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Abstract 

This study employs unique household data collected in cyclone-affected 

communities in Bangladesh to uncover the impact of religious fractionalisation on 

victimization to crime after the disaster. The identification strategy relies on two 

natures of the study area: 1) the religious composition is stable; and 2) the 

pre-disaster socio-economic status of households is uncorrelated with religious 

fractionalisation and disaster damage, after controlling for the observed 

characteristics. The findings suggest that following a natural disaster, households 

in disaster-affected and religiously fractionalised communities are more likely to 

be victims than those in non-fractionalised communities. This is caused by the 

misallocation of disaster reliefs in fractionalised communities. 
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1. Introduction 
Natural disasters cause multifaceted damages to affected communities, including the 

persistent effects on health status and education. Increases in crimes such as theft and 

rape are also serious issues (Harper and Frailing 2010). Individuals affected by disasters 

suffer from a decline in income and difficulties in smoothing consumption. The 

probability of crime detection also decreases in the affected areas. These incentives to 

commit crime aggravate crime incidences in both developed and developing countries. 

For example, in the month after Hurricane Katrina, the burglary rate increased by 

402.9% compared to the month before the disaster event (Frailing and Harper, 2010). 

However, it is also claimed that disasters may give rise to altruism, and norms of 

reciprocity that reduce or stabilize crimes (Barsky et al. 2006; Fischer 1998; Fritz 1961; 

Quarantelli 1994; Rodriguez et al. 2006; Goltz 1984). Since the post-disaster crimes 

cause the delay of post-disaster rehabilitation (Aldrich, 2012), it is important for 

policymakers to understand under which situations disasters trigger the crimes. 

Nevertheless, rigorous quantitative analyses on the post-disaster crime are 

scarce. Exceptionally, Bignon et al. (2016) and Mehlum et al. (2006) analyse the impact 

of disaster shocks on increasing property crime by using historical data on Europe. 

Miguel (2005) finds that disasters increase homicide of unproductive household 

members in Tanzania. Miguel et al. (2004) also show the positive association between 

the rainfall shock and civil conflicts. Collier and Hoeffler (2004) present that man-made 

disasters such as civil wars increase homicide. On the contrary, Cassar et al. (2011) 

show that experiencing natural disasters foster social trust. Siegel et al. (1999) and 

Zahran et al. (2009) examine the disaster impact on crimes and find mixed results. 

While these studies are insightful, they do not discuss the heterogeneity of a disaster 
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effect across the communities, despite the observed variation in the crime rate across the 

affected regions. As Glaeser et al. (1996) claim, the most intriguing aspect of crime is its 

astoundingly high variance across time and space. This study aims at addressing this 

question. 

One likely explanation for the heterogeneous effect is grounded in the ethnic 

and religious fractionalisation of the community.1 Fractionalisation aggravates the 

governance (Mauro, 1995; La Porta et al., 1999; Alesina et al., 2003), economic 

inequality (Kelly, 2000; Bénabou, 2005; Alesina et al., 2016; Dev et al., 2016), and 

riots/conflicts (Montalvo and Reynal-Querol, 2005; Field et al., 2008; Esteban et al., 

2012). Fractionalisation also affects the spending on productive public goods (Alesina et 

al., 1999). Social sanction cannot be imposed effectively in such communities (Miguel 

and Gugerty, 2005). Furthermore, fractionalisation leads to the decline in social 

preference (Bouckaert and Dhaene, 2004; Charness and Gneezy, 2008) and social 

capital (Alesina and La Ferrara, 2000, 2002). Criminologists also claim that 

fractionalisation is a driver of social disorganisation (Shaw and McKay, 1942; 

Kornhauser, 1978; Sampson, 1987).2 These effects potentially exacerbate the risk of 

post-disaster crimes. Consistently, there is evidence that the communities with lower 

social capital suffer from severer disaster damages and the delay of post-disaster 

rehabilitation (Aldrich and Meyer 2015, Dynes 2006, Klinenberg 2003, Nakagawa and 

Shaw 2004, Tse et al. 2013). However, to the best of my knowledge, there is no 

empirical study arguing that fractionalisation is a driver of post-disaster crime.3 

                                                   
1 In this paper, a community is defined as religiously fractionalised when it consists of 
multiple religious groups. 
2 See Alesina and La Ferrara (2005) for a further review. 
3 Alternatively, the peer effects may also explain the disparity of crime rate across the 



5 
 

This study bridges the gap in the literature by conducting two closely related 

analyses. First, the study evaluates the impact of religious fractionalisation on the risk of 

crime victimisation after a cyclone in rural Bangladesh. Second, it disentangles four 

channels through which religious fractionalisation increases post-disaster crimes: the 

misallocation of disaster reliefs, inefficient risk-sharing arrangement, high income 

inequality, and political tension. There are particular insights to be gained from 

analysing the context of rural Bangladesh; Bangladesh is a disaster-prone country and is 

marked by a history of significant religious tension, which remains today (Alexander et 

al., 2016).  

This study employs a unique household survey data collected after cyclone Aila, 

which struck south-western Bangladesh in May 2009. The data were collected from 427 

households in 24 communities, of which 11 consist of multiple religions. In quantifying 

the post-disaster crime incidence, this study examines property and violent crimes 

occurred during the 18 months after the cyclone attack. Specifically, I employ the crime 

victimisation data at the household level in order to mitigate the under-reporting 

problem. The use of household-level data rather than regional-level data has two 

advantages: first, it enables us to identify who particularly suffers from victimisation in 

fractionalised communities; and second, it allows us to disentangle the underlying 

mechanism.  

The identification strategy of this study relies on two natures of the study area.4 

First, the religious composition is stable over the decades. Second, the socio-economic 

                                                                                                                                                     
affected areas. However, there is no consensus on whether the peer effect in crime 
indeed exists; while some empirical studies have found evidence on significant peer 
effects (Glaeser et al., 1996; Zenou, 2003; Bayer et al., 2009), others have not (Ludwig 
and Kling, 2007; Dahl and DellaVigna, 2009). 
4 This strategy is similar with Miguel and Gugerty (2005) and Egel (2013). 
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status of households in the pre-cyclone period is uncorrelated with the religious 

fractionalisation and disaster damage at the community level, after controlling for the 

observed characteristics. Exploiting these natures, this study analyses the impact of 

interaction between religious fractionalisation and cyclone damage at the community 

level on the post-disaster victimisation at the household level.  

The result shows that the impact of cyclone damage on the victimisation risk is 

significantly larger in religiously fractionalised communities. In particular, the 

socio-economically vulnerable households, such as religious minorities and the landless, 

are more likely to be victimised in fractionalised communities. I also find supporting 

evidence that the high victimisation risk is driven by the misallocation of disaster reliefs 

in fractionalised communities. However, the results do not support the effect of the 

remaining three channels. 

The contribution of this study to the literature is two-fold. First, households in 

developing countries use various risk-coping strategies to smooth their consumption 

against negative shocks. In particular, poor households face no choice but to take costly 

strategies that may lead to the decline in their short- and long-term livelihood. Such 

strategies include the reduction of human capital investment (Jacoby and Skoufias, 

1997), engagement in risk-taking behaviour, including theft (Fafchamps and Minten, 

2006; Robinson and Yeh, 2011), dissaving of productive assets (Rosenzweig and Wolpin, 

1993; Hoddinott, 2006; Sultana and Mallick 2015), dependency on moneylenders (Shoji, 

2008; 2012), natural resource extraction (Takasaki et al., 2004; McSweeney, 2005), and 

the reduction of intra-household resource allocation to unproductive members (Behrman 

and Deolalikar, 1990; Rose, 1999; Miguel, 2005; Shoji, 2010). The finding of the 

present study that the households commit crimes as a consumption smoothing device is 
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in line with these studies. Second, it has been argued that the ethnic/religious 

fractionalisation of communities has a negative effect on the formation of social capital 

because of the difficulties in coordination among the community members (Alesina and 

La Ferrara, 2000). However, this study provides an alternative explanation that poor 

governance and misallocation of disaster reliefs in fractionalised communities trigger 

crimes, and this may, in turn, decrease social capital.  

