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THE SPATIAL AUTOCORRELATION PROBLEM IN SPATIAL INTERACTION 

MODELLING: 

A COMPARISON OF TWO COMMON SOLUTIONS 

Abstract  Spatial interaction models of the gravity type are widely used to 
describe origin-destination flows. They draw attention to three types of variables 
to explain variation in spatial interactions across geographic space: variables that 
characterize the origin region of interaction, variables that characterize the 
destination region of interaction, and variables that measure the separation 
between origin and destination regions. A violation of standard minimal 
assumptions for least squares estimation may be associated with two problems: 
spatial autocorrelation within the residuals, and spatial autocorrelation within 
explanatory variables. This paper compares a spatial econometric solution with 
the spatial statistical Moran eigenvector spatial filtering solution to accounting for 
spatial autocorrelation within model residuals. An example using patent citation 
data that capture knowledge flows across 257 European regions serves to 
illustrate the application of the two approaches. 

1. Introduction

Spatial autocorrelation complicates the treatment of spatial interaction data (Griffith, 2007). 
Several spatial scientists address these complications by capturing spatial autocorrelation in the 
specification of spatial interaction models (e.g., Fischer and Griffith, 2008; Griffith and Chun, 
2015; LeSage and Pace, 2008). Three features of these specifications are important: (i) the 
probability model employed; (ii) the term(s) included to account for spatial autocorrelation; and, 
(iii) the statistical reasoning perspective. The two most common probability models used are the 
log-normal and the Poisson. The former is a normal approximation for which zero flows become 
problematic. The latter deals directly with flows as counts (Flowerdew and Aitkin, 1982), and 
uses an offset variable in some of its implementations. Terms introduced into a specification to 
account for spatial autocorrelation include balancing factors, fixed effects, and random effects. 
Griffith and Fischer (2013) demonstrate equivalencies between these latter three 
conceptualizations. 

What remains to explore is comparing the frequentist versus Bayesian approaches to 
accounting for spatial autocorrelation in spatial interaction models. In other words, are the spatial 
interaction parameters fixed but unknown, while the data are random [the probability of interest 
is Pr(data|H0)]? Or, are the parameters random while the data are fixed [the probability of interest 
is Pr(H0|data)]? This paper summarizes comparisons between these two approaches. A principal 
motivation behind the study summarized here is to see which of the two models produces better 
estimates and inferences (particularly predictions) for empirical (in this case, actual knowledge 
flows) sample data. Because we do not know the true underlying data generating process (DGP) 
for these flows, we draw conclusions regarding which of the two model specifications is more 
consistent with the underlying empirical data based on estimation and prediction performance. 
Because the two model specifications are different, we address the question of whether the 
different aspects of the specifications make a material difference in estimates and description of 
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the sample data. We thought that answering this question would prove useful to researchers and 
practitioners when they make a model selection. We view this as more valuable than conducting 
a simulation experiment1, which requires knowledge of the DGP coupled with true parameters.2 
 
 2. Data description 

 
We use patent citation data to compare spatial filter and Bayesian estimates and inferences for 
the Poisson regression model containing origin- and destination-specific random effects that 
follow a spatial autoregressive process. The data relate to citations between European high-
technology patents, which are defined here to be patent applications at the European Patent 
Office assigned to high-technology firms located in Europe. Here high-technology includes the 
International Standard Industrial Classification (ISIC) sectors of aerospace (ISIC 3845), 
electronics-telecommunication (ISIC 3832), computers and office equipment (ISIC 3825), and 
pharmaceuticals (ISIC 3522). Self-citations (i.e., citations from patents assigned to the same 
firm) have been excluded, given our interest in pure externalities as evidenced by inter-firm 
knowledge spillovers. The observation of citations is subject to a truncation bias, a well-known 
phenomenon, because we observe citations for only a portion of the life of an invention. To 
avoid this bias in this analysis, we have established a five-year moving window (i.e., 1985-1989, 
1986-1990, …, 1993-1997) to count citations to a patent.3 The observation period is 1985-1997 
with respect to cited patents, and 1990-2002 with respect to citing patents. The sample used in 
this analysis is restricted to inventors located in n = 257, generally NUTS-24, regions covering 
the EU-27 member states (excluding Cyprus), Norway, and Switzerland, resulting in N = 66,049 
inter- and intra-regional flows. In the case of cross-regional inventor teams, we have used the 
procedure of multiple full counting, which, unlike fractional counting, does justice to the true 
integer nature of patent citations, and gives the inter-regional cooperative inventions greater 
weight. 
 

