
Munich Personal RePEc Archive

Transformations and Seasonal

Adjustment: Analytic Solutions and Case

Studies

Proietti, Tommaso and Riani, Marco

3 December 2007

Online at https://mpra.ub.uni-muenchen.de/7862/

MPRA Paper No. 7862, posted 21 Mar 2008 06:22 UTC



Transformations and Seasonal Adjustment: Analytic

Solutions and Case Studies

Tommaso Proietti∗
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Abstract

We address the problem of seasonal adjustment of a nonlinear transformation of the origi-

nal time series, such as the Box-Cox transformation of a time series measured on a ratio scale,

or the Aranda-Ordaz transformation of proportions, which aims at enforcing two essential

features: additivity and orthogonality of the components. The posterior mean and variance of

the seasonally adjusted series admit an analytic finite representation only for particular val-

ues of the transformation parameter, e.g. for a fractional Box-Cox transformation parameter.

Even if available, the analytical derivation can be tedious and difficult. As an alternative we

propose to compute the two conditional moments of the seasonally adjusted series by means

of numerical and Monte Carlo integration. The former is both fast and reliable in univari-

ate applications. The latter uses the algorithm known as the simulation smoother and it is

most useful in multivariate applications. We present several case studies dealing with robust

seasonal adjustment under the square root and the fourth root transformation, the seasonal

adjustment of the ratio of two series, and the adjustment of time series of proportions. Our

overall conclusion is that robust seasonal adjustment under transformations can be carried out

routinely and that the possibility of transforming the scale ought to be considered as a further

option for improving the quality of seasonal adjustment.

Keywords: Structural Time Series Models; Box-Cox Transformation; Aranda–Ordaz Trans-

formation; Simulation Smoother; Forward Search; Numerical Integration.



1 Introduction

The linear Gaussian model plays a central role in statistics; it is well understood and its features

depend on the (conditional) first and second moments. Transformations aim at establishing a

scale, different from the original measurements, for which the linear Gaussian model holds. For

variables measured on a ratio scale with a strictly positive support, Tukey (1957) proposed the

power transformation to achieve a model with simple structure, normal errors and constant error

variance; this was later modified by Box and Cox (1964) and embodied into the model building

process, so as to become what is commonly referred to as the Box-Cox transformation. Since then

transformations have become a key element in regression analysis; see Atkinson (1985) and Cook

and Weisberg (1999). Several modifications have been proposed to deal with negative observations

and to extend the support of the transformed observation over the entire real interval; see among

others John and Draper (1980), Bickel and Doksum (1981), and Yeo and Johnson (2000). Classes

of parametric transformations for proportions were proposed by Guerrero and Johnson (1982),

Aranda-Ordaz (1981) and Stukel (1988).

This paper deals with the seasonal adjustment of time series under a parametric nonlinear trans-

formation of the original scale that depends on single parameter. In particular, we concentrate on

the Box-Cox power transformation for positive time series, and on the Aranda-Ordaz transforma-

tion for proportions. Nevertheless, our approach is immediately generalizable to other parametric

transformations that are continuous and invertible.

Seasonal adjustment rests upon two basic pillars: additivity and orthogonality of the seasonal

and non seasonal components. This point is made strongly by Bell and Hillmer (1984, sec. 4.2),

who state that “someone who does not want to make these assumptions is working on a different

problem”. This paper focusses on the situation when the two previous requirements are fulfilled

on a scale other than the original scale of measurement and provides a model-based solution to

the adjustment problem. Our linear Gaussian workhorse model is an unobserved components

model known as the Basic Structural Model (Harvey, 1989). We use this specification, because

the estimate of the seasonal component is robust to a misspecification in the nonseasonal part of

the model. For example, results from Riani (1998) show that in most cases the estimate of the

seasonal component inside the BSM is virtually unaffected by the omission of a stochastic cycle.
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In this paper we shall assume that there is a scale at which the series admits an additive and

orthogonal decomposition into seasonal and nonseasonal components. The seasonal effects are

defined in terms of deviations from the underlying level component, so that their average over a

yearly span has zero expectation.

The model is cast in the state space form and the Kalman filter and smoother provide the pos-

terior mean and variance of the nonseasonal component on the transformed scale. The inverse

transformation is a biased estimate and provides the conditional median, rather than the mean. We

investigate the possibility of evaluating the posterior mean and variance of the nonseasonal com-

ponent on the original scale in closed form. Extending a result due to Pankratz and Dudley (1987)

we show that this occurs only for a fractional Box-Cox parameter; nevertheless, approximations

proposed in other contexts, due to Taylor (1986) and Guerrero (1993) can be readily adapted to

our problem. Two more general solutions are numerical integration and Monte Carlo integration.

The paper shows that these two methods are both fast and reliable, which make seasonal adjust-

ment under transformation a routine operation. Finally it is necessary to remark that, in general,

prior outlier detection is performed on the original scale before estimating the transformation pa-

rameter. It is clear, however, that observations which seem atypical on the original scale may fit

completely inside the bulk of the data once the observations have been transformed. In this paper

we show how to evaluate the effect that each particular observations exerts on the fitted model

under different transformation scales.

Current seasonal adjustment practice does not take into account the problem of seasonal ad-

justment under transformation; only SABL, a nonparametric seasonal adjustment procedure devel-

oped at Bell Laboratories and documented in Cleveland, Dunn and Terpenning (1978), performs

the selection of a preliminary power transformation parameter that minimises the covariance be-

tween the level and the seasonal components. The issue of transforming the seasonally adjusted

estimates on the original scale is not addressed explicitly. Shulman and McKenzie (1984) illustrate

that the SABL estimates of the tranformation parameter differ significantly from the maximum

likelihood estimates of an Arima model under the same power transformation. The X-12-Arima

programme (Findley et al., 1998) allows for the estimation of an Arima model with regression ef-

fects under the Box-Cox and the logistic transformation only for the purpose of obtaining forecast

3



and backcast extensions with the naı̈ve method, i.e. by simple inversion of the extrapolations made

on the transformed scale. The Arima model-based seasonal adjustment procedure Tramo-Seats

(Gomez and Maravall, 1997) performs a preliminary test for level versus logarithm specification,

based on the estimate of the slope coefficient in the trimmed range-mean regression.

The question has to be raised as to why the transformation problem has not received sufficient

recognition in the current seasonal adjustment practice. We can envisage three arguments: the first

deals with the seasonal balance constraint, by which the expectation of the sum of the seasonal

component over a calendar year is zero. According to a well established view the balance con-

straint should be enforced on the original measurement scale; to put it differently, the seasonally

adjusted series should have the same expectation (average) as the original series over twelve con-

secutive monthly observations. This view is at the root of the treatment of the problem of seasonal

adjustment under transformations by Thomson and Ozaki (2002), who propose ad hoc solutions

with the specific intent of enforcing the seasonal balance constraint on the original scale. A second

argument deals with contemporaneous aggregation: the seasonally adjusted aggregate should be

equal to the aggregated sum of the seasonally adjusted sub-series. The consistency in aggregation

requires that the series are not transformed as a necessary (though not sufficient) condition, and

thus would not hold for the Box-Cox transformation. A third argument concerns the difficulties

and the computational burden linked with the detection of influential observations and or of the

outliers on the different transformation scales.

None of these arguments is compelling. Multiplicative adjustment, which is used frequently

for economic time series already incorporates a different seasonal balance constraint, which refers

to the geometric average, rather than the arithmetic. The view taken in this paper is that the

possibly stochastic seasonal balance constraint needs to hold only on the transformed scale. The

transformation parameter uniquely defines what type of seasonal balance constraint is enforced on

the original scale; roughly speaking, if the power transformation parameter is 1, then the balance

constraint is additive, if it is equal to 0 it is multiplicative, if it is −1 is harmonic, i.e. it is

defined on the reciprocal of the series. Moreover, the conditions for consistency in cross-sectional

aggregation are so stringent that the indirect seasonal adjustment of an aggregate is almost never

used in practice. As concerns the third argument, in this paper we show how it is possible to
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robustly estimate the transformation parameter and at the same way to evaluate the effect that the

different seasons exert on this estimate.

The plan of the paper is the following: section 2 presents the linear Gaussian model for the

decomposition of a series into seasonal and nonseasonal components that will be used for seasonal

adjustment. We first concentrate on the Box-Cox power transformation for positive observations

and deal with the estimation of the transformation parameter in section 3. The evaluation of the

posterior mean and variance of nonseasonal component is considered in section 4. The availability

of closed form solutions is investigated and approximate solutions are reviewed. A more general

approach is to evaluate the conditional moments by numerical and Monte Carlo integration using

the simulation smoother (de Jong and Shephard, 1995). In section 5 we show how it is possible

through the use of the forward search algorithm to obtain a robust estimate of the transformation

parameter.