The remainder of the paper is structured as follows. Section 2 illustrates the 

relationship between religious fractionalisation and post-disaster crime. Sections 3 and 4 

describe the study site and dataset, respectively. Section 5 evaluates the impact of 

religious fractionalisation on crime victimisation, and Section 6 uncovers the underlying 

mechanisms. Finally, Section 7 concludes the study. 

 

2. Conceptual framework  

This section illustrates how the post-disaster situation triggers crime and this is 

particularly exacerbated in fractionalised communities. Becker’s (1968) seminal paper 

predicts that one’s willingness to commit crime increases with the payoff from illegal 

activity, while it decreases with the probability of crime detection, severity of 

punishment, and income from legal sources. Two factors are primarily responsible for 

increased crime incidences during disasters: first, people lose their income and have 

difficulty in finding alternative income-earning opportunities. It is also difficult to cope 

with the income loss by using risk-sharing arrangement and sales of assets. Second, the 

probability of crime detection could become low during the emergency situation. Thus, 

natural disasters tempt even those who do not normally violate the law to commit crime. 

 This situation could be particularly aggravated in fractionalised communities at 
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least through four channels. Although I explain each channel separately below, they are 

not mutually exclusive. First, the local governance may be exacerbated during the 

disasters, and this problem may be particularly severe in fractionalised communities. 

Therefore, the disaster-affected households in such communities may not be able to 

benefit from the disaster relief as much as those in non-fractionalised communities.5 In 

fact, Mahmud and Prowse (2012) find that the allocation of relief programs suffered 

from corruption during Cyclone Aila in Bangladesh. If this is the case, the households 

which are severely affected by the disaster but cannot receive the relief are likely to 

experience transient poverty. This potentially tempts them to commit crime to smooth 

consumption (Fafchamps and Minten, 2006; Cameron and Shah, 2014).  

Second, efficient risk sharing is difficult to be achieved in fractionalised 

communities, given the limited availability of social sanction (Miguel and Gugerty, 

2005) and lower altruism (Bouckaert and Dhaene, 2004; Charness and Gneezy, 2008).6 

Therefore, while the household consumption in non-fractionalised communities, where 

efficient risk sharing can be achieved, is affected only by the covariate component 

(community-level) of disaster shock, those in fractionalized communities cannot cope 

with the idiosyncratic (household-level) shock and therefore suffer from both covariate 

and idiosyncratic shocks. Therefore, the incentive to commit crime during disasters 

becomes particularly higher in fractionalised communities.  

The third channel is through the increased income inequality. A person’s 

religion predicts his/her occupation in rural Bangladesh, implying high income 

                                                   
5 The governance is significantly associated with the targeting accuracy of reliefs in 
developing countries (Coady et al., 2004). 
6 Existing studies on risk sharing show that the arrangement is likely to be inefficient if 
the potential sanction against the deviation from the arrangement is lower (Ligon et al., 
2002) and if individuals are self-interested (Foster and Rosenzweig, 2001). 
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inequality in religiously fractionalised communities (Ahmed, 2005). The inequality 

across religious groups is expected to become even larger during disasters, since poorer 

households are usually more vulnerable to disaster risks. As theoretically presented by 

Becker (1968) and Kornhauser (1978), and empirically tested by many researchers, 

economic inequality aggravates crime (Fajnzylber et al., 2002; Barslund et al., 2007; 

Gibson and Kim, 2008).  

Finally, religious fractionalisation may also trigger crime if it is associated with 

the heterogeneity of supporting political parties. Esteban and Ray (2011) and Esteban et 

al. (2012) argue that such heterogeneity is a cause of conflict in the community. Political 

tension may become particularly severe during disasters when the resources are scarce 

(Miguel et al., 2004). 

 

3. Study Site 

3.1. Religious fractionalisation 

The study site is Satkhira District in south-western Bangladesh. This country 

experienced two historical events in the mid-twentieth century. In 1947, two regions in 

India with a large population of Muslims were partitioned as West Pakistan (later 

Pakistan) and East Pakistan (later Bangladesh). This triggered violent attacks, such as 

looting and rape, against religious minorities in both the countries: Hindus in East 

Pakistan and Muslims in India. The situation was further exacerbated after the 

Indo-Pakistan war began and the Pakistani government enacted the Enemy Property Act 

in 1965. The act declared that all interests of the enemy in firms, companies, lands and 

buildings located in Pakistan were to be seized by the government. Furthermore, the 
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government designated Hindus as enemies of the state. This discriminatory legislation 

was used selectively to seize Hindu-owned property.  

Subsequently, the Liberation War broke out in 1971 and Bangladesh attained 

independence from Pakistan. The government of Bangladesh also enacted the 

discriminatory legislation in 1972, namely the Vested Property Act. The target of 

confiscation in this act included not only Hindus but also the Muslim supporters of West 

Pakistani regime, further exacerbating the violent attacks in Bangladesh. 

These violent attacks influenced the religious composition of Satkhira District. 

During the two partitions, approximately 20 million Muslims and Hindus have crossed 

the India-Bangladesh border, and a similar number were internally displaced within the 

national borders in order to shelter themselves from the violent attacks (Alexander et al., 

2016). The displaced people in Bangladesh and the refugees from India mainly settled 

down in the regions close to the national borders such as Satkhira (Tsubota 2016). Due 

to the influx of forced migrants, the proportion of Muslims in Satkhira increased from 

58.6% in 1951 to 74.0% in 1974 (Figure 1). Furthermore, the religious composition had 

changed even at the village level, since a part of the confiscated lands were leased to 

Muslims. 

Despite the substantial change in the religious composition during the chaotic 

period, the region has been relatively stable over the recent decades: the Muslims 

accounted for 78% of the total population in 1991 and 81% in 2011. However, even 

though Muslims and Hindus live next to each other, the minorities still continue to 

perceive and experience discrimination from Muslims, and are sometimes victims of 

crimes even today (Alexander et al., 2016 ). 

[Figure 1] 
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3.2. Incidence of crime 

Bangladesh is prone to crime because of ineffective law enforcement, and the crime rate 

of Sakhira was the 18th worst of the 64 districts (Faruk and Khatun, 2008). Crime 

incidences in Bangladesh have two features. First, criminals tend to commit crime 

against their peers in their community. Faruk and Khatun (2008) report that 64% of the 

crimes occurred between family members, relatives, friends, and neighbours in the same 

community, and the incidences between strangers accounted for only 22%. 

Second, although the criminals commit crime for monetary gains, the 

socio-economically vulnerable individuals, such as the poor and non-Muslims, are more 

likely to be victimised. Crimes against the poor are not necessarily counter-intuitive or 

inconsistent with Becker (1968). First, it could be too risky to commit crime against 

wealthy individuals because they are connected with the village leader and law 

enforcement authority, raising the probability of detection. Second, they may also invest 

into crime-preventing technologies such as fencing around the home. Third, as argued in 

the literature of victimology, those who are socially and geographically close to 

criminals are likely to be victimised (Cook, 1986).  

 

3.3. Cyclone Aila 

Since Satkhira District is located in a river-delta plain, it is vulnerable to floods and 

cyclones. In particular, this district was severely affected by cyclone Aila on 25 May 

2009. It was a category 1 cyclonic storm with the highest wind speed being as 100km 

per hour. The water was approximately 10-12 feet above normal height (Mallick and 
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Vogt 2012). It killed 190 and affected four million people in the country.7 

The cyclonic storm caused significant economic loss, destroying around 

300,000 acres of cropland and killing over one million livestock (Mallick and Vogt 

2012). 650,000 houses were destroyed fully or patially, causing a significant amount of 

repairment costs. Furthermore, a survey by Mallick et al. (2011) presents that 80% of 

workers lost their jobs and 40% changed their occupation. They also report the breakout 

of water-borne diseases, such as dysentery, cholera, diarrheal diseases, skin diseases and 

fever. 

