive 

performance against reasonable alternatives. 

 Out-of-sample accuracy evaluations reveal that the LTF ARIMA model of per-customer 

water use generates better forecasts than the benchmarks at every step length in the sample.  

However, the customer base forecast assessments yield mixed results.  The relatively 

sophisticated LTF and VAR models cannot outperform the much simpler RWD model in 

predicting the number of water customers.   More research on customer base forecasting appears 

warranted.  Future efforts may attempt to increase forecast accuracy by constructing a composite 

forecast using LTF, VAR, and RWD models.  Alternatively, employing different methodologies 
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or explanatory variables might potentially improve out-of-sample simulation results for the 

customer base.  

 In closing, it should be noted that not all utilities rely upon monthly frequency forecasts 

such as those discussed in this study.  Some utilities employ higher frequency information such 

as weekly or daily data.  The methods employed in this analysis can also be utilized for those 

types of data sets.  The same approaches can also be applied to water consumption data for 

utilities located in regions that enjoy greater volumes of annual precipitation than El Paso.   
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Table 8. Statistics glossary 

______________________________________________________________________________ 

 

Term   Definition 

______________________________________________________________________________ 

 

R-squared Proportion of the variation in the dependent variable about its mean that is 

explained by the estimated equation. 

Adjusted R-squared Proportion of the variation in the dependent variable about its mean that is 

explained by the estimated equation, adjusted for the number of regressors 

included to avoid artificially inflating the value of R-squared. 

Regressor Independent variable or explanatory variable in a regression equation. 

Mean   Arithmetic average of a variable. 

S.D.   Standard deviation, dispersion of a variable about its mean. 

Coefficient Estimate of how a dependent variable responds to a 1-unit change in an 

independent variable. 

Standard error Standard deviation of a regression coefficient. 

t-statistic Computed statistic for the null hypothesis that an individual explanatory 

variable does not help explain variations in the dependent variable. 

Probability (t-stat.) Marginal significance level of the t-statistic; values close to zero indicate 

rejection of the null hypothesis and reflect better model performance. 

S. E. of Regression Standard error of regression, dispersion of the sample observations about 

the regression line. 

Residual Difference between actual and fitted values of the dependent variable. 

AR Autoregressive coefficient utilized in cases when residual distributions are 

not random, but serially correlated. 

MA Moving average coefficient utilized in cases when residual distributions 

are not random, but serially correlated. 

Log likelihood Value of the log likelihood function for normally distributed residuals; 

higher values indicate better model performance. 

F-statistic Computed statistic for the null hypothesis that none of the regressors help 

explain variations in the dependent variable about its mean; higher values 

indicate better model performance. 

Probability (F-stat.) Marginal significance level of the F-statistic; values close to zero indicate 

rejection of the null hypothesis and reflect better model performance. 
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Akaike criterion Information criterion calculated using equation log likelihood value, the 

number of equation parameters, and the sample size; lag structures with 

lower values reflect better model performance. 

Schwarz criterion Information criterion calculated using equation log likelihood value, the 

number of equation parameters, and the sample size; lag structures with 

lower values reflect better model performance.  The Schwarz criterion 

penalizes the addition of explanatory variables more severely than does 

the Akaike criterion. 

Hannan-Quinn crit. Information criterion calculated using equation log likelihood value, the 

number of equation parameters, and the sample size; lag structures with 

lower values reflect better model performance.  The Hannan-Quinn  

criterion penalizes the addition of explanatory variables less severely than 

does the Akaike criterion or the Schwarz criterion. 

Steps Ahead The number of periods being forecasted when a model is used to simulate 

future values of a dependent variable.  In this study, one-step ahead refers 

a one-month forecast, two-steps ahead refers to a two-month forecast,….., 
and twelve-steps ahead refers to a twelve-month forecast. 

RMSE Root mean square statistic, standard deviation of prediction errors between 

forecast and actual values of the dependent variable.  Lower values reflect 

better forecast accuracy.  RMSE is bounded by zero from below, but not 

not bounded from above. 

U-statistic A scaled version of the RMSE such that U varies between 0 and 1, where 

lower values reflect better forecast accuracy. 

U
M

  Proportion of U that is due to bias in forecasts of the dependent variable. 

U
S
  Proportion of U that is due to failure to replicate variability in forecasts of 

the dependent variable. 

U
C
  Proportion of U that is due to unsystematic errors in the dependent 

variable forecasts. 

Error differential The difference in the sizes of forecast errors between competing 

forecasting methods.  An error differential regression test is used to 

formally examine the hypothesis that there is no measurable difference in 

the mean square forecasting errors from the competing approaches. 

LTF Linear transfer function, an equation that utilizes both univariate time 

series and explanatory variable information to model variations over time 

in a dependent variable such as per customer water consumption or a 

utility customer base. 



23 

 

RW Random walk, a forecasting procedure in which the last observed 

historical observation of the dependent variable is used as the forecast for 

all future periods. 

RWD Random walk with drift, a forecasting procedure in which the last 

observed historical change in the dependent variable is used as the forecast 

for all future periods. 

VAR Vector autoregression, a commonly used system of equations model that 

uses only lags of all variables in the sample. 

HM p-value Henriksson and Merton probability value used for directional forecast 

accuracy assessment.  Smaller values of this probability value (closer to 

zero) are associated with better prediction of the direction of change in 

water consumption. 

Impulse response Impulse response functions measure dynamic responses to one standard 

deviation changes in specific variables. 

 