In section 6 The different estimation methods are applied to a well known case study concern-

ing the Sales of an engineering company (Chatfield and Prothero, 1973), which calls for the fourth

root transformation, and the Italian industrial production index for Leather and Shoes, for which

the square root transformation is suggested. The assessment of the different methods leads to the

conclusion that numerical integration is both fast and reliable in univariate applications.

We then turn to a bivariate application dealing with the seasonal adjustment of time series of

tourist arrivals and overnight stays, along with the ratio of the latter to the former, which measures

average stay (Section 7). The only option available for the seasonal adjustment of the ratio of two

time series is Monte Carlo integration using the simulation smoother. Finally, in section 8 we con-

sider the seasonal adjustment of time series of proportions. Among the available transformations,

we concentrate on the class proposed by Aranda-Ordaz (1981), which is applied to the proportion

of tourist arrivals in hotels. We draw our conclusions in section 9.

2 The basic structural model under transformations

The parametric linear and Gaussian model that we employ for the adjustment is the basic structural

model (BSM henceforth, see Harvey, 1989). The BSM postulates an additive and orthogonal

decomposition of a time series into unobserved components representing the trend, seasonality
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and the irregular component.

We assume that the BSM holds for a transformation ut(λ) of the original time series yt, de-

pending on a single transformation parameter λ. An important case is the Box-Cox (BC) transfor-

mation:

ut(λ) =











yλ
t −1
λ λ 6= 0

ln yt, λ = 0
(1)

see Box and Cox (1964). The above transformation is suitable for series measured on a ratio scale,

which take only strictly positive values.

The BSM for the transformed series is formulated as follows:

ut(λ) = µt + γt +
K

∑

k=1

δkxkt + ǫt, t = 1, . . . , T, (2)

where µt is the trend component, γt is the seasonal component, the xkt’s are appropriate regressors

that account for calendar effects, namely trading days, moving festivals (Easter) and the length of

the month, and ǫt ∼ NID(0, σ2
ǫ ) is the irregular component.

The trend component has a local linear representation:

µt+1 = µt + βt + ηt, ηt ∼ NID(0, σ2
η),

βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ ),

where βt is the stochastic slope, that in turn evolves as a random walk; the disturbances ηt, ζt, are

independent of each other and of any remaining disturbance in the model.

The seasonal component has a trigonometric representation, such that the seasonal effect at

time t arises from the combination of six stochastic cycles: γt =
∑6

j=1 γjt, where, for j =

1, . . . , 5,

γj,t+1 = cosλjγj,t + sinλjγ
∗
j,t + ωj,t ωj,t ∼ NID(0, σ2

ω)

γ∗
j,t+1 = − sinλjγj,t + cos λjγ

∗
j,t + ω∗

j,t ω∗
j,t ∼ NID(0, σ2

ω)

and γ6,t+1 = −γ6t + ω6t, ω∗
6t ∼ NID(0, σ2

ω/2); λj = 2π
12 j is the seasonal frequency. The

disturbances ωjt and ω∗
jt are assumed to be normally and independently distributed with common

variance σ2
ω. All the disturbances are assumed to be mutually uncorrelated.

An alternative approach to model stochastic seasonality is derived by writing

γt = x′
tξt ξt = ξt−1 + ωt
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where x′
t = [D1t, . . . , Dst], with Djt = 1 in season j and 0 otherwise. The vector ξt contains the

effects associated to each season and changes over time according to a multivariate random walk;

ωt is a zero-mean multivariate white noise with covariance matrix

Var(ωt) = σ2
ω[Is −

1

s
isi

′
s]

which enforces the constraint i′sVar(ωt) = 0. This formulation is known in the literature as the

Harrison and Stevens (HS) specification. The distinguishing feature of this approach is that it

is formulated directly in terms of the effect of a particular season, thereby enhancing flexibil-

ity needed to model seasonal heteroscedasticity (that is when there are seasons which are ‘more

variables’ than others, see Proietti, 1998). The appropriate action for this model to deal with

heteroscedasticity is to define the covariance matrix of the seasonal innovations as follows:

Var(ωt) = D − 1

i′sDis
Disi

′
sD

where D is a diagonal matrix, D = diag{dj , j = 1, . . . , s}.

A comparison of the various representations of a seasonal component and a discussion of the

implications for forecasting are given in Proietti (2000). One of the purposes of this paper is to

check how the presence of seasonal heteroscedasticity may affect the estimate of the transforma-

tion parameter.

Trading day (working day) effects are modelled as fixed effects through the inclusion of ap-

propriate regressors (see Cleveland and Devlin, 1982, Bell and Hillmer, 1984). Letting xjt denote

the number of days of type j, j = 1, . . . , 7, occurring in month t and assuming that the effect of a

particular day is constant, the trading day effect is given by:

TDt =
6

∑

k=1

δk (xkt − x7t)

The regressors are the differential number of days of type k, k = 1 . . . , 6, compared to the number

of Sundays, to which type 7 is conventionally assigned. The Sunday effect on the series is then

obtained as
(

−∑6
k=1 δk

)

. This ensures that the TD effect is zero over a period corresponding to

multiples of the weekly cycle. The regressors are sometimes corrected to take into account the

national calendars.The only moving festival that we consider is Easter; its effects are modelled as
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Et = δEht where ht is the proportion of 7 days before Easter that fall in month t. Subtracting the

long run average, computed over the first 400 years of the Gregorian calendar (1583-1982), from

ht yields the regressor h∗
t = ht − h̄t, where h̄t takes the values 0.354 and 0.646 respectively in

March and April, and zero otherwise. Finally, the length of month (LOM) regressor results from

subtracting from the number of days in each month,
∑7

k=1 Dkt, its long run average, which is

365.25/12.

3 Estimation and inference for the BSM under transformation

For a given value of the transformation parameter the BSM can be cast in state space form. The

Kalman filter enables the evaluation of the likelihood via the prediction error decomposition. See

Durbin and Koopman (2001) and Harvey and Proietti (2005) for a review. The maximum like-

lihood estimates can be obtained by a quasi-Newton algorithm, such as the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm (see Press et alii, 1992, sec. 10.7). Diagnostic checking can

be carried out on the standardized one-step-ahead prediction errors, also known as the innovations,

so as to detect any departure from the stated assumptions and possibly take the corrective actions

against them.

As far as the estimation of the transformation parameter is concerned, we maximise the pro-

file likelihood corrected so as to take into account the change of scale of the observations. For

this purpose the logarithm of the Jacobian, lnJ(λ) = (λ − 1)
∑

t ln(yt), must be added to

the log-likelihood of the transformed observations L{u1(λ), . . . , uT (λ); θ̃(λ)}, maximized over

the (transformed) hyperparameters θ̃(λ), where, e.g. σ2
η = exp(2θ1(λ)), σ2

ζ = exp(2θ2(λ)),

σ2
ω = exp(2θ3(λ)), and σ2

ǫ = exp(2θ4(λ)). For the treatment of nonstationary and regression

effects see de Jong (1991) and Koopman (1997).

Hence, the maximum likelihood estimate of the transformation parameter emerges as the solu-

tion of the problem:

max
λ

{

L{u1(λ), . . . , uT (λ); θ̃(λ)} + lnJ(λ)
}

.

This can be done in practice by performing a grid search over the range of values of λ. Equiva-

lently, we can maximize the uncorrected log-likelihood of the normalized observations ut(λ)/
∏

t yλ−1
t
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(Atkinson, 1985).

Alternative approximate methods for estimating λ are spread-level regression and added vari-

able regression. In the former case the series ut(λ) is divided into yearly non overlapping subsets

consisting of 12 observations; then either the standard deviation of the yearly subsets, or the inter-

decile range, is regressed on a constant and either the corresponding yearly averages of ut(λ) or

the median. The estimated regression slope provides an approximate estimate of λ−1; if it results

not significantly different from zero, no transformation (λ = 1) is suggested.

The idea behind added variable estimation of λ (Atkinson, 1985, ch. 6) is to consider the first

order Taylor series expansion of ut(λ) about a maintained value λ0 (e.g. 0 or 1): ut(λ) = ut(λ0)+

(λ−λ0)wt(λ0), with wt(λ0) = (∂ut(λ)/∂λ)|λ=λ0
. If for some λ, ut(λ) = µt+γt+

∑

k δkxkt+ǫt,

then the approximate linear model is

ut(λ0) = µt + γt +
∑

k

δkxkt + δ∗wt(λ0) + ǫt,

with δ∗ = λ0 − λ. The augmented model is estimated including among the regressors the addi-

tional variable wt(λ0). Significant regression denotes the need for a transformation and provides

a preliminary estimate of the correct λ as λ̂ = λ0 − δ̂. The t test on the additional constructed

variable wt(λ0) is known in the statistic literature as “score test statistic for transformation”.