The explanatory variables in our model contain the (logarithm of) stock of patents (xd) in a 
knowledge producing region in the time period 1985-1997, the (logarithm of) stock of patents 
(xo) in a knowledge receiving region in the time period 1990-2002, and the following three 
separation variables: geographical distance, a measure of technological proximity between origin 
and destination regions, and a binary indicator variable for the presence of a national border 
intervening between a pair of origin and destination regions. Geographical distance was 
measured in terms of great circle distance (in 1,000 km) between regions’ economic centers, and 

                                                 
1 Both estimation procedures are numerically intensive, making execution of a sufficient number of replications to 
take advantage of the Law of Large Numbers (e.g., 10,000) impractical. 
2 The two models we compare assume a different DGP for the underlying empirical (i.e., generation of knowledge 
flows) data. If, for example, we assume a DGP consistent with the eigenvector spatial filter specification, the results 
of a Monte Carlo study would, of course, show that model to produce superior estimates and inferences. In contrast, 
if we conduct a Monte Carlo experiment that assumes the Bayesian model DGP, of course, that model would 
produce superior estimates and inferences. We see little value in showing that each specification is superior when its 
DGP generates flows. Already existing Monte Carlo studies of both methods (i.e., spatial filtering and Bayesian 
spatially structured effects) show good performance when the true DGP is consistent with the specific model 
specifications. Another such study seems unneeded and unnecessary. 
3 Although the five-year horizon appears to be short, it does capture a significant amount of a typical patent’s 
citation life. Note that the mean citation lag of all high-technology patent citations in 1985-2002 is 4.62 years. 
4 NUTS is an acronym of the French for the “nomenclature of the territorial units for statistics,” which is a 
hierarchical system of regions used by the statistical office of the European Community for the produciton of 
regional statistics. At the top of the hierarchy are the NUTS-0 regions representing countries, with NUTS-1 regions 
below, representing regions within countries, and then NUTS-2 regions reflecting subdivisions of NUTS-1 regions. 



3 

technological proximity was measured in terms of an index defined by Maurseth and Verspagen 
(2002). The latter captures the extent to which the technological patenting structure of region r is 
likely to be cited by region s, given the technological profile of s and the technological citation 
linkages.  
 
3. Bayesian prerequisites 

 
LeSage generously furnished output based upon a Bayesian hierarchical Poisson regression 
model introduced in LeSage, Fischer and Scherngell (2007). This specification includes latent 
random effects that are structured to follow a spatial autoregressive process that allows spatial 
dependence to be modeled. As such, it addresses overdispersion arising from omitted covariates, 
and avoids the traditional practice of assuming a zero mean normally distributed effect vector, or 
of using fixed effects parameters. It utilizes formal matrix algebra notation LeSage and Pace 
(2008; Chapter 8, 2009) provide that allows gravity (or spatial interaction) models to be easily 
specified using spatial autoregressive processes described in the spatial regression literature. 
 

The hierarchical Poisson regression model containing spatially structured random effects 
utilizes work by Frühwirth-Schnatter and Wagner (2004) and allows Bayesian Markov chain 
Monte Carlo (MCMC) techniques to be applied to these models based on data augmentation. The 
strategic introduction of two sequences of artificially missing data results in a partially Gaussian 
regression model, and allows MCMC sampling from conditional distributions for the parameters 
that belong to standard distribution families. This is in stark contrast to past MCMC estimation 
approaches for Poisson regression models that relied heavily on Metropolis-Hastings sampling 
from non-standard conditional distributions, and all of the incumbent difficulties involving 
suitable proposal densities and tuning required for successful Metropolis-Hastings estimation 
(see Chib et al., 1998). 
 