In the face of these hardships, the affected people took various coping 

strategies, such as selling out own resources and changing occupation (Sultana and 

Mallick 2015). The government also provided them with Tk 3-5000 of cash and 20 kg 

of rice. However, the situation did not recover quickly, since the damaged infrastructure 

had not been reconstructed long. It appears from previous studies and my field 

interview that even two years after the cyclone attack, the land looked wasted in large 

areas (Mallick and Vogt 2012 p.224). The distribution of cash/food relief was also 

corrupted (Mahmud and Prowse 2012). Since the households with lower income have 

lower quality homes, they were affected more severely by the cyclones, and recovered 

more slowly (Mallick and Vogt 2015).  

There was an increase in robberies and violence after the cyclone (Azad and 

Khan 2015, Saha 2015). According to the field interview by the author, the stolen items 

mainly include small assets such as poultry and household utensils. As described in 

Section 4 with summary statistics, around 40% and 20% of the survey households 

experienced victimisation of property and violent crimes after the cyclone, respectively. 

                                                   
7 EM-DAT, accessed on 07 March 2017, http://www.emdat.be/disaster_list/index.html  
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4. Dataset 

I conducted a unique household survey in Satkhira District during December 2010, by 

employing the multistage stratified random sampling methodology. In the first stage, 

three upazila (sub-districts) of Kaliganj, Shamnagar, and Ashashoni were selected based 

on their economic status, the intensity of cyclone damage, and crime incidences. In the 

second stage, I randomly sampled two unions from each sub-district.8 In the next stage, 

four villages from each union and one para (cluster) from each village were selected 

randomly. In these para, the survey team created a list of all households. According to 

the list, the size of a para ranges from 27 to 189 households in the survey area and the 

average size is 67.1. This paper considers para as a unit of community. Finally, 18 

households were randomly chosen from each para based on the list. Since five 

households were unavailable for the survey, I obtained 427 of 432 sample households 

from 24 para. The total sample size and studied villages in this study is comparable or 

larger than the other quantitative and qualitative studies on Cyclone Aila, such as 

Mallick and Vogt (2012; 2014), Saha (2015), Mahmud and Prowse (2012), Sultana and 

Mallick (2015) and Mallick et al. (2011). Appendix Table A1 employs the Population 

and Housing Census 2011 (Bangladesh Bureau of Statistics 2014) to compare the 

socio-economic characteristics between the surveyed and not surveyed villages in 

Satkhira. It appears that there is no significant difference in demographics, industrial 

structure, and access to infrastructure, although a significant difference is observed in 

the material of housings. This supports the representativeness of the survey areas. 

                                                   
8 A union is an administrative unit in Bangladesh. Each union includes multiple 
villages. 
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The questionnaire consists of 13 modules: (1) the experience of post-cyclone 

crime victimisation; (2) self-reported cyclone damage; (3) evacuation behaviour; (4) 

geographical characteristics; (5) bilateral relationships among the survey households; 

(6) demographic characteristics and time allocation; (7) self-reported social capital; (8) 

asset holdings and savings; (9) disaster relief provided by the government and NGOs; 

(10) membership of microfinance institutions; (11) consumption; (12) labour and 

non-labour incomes; and (13) experience of unanticipated shocks (floods, pest, asset 

loss, and so forth). Although the survey was conducted only once in December 2010, 

the retrospective data on pre- and post-cyclone periods were collected regarding 

modules (7) to (13). 

The definition of post-disaster crime differs across studies depending on the 

context of the studies. Barsky et al. (2006) focuses on the theft of luxury goods 

unnecessary for survival, such as TV, while Siegel et al. (1999) and Zahran et al. (2009) 

cover a wider category of property crimes. The measures in this study take unity if the 

household experienced victimization of any types of property and violent crimes during 

the 18 months after the cyclone attack, respectively. 

This study employs the height of inundation at the residence as an exogenous 

determinant of cyclone damage to the residence and the other assets. Higher level of 

inundation indicates more severe asset loss and repairing costs of residence, and thus 

higher incentive to commit crime. A preferable feature of using this variable rather than 

a more direct measure, such as the value of asset loss, is the measurement accuracy. 

Although it is a self-reported variable, the survey respondents could observe the height 

accurately by checking out the eroded wall of their housing. In addition, since the mark 

of erosion on the wall remained even at the time of household survey, the enumerators 
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could also confirm the level. 

This study computes four indices of religious fractionalisation with this dataset: 

the number of religious groups in the para (Egel, 2013), an indicator of multiple 

religions, the proportion of households which does not constitute the religious majority 

of the community (Miguel and Gugerty, 2005), and the index proposed by Taylor and 

Hudson (1972) to analyse the ethno-linguistic fractionalisation. Therefore, this index is 

often referred to as the ELF index. This study applies this to the context of religious 

fractionalization. The ELF index is defined as 1 − ∑ ሺProportion of religion ݎሻଶ , 

indicating the probability that two people randomly drawn from the population are from 

distinct religions.9 Table A2 in Online Appendix lists the religious composition and 

fractionalisation indices of the sample communities. It appears that 11 of 24 para 

consist of multiple religious groups, and the four indices are positively correlated (Table 

A3).  

Figure 2 depicts the respondents’ timing of settlement in the current community. 

It appears that most survey households settled down between the 1947 partition and the 

1971 Liberation War. This pattern is similar regardless of their religion and 

fractionalisation of community, except for the distinction that non-fractionalised Hindu 

communities have resided earlier. This is consistent with the argument in Section 3.1 

that the population of the study area is largely influenced by refugees and displaced 

individuals. 

                                                   
9 Montalvo and Reynal-Querol (2005) suggest the use of polarisation rather than 
fractionalisation indices. However, since the samples include only four religious groups, 
the polarisation index is strongly correlated with the ELF index. Therefore, this study 
cannot differentiate between the polarisation and fractionalisation effects. Hence, 
although the use of polarisation index does not change the empirical result qualitatively, 
is not reported in the paper. 
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Table 1 compares the household characteristics relative to the religious 

fractionalisation and severity of cyclone damage. Panel A shows that 30–45% and 14–

27% of the households experienced victimisation with regard to property and violent 

crimes after the cyclone, respectively. The remaining variables are used in Section 6 to 

disentangle the underlying mechanisms. They show that the households in severely 

affected and religiously fractionalised communities trust the local government less. 

Among the affected communities, those in fractionalised communities are less likely to 

receive the relief from the government. Panel B of the table presents the geographic and 

pre-cyclone socio-economic characteristics across the four columns. It appears that 

economic inequality is larger, cyclone damage is smaller, and asset holdings are higher 

in fractionalised communities. These distinctions are potentially associated with the 

victimisation risk, suggesting the importance of controlling for them in the empirical 

analysis (Fafchamps and Minten, 2006; Barslund et al., 2007; Öster and Agell, 2007; 

Fougère et al., 2009).  

[Figure 2] 

[Table 1] 

 

5. The Impact of Religious Fractionalisation on Post-Disaster Crime 

5.1. Estimation Model 

This section estimates the impact of religious fractionalisation on post-disaster crime. 

Given that the underlying mechanism of post-disaster crimes is based on the 

behavioural patterns of criminals (Section 2), it should be straightforward to investigate 

the determinants of crimes committed by the survey respondents. However, since the 

data on crime incidence generally suffer from the under-reporting bias, this study rather 
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uses the households’ experience of crime victimisation, by following Gaviria and Pagés 

(2002), Barslund et al. (2007), Gibson and Kim (2008), and Cameron and Shah (2014). 