Conditional on the λ and θ(λ) parameter estimates the Kalman smoother provides the condi-

tional expectations of the latent components given all the available observations, along with their

conditional variance. These inference are employed in the next section to produce estimates of the

seasonally adjusted series on the untransformed scale.

4 Seasonal Adjustment and the Box-Cox Transformation

Let us write (2) as ut(λ) = u∗
t + γt +

∑

k δkxkt, where u∗
t = µt + ǫt is the seasonally adjusted

series on the transformed scale, and denote by ũ∗
t = E(u∗

t |FT ) and Vt = Var(u∗
t |FT ), respectively

the posterior mean and variance of u∗
t , Ft being the information set at time t. These inferences are

delivered by the Kalman filter and smoother applied to the relevant linear state space model. See

e.g. Durbin and Koopman (2001) for details.
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We define the seasonally adjusted series on the original scale as the inverse transformation of

the nonseasonal component u∗
t , y∗t = u−1(u∗

t ), where u−1(·) is the inverse transformation. For

the Box-Cox transformation:

y∗t =











(1 + λu∗
t )

1/λ, λ 6= 0,

exp(u∗
t ), λ = 0.

The estimator of the seasonally adjusted series is thus

ỹ∗t = E(y∗t |FT ) =

∫

u−1(u∗
t )f(u∗

t |FT )du∗
t . (3)

whereas the conditional variance of the estimation error for the seasonally adjusted series is defined

as:

Var(y∗t |FT ) =

∫

[

u−1(u∗
t ) − ỹ∗t

]2
f(u∗

t |FT )du∗
t = E(y∗2t |FT ) − ỹ∗2t . (4)

As is well-known, the conditional expectation is the optimal estimator under quadratic loss.

The above integrals do have a closed form solution only in particular cases, namely λ = 0, and

λ = 1/p, p = 1, 2, 3, . . ., as it will be seen shortly.

Notice that the naı̈ve estimator of the SA series,

ŷ∗t =











(1 + λũ∗
t )

1/λ, λ 6= 0,

exp(ũ∗
t ), λ = 0,

(5)

provides the median of the conditional distribution of y∗t , given the observations.

For λ = 0 using the properties of the lognormal distribution we have that:

E(y∗t |FT ) = exp

(

ũ∗
t +

Vt

2

)

= ŷ∗t exp

(

Vt

2

)

. (6)

Var(y∗t |FT ) = exp (2ũ∗
t + Vt) · (exp(Vt) − 1) . (7)

4.1 Analytical solutions

For general λ, in the appendix we prove the following theorem.

Theorem 1: the mean and the variance of the seasonally adjusted series in the original scale

are given by the two following expressions:
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E(y∗t |FT ) = ỹ∗t = ŷ∗t



1 +
∞
∑

j=1

k2j(t)aj(t)



 (8)

Var(y∗t |FT ) = ŷ∗
2

t







∞
∑

j=1

k2
j (t)aj(t) + 2

∞
∑

j=1

∞
∑

r=1

kj(t)kj+2r(t)aj+r(t) −




∞
∑

j=1

k2j(t)aj(t)





2






(9)

where1

aj(t) = E
[

(u∗
t − ũ∗

t )
2j |FT

]

=
(2j)!

j!2j
V j

t and kj(t) =
1

j!





j−1
∏

k=1

(1 − λk)



 ŷ∗−λj
t

The results follow from the Taylor series expansion of the reverse transformation. Notice

that for λ = 0 kj(t) = (j!)−1 and the term of (8) is simply the expansion of exp(Vt/2). This

method was proposed originally by Neyman and Scott (1960), who however did not consider

explicitly time series applications and did not give the analytical exact solution for λ = 1/p, with

p integer. An alternative approach for expressing the time series forecasts on the original scale,

based on Hermite polynomial expansion, was suggested by Granger and Newbold (1976). The

expression (8) was derived by Pankratz and Dudley (1987) for the simple power transformation

yλ
t using a different argument. For integer p = 1/λ they write the inverse transformation as

u∗p
t = (ũ∗

t +
√

Vtwt)
p = ũ∗p

t (1 +
√

Vt
ũ∗

t
wt)

p, where wt ∼ N(0, 1). They then consider the

expansion of the binomial and take the expectation.

The expressions in square brackets in equations (8) and (9) are the multiplicative correction

terms that have to be applied to the naı̈ve estimator of the SA series or to its square in order to

produce the conditional mean and the conditional variance in the original scale.

An alternative expression for the variance is derived as follows. Defining V̂ ∗
t the naı̈ve estimate

of the variance resulting from the application of the Delta method,

V̂ ∗
t = Vt

[

du−1(u∗
t )

du∗
t

∣

∣

∣u∗
t =ũ∗

t

]2

= Vtŷ
∗2(1−λ)
t ,

1We adopt the convention that when j = 1 the product in brackets in kj equals 1,
∏

0

i=1
xi = 1.
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then we can rewrite (9) as:

Var(y∗t |FT ) = V̂ ∗
t






1 +

∞
∑

j=2

k̄2
j (t)āj(t) + 2

∞
∑

j=1

∞
∑

r=1

k̄j(t)k̄j+2r(t)āj+r(t) − Vt





∞
∑

j=1

k̄2j(t)āj(t)





2





,

(10)

where k̄j(t) = kj(t)ŷ
∗λ
t and āj(t) = aj(t)/Vt. According to expression (10), the exact variance

can be seen as the product of the naı̈ve variance resulting from the Delta method and a correction

factor.

For λ = 1/p, p = 1, 2, . . . , it is immediate to see that the series k1(t), k2(t), . . . contains only

p terms different from zero. For example, for λ = 1, k1(t) = 1/ŷ∗t and k2(t) = k3(t) = · · · = 0

so that ỹ∗t = ŷ∗t and var(y∗t |FT ) = Vt as obvious. In the case of the square root transformation

(λ = 0.5) k1(t) = 1/
√

ŷ∗t , k2(t) = 1/(4ŷ∗t ), a1(t) = Vt, a2(t) = 3V 2
t and k3(t) = k4(t) = · · · =

0 so that

ỹ∗t = ŷ∗t

[

1 +
1

4

Vt

ŷ∗t

]

(11)

and

Var(y∗t |FT ) = ŷ∗t Vt +
1

8
V 2

t .

Using similar arguments we give in Table 1, for the most common values of λ, the exact

correction factors for the mean and the variance which must be applied to the naı̈ve estimator of

the seasonally adjusted series ŷ∗t in order to find the true conditional mean and variance in the

original scale.

This table clearly shows that the correction term depends on the ratio between the variance

(raised to some power) of the SA series on the transformed scale and the value of the naı̈ve esti-

mator (raised to some power of λ). If this is small, the correction is negligible. More precisely, we

have that:

Lemma 1 The correction factor for the mean which we call ψµ(λ, ŷ∗t , Vt) satisfies the following

properties:

(i) ψµ(λ, ŷ∗t , Vt) ≤ 1 for λ ≥ 1 and ψµ(λ, ŷ∗t , Vt) ≥ 1 for λ ≤ 1.

(ii) ψµ(λ, ŷ∗t , Vt) = 1 when λ = 1
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Table 1: Exact correction factors which have to be applied to the naiv̈e estimator of the seasonally

adjusted series and of the variance, in order to obtain the conditional mean and the conditional

variance in the original scale for the most important fractional values of λ.

Mean Variance

λ Correction factor for ŷ∗t Correction factor for V̂ ∗
t

1/2 1 + 1
4

Vt
ŷ∗

t
1 + 1

8Vtŷ
∗−1

t

1/3 1 + 1
3

Vt

ŷ∗2/3

t

1 + 4
9Vtŷ

∗−2/3

t + 5
243V 2

t ŷ∗
−4/3

t

1/4 1 + 3
8

Vt

ŷ∗1/2

t

+ 3
256

V 2

t
ŷ∗

t
1 + 21

32Vtŷ
∗−1/2

t + 3
32V 2

t ŷ∗
−1

t + 3
32V 3

t ŷ∗
−3/2

t

(iii) ψµ(λ, ŷ∗t , Vt) → 1− when λ → +∞ and ψµ(λ, ŷ∗t , Vt) → +∞ when λ → −∞ if ŷ∗t > 1.

ψµ(λ, ŷ∗t , Vt) → −∞ when λ → +∞ and ψµ(λ, ŷ∗t , Vt) → 1+ when λ → −∞ if ŷ∗t < 1.