One drawback of the Frühwirth-Schnatter and Wagner (2004) approach is its requirement to 

sample two sets of latent parameters whose length equals ∑ (𝑛𝑛𝑖𝑖𝑛𝑛2𝑖𝑖=1 + 1) , where ni denotes the 
count for observation region i, creating considerable computational difficulties. 

 
Suppose the n-by-n matrix C denotes the geographic weight matrix portraying the 

configuration of origins/destinations. Both the origin and destination random effects 𝛉𝛉k are 
specified as spatial simultaneous autoregressive (SAR) variates of the matrix form 
 𝛉𝛉k = ρk𝐖𝐖𝛉𝛉k + 𝐮𝐮k, 

 
where k denotes origin or destination, matrix W is the row-standardized version of matrix C, ρk 

is a spatial autocorrelation parameter, and 𝐮𝐮k~N(𝟎𝟎,σk2𝐈𝐈), where I is the n-by-n identity matrix. 
This specification is posited as the proper Bayesian prior for the random effects parameters. 
Meanwhile, uniform priors are attached to the spatial autocorrelation parameters, and diffuse 
priors are attached to the other model parameters. Specifically, Gamma(a, b) priors are assigned 
to the precision parameters σk−2, with a = b = 0.01, and the regression coefficients for origin and 
destination characteristics are assigned independent normal priors with a mean of zero and a 
standard deviation of 100,000. 
 
4. Eigenvector spatial filter frequentist prerequisites 
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Eigenvector spatial filtering furnishes an approximation to a SAR process in such a way that it 
replaces the spatial autoregressive structure governing origin- and destination-specific effects in 
a Poisson model specification. Having done this, standard Poisson regression routines can be 
used to estimate the remaining parameters of the model, conditional on the (approximated) 
spatially structured effects parameters. This methodology may be summarized as follows 
(Griffith, 2009, p. 123): 
 

The modified geographic weights matrix, say (I – 11
T/n)C(I – 11

T/n), where 1 is 
an n-by-1 vector of 1s, and superscript T denotes the matrix transpose operation, 
from which eigenfunctions are extracted to construct spatial filters appears in the 
numerator of the Moran Coefficient (MC) spatial autocorrelation index. The 
eigenvectors of this matrix exhibit the following property: when mapped spatially, 
the first eigenvector, say E1, is the set of real numbers that has the largest MC 
value achievable by any set of real numbers for the spatial arrangement defined 
by the geographic connectivity matrix C; the second eigenvector is the set of real 
numbers that has the largest achievable MC value by any set that is uncorrelated 
with E1; the third eigenvector is the third such set of values; and so on through En, 
the set of real numbers that has the largest negative MC value achievable by any 
set that is uncorrelated with the preceding (n – 1) eigenvectors. As such, these 
eigenvectors furnish distinct map pattern descriptions of latent spatial 
autocorrelation in georeferenced variables, because they are both orthogonal and 
uncorrelated. Their corresponding eigenvalues quantify the nature and degree of 
spatial autocorrelation portrayed by each eigenvector. 

 
The constructed spatial filter is the approximation to a SAR process. 
 

Chun and Griffith (2013, pp. 59-60) describe how eigenvectors are concatenated and 
combined with Kronecker product matrix operations to capture spatial autocorrelation effects not 
only in origin and destination geographic distributions, but also in spatial interaction flows 
network structure linking origins and destinations. These constructions are similar to those in 
LeSage and Pace (2008, 2009). 
 
5. The spatial interaction model 

 
Expanding upon Wilson (1967), a doubly-constrained gravity model may be written as 
 

Fij  =  Oi Dj exp( ijBijijtijd

n

1k

dk,dk,j,

n

1h

oh,oh,i, ρI βtγdγβIβIα ++−−++ ∑∑
==

) , (1) 

 
where Fij is the patent citation flow between origin region i and destination 

region j, 
 Oi and Dj are the total number, respectively, of patents created in origin i 

and of patent citations in destination j that constitute flows within the 
system, and enter the Poisson regression model specification as the 
offset variable LN(Oi)+LN(Dj), 

 exp( oh,β ) and exp( dk,β ) respectively are the balancing factors for origin h 

(conventionally denoted by Ai; ensuring that the predicted number 
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exactly equals the observed number of patents created in each origin h) 
and for destination k (conventionally denoted by Bj; ensuring that the 
predicted number exactly equals the observed number of patent 
citations in each destination k), where the nth areal unit is assigned on,β  