Exploiting the fact that a large proportion of crimes occur between the peers living in 

the same community (Faruk and Khatun, 2008), my testable hypothesis is that the 

probability of victimisation is expected to be higher in the severely affected and 

religiously fractionalised communities. Section 5.2 argues the validity of the assumption 

regarding the criminals and victims residing in the same para more carefully. 

Since my dataset does not include data on pre-disaster crime victimisation, this 

study examines the cross-sectional variation of disaster damage and controls for 

potential determinants of pre-disaster victimisation. Specifically, the following single 

probit model is estimated: 

 V = 1ሾߚ + 80݁݃ܽ݉ܽܦଵߚ + ܿܽݎܨ×80݁݃ܽ݉ܽܦଶߚ + +ܿܽݎܨଷߚ 50݁݃ܽ݉ܽܦସߚ + ݁݃ܽ݉ܽܦହߚ + ܺߛ + ߝ > 0ሿ (1)  

 

where V takes unity if household i in para h is victimised after the cyclone, and zero 

otherwise. ݁݃ܽ݉ܽܦ  denotes the height of inundation (feet) at the residence of 

household i. 80݁݃ܽ݉ܽܦ and 50݁݃ܽ݉ܽܦ are the 80th percentile and the median of ݁݃ܽ݉ܽܦ  in para h, respectively. These variables capture the extent of cyclone 

damage to neighbour households. ܿܽݎܨ  denotes the index of religious 

fractionalisation. Finally, ܺ includes the timing of settlement, asset holdings, religion, 

demographics, geographic characteristics, and the standard deviation of the value of 

landholdings across the survey households in para h. This study employs clustered 

standard errors to address the correlation of residuals within a para. 
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The idea of controlling for ݁݃ܽ݉ܽܦ, ݃ܽ݉ܽܦ 80, and 50݁݃ܽ݉ܽܦ is 

as follows. Assuming the damage level to household i (݁݃ܽ݉ܽܦ) as constant, the 

damage to neighbour households has a positive effect on the victimisation risk of 

household i. In particular, the severity of damage to the worst affected neighbours 

 should be associated with the victimisation risk more than moderately (80݁݃ܽ݉ܽܦ)

affected neighbours (50݁݃ܽ݉ܽܦ ). Therefore, this study controls for these three 

variables and investigates the heterogeneous effect of 80݁݃ܽ݉ܽܦ across religious 

fractionalisation. In this estimation model, it is expected that ߚଶ > 0.  

 

5.2. Identification Strategy 

The estimation of Equation (1) relies on the following five conditions. First, the crime 

incidences or disaster damages do not enhance migration, and therefore do not affect the 

religious composition of the communities. Mallick and Vogt (2012) and Saha (2015) 

have found the increases in migration after Cyclone Aila from the severely affected 

regions, such as Samnagar and Assasuni upazila, to the urban regions, such as Satkhira 

Sadar upazila. However, I still consider that the migration was not accelerated enough to 

influence the religious composition for three reasons. First, Mallick and Vogt (2012, 

p226) claim that only male members of the household migrated, while females and 

children stayed in the village. Saha (2015) also argues the migration as a risk coping 

strategy, but the study sites include only three most severely affected villages which 

were non-randomly selected. On the contrary, this study uses the stratified random 

sampling to select 24 villages and Saha’s study sites are not included. Second, if many 

households in the severely affected areas had indeed migrated to the urban areas, the 

population growth in Samnagar and Assasuni upazila should have been slower than the 
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other upazila, and particularly Satkhira Sadar upazila should have experienced 

remarkable population growth. To test this, Appendix Table A4 reports the annual 

population growth between 2001-2011 in the first column and between 1981-2001 in 

the second column, respectively. The third column shows the difference between these 

periods. It appears that the population growth in Assasuni and Samnagar did not 

necessarily slow down from 1981-2001 to 2001-2011 compared to the other upazila. 

Satkhira Sadar did not experience the rapid population growth either. A similar pattern 

is observed when analyzing Muslims and non-Muslims separately. These findings do 

not fit the hypothesis. Finally, the Household Income and Expenditure Survey (HIES) 

2010 – a nationally representative survey conducted in the next year of Cyclone Aila – 

shows that among the respondents who experienced negative shocks in 2009, such as 

disasters, only 2.42 % chose migration as a risk coping strategy (Bangladesh Bureau of 

Statistics 2011).  

This stability is presumably because land transactions are not frequent in rural 

Bangladesh. The main ways of obtaining land are either as an inheritance or as dowry, 

making it difficult for rural households to obtain a land from those belonging to a 

different religion or to migrate to other villages.10 In fact, Mallick et al. (2011) also 

explicitly mention that as Bangladesh is already extremely densely settled, relocation of 

coastal people in inland region is not possible. These findings suggest that the impact of 

migration on changes in the religious composition is limited. 

The second condition is conditional independency of religious fractionalisation 

and cyclone damage to the community. Although it is not well known how the residents 

                                                   
10 According to the survey by Ahmed (2005), only 11% of the rural households 
purchased land. 
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of religiously fractionalised communities were determined, I indirectly test the 

conditional independency by conducting a placebo test. Given the unavailability of data 

on pre-disaster victimisation, however, I regress four pre-disaster socio-economic status 

that are related with victimisation—household income, the size of risk-sharing network, 

trust in the local government, and general trust—on the independent variables of 

Equation (1).11 The first three of the four variables are the determinants of pre-disaster 

victimisation, while the last one is a consequence of victimisation. Cook (1986) argues 

that both poor and wealthy individuals could be targeted as victims. He also claims that 

socially isolated individuals tend to be victimised. Furthermore, the poor governance of 

the local government leads to an ineffective law enforcement authority and thus higher 

victimisation risk. Since the benefit from the local government may differ across 

socio-economic status and religions within a community, this study investigates 

household i’s trust in the local government rather than a direct indicator of governance. 

Finally, those facing higher victimisation risk should trust the others less. Thus, a 

positive or negative coefficient of interaction term in the equation of household income, 

and a negative coefficient in the equation of risk-sharing network size, trust in the local 

government, and general trust indicate the possibility of spurious correlation.  

The results of the placebo test are reported in Table 2. It appears that after 

controlling for the observed characteristics, the socio-economic status in the pre-cyclone 

period are uncorrelated with religious fractionalisation and cyclone damage, supporting 

                                                   
11 The data on risk-sharing network is obtained from the following question: how many 
households in the village could you call for help if you are in need? General trust is 
based on the subjective information elicited by the following question: generally 
speaking, would you say that; (1) most people can be trusted; (2) you can't be too 
careful; or (3) no idea. The indicator of general trust takes unity if the answer is (1) or 
(3), and zero otherwise. Trust in the local government is also elicited by a similar 
question. 
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the validity of my empirical strategy. This result is plausible in the context of Satkhira 

District. Since it is located in a river-delta plain, most communities are homogenous in 

terms of proximity to rivers (and hence the cyclone risk) and industrial structure. 

Furthermore, the path of each cyclone is randomly determined. Therefore, it is difficult 

to anticipate the severity of potential damage from Aila beforehand and choose the 

location of residence based on the risks. Regarding the conditional independency of 

religious fractionalisation, as documented in the previous sections, the religious 

composition of the study site was substantially influenced by the refugees and the 

internally displaced individuals. Presumably, such individuals who migrated to Satkhira 

during the chaotic periods could not systematically select the community in which they 

settled regardless of their socio-economic status and religion, because they were 

unfamiliar with the geographic and economic conditions of the area. 

[Table 2] 

Third, the use of fractionalisation and cyclone damage at the para level 

assumes that the criminals and victims reside in the same para. Although it is difficult to 

provide rigorous evidence to justify this assumption given the unavailability of 

information on the criminals, it could still be plausible because individuals should face 

limited mobility after the cyclone due to the severe inundation of road. In addition, 

Faruk and Khatun (2008) show that 71.8% of crime incidences in 2007 occurred in 

disaster-affected districts, and 64% of crimes were committed by peers. This suggests 

that post-disaster crimes occur between peers. However, there still is a remaining 

possibility that crimes were committed by the peers residing in the other para. This 

possibility may affect the interpretation of estimation result if the villagers in the 

religiously fractionalized and severely affected para have larger peer group outside the 
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para. In order to test this, I exploit two variables at the pre-cyclone period: size of risk 

sharing network outside the village, and self-reported trust in the residents of the other 

villages. I regress these variables on the same independent variables as Equation (1). 