(iv) ψµ(λ, ŷ∗t , Vt) is non increasing for λ ≤ 1
2 ln ŷ∗

t
+ 1 and non decreasing for λ ≥ 1

2 ln ŷ∗
t

+ 1

if ŷ∗t > 1. ψµ(λ, ŷ∗t , Vt) is non decreasing for λ ≤ 1
2 ln ŷ∗

t
+ 1 and non increasing for

λ ≥ 1
2 ln ŷ∗

t
+ 1 if ŷ∗t < 1.

The proofs are straightforward but tedious. Details are given in a technical report by the authors.

Figure 1 shows the correction factor as a function of λ for 6 different combinations of values of

ŷ∗t and Vt. The symbol of the square which is drawn in correspondence of λ = 0 denotes the value

obtained applying directly the formula given in equation (6). It is clear that if the correction factor

is neglected there is negative (positive) bias for λ < 1 (λ > 1) which can be more or less severe

depending on the problem under study. The first 2 left panels show that if the ratio between the

naı̈ve estimator and the value of the variance of the SA series in the transformed scale is greater

than a certain threshold and if the estimated λ is greater (smaller) than 1 and ŷ∗t is greater (smaller)

than 1, the correction which must be applied to the naı̈ve estimator can be overlooked. Finally,

notice that in this case the value of the minimum is for the panels in the top row is λ ≈ −2.40

while that for the bottom panels is λ ≈ 2.06.
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Figure 1: Correction factor which must be applied to the naı̈ve estimator of the seasonally adjusted

series to obtain the conditional mean in the original scale as a function of λ for six different

combinations of ŷ∗t (naive) and Vt (var).
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Lemma 2 The correction factor for the naı̈ve variance which we call ψσ(λ, ŷ∗t , Vt) satisfies the

following properties:

(i) ψσ(λ, ŷ∗t , Vt) = 1 when λ = 1

(ii) ψσ(λ, ŷ∗t , Vt) → 1+ when λ → +∞ and ψσ(λ, ŷ∗t , Vt) → +∞ when λ → −∞ if ŷ∗t > 1.

ψσ(λ, ŷ∗t , Vt) → 1+ when λ → −∞ and ψσ(λ, ŷ∗t , Vt) → +∞ when λ → +∞ if ŷ∗t < 1.

(iii) ψσ(λ, ŷ∗t , Vt) is non decreasing (non increasing) for 4
5 + 1

2 ln ŷ∗
t
−kŷ∗

t
≤ λ ≤ 4

5 + 1
2 ln ŷ∗

t
+kŷ∗

t

if ŷ∗t > 1 (ŷ∗t < 1). kŷ∗
t

=
√

1
25 + 1

4 ln2 ŷ∗
t

.

These three properties are illustrated graphically in Figure 2. The symbol of the square which

is drawn in correspondence of λ = 0 denotes the value obtained applying directly the formula

given in equation (7). It is interesting to notice that when the correction factor for the mean

tends to one (ψµ(λ, ŷ∗t , Vt) → 1) also the correction factor for the naı̈ve variance tends to 1

(ψσ(λ, ŷ∗t , Vt) → 1+). On the other hand, when the correction factor for the mean becomes very

large in absolute value (ψµ(λ, ŷ∗t , Vt) → ∞), the correction for the variance goes to plus infinity,

(ψσ(λ, ŷ∗t , Vt) → +∞).

4.2 Approximate and computational solutions

Taylor (1986) proposed an approximate correction for the case λ 6= 0, which amounts to neglecting

higher order terms in the expansion (13):

ỹ∗Tt = ŷ∗t

[

1 +
1

2
(1 − λ)

Vt

ŷ∗2λ
t

]

.

This estimate is exactly equal to equation (11) so it is exact only for λ = 0.5.

Guerrero (1993) proposed a solution which is coincident with the exact solution in the loga-

rithmic case (λ = 0) and is approximate for λ 6= 0. In our notation, it can be written as follows:

ỹ∗Gt = ỹ∗t







1

2
+

1

2

[

1 + 2λ(1 − λ)
Vt

ŷ∗2λ
t

]1/2






1/λ

.
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Figure 2: Correction factor which must be applied to the naı̈ve estimator of the variance of the

seasonally adjusted series to obtain the conditional variance in the original scale as a function of

λ for six different combinations of ŷ∗t (naive) and Vt (var).
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The derivation of Guerrero’s result proceeds from the following argument: using the second order

Taylor approximation of u∗
t around ỹt, taking the conditional expectation, and using the approxi-

mation Var(y∗t |FT ) ≈ ỹ
∗2(1−λ)
t Vt, yields

1 + λũ∗
t = ỹ∗λt +

1

2
λ(λ − 1)Vtỹ

∗−λ
t

which is a quadratic equation in ỹ∗λt . Solving for ỹ∗t provides the Guerrero approximation.

For general λ there are three possible ways of evaluating E(y∗t |FT ) and Var(y∗t |FT ):

• Monte Carlo evaluation using the simulation smoother: the latter is used to draw repeated

samples from the conditional distribution of u∗ = {u∗
1, . . . , u

∗
T }, given the available obser-

vations.

• Numerical integration with respect to the normal density, f(u∗
t |FT ), whose moments ũ∗

t and

V ∗
t are provided by the Kalman filter and smoother.

• Direct application of equations (8) and (9) truncating the summations to a particular order.

As concerns the first method (Monte Carlo evaluation), sampling from the posterior distribution

of the latent components or disturbances has been considered in detail: Carlin, Polson and Stoffer

(1992) proposed a single move state sampler, which however usually is very inefficient due to the

high correlation between the unobserved components, especially when they are weakly evolutive.

Gamerman (1998) proposed a single move disturbance sampler, which is more efficient since the

disturbances driving the components are much less persistent and autocorrelated over time. Along

with reparameterization, an effective strategy is blocking, through the adoption of a multimove

sampler as in Carter and Kohn (1994) and Früwirth Schnatter (1994), who focus on sampling

the unobserved components. Again, a more efficient multimove sampler can be constructed by

focusing on the disturbances, rather than the states. This is the idea underlying the simulation

smoother proposed by de Jong and Shephard (1995).

Letting ςt = [ηt, ζt, ǫt]
′ denote the vector of disturbances that drive the nonseasonal component

of the series, u∗
t = µt + ǫt, the simulation smoother hinges on the following factorisation of the

joint posterior density:

f(ς0, . . . , ςT |FT ) = f(ςT |FT )
T−1
∏

t=0

f(ςt|ςt+1, . . . , ςT ;FT ).
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Conditional random vectors are generated recursively. In the forward step we run the KF and the

innovations, their covariance matrix and the Kalman gain are stored. In the backwards sampling

step conditional random vectors are generated recursively from ςt|ςt+1, . . . , ςT ;FT ; the algorithm

keeps track of all the changes in the mean and the covariance matrix of these conditional densities.

The simulated disturbances are then integrated into the trend using the transition equation and a

draw from u∗
1, . . . , u

∗
T |FT is obtained. A computationally faster simulation smoother has been

recently developed by Durbin and Koopman (2002).

5 Robust estimation of the transformation parameter and seasonal

adjustment

As is well known the estimated transformation and related test statistic may be sensitive to the

presence of one, or several, atypical observations. In addition, it is important to remark that

outliers in one transformed scale may not be atypical in another scale. Therefore, it is important

to choose a transformation which does not depend on the presence of particular observations. In

this paper in order to provide a robust estimate of the transformation parameter we use the forward

search approach in the way suggested by Atkinson and Riani (2000) and extended to time series

by Riani (2004). Finally, in order to quantify the effect of each observation on the choice of the

transformation parameter, we use the fan plot (Atkinson and Riani, 2002).

The algorithm is both efficient and robust. It is efficient because it makes use of the Gaussian

likelihood machinery underlying the Kalman filter. It is robust because the outliers enter in the

last steps of the procedure and their effect on the statistics of interest is clearly depicted. More

generally, this approach allows evaluation of the inferential effect that each time period, either

outlying or not, exerts on the fitted model.

One major advantage of the forward search over other high-breakdown techniques is that a

number of diagnostic measures can be computed and monitored as the algorithm progresses. The

focus of this paper is to produce forward plots of the approximate score statistic described in

section 3 for testing the significance of the set of constructed variables for different values λ0,

using a separate search for each λ0. The trajectories of the score tests can be combined in a single
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picture named the “fan plot”. If the number of observations is not large (i.e. less than 200),

generally the five most common values of λ0 (−1,−0.5, 0, 0.5, 1) are sufficient for selecting the

appropriate transformation. On the other hand, when the sample size is large we have to consider

a finer grid of values of λ0. The monitoring of the fan plot for the different specifications of the

seasonal component (trigonometric, HS or heteroscedastic HS) inside the basic structural model

enables to appraise how robust is our estimate of the transformation parameter to the various

parameterisations of γt.