(i.e., Ai = 1) and dn,β  (i.e., Bj = 1) values of zero (to avoid perfect 

multicollinearity in the specification)—the sum of these two values is 
absorbed into the intercept term, 

 Ii,h,o and Ij,k,d denote the binary 0-1 indicator variables for, respectively, the 
origin and destination areal units associated with areal unit i [i.e., 
indicator variables with n values of one, and n(n-1) values of zero, such 
that Ii,h,o = 1 when i = h, and Ij,k,d = 1 when j = k],  

IBij denotes a binary indicator variable for the presence of a national border 
intervening between origin (region) i and destination (region) j, 

 dij is the distance separating origin (region) i and destination (region) j 
(measured here between regional economic centers, in 1,000 km), 

 tij is the technological proximity between origin (region) i and destination 
(region) j,  

 dγ  is the geographic distance decay parameter, 

 tγ  is the technological distance decay parameter, 

 ijρ  is the spatial autocorrelation term representing dependencies between 

flows from nearby regions of i to nearby regions of j (this component is 
captured by the eigenvector network autocorrelation filter), and 

 exp(α ) andβ  respectively are the constant of proportionality and the 

intervening borders. 
 

The sets of balancing factors exp( oh,β ) and exp( dk,β ) respectively ensure that ∑
=

n

1i
ijF̂ = Oi and that 

∑
=

n

1j
ijF̂ = Dj , where ijF̂  denotes the predicted flow between origin region i and destination region j. 

These values appear only when Ii,h,o and Ij,k,d equal one; otherwise, when Ii,h,o and Ij,k,d equal zero, 
the factors become exp(0) = 1, which disappear in the specification because any value multiplied 
by one equals itself. 
 

The terms ∑
=

n

1h

oh,oh,i, βI  and ∑
=

n

1k

dk,dk,j, βI , the concatenated balancing factors, which are similar to 

fixed effects, are the counterparts to the Bayesian random effects terms 𝛉𝛉k. Conventional 
thinking is that this difference in perspective results in 2n–2 degrees of freedom being associated 
with this component of the frequentist model, and two degrees of freedom (i.e., mean and 
variance) being associated with the Bayesian model. Accordingly, the Bayesian model 
specification is not equivalent to an unconstrained gravity model. The two model specifications 
also differ by the network autocorrelation term ijρ , which is not in the Bayesian specification but 

is in the frequentist specification. If both model specifications would be identical, then both 
models would produce identical estimates. MCMC estimation (Bayesian) is merely a different 
way of maximizing the objective/likelihood function (à la maximum likelihood techniques; 
frequentist). 
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6. Frequentist estimation results 

 
Estimation results from a Poisson regression with only the distance covariates include the 
following negative exponential function distance exponent parameters: 
 

separation exponent estimate standard error t-statistic 
geographical distance 0.4750 0.0247 19.2 
technological proximity 2.0407 0.0344 59.3 
intervening border –1.1386 0.0175 –65.1 

 
As geographical distance between two regions increases, the number of patent citations tends to 
decrease. When borders intervene between two regions, the number of patent citations tends to 
decrease. And, as technological proximity between two regions increases, the number of patent 
citations tends to increase. The ranking of these estimates by the absolute values of their 
corresponding t-statistics coincides with their order of importance according to their partial 
pseudo-R2 values: intervening borders accounts for roughly 14.6%, technological proximity for 
roughly 15.4%, and geographical distances for roughly 2.4% of the variance in the flows. These 
results are conditional on the offset variable, which indexes the size of origins and of 
destinations, and accounts for roughly 25.9% of the variance in patent citation flows.  
 

The first two steps in the data analysis were: (i) to calculate the eigenfunctions; and, (ii) to 
estimate a doubly-constrained gravity model. Eigenfunctions were extracted from the matrix C = 
(B + BT)/2 because matrix B is an asymmetric binary 0-1 contiguity matrix defined as follows: 
 

bij = 1, if j is one of the eight nearest neighbors (based upon economic centroid great 
circle distances) to i; and, 

bij = 0, otherwise. 
 