Unfortunately I cannot examine the social network in the other para of the same village 

due to the data unavailability. The result is reported in Table A5. It shows that the 

network size and trust are uncorrelated or correlated in the opposite direction with the 

religious fractionalization and cyclone damages, supporting the validity of identification 

strategy. In addition to this, I also address the potential concern regarding the crime 

incidences across para in Section 5.4 by employing an alternative dataset. 

Fourth, 80݁݃ܽ݉ܽܦ 50݁݃ܽ݉ܽܦ , , and ܿܽݎܨ , may be subject to the 

measurement error, because they are computed based on the data from the survey 

households rather than the entire population in the community. Nevertheless, the 

sampling methodology used in this study enables us to minimise the error. The height of 

inundation at home is highly correlated with the location of the house. Similarly, 

villagers of the same religion form sub-clusters and live close to each other. Therefore, 

the measurement error could be large if the survey households are coincidentally 

selected from particular areas in the para intensively. However, I sampled the survey 

households with equally-spaced intervals in each para. 

Finally, the dataset needs to have enough variations in the religious 

fractionalisation and cyclone damage to estimate the treatment effect precisely. This 

issue may be crucial because although this study exploits the treatment variable at the 

community level, the survey was conducted in only 24 communities. However, as 

shown in Appendix Figure A1, presenting the histogram of 80݁݃ܽ݉ܽܦ relative to 

religious fractionalisation, we can find a variation over the damage levels in both 
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fractionalised and non-fractionalised communities. In addition, the analysis using small 

sample data could be sensitive to outliers, but Appendix Figure 2—depicting the 

correlation among 80݁݃ܽ݉ܽܦ, religious fractionalisation, and victimisation rate at the 

community level—shows that the data do not contain outliers. This study also addresses 

this concern by conducting various robustness checks, including the analysis using an 

alternative district-level dataset. 

 

5.3. Benchmark Result 

Table 3 presents the estimation results of Equation (1). The table shows different 

patterns between property and violent crimes. With regard to the property crime, the 

fractionalised communities without the disaster shock or the non-fractionalised 

communities experiencing a shock do not suffer from high crime incidence.12 The 

crime incidence is significantly high only in the fractionalised and disaster-affected 

communities. Column 2 indicates that the impact of a one-foot increase in the height of 

inundation on increasing the victimisation risk is larger by 5.6 percentage point in the 

fractionalised communities. On the other hand, victimisation related to violent crime is 

weakly exacerbated by disaster shocks or religious fractionalisation on average. 

Furthermore, after controlling for the fractionalisation variables, one’s religion does not 

predict the patterns of his/her victimisation risks. 

Intriguingly, the level of cyclone damage to the household or asset holdings do 

not predict the propensity to be a victim. Although educated households are more likely 

to be victims of property crimes, the land holdings are not associated with victimisation, 

                                                   
12 The coefficients of Damage80 are counter-intuitively negative, although statistically 
insignificant. However, the signs vary across specifications, as shown in Section 5.5. 
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and the coefficient of the value of grain storage is rather negative. Related with this, the 

victims of property crimes are fewer in para with higher asset inequality. Although 

these findings are different from the prediction of Becker (1968), they are in fact 

consistent with the statistics of Faruk and Khatun (2008) and argument in Section 3: 

those who are geographically and socio-economically close to potential criminals and 

those who cannot call for help to law enforcement authorities are more likely to be 

victimised. Consequently, the wealthy households are not necessarily targeted as victims 

of crime in rural Bangladesh. This study analyses this point more carefully in Section 

5.6. With regard to the other control variables, the households living close to paved 

roads are more likely to be victims.  

[Table 3] 

 

5.4. Evidence from District-Level Data 

A potential concern regarding the use of survey data is the small sample size of the 

community-level variables. In particular, the data may not show sufficient variations of 

the cyclone damage and religious fractionalisation, given that the sample communities 

were selected only from one district. Another issue is that the validity of the estimation 

model relies on the assumption that the criminal and victim reside in the same 

community.  

In order to address these issues, this section employs an alternative dataset at 

the district level. Since the administrative data on crime rate usually face the problem of 

under-reporting, I use the data collected by Faruk and Khatun (2008). They surveyed 

164,526 crime incidences that occurred in all Bangladeshi districts in the year 2007, 
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based on police reports and four major daily newspapers.13 Although there may exist 

some petty crimes that were not reported on the newspapers, I still believe that this is 

the most reliable statistics available. In 2007, when the data were collected, 39 of 64 

districts were affected by a nation-wide flood since July until September. Hence, this 

study combines these data to test whether the crime rate was higher in the flood-affected 

and religiously fractionalised districts. Specifically, this study estimates the following 

OLS model: 

ௗ݁݉݅ݎܥ  = ߚ + ௗ݈݀ܨଵߚ + ௗܿܽݎܨ×ௗ݈݀ܨଶߚ + +ௗܿܽݎܨଷߚ ௗ݊݅ݐ݈ܽݑସܲߚ +  ௗߝ

(2) 

 

where ݁݉݅ݎܥௗ denotes the number of crime incidences per 100,000 people in district d. ݈݀ܨௗ  and ܿܽݎܨௗ  represent the proportion of flood-affected areas (or affected 

population) and the religious fractionalisation index in district d, respectively. Finally, ܲ݊݅ݐ݈ܽݑௗ  denotes the total population of the district. The data on religious 

composition and population are collected from the 2001 population census (Bangladesh 

Bureau of Statistics, 2007), and those on flood damages are obtained from the Disaster 

Management Bureau (2007, pp.7). Table 4 presents the result. The coefficients of the 

interaction term are positive and significant for three of the four specifications, 

consistent with the result of Table 3. 

[Table 4] 

                                                   
13 This crime statistics includes eight types of crime: property crime (34.0%), organised 
crime (22.7%), hate crime (16.0%), violent crime (15.0%), innocent victimisation 
(11.0%), victimless crime (1.0%), public order crime (0.3%), and political crime 
(0.04%). 
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5.5. Further Robustness Checks 

The first potential issue in the benchmark result is that the religious fractionalisation 

indices could be correlated with the proportion of non-Muslims in the community. 

Given the argument that non-Muslims tend to be victimised, the estimated coefficients 

of religious fractionalisation may simply capture the existence of non-Muslims. In order 

to test this, I additionally control for the proportion of non-Muslims and its interaction 

with 80݁݃ܽ݉ܽܦ . The result is presented in Table A6 in Online Appendix. The 

estimated effect of fractionalisation is still significant and the proportion of 

non-Muslims does not predict the patterns of victimisation risks. 

 Second, religious fractionalisation is weakly but positively correlated with the 

community size (Table A2).14 The coefficient of religious fractionalisation in Table 3 

may capture the impact of community size. Thus, I additionally control for the 

community size and its interaction with 80݁݃ܽ݉ܽܦ. The result in Table A7 still 

presents the statistically significant impact of religious fractionalisation.  

 Third, the fractionalisation index may also be correlated with the distance to 

the India-Bangladesh border. The communities close to the border may be prone to 

crime because of smugglers and brokers of human trafficking. In my dataset, eight of 24 

communities are located relatively close to the border. Therefore, I additionally control 

for the interaction between 80݁݃ܽ݉ܽܦ and the indicator for the eight communities. 

The result does not change qualitatively (Table A8). 