An additional novelty of this paper is that we implement for the first time in time series the so

called proportional forward search in order to have in the subset the same proportion of months

which are present in the overall sample. More precisely, let Rl be the ratio between the number of

seasons of kind l in the subset (ml) and in the full sample (nl): Rl = ml/nl, l = 1, . . . , s. Given

a subset of size m = m1, . . . , ms in every step of the search in order to determine how to progress

from subset size m to subset size m + 1 we preliminary consider the season(s) with the smallest

Rl. Among these we increase by one unit the group which has the smallest (ml + 1)th ordered

one step ahead standardized prediction residual. The new subset of size m + 1 will be formed

by the ml + 1 units with the smallest one step ahead standardized squared residual for the season

which was least represented in the subset and by the mj j 6= l = 1, . . . , s, units with the smallest

one step ahead squared standardized prediction residuals for the other seasons. In this way in each

step the subset has a composition of months which reflects as much as possible the structure of the

overall sample.

6 Illustrations

In this section we propose two illustrations dealing with seasonal adjustment under the square root

transformation and λ = 1
4 , for which the mean and the variance of the posterior distribution of the

seasonally adjusted series admit an analytic representation. These case study are used to evaluate

the differences that emerge from standard additive and multiplicative seasonal adjustment, which

use λ = 1 and λ = 0, respectively, and to assess the reliability of the numerical and Monte

Carlo methods for evaluating (3) and (4). All the computations were performed using Ox 3.x by

Doornik (2001) and the library of state space function SsfPack 2.3 by Koopman et al. (1999). The
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numerical integration for (8) is implemented using the QuadPack function QAGS, see Piessens et

al. (1983); QuadPack is a Fortran library for univariate numerical integration (‘quadrature’) using

adaptive rules.

6.1 Sales X data

Our first illustration deals with a well known case study, concerning the monthly sales of a engi-

neering company (company X), from January 1965 to May 1971, that was presented and studied

by Chatfield and Prothero (1973) as a case study in Box-Jenkins forecasting methods.

The plot of the series (see the first panel of Figure 3) reveals that the amplitude of the seasonal

pattern is increasing over time as the trend increases, but the evidence is that the logarithmic

transformation is overtransforming the series, i.e. the amplitude decreases as the trend increases

on the transformed scale.

In his discussion of the Chatfield and Prothero paper Tunnicliffe-Wilson suggested the adop-

tion of the Box-Cox transformation with parameter λ = 0.34, which he estimated by maximum

likelihood using only the first 60 observations; for the full sample consisting of 77 observations

Box and Jenkins (1973) using range-mean plots suggested the value 0.25, which is also the value

estimated by Chatfield and Prothero in their reply. That value is confirmed by Guerrero (1993), by

a different method, which looks at the variance stabilising properties of the transformation.

When the BSM is estimated under the Box-Cox transformation, the profile likelihood for the

parameter λ is reported in the second panel of Figure (3). The horizontal line is drawn at Lmax −
0.5χ2(0.95), where Lmax is the value of the corrected profile likelihood evaluated at the maximum

and χ2(0.95) is the 95-th percentile of the χ2 distribution with 1 degree of freedom (3.84).

The logarithmic transformation and the value λ = 1 are clearly rejected and the maximum

likelihood estimate is λ̃ = 0.27. It is worth noticing that the differences in results with respect

to other authors can be attributed to the fact that we use a different model and that we include

a calendar component in our model, which turns out to be significant. As the value 0.27 is not

significantly different from 0.25, our subsequent analyzes will use the value λ = 0.25, for which,

as we have seen in the previous section, the conditional mean and the variance of the seasonally

adjusted series admit a closed form solution.
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The maximum likelihood estimates of the variance parameters are σ̃2
η = 0.1108; σ̃2

ζ = σ̃2
ω =

0.0000; and σ̃2
ǫ = 0.1728. As a result the slope is fixed and seasonality is deterministic. The

Bowman and Shenton normality test takes the value 0.5; some residual correlation is left, as by

the Ljung-Box portmanteau test statistic with 12 autocorrelation, which takes the value 23.34.

The central panels present the transformed series along with the seasonally adjusted series, ũ∗
t ,

the seasonal and calendar component on the transformed scale. The bottom panel displays the

estimates of the seasonally adjusted series on the original scale, that is ỹ∗t along with their 95%

highest density region. The computations were made by numerical integration, but as we argue

below these are undistinguishable from the exact estimates and from the Monte Carlo estimates

using a suitably large number of replications. It is interesting to notice, as we have seen theoret-

ically in the previous section, that the width of the confidence interval of the seasonally adjusted

series in the original scale increases as the trend increases.

The last panel compares the estimates of the SA series arising for the estimated transformation

parameter with that arising in the case of the logarithmic transformation. The graph highlights

that the differences can be relevant and the Box-Cox transformation is indeed an issue in seasonal

adjustment.

Given that an exact solution exists for ỹ∗t and Var(y∗t |FT ), we can evaluate the accuracy of the

various estimates that have been proposed. The estimation methods that are compared are

• The naı̈ve estimate (the conditional median) ỹ∗t = (1 + 0.25ũ∗
t )

4.

• Monte Carlo integration using the simulation smoother: M independent samples, u
(i)∗
t , i =

1, . . . , M, are drawn from the conditional distribution u∗
t |FT ∼ N(ũ∗

t , V
∗
t ), which is done

recursively by the simulation smoother. The seasonally adjusted series is estimated by av-

erage ỹ∗MC
t = 1

M

∑M
i=1

[

1 + 0.25u
(i)∗
t

]4
. The variance of the SA series is estimated by

Ṽar(y∗t |FT ) = 1
M

∑M
i=1

[

1 + 0.25u
(i)∗
t

]8
−

(

ỹ∗MC
t

)2
. Results are presented for the number

of replications M = 500, 1000, 2500, 5000, 10000. An antithetic variable was used: for

each draw ς
(i)
t the antithetic variable is given by ς

(i)†
t = 2E(ςt|FT ) − ς

(i)
t . The conditional

expectation E(ςt|FT ) is provided by the disturbance smoother (Koopman, 1993).

• Numerical integration using the QuadPack function QAGS, available in Ox 3.4; the finite

21



Figure 3: Sales of Company X.
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integration interval is defined as [ũ∗
t − 8

√
V t, ũ

∗
t + 8

√
V t], where ũt and Vt are evaluated

by the Kalman filter and smoother applied to the transformed observations.

• The Taylor estimation method based on a Taylor’s approximation:

ỹ∗Tt = ŷ∗t

[

1 +
3

8

Vt
√

ŷ∗t

]

.

• The method proposed by Guerrero:

ỹ∗Gt = ŷ∗t







1

2
+

1

2

[

1 +
3

8

Vt
√

ŷ∗t

]1/2






4

Table 2 reports the mean error of method j, MEj = T−1 ∑T
t=1(ỹ

∗j
t − ỹ∗t ), where the subtrahend

is given by the exact expression given in Table 1, the mean square error, MSEj = T−1 ∑T
t=1(ỹ

∗j
t −

ỹ∗t )
2, the mean percent error, MPEj = 100T−1 ∑T

t=1

[

(ỹ∗jt − ỹ∗t )/ỹ∗t
]

and the mean absolute

percent error, MAPEj = 100T−1 ∑T
t=1

[

|ỹ∗jt − ỹ∗t |/ỹ∗t
]

.

In this application the ratio Vt/
√

ŷ∗t is very small (6 × 10−5 on average) and thus the naı̈ve

estimate has a good performance. It should be recalled that the last two columns present percent

values. It is also evident from the table that the Taylor and Guerrero approximations are very

accurate for this application. Numerical integration is the most accurate; the performance of Monte

Carlo integration depends on the number of replications that are used. The convergence to the true

conditional mean is not very fast. This is due to the correlation between the random draws that

results from the persistence of the nonseasonal component of the series. The use of an antithetic

variable greatly improves the performance.

The second part of the table displays the same statistics with reference to the problem of es-

timating the conditional variance Var(y∗t |FT ). It must be remarked that the Taylor and Guerrero

methods do not provide an estimate of this feature. Again, numerical integration provides the

fastest and most reliable method of estimating Var(y∗t |FT ).