Because this definition of contiguity results in an asymmetric matrix, it needs to be converted to 
a symmetric matrix in order to work with real numbers; a standard adjustment is adding it to its 
transpose. Division by two avoids double counting, and ensures that if matrix B is symmetric, C 
= B. Using a selection threshold value of 0.25 for the absolute value of the ratio of eigenvalues to 
the largest eigenvalue (which yields a Moran Coefficient of 1.07 for this matrix C) yields 42 
candidate eigenvectors representing various levels of weak-to-strong positive spatial 
autocorrelation, and 34 candidate eigenvectors representing various levels of weak-to-strong 
negative spatial autocorrelation. Meanwhile, a Poisson regression routine was used to estimate 
the doubly-constrained gravity model. Figure 1a portrays the goodness-of-fit for this model: the 
open circles denote the data points, and the linear alignment of the xs denotes the perfect fit line. 
This scatterplot exhibits a typical V-shaped variance relationship with size: the variance of a 
Poisson random variable increases as its expected value increases. The accompanying pseudo-R2 
value is 0.7323 (i.e., the balancing factors account for an additional roughly 15.0% of the 
variance in flows); the bivariate regression trend line (Figure 1a) has an intercept (–0.2947) that 
is significantly different from zero, and a slope (1.0706) that is significantly different from one; 
given that these values do not appear to be substantially different from their null hypothesis 
values, these significance results may be exaggerated because of the considerably large sample 
size involved. And, the Poisson regression results indicate overdispersion, with a deviance 
statistic of 2.5924. Adjusting for spatial autocorrelation shrinks the overdispersion (Figure 1b) to 
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1.7784; the accompanying bivariate regression has an intercept of –0.2150 and a slope of 1.052 
(both improvements vis-à-vis the non-network autocorrelation adjusted results). The network 
autocorrelation term accounts for roughly 16% of the variability in flows. 
 

The origin and destination log-balancing factors each can be decomposed into spatially 
structured (i.e., spatial filters) and spatially unstructured variates. These decompositions result in 
the following equations, with the eigenvectors chosen to construct the spatial filters being 
selected with a stepwise regression procedure (level of significance = 0.10): 

 
,  b  0.49887 ˆ

oo15,15oc22 eEbE1η +++=  and 

 
,  bb  0.65772 ˆ dd62,62d11,11dc22 eEEbE1π ++++=  

 
where 22Ec denotes the set of 22 common eigenvectors, and bo and bd respectively denote the 22-
by-1 vectors of estimated regression coefficients for the origin and destination parts of the 
network autocorrelation. The spatial filters (the first contains 23 and the second contains 24 
positive, and each respectively contains three and four negative spatial autocorrelation 
eigenvectors; the negative spatial autocorrelation eigenvectors account for less than 2% of the 
variance in the flows) in these two equations respectively account for roughly 71% and 69% of 
the variance in the origin and destination log-balancing factors; the respective MCs for these 
spatial filters are 0.92 and 0.91. These two spatial filters have 22 eigenvectors in common. The 
Shapiro-Wilk diagnostic statistic indicates that neither eo nor ed conforms closely to a normal 
distribution. Both eo and ed have only trace spatial autocorrelation (zMC = 0.3). 
 

  
Figure 1. Scatterplot of observed (vertical axis) versus predicted flows (horizontal axis). Left (a): 
frequentist doubly-constrained results. Right (b): frequentist network autocorrelation adjusted 
results. 
 

The geographic distributions of the log-balancing factor components appear in Figure 2. Both 
spatial filters display considerable spatial pattern, suggesting concentric zones centering on 
Central Europe (a swath from southern Germany through southern England), and radiating 
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outward toward the periphery of Europe. Balancing factors index the propensity to send and to 
receive patent citations: Central Europe has the highest propensity to both send and receive, 
whereas the periphery of Europe has the lowest propensity to both send and receive patents. In 
contrast, the spatially unstructured components display a haphazard pattern. 
 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 2. Top left (a): spatial filter for the origin log-balancing factor. Top right (b): spatially 
unstructured part of the origin log-balancing factor (eo). Bottom left (c): spatial filter for the 
destination log-balancing factor. Bottom right (d): spatially unstructured part of the destination 
log-balancing factor (ed). 
 