 Fourth, given the unavailability of pre-disaster victimization data, I also 

                                                   
14 The community size is significantly correlated with the number of religious groups 
(ρ=0.36, p-value=0.087), but not with the other three fractionalisation indices. 



27 
 

estimate Equation (1) with additionally controlling for four pre-cyclone variables which 

are used as dependent variables in the placebo test. Although these variables could be 

endogenous, it is still informative to know to what extent the estimation result changes 

in the alternative specification. The result is presented in Table A9 and does not change 

qualitatively.  

 Fifth, I also examine the relative importance of omitted variable bias driven by 

unobserved geographic characteristics and cyclone damage. Specifically, I estimate 

Equation (1) without controlling for height of inundation at home, duration of 

inundation on the paved road, a dummy if road to cyclone shelter is available, distance 

between home and local government office, and distance between home and paved road. 

The result is presented in Table A10. The coefficient of interest in this specification is 

smaller than the benchmark result. This implies that the estimated treatment effect 

would be even larger than that shown in Table 3 if the unobserved characteristics were 

fully controlled for. 

Sixth, if the religious fractionalisation and cyclone damage increase the 

post-disaster crime and this has a negative impact on the social capital of the community, 

we may observe lower social capital in the severely affected and religiously 

fractionalised communities. Therefore, I also examine the impact on general trust in the 

post-disaster period. Again, I find supporting evidence (Table A11). 

Seventh, in the benchmark estimation, the cyclone damage at the para level is 

characterised by the 80th percentile (Damage80) and median height (Damage50) of 

inundation at home. I also estimate the model that uses the mean height of inundation. 

The result is reported in Table A12, and is shown to be robust. 

Finally, the small sample size of the survey communities makes the estimation 
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results sensitive to the outlier in the community-level variables. In order to address this 

issue, this study estimates Equation (1) by using OLS, which is less sensitive to the 

outlier than the probit model. In addition, this study analyses the interaction of binary 

treatment variables, namely the indicator of fractionalised community and a dummy 

variable indicating whether 80݁݃ܽ݉ܽܦ is higher than the sample median (two feet). 

The results are reported in Table A13, and they do not differ from the benchmark 

specification qualitatively. 

 

5.6. Who is Victimised in Fractionalised Communities? 

So far, it has not been uncovered as to who is particularly victimised in the religiously 

fractionalised and severely affected communities. The victimisation risk could vary 

across religions and wealth. The historical background presented in Section 3 predicts 

that non-Muslims could be more likely to be victimized than Muslims. Wealthy 

households may face higher risk of victimization, given higher material payoff for the 

criminals in case of succeeding in the theft (Becker 1968). On the contrary, poor 

households cannot invest in the crime prevention technology, or do not have social 

network with the village authorities, such as the leader and police. This, in turn, 

increases the probability of succeeding in the theft, aggravating the victimization risk 

(Cook 1986). Thus, the impact of wealth is an empirical question. Therefore, this 

section compares the estimation results of Equation (1) between the subsamples of 

Muslims and non-Muslims (Table 5), and between landed and landless households 

(Table 6).  

 It is demonstrated from Tables 5 and 6 that the socio-economically vulnerable 

households, such as non-Muslims and landless households, are more likely to be 
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victimised. While the impact on the property crime is comparable between the Muslims 

and non-Muslims in fractionalised and cyclone-affected communities, the Muslims in 

such communities tend to be targets of violent crime as well. For the landed households, 

the impact on property crime becomes insignificant for all specifications, but the impact 

for landless households remains large and statistically significant.  

 Why do the criminals not target landed households, even though the material 

payoff from stealing is higher? There are two potential explanations. First, landed 

households are connected with village leaders and police, and therefore, it is too risky to 

steal their properties. Second, they invest more to protect their properties, and therefore, 

the probability of succeeding in the crime is too low. My data fit the first explanation; 

land holding is positively and significantly correlated with the indicator of knowing the 

village leader personally (ρ=0.13, p-value=0.007). On the other hand, it is uncorrelated 

with the investment into crime prevention technology.15 

[Table 5] 

[Table 6] 

 

6. Underlying Mechanisms of Post-Disaster Crime 

This section disentangles four channels through which religious fractionalisation 

triggers the post-disaster crime.  

 

6.1. Misallocation of disaster reliefs 

                                                   
15 The survey households are considered to be connected with the village leader if they 
self-report that the relationship with the leader is relative, friend or neighbour. The 
investment into crime prevention technology is captured by three indicators, such as 
locking the door of residence (ρ=0.02, p-value=0.679) and livestock hut (ρ=-0.07, 
p-value=0.307), and watching livestock when feeding them (ρ=0.033, p-value=0.635).  
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In the context of Bangladesh, the Vulnerable Group Feeding (VGF) programme 

provides disaster-affected households with food. The survey data show that 40% of the 

households received the relief after the cyclone and the average amount is 

approximately Tk 2,100 which is equivalent to three weeks’ worth of income in the 

study area. The beneficiaries of the relief programme are selected by the local 

committee members based on the severity of damage, income, land holding, gender of 

household head, and so forth. It may be the case that disasters make the local 

governance of the communities with religiously fractionalised committee members less 

effective than those with non-fractionalised members, and hence, the former may not be 

able to choose the relief beneficiaries properly. 

The explanatory power of this channel is examined by conducting the 

following three tests: 1) whether the cyclone damage aggravates the local governance 

particularly in the religiously fractionalised communities; 2) whether the 

cyclone-affected households in religiously fractionalised communities are less likely to 

receive the disaster relief than those in non-fractionalised communities; and finally 3) 

whether the victimisation risk in fractionalised communities is particularly higher if a 

larger proportion of community members are severely affected by the cyclone but do 

not receive the relief.  

First, I approximate the local governance by using the indicator of trust in the 

local government. I regress the first difference of this indicator before and after the 

cyclone on the control variables of Equation (1) with the ordered probit model.16 

Regarding the second test, I estimate the following probit model to investigate 

                                                   
16 Note that the trust in the local government in the pre-cyclone period is shown to be 
uncorrelated with fractionalisation or cyclone damage (Table 2). 
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the effect of inundation at home (݁݃ܽ݉ܽܦ) on the propensity for the household to 

receive disaster relief from the government, and how the effect differs between 

fractionalised and non-fractionalised communities: 

 ܴ݈݁݅݁ ݂ = 1ሾߚ + ݁݃ܽ݉ܽܦଵߚ + ܿܽݎܨ×݁݃ܽ݉ܽܦଶߚ + +ܿܽݎܨଷߚ 80݁݃ܽ݉ܽܦସߚ + 50݁݃ܽ݉ܽܦହߚ + ܺߛ + ߝ > 0ሿ (3) 

 

where ܴ݈݁݅݁ ݂  takes unity if household i in para h received relief from the 

government after the disaster, and zero otherwise. The height of inundation at home 

captures the eligibility for the household to receive the relief, and therefore, I test to 

what extent fractionalisation influences the propensity to receive the relief, given the 

equal level of eligibility. The smaller effect of inundation on the probability of receiving 

the relief in fractionalised than non-fractionalised communities is consistent with the 

hypothesis; i.e., ߚଵ > 0 and ߚଶ < 0. 

Finally, in order to investigate whether the victimisation risk is indeed higher in 

the communities with severe misallocation of disaster relief, I compute the proportion of 

households in the community except household i, which are inundated more than the 

sample median (two feet) but did not receive the relief from the government, ܲݎ. 
Then, I additionally control for the proportion interacted with 80݁݃ܽ݉ܽܦ×ܿܽݎܨ in 

Equation (1) as follows: 

 V = 1ሾߚ + 80݁݃ܽ݉ܽܦଵߚ + ሺߚଶ + +ܿܽݎܨ×80݁݃ܽ݉ܽܦ×ሻݎଶଵܲߚ ܿܽݎܨଷߚ + 50݁݃ܽ݉ܽܦସߚ + ݁݃ܽ݉ܽܦହߚ + ܺߛ + ߝ > 0ሿ (4) 
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If the crimes in the fractionalised communities are committed by the severely affected 

but uninsured individuals, we should observe ߚଶ = 0 and ߚଶଵ > 0. Although the 

proportion of affected and uninsured households is admittedly non-random, it is still 

insightful to show the correlation as suggestive evidence. 