6.2 Italian industrial production of LS sector

Our second illustration deals with the estimation of the seasonally adjusted series and of its pos-

terior variance according to (3) and (4) with reference to the industrial production index for the
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Table 2: Sales X data: Accuracy of different estimation methods

Estimation of ỹ∗t = E(y∗t |FT )

Method Mean Error Mean Square Error Mean Percent Error MAPE

Naive -0.48452941 0.26217669 -0.18820985 0.18820985

MC Int 500 -0.00046981 0.00169539 -0.00037667 0.01294316

MC Int 1000 -0.00587377 0.00044615 -0.00227596 0.00646891

MC Int 2500 0.00131137 0.00016612 0.00029774 0.00396751

MC Int 5000 0.00014997 0.00007092 -0.00016578 0.00243353

MC Int 10000 0.00173609 0.00003516 0.00060559 0.00175783

Num Int 0.00000000 0.00000000 0.00000000 0.00000000

Taylor -0.00007648 0.00000001 -0.00003273 0.00003273

Guerrero 0.00003824 0.00000000 0.00001636 0.00001636

Estimation of Var(y∗t |FT )

Method Mean Error Mean Square Error Mean Percent Error MAPE

MC Int 500 20.3325 1276.3999 4.5745 6.1875

MC Int 1000 10.1550 440.8200 1.9854 3.5628

MC Int 2500 4.5773 178.4940 0.7700 1.8158

MC Int 5000 1.0162 103.1112 0.0189 1.3430

MC Int 10000 -1.1800 34.7828 -0.4323 0.9942

Num Int 0.0000 0.0000 0.0000 0.0000
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Leather and Shoes (LS) sector, available for the period 1981.1-2005.2 (source Istat, base 2000 =

100, 290 observations), under the Box-Cox transformation. We notice in passing that the official

seasonal adjustment performed by the Italian National Statistical Institute (Istat) is carried out on

the untransformed series (i.e. λ = 1) using the software Tramo-Seats.

The plot of the original series (see the top left hand panel of Figure 4) reveals that the amplitude

of the seasonal component decreases with the trend. The dominant feature is the seasonal trough

occurring in August. The likelihood ratio test of H0 : λ = 1 is significant and the maximum

likelihood estimate of the transformation parameter is λ̂ = 0.501, corresponding to the square

root transformation. The profile likelihood for the transformation parameter is plotted in the top

right hand panel of Figure 4.

Clearly we have to establish whether the square root transformation is due to the presence of

particular observations or it is diffused throughout the data. Finally, we need to know what is

the effect on the estimated λ of the months of August or whether there are other months whose

variance of the seasonal movements is much greater than the others, but are obscured by the high

fluctuations of the month of August.

To start answering all these questions in Figure 5 we produce a series of fan plots for λ =

(0, 0.25, 0.5, 0.75)′. The top left panel of Figure 5, which uses a trigonometric specification for

the seasonal component and a non proportional forward search, shows that the log transformation

is always rejected throughout.

In Figure 4 we had seen that the values of λ = 0.25 and λ = 0.75 were both at the boundary

of the acceptance region. The FS enables to state that the value 0.75 is always strongly rejected

throughout the search and that at the end there is a set of observations which brings the value of

the score close to the acceptance region. The same upward trend is visible in the curves associated

with λ = 0.25 and λ = 0.5. In the case this set of units brings the values of the score from value

-3 to a value around 3.

The monitoring of the seasons inside subset (bottom right panel) clearly shows that the units

entering the subset in steps 270-290 all belong to the month of August. The effect of the month

of August is even more pronounced if we consider the HS specification for stochastic seasonality

(see top right panel in Figure 5).
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In order to understand whether this is due to seasonal heteroscedasticity we redo the fan plot

allowing the variance of the month of August to be different from that of the other months. The re-

sulting fan plot, which is given in the bottom left panel, shows that the presence of heteroscedastic

seasonality for the month of August does seem to alter our conclusions about the transformation

parameter.

A major benefit of the fan plot is that it clearly enables to appreciate the effect that the different

months and/or different subperiods exert on the estimate of the transformation parameter. As is

well known, the FS provides an ordering of the data from those most in agreement with a suggested

model (which enter the first steps) to those least in agreement with it (which are included in the

final steps). For example, the bottom right panel shows that the seasons which are most difficult to

model are those associated with the months of November and August. However, while the effect

of the introduction of the months of November (steps 230-260) does not change appreciably the

value of the score test, it is clear the effect that the months of August exert on the estimated λ.

Figure 6 shows the new fan plot respectively for trigonometric (top panel) and HS specification

(bottom panel) for a proportional forward search. Both plots show that if we consider subsets

which contain the same proportion of months as that of the original sample the curves for the

different values of λ are more stable and the values associated with the square root transformation

in the central and final part of the search always lie inside the confidence bands.

The monitoring of the estimates of the hyperparameters on the square root scale (not given here

for lack of space) show that in this scale the values of the variances of the underlying components

are stable together with the t-statistics for the trading days and there are not sudden jumps due to

the presence of atypical observations.

As a result of this analysis, the BSM was used on the transformed observations ut = 2(y
1/2
t −

1). The use of the trigonometric seasonal specification gave the following maximum likelihood

estimates of the variance parameters σ̃2
η = 0.01556; σ̃2

ζ = 0.00003 σ̃2
ω = 0.00079; and σ̃2

ǫ =

0.05640. There is a significant calendar component in the series, the coefficients associated to the

working days being positive and those associated to the week-end being negative. The diagnostics

are satisfactory, and normality is accepted (the Bowman and Shenton normality test results 3.76,

with p-value=0.15).
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The transformed series and its estimated components are displayed in the central panels of Fig-

ure 4. The seasonal pattern reduces its amplitude over time. The point estimates of the seasonally

adjusted series on the original scale of measurement are reproduced in the bottom left panel, along

with the 95% highest density region of the posterior distribution of y∗t . The method is numerical

integration as in the previous section. The last graph compares these estimates with those emerg-

ing from the BSM adapted to the untransformed series (λ = 1); on average the latter display a

positive bias, but there are relevant differences that go well beyond a level change. In particular,

the differences are substantial with respect to August.

Given that analytical solutions are available, ỹ∗t = ŷ∗t
[

1 + 1
4

Vt
ŷ∗

t

]

and Var(y∗t |FT ) = ŷ∗t Vt +

1
8V 2

t , we can assess the accuracy of the various estimation methods considered in the previous

subsection. It must be stressed that the Taylor method gives only in this case (λ = 0.5) an exact

solution. Table 3 reports the ME, the MSE, the MPE and the MAPE for the seasonally adjusted

series and its variance. The most accurate method is numerical integration, which has an excellent

performance also for the estimation of the conditional variance; Monte Carlo integration is more

accurate than Guerrero’s method and both outperform the naı̈ve estimate.

7 The Seasonal Adjustment of the Ratio of two Time Series

The purpose of this section is twofold: to illustrate the estimation of the Box-Cox tranformation

parameter for a bivariate time series and the estimation of the seasonally adjusted ratio of the two

constituent series. The motivation arises in the context of the analysis of tourism trends. Statis-

tical information on tourism in Italy concerns the monthly number of arrivals and the number of

overnight stays of residents and non-residents at hotel and other establishments (camping sites,

tourist farms, private accommodations, mountain huts, company vacation facilities, vacation facil-

ities for youth, etc.). An arrival is defined as a person who arrives at a collective accommodation

establishment or at private tourism accommodation and checks in. A night spent (or overnight

stay) is each night that a guest actually spends or is registered in a collective accommodation

establishment or in private tourism accommodation. Average stay (AS) represents the ratio of

overnight stays to the number of arrivals. This variable is important for the assessment of trends

in tourism.
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Table 3: Index of Industrial Production, sector DC: Accuracy of different estimation methods

Estimation of ỹ∗t = E(y∗t |FT )

Method Mean Error Mean Square Error Mean Percent Error MAPE

Naive -0.00780061 0.00006267 -0.00779884 0.00779884

MC Int 500 0.00006245 0.00000026 0.00006111 0.00041684

MC Int 1000 -0.00002007 0.00000011 -0.00001500 0.00025849

MC Int 2500 0.00002431 0.00000005 0.00002980 0.00017916

MC Int 5000 0.00000782 0.00000003 0.00001050 0.00012541

MC Int 10000 -0.00000872 0.00000001 -0.00000713 0.00008970

Num Int 0.00000000 0.00000000 0.00000000 0.00000000

Taylor 0 0 0 0

Guerrero -0.00390034 0.00001567 -0.00389946 0.00389946

Estimation of Var(y∗t |FT )

Method Mean Error Mean Square Error Mean Percent Error MAPE

MC Int 500 0.0256 0.0423 0.8170 5.4020

MC Int 1000 -0.0102 0.0175 -0.1816 3.3153

MC Int 2500 0.0082 0.0081 0.2965 2.2887

MC Int 5000 0.0025 0.0043 0.1005 1.5791

MC Int 10000 -0.0039 0.0023 -0.0995 1.1266

Num Int 0.0000 0.0000 0.0000 0.0000
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Let y1t denote the number of arrivals and let y2t that of overnight stays. These series are highly

seasonal, as it can be seen from the plot of the monthly time series for hotel establishments in Italy,

plotted in the first panel of Figure 7. The interest of the analysis lies in the seasonal adjustment

of the two series (say y∗1t, y
∗
2t) and in the estimation of the ratio y∗2t/y∗1t, which is the seasonally

adjusted average stay. The raw series, y2t/y1t is plotted in the bottom left hand panel. Also for this

indicator seasonality is the most prominent source of variation. There are several ways of going

about the above inferential problem; the traditional one is to adjust the three series separately,

with the consequence that the estimates of the SA ratio are not related to those of y∗1t and y∗2t.