7. Comparisons of Bayesian and frequentist results 
 
Table 1 summarizes estimation results for the two approaches5. Specification differences to keep 
in mind include the network autocorrelation term ijρ , which is not included in analyses reported 

here so that results are more comparable, and the inclusion of an offset variable that is the sum of 
the logarithms of origin and destination flows totals. 
 
Table 1. Results for the frequentist and Bayesian estimations. 

separation 
doubly-constrained gravity model 

gravity model with Bayesian 
random effects 

exponent 
estimate 

standard error 
exponent 
estimate 

standard error 

geographical distance 0.9092 0.0163 0.6170 0.0054 

                                                 
5 The frequentist model specification includes fixed effects, which are the origin/destination balancing factors. The 
Bayesian model is not an unconstrained version of the gravity model. This latter specification includes random 
effects, which involve 4 degrees of freedom. These two specifications reflect the common fixed versus random 
effects debate. Furthermore, if we were to make both model specifications identical, then both models would 
produce identical estimates. MCMC estimation (Bayesian) is merely a different way of maximizing the 
objective/likelihood function (a la maximum likelihood techniques; frequentist). 
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technological proximity 2.9788 0.0239 3.0830 0.0113 
intervening border –1.2628 0.0117 –1.6666 0.0062 
LN(A)   0.3167 0.0021 
LN(B)   0.3468 0.0043 
LN(OT) 1 0   
LN(DT) 1 0   
 

Both specifications include the same distance variates. The estimate for technological 
proximity and the intervening border indicator variable are similar, with the Bayesian standard 
errors being smaller. A principal difference here is for the geographical distance decay 
parameter, with the Bayesian estimate lying between the frequentist estimates ignoring and 
adjusting for spatial autocorrelation. 

 
Figure 3 presents scatterplots portraying the relationships between the Bayesian random 

effects terms and the frequentist balancing factor terms (estimates and standard errors). Although 
some trend exists in the estimates themselves, it is not very pronounced. 
 

 
Figure 3. Scatterplots for model comparisons. Top left (a): origin log-
balancing factors versus mean origin latent unobservables. Top right 
(b): destination log-balancing factors versus mean destination latent 
unobservables. Bottom left (c): standard error of origin log-balancing 
factors versus standard deviation of origin latent unobservables. 
Bottom right (d): standard error of destination log-balancing factors 
versus standard deviation of destination latent unobservables. 
 

Figure 1a presents the scatterplot of actual versus predicted flows for the frequentist model 
specification without a network autocorrelation term; this specification is more directly 
comparable with the Bayesian model specification (Figure 4). The frequentist results are superior 
to the Bayesian results in this case. The total number of predicted flows for the frequentist 
analysis is 275,578, matching the observed number of flows. The total number of predicted flows 
for the Bayesian analysis is 1,571,100, nearly six times the observed number of flows. A 
bivariate regression of the observed flows on the frequentist predicted flows has an intercept of  
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–0.3 and a slope of 1.1; those for the Bayesian predicted flows are, respectively, 0.0 and 0.2. 
Both scatterplots exhibit the funnel shaped scatter of points that is typical of a Poisson random 
variable.  
 

 
Figure 4. Scatterplot of observed (vertical axis) 
versus predicted flows (horizontal axis: 
Bayesian results. 
 
8. Conclusions 
 
A primary expectation is that the frequentist and Bayesian spatial interaction results would be 
very similar, if not the same. Comparisons summarized in this paper suggest otherwise. In 
addition, the frequentist specifications outperform the Bayesian specification, in terms of 
prediction accuracy, reduction of extra-Poisson variation, and observed-predicted value 
alignment. Although the technological proximity and intervening border variate relationship 
estimates are very similar, the geographical distance decay parameters are not; presumably the 
frequentist estimate is more reliable. 
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