 Tables 7–9 present the results. Overall, the results are consistent with the 

hypothesis, although the result in Table 7 is relatively unstable. In Table 7, the 

coefficients of interaction terms are negative for all specifications as expected, but the 

first and third columns are statistically insignificant. Regarding Table 8, the coefficients 

of inundation at home are significantly positive and the interaction terms are 

significantly negative for all specifications, supporting the hypothesis. Column 2 shows 

that while a one-foot increase in the inundation level significantly raises the propensity 

to receive government relief by 13.3 percentage point in the non-fractionalised 

communities, the corresponding figure for the fractionalised communities is -3.7 

percentage point (0.133–0.170). The latter figure is statistically insignificantly different 

from zero. In addition, the coefficients of fractionalisation, ߚଷ, are positive, implying a 

higher incidence of inclusion errors in the fractionalised communities. Non-inundated 

households in the fractionalised communities are 24.5 percentage point more likely to 

receive the relief than those in the non-fractionalised communities (Column 2). 

Furthermore, I also conduct the same estimation models using the subsamples of 

Muslims, non-Muslims, landed households, and landless households, and obtain 

qualitatively comparable results for all specifications; the cyclone-affected households 

in the fractionalised communities are excluded from the relief beneficiaries regardless 
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of their religion and wealth.17 Finally, Table 9 also supports the hypothesis. It appears 

that high victimisation risk in the fractionalised and severely affected communities is 

observed only when the proportion of affected but uninsured neighbour households is 

large.  

[Table 7] 

[Table 8] 

[Table 9] 

 

6.2. Inefficient Risk sharing 

The frequent post-disaster crime in the fractionalised communities can also be driven by 

the inefficient risk-sharing arrangement. This study tests this channel by estimating a 

similar model to Equation (3). Here, the dependent variables are binary variables that 

indicate the receipt of informal assistance from neighbours, such as gifts and loans 

without interest. If the risk-sharing arrangement is inefficient and cannot pool the 

idiosyncratic shock in the fractionalised communities, we should observe ߚଵ > 0 and ߚଶ < 0. The results in Table 10, however, suggest that this channel is not likely to 

explain the high victimisation risk in fractionalised and severely affected communities.  

[Table 10] 

 

6.3. Increasing Income Inequality 

The cyclone could have enlarged income inequality, particularly in the fractionalised 

communities, and this could be the driver of high victimisation risk in such 

                                                   
17 The results are not reported in the paper, but are available from the corresponding 
author upon request. 
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communities. However, the data suggest that this is not likely. Before the cyclone, the 

standard deviation of monthly household income is larger in fractionalised communities 

(avg. = 3.43) than in non-fractionalised communities (avg. = 2.90). After the cyclone, 

however, it rather decreases in both communities and is smaller in the fractionalised 

communities (1.19 in non-fractionalised communities and 1.07 in fractionalised 

communities). The comparison based on the coefficient of variation does not differ 

qualitatively. This is inconsistent with the underlying assumption. 

 

6.4. Political Tension 

Finally, the channel through the increased political tension cannot fully explain the 

observed patterns of victimisation risk either. First, the riots for political purpose are 

often accompanied by violent attacks; however, as shown in Table 3, fractionalisation 

triggers only property crimes. Second, if some political tension exists before the cyclone, 

households in the fractionalised communities should exhibit lower trust in the local 

government in the pre-disaster period. The result from Table 2 is, however, counter to 

the prediction. Third, if the post-disaster crimes are driven by political tension, the 

landed households who are connected with the village leaders should be victimised. 

However, it is found that rather the landless are victimised (Table 6). Finally, this survey 

includes the question regarding the time allocation for political activities. It appears that 

less than 5% of the households spent time for political activities during 2009–2010, and 

it is correlated with neither the fractionalisation index, crime victimisation, or religion.18  

 

                                                   
18 The statistics are not reported in the paper, but are available from the corresponding 
author upon request. 



35 
 

7. Conclusions 

Using household-level and district-level datasets of Bangladesh, I showed that religious 

fractionalisation significantly aggravates the victimisation risk of post-disaster crime. In 

particular, the non-Muslims and landless households in the fractionalised communities 

are more likely to be victimised. Further analyses provide supporting evidence that the 

high victimisation risk is driven by poor targeting accuracy of disaster relief 

programmes; severely affected but uninsured households commit crime to smooth their 

consumption.  

In allocating the disaster relief to the affected individuals accurately, good 

governance is essential (Coady et al., 2004). Many researchers have claimed that good 

governance mitigates human loss (Kahn, 2005; Meng et al., 2015), reduces poverty 

(Fafchamps, 2003), and facilitates socio-ecological resilience (Adger et al., 2005) 

during and after disasters. In addition to these, this study suggests the importance of 

local governance in controlling the post-disaster crimes.  

Two policy implications can be derived from these arguments. First, in 

fractionalised communities, the disaster relief programmes based on self-selection 

targeting such as Food/Cash For Work may be recommended, since the targeting 

accuracy of these programmes is less likely to be affected by the local governance. 

Second, since the affected households commit crime to smooth consumption, 

development of formal insurance institutions for covariate disaster shock could be 

helpful to control crime. However, these suggestions must be interpreted with caution, 

since they hinge on the validity of my identification strategy and the small sample 

dataset. 
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Note: the 1974 census does not report the religious composition of Satkhira district. 

Figure 1: Religious Composition of Satkhira District: 1951–2011 
 

 

 
Figure 2: Cumulative Distribution Function of Year of Settlement 
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Table 1: Summary Statistics Relative to Religious Fractionalisation and Cyclone Damage 

Multiple religious groups in the para? Yes No 

At least 20% of residences were inundated? Yes 
(1) 

No 
(2) 

Yes 
(3) 

No 
(4) 

 Mean S.D. Mean S.D.  Mean S.D.  Mean S.D.  
Panel A: Dependent Variables            
1 if victim of property crime after the cyclone 0.45  0.44   0.30  *** 0.44   
1 if victim of violence crime after the cyclone 0.27  0.26   0.14  *** 0.17   
1 if trust the local government after the cyclone 0.75  0.98  *** 0.89  *** 0.81   
1 if recipient of disaster relief 0.27  0.26   0.60  *** 0.17   
  The amount of relief if recipient (Tk) 1521 3473 1660 2766 --- 2496 2428 --- 1416 2018 --- 
1 if recipient of interest-free informal loans 0.11  0.13   0.13   0.09   
  The amount of loans if recipient (Tk) 782 3623 107 401 --- 679 2063 --- 2222 6666 --- 
1 if recipient of gift/remittance 0.08  0.04   0.05   0.02   
  The amount of gift/remittance if recipient (Tk) 442 2267 0.00 0.00 --- 339 1929 --- 0.00 0.00 --- 
            
Panel B: Independent Variables            
Cyclone Damages            
Height of inundation at home (ft) 1.72 1.74 0.06 0.30 *** 2.84 1.30 *** 0.19 0.62 *** 
Duration of inundation on the paved road 
(month) 0.38 1.01 0.00 0.00 *** 0.60 1.75  0.08 0.25 ** 

1 if road to cyclone shelter is available 0.43  0.44   0.29  *** 0.59  ** 
            
Geographic Characteristics            
Distance between home and local government 
office (km) 2.61 1.80 2.72 1.89  3.65 3.16 *** 1.94 1.06 ** 

Distance between home and paved road (km) 0.55 0.71 0.39 0.29  0.75 1.23 * 0.27 0.60 ** 
            