Another suboptimal strategy is to estimate y∗1t and y∗2t separately and then compute the ratio of the

estimates; clearly this yields biased estimates of the ratio.

Our strategy is to provide a simultaneous solution to the three problems, which entails the

specification and the estimation of a bivariate BSM for the two series. The latter is such that

each of the component series, after a Box-Cox transformation with common parameter λ, uit =

(yλ
it − 1)/λ, λ 6= 0, and uit = ln yit, λ = 0, i = 1, 2, admits an additive and orthogonal

decomposition into components whose disturbances may be contemporaneously correlated. The

assumption that the transformation parameter is common to the series can be tested, and removed

if necessary. Denoting by bold symbols the 2× 1 vector containing the elements of the two series,

e.g. ut = [u1t, u2t]
′, µt = [µ1t, µ2t]

′, ηt = [η1t, η2t]
′, and so forth, the BSM has the following

representation:

ut = µt + γt + X′
tδ + ǫt, ǫt ∼ NID(0,Σǫ), i = 1, 2; t = 1, . . . , T,

µt+1 = µt + βt + ηt, ηt ∼ NID(0,Ση),

βt+1 = βt + ζt, ζt ∼ NID(0,Σζ).

γt =
6

∑

j=1

γjt,







γj,t+1

γ∗
j,t+1






=













cos λj sinλj

− sinλj cos λj






⊗ I2













γjt

γ∗
jt






+







ωjt

ω∗
jt






,

j = 1, . . . , 5, and γ6,t+1 = −γ6t + ω6t, with ωjt ∼ NID(0,Σω),ω∗
jt ∼ NID(0,Σω), j =

1, 2, 3, 4, 5, and ω6t ∼ NID(0, 0.5Σω). Finally, Xt = x′
t ⊗ I2, where xt is a vector containing the

regressors accounting for calendar effects, and δ = [δ′
1, δ

′
2]
′.

Analogously to the univariate case, we define the nonseasonal component in the transformed

series as u∗
t = µt + ǫt and y∗

t = u−1(u∗
t ) is the nonseasonal component in the original scale. The
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interest lies in

E

(

y∗2t

y∗1t

∣

∣

∣

∣

FT

)

=

∫

u−1(u∗
2t)

u−1(u∗
1t)

f(u∗
2t, u

∗
1t|FT )du∗

1tdu∗
2t =

∫

y∗2t

y∗1t

f(u∗
2t, u

∗
1t|FT )du∗

1tdu∗
2t,

which is the optimal estimator of the seasonally adjusted series under quadratic loss, and Var
(

y∗
2t

y∗
1t

∣

∣

∣FT

)

.

An explicit solution exists only when both variables are transformed in logarithms: in such

case, ln(y∗2t) − ln(y∗1t) has a Gaussian distribution and thus the ratio y∗2t/y∗1t is log-normal; hence

E(y∗2t/y∗1t|FT ) = exp (ũ∗
2t − ũ∗

1t + 0.5(V1t + V2t − 2C12t)) ; where Vit, i = 1, 2, is the condi-

tional variance of the i-th SA series and C12t is the conditional covariance between the SA series.

For λ 6= 0 no closed form solution is available and we resorted to Monte Carlo integration using

the simulation smoother.

When the univariate BSM is applied to each of the series separately, the maximum likelihood

estimate of the transformation parameter is 0.36 for arrivals (the 95% confidence interval is [0.06,

0.68]), 0.60 for overnight stays (the 95% confidence interval is [0.36,0.84]), and 0.68 for average

stays. The likelihood is however so flat in the last case that the 95% confidence interval includes

both 0 and 1.

Estimation of the bivariate BSM for arrivals and stays yields a point estimate λ̃ = 0.62 and

a 95% interval estimate λ ∈ [0.39, 0.84], which rules out both the logarithmic transformation

and the analysis of the original scale. The top right panel is a plot of the profile likelihood for

the λ parameter, which is assumed common to the two series. If we augment the model with two

added variable, namely ∂u1t/∂λ in the first equation, and ∂u2t/∂λ in the second, both evaluated at

λ = λ̃, to test that either the transformation parameter applied to the first series or that pertaining to

the second differ from the maximum likelihood estimate (see section 3), the t-statistics associated

to the added variables are not significant.

The parameter estimates resulted:

Ση =







20658.9 37733.9

37733.9 96876.8






, Σζ = 0,

Σω =







2526.9 5065.0

5065.0 13919.1






, Σǫ =







0.00000331 −0.00000000

−0.00000000 0.01212355






.
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The diagnostics are satisfactory, with the normality statistics computed on the standardized inno-

vations taking the values 6.99 and 3.30 for the two series. The plot of the seasonally adjusted

series, along with their 95% highest density region, evaluated by Monte Carlo integration using

the simulation smoother with M = 10000 replications and one antithetic variable, are presented

in the central panels of Figure 7, respectively for arrivals and stays. Obviously, since the integral

is computed with respect to a univariate conditional density, numerical integration may as well

be used here. The evaluation of the seasonally adjusted average stays requires a two-dimensional

integration over the joint posterior density f(u∗
1t, u

∗
2t|FT ), for which the Monte Carlo method is

feasible. The estimated SA average stays series is displayed in the last panel of the Figure along

with its 95% highest density region and the corresponding series that would be obtained when both

series are transformed into logarithms. We recall that only in this case an exact solution exists.

After a period of stability or even slight increase in average stay, there has been a significant reduc-

tion over the more recent years. These tendencies are also broadly present in the series estimated

imposing λ = 0, but the level and the dynamics of the estimates differ.

8 Seasonal adjustment of proportions under transformations

The Box-Cox transformation is suitable for series that have a lower bound, typically 0. For time

series of proportions, that are such that the observation are constrained to lie between 0 and 1,

it may not be appropriate, unless the actual values have limited spread, e.g. they range from

0.03 to 0.15, as it is usually the case for time series of unemployment rates. Several parametric

transformations map the (0,1) range to the real interval; Atkinson (1985) discusses the folded

power transformation (Mosteller and Tukey (1977), page 92) ut(λ) = yλ
t + (1 − y)λ, 0 <

yt < 1 which yields the untransformed observations for λ = 1 and the logit transformation for λ

approaching 0, ut(0) = ln(yt/(1 − yt)). One serious drawback is that the transformation is not

invertible, that is yt is an implicit function of ut. Guerrero and Johnson (1982) proposed to apply

the Box-Cox tranformation to the odds ratio pt = yt/(1 − yt), i.e. ut(λ) = (pλ
t − 1)/λ, which

yields the logit transformation for λ = 0 and 1/(1 − yt) for λ = 1. The inverse transformation

can be calculated explicitly, but the fact that ut(λ) fails to give the untransformed observations for

any value of λ is often regarded as a limitation.
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Aranda-Ordaz (1981, AO henceforth) proposed a class of transformation that does not suffer

from the above drawbacks:

ut(λ) =
2

λ

yλ
t − (1 − yt)

λ

yλ
t + (1 − yt)λ

=
2

λ

pλ
t − 1

pλ
t + 1

, (12)

For λ → 0 it yields the logit transformation, ut(0) = ln(yt/(1 − yt)), and the untransformed

series for λ = 1, ut(1) = 2(2yt − 1). The reverse transformation is:

yt =
1

1 + exp(−vt)
, vt =











1
λ ln

(

2+λut
2−λut

)

, λ 6= 0,

ut, λ = 0

In this section we shall adopt the AO transformation; other types and generalisations are consid-

ered in Stukel (1988).

Analogously to the Box-Cox case, we define the seasonally adjusted series as the inverse trans-

formation of the nonseasonal component u∗
t , y∗t = [1+exp(−v∗t )]

−1, where v∗t = u∗
t if λ = 0 and

v∗t = λ−1 ln [(2 + λu∗
t )/(2 − λu∗

t )], otherwise. The optimal estimator of the seasonally adjusted

series is given by
∫

[1 + exp(−v∗t )]
−1f(u∗

t |FT )du∗
t

where f(u∗
t |FT ) is the density function of a Gaussian distribution with mean ũ∗

t and variance Vt,

both evaluated by the Kalman filter and smoother for the linear model on the transformed scale.

No analytical solution is available unless λ = 1. We thus estimate the seasonally adjusted series

via numerical and Monte Carlo integration.

Our illustrative example is the monthly proportion of tourist arriving at hotels; this can be con-

sidered as the market share of hotels with respect to the totality of private and public accommoda-

tion establishments. The plot of the original time series, see the first panel of Figure 8, shows that

this proportion is highly seasonal, the seasonal trough occurring in August, and slightly declining

over the most recent years. Seasonal adjustment is crucial for assessing the underlying tendencies.

Estimation of the BSM under the AO transformation yields a point estimate λ̃ = 0.65, which

is significantly different from 0 (logit) and from 1 (untransformed series); see the second panel

of Figure 8. The maximum likelihood estimates of the variance parameters of the BSM are σ̃2
η =

0.00010209; σ̃2
ζ = 0, σ̃2

ω = 0.00001312; and σ̃2
ǫ = 0.00044716. There is no significant effect

connected to the number of days of the week, but it is interesting to report that the Easter effect is
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significant and it is adverse to the share of tourist arrivals absorbed by hotels. This is in line with

our expectations, since Easter is a period when preferences shift towards tourist farms and private

accommodations. The diagnostics are satisfactory and normality is not rejected.

The seasonally adjusted proportion of arrivals in Hotels is displayed, along with its 95% highest

density region, in the third panel of Figure 8. The estimation method that was used is numerical

integration. For the sake of comparison the plot also reports the estimate arising when λ = 1 (no

transformation). Again, the two estimates differ non only for a level shift, but also the dynamics

are affected; namely, the decline in the seasonally adjusted proportion is slower when λ = 1.

9 Conclusive remarks

This paper has investigated the issue of seasonal adjustment under the Box-Cox power transfor-

mation of time series measured on a ratio scale, which are bounded from below by 0, and the

Aranda-Ordaz transformation for time series of proportions.

The rationale behind the transformation is to enhance several desirable features of the main-

tained measurement model: linearity, additivity and orthogonality of components, normality of

the disturbances driving the components.

In this paper we have concentrated on the Box Cox transformation applied to the basic struc-

tural model. However the idea of imposing the seasonal constraint on the transformed scale,

perform seasonal adjustment and then transforming back into the original series can be applied

to more complicated models like the so called transformation/weighting (see for example Carroll

and Ruppert, 1991) models, where not only the response is transformed, but also the part used to

fit the mean model and the disturbance term to take into account heteroscedasticity. The extension

to other parametric classes that are continuous in the transformation parameters and invertible is

straightforward. Continuity is required for likelihood based inferences on the transformation pa-

rameter; invertibility is necessary to re-express the nonseasonal component on the original scale.

This paper has documented that adjustment is both feasible and relevant. It is feasible, since

there are computationally efficient and accurate methods of estimating the conditional mean and

variance of the seasonally adjusted series that are applicable in the absence of a closed form solu-

tion. It is relevant, since the estimates may differ relevantly from those obtained using either the
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untransformed observations or the logarithms. Our case studies concerned cases when seasonality

is the most prominent source of variation of the data as it occurs for industrial production, tourism

and sales.

For univariate analysis numerical integration is both fast and reliable and it is recommended

in the place of approximate methods and Monte Carlo integration using the simulation smoother.

The latter may require a large number of replications when the nonseasonal component is highly

persistent and weakly evolutive. However, it can be made as accurate as needed by increasing the

number of replications and by using variance reduction techniques.

Finally it must be remarked that if in univariate models it is possible to choose between different

solutions, in multivariate applications the use of the simulation smoother is the unique option

available. A multivariate application that we have in mind is indirect seasonal adjustment when

a cross sectional seasonally adjusted aggregate is obtained as Y ∗
t =

∑N
i=1(1 + λiu

∗
it)

1/λi . Then

E(Y ∗
t |FT ) can be evaluated by Monte Carlo integration using the simulation smoother.

The focus of this paper was seasonal adjustment. However, our method can be easily extended

to find the estimate of all the other components on the original scale (e.g. the detrended series).

In other words, once the two conditional moments of the detrended series in the transformed

scaled are found using the KFS, the detrended series on the original scale can be computed using

numerical or Monte Carlo integration or the exact analytic solution described in the paper.

A relevant topic that we did not address concerns the assessment of the reliability of the sea-

sonally adjusted series, taking into account the additional source of uncertainty determined by the

selection of the transformation parameter from the data. In fact, all the proposed inferences were

conditional on the scale selected. In the context of regression analysis Bickel and Doksum (1981)

showed that the spread of the marginal distribution of the estimators of the regression parameters

is much larger than that of the conditional distribution, given the estimated transformation para-

meter. In the wake of this results one might want to investigate and quantify the increase in the

variance due to the transformation parameter uncertainty. Actually, this point is highly contro-

versial. However Carroll and Ruppert (1981) give a general result which indicates that the cost

of estimating extra nuisance parameters such as λ for prediction is not large. Furthermore, Box

and Cox (1982) and Hinkley and Runger (1984) argue that the variance inflation is irrelevant and
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illusory, as the linear model parameters have meaning only with reference to a particular scale and

thus all relevant inferences can only be conditional on the selected transformation parameter.
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Appendix: Proof of theorem 1

We start considering the Taylor series expansion of the inverse transformation (1+λu∗
t )

1/λ around

ũ∗
t :

(1 + λu∗
t )

1/λ = (1 + λũ∗
t )

1/λ + (1 + λũ∗
t )

1/λ−1(u∗
t − ũ∗

t )+

1
2(1 − λ)(1 + λũ∗

t )
1/λ−2(u∗

t − ũ∗
t )

2 + · · ·
= ŷ∗t

[

1 +
∑∞

j=1
1
j!

(

∏j−1
k=1(1 − λk)

)

(ŷ∗t )
−λj(u∗

t − ũ∗
t )

j
]

Now, taking the expectation of both sides with respect to the Gaussian density f(u∗
t |FT ) and

remembering that the central j-order moment is zero if j is odd, after some manipulation we

obtain that:

E(y∗t |FT ) = ỹ∗t = ŷ∗t



1 +
∞
∑

j=1

1

j!2j





2j−1
∏

k=1

(1 − λk)





V j
t

ŷ∗2λj
t



 (13)

If we denote with

aj(t) =
(2j)!

j!2j
V j

t and kj(t) =
1

j!





j−1
∏

k=1

(1 − λk)



 ŷ∗−λj
t ,

equation (13) can be rewritten as:

E(y∗t |FT ) = ỹ∗t = ŷ∗t



1 +
∞
∑

j=1

k2j(t)aj(t)



 (14)

The second noncentral moment is given by

E(y∗
2

t |FT ) = ŷ∗
2

t E



1 +
∞
∑

j=1

kj(t)(u
∗
t − ũ∗

t )
j





2

(15)

= ŷ∗
2

t E



1 +
∞
∑

j=1

k2
j (t)(u

∗
t − ũ∗

t )
2j + 2

∞
∑

j=1

∑

r>j

kj(t)kr(t)(u
∗
t − ũ∗

t )
j+r + 2

∞
∑

j=1

kj(t)(u
∗
t − ũ∗

t )
j





Taking the expectation of both sides with respect to the Gaussian density f(u∗
t |FT ) we obtain:

E(y∗
2

t |FT ) = ŷ∗
2

t



1 +
∞
∑

j=1

k2
j (t)aj(t) + 2

∞
∑

j=1

∞
∑

r=1

kj(t)kj+2r(t)aj+r(t) + 2
∞
∑

j=1

k2j(t)aj(t)



 .(16)

On the other hand, the square of the first moment can be written as:

[E(y∗t |FT )]2 = ŷ∗
2

t



1 + (
∞
∑

j=1

k2j(t)aj(t))
2 + 2

∞
∑

j=1

k2j(t)aj(t)



 .
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After some manipulations we obtain that:

Var(y∗t |FT ) = ŷ∗
2

t







∞
∑

j=1

k2
j (t)aj(t) + 2

∞
∑

j=1

∞
∑

r=1

kj(t)kj+2r(t)aj+r(t) −




∞
∑

j=1

k2j(t)aj(t)





2





.

(17)
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Figure 4: Index of Industrial Production, Sector DC: Leather and Shoes.
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Figure 5: Robust estimate of the transformation parameter for different specifications of the sea-

sonal component using a non proportional FS.
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Figure 6: Robust estimate of the transformation parameter for different specifications of the sea-

sonal component using a proportional FS.
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Figure 7: Seasonal adjustment of the ratio of two time series: average stay at hotel establishments,

Italy, 1997.1-2005.10.
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Figure 8: Proportion of total tourist arrivals in Hotels, Italy, 1997.1-2005.10.
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