Demographics            
Household size 4.10 1.46 4.37 1.74  4.46 1.62 ** 4.20 1.35  
Proportion of males aged 15 or over 0.38 0.19 0.36 0.19  0.35 0.16  0.36 0.15  
Age of head 43.67 13.20 46.54 12.94  44.22 13.29  41.39 12.92  
Schooling years of head 4.67 3.99 4.70 3.66  4.16 3.67  3.96 3.77  
Female head 0.06  0.07   0.03   0.06   
            
Socio-Economic Characteristics            
Muslim 0.32  0.43   0.69  *** 1.00  *** 
Hindu 0.55  0.57   0.31  *** 0.00  *** 
Christian 0.01  0.00   0.00   0.00   
Buddhist 0.12  0.00  *** 0.00  *** 0.00  *** 
Year of settlement in the current residence 1970 21.33 1963 23.33 ** 1968 22.57  1971 19.73  
Standard deviation of land assets within para 
(106 Tk) 0.27 0.23 0.46 0.30 *** 0.12 0.14 *** 0.36 0.27 ** 

Value of land assets (106 Tk) 0.19 0.38 0.23 0.55  0.07 0.20 *** 0.11 0.44  
Value of livestock assets (Tk3) 13.91 52.85 15.61 18.53  4.03 9.88 ** 8.82 30.11  
Value of grain stock assets (Tk3) 1.12 3.24 1.72 3.98  0.21 0.97 *** 1.08 3.00  
Value of deposit (Tk3) 4.61 18.93 6.27 16.21  2.80 6.78  2.32 4.79  
1 if own cell phone 0.31  0.48  ** 0.36   0.15  ** 
Obs. (Households/Communities) 142/8 54/3  177/10  54/3  

The mean difference from Column (1) is reported. * p<0.1. ** p<0.05. *** p<0.01. --- not tested. 
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Table 2: Placebo Test  
  Pre-Cyclone Household Income Pre-Cyclone Risk Sharing Network 

(1) (2) (3) (4) (5) (6) (7) (8) 
80th percentile of height of inundation -0.195 -0.014 -0.057 0.018 -0.749 0.091 0.297 -0.206 

(0.287) (0.251) (0.293) (0.271) (0.918) (0.694) (0.667) (0.687) 
  × Number of religions in the para 0.181    0.542    

(0.109)    (0.322)    
  ×1 if multiple religions  0.163    0.469   

 (0.148)    (0.401)   
  ×1 – (proportion of majority in the para)   1.853    2.237  

  (1.639)    (4.760)  
  ×ELF index    0.534    2.871 

   (0.707)    (1.813) 
Number of religions in the para -0.591*    0.090    

(0.317)    (1.217)    
1 if multiple religions  -0.505    -0.690   

 (0.404)    (1.309)   
1 – (proportion of majority in the para)   -4.321    -5.708  

  (2.874)    (7.002)  
ELF index    -1.915    -3.017 

   (1.396)    (3.961) 
Median height of inundation -0.369* -0.348 -0.341 -0.404* 0.374 -0.035 -0.265 0.274 
 (0.214) (0.221) (0.245) (0.212) (0.991) (0.938) (0.950) (0.971) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 427 427 427 427 

Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table 2: Continued  
  Pre-Cyclone Trust in Local Government Pre-Cyclone General Trust 

(9) (10) (11) (12) (13) (14) (15) (16) 
80th percentile of height of inundation -0.031 -0.039 -0.025 -0.041 0.016 0.039* 0.034 0.030 

(0.037) (0.031) (0.035) (0.032) (0.032) (0.020) (0.024) (0.021) 
  × Number of religions in the para -0.010    0.025 

(0.020)    (0.020) 
  ×1 if multiple religions  -0.017   0.031 

 (0.021)   (0.020) 
  ×1 – (proportion of majority in the para)   -0.287  0.086 

  (0.206)  (0.179) 
  ×ELF index    -0.068 0.088 

   (0.098) (0.073) 
Number of religions in the para 0.069    -0.020 

(0.051)    (0.054) 
1 if multiple religions  0.087   -0.028 

 (0.063)   (0.065) 
1 – (proportion of majority in the para)   0.686*  0.215 

  (0.416)  (0.333) 
ELF index    0.318 0.090 

   (0.223) (0.152) 
Median height of inundation 0.056 0.056 0.048 0.063 -0.005 -0.005 0.021 0.019 
 (0.036) (0.040) (0.046) (0.042) (0.024) (0.026) (0.028) (0.025) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 406 406 406 406 

The marginal effects at the mean are reported. Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table 3: The Impact of Religious Fractionalisation on Post-Disaster Crime Victimisation 

  Property Crime Victimization Violent Crime Victimization 
 (1) (2) (3) (4) (5) (6) (7) (8) 
80th percentile of height of inundation -0.079 -0.049 -0.045 -0.045 -0.085 -0.063 -0.055 -0.059 

(0.055) (0.042) (0.046) (0.046) (0.063) (0.050) (0.050) (0.046) 
  ×Number of religions in the para 0.043**    0.023    

(0.022)    (0.030)    
  ×1 if multiple religions  0.056***    0.025   

 (0.019)    (0.035)   
  ×1 – (proportion of majority in the para)   0.418**    0.488  

  (0.204)    (0.306)  
  ×ELF index    0.238**    0.235* 

   (0.103)    (0.132) 
Number of religions in the para -0.030    0.048    

(0.060)    (0.099)    
1 if multiple religions  0.003    0.086   

 (0.059)    (0.120)   
1 – (proportion of majority in the para)   -0.496    -1.043*  

  (0.309)    (0.582)  
ELF index    -0.283    -0.468 

   (0.177)    (0.320) 
Median height of inundation -0.042 -0.026 -0.029 -0.037 0.010 0.017 -0.027 -0.020 

(0.051) (0.044) (0.051) (0.051) (0.061) (0.063) (0.064) (0.059) 
Height of inundation at home 0.011 0.010 0.009 0.010 0.011 0.010 0.011 0.012 

(0.023) (0.023) (0.023) (0.023) (0.021) (0.021) (0.022) (0.022) 
Log (Year of settlement) 0.007 0.006 0.003 0.004 0.021 0.020 0.015 0.016 
 (0.050) (0.049) (0.049) (0.049) (0.029) (0.028) (0.031) (0.030) 
Duration of inundation on the paved road  -0.036 -0.033 -0.038 -0.036 0.009 0.012 0.007 0.008 
(month) (0.027) (0.026) (0.029) (0.028) (0.014) (0.013) (0.012) (0.012) 
1 if road to cyclone shelter is available -0.071 -0.073 -0.072 -0.072 -0.171** -0.172** -0.175** -0.174** 

(0.060) (0.060) (0.060) (0.060) (0.071) (0.071) (0.072) (0.072) 
Distance between home and local government  0.002 0.001 0.003 0.003 0.007 0.005 0.006 0.006 
office (km) (0.013) (0.013) (0.013) (0.013) (0.009) (0.009) (0.009) (0.009) 
Distance between home and paved road (km) -0.057* -0.058* -0.054 -0.059* -0.035 -0.037 -0.038 -0.041 

(0.033) (0.032) (0.034) (0.033) (0.031) (0.031) (0.032) (0.033) 
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Household size -0.007 -0.007 -0.008 -0.008 -0.017 -0.017 -0.018 -0.018 
(0.016) (0.016) (0.016) (0.016) (0.015) (0.015) (0.016) (0.016) 

Proportion of males aged 15 or over 0.033 0.029 0.019 0.031 -0.092 -0.100 -0.086 -0.084 
(0.134) (0.133) (0.133) (0.134) (0.122) (0.119) (0.122) (0.130) 

Age of head 0.002 0.002 0.002 0.002 -0.001 -0.001 -0.001 -0.001 
(0.012) (0.012) (0.012) (0.012) (0.008) (0.008) (0.008) (0.008) 

Age squared (×103) -0.018 -0.017 -0.019 -0.015 0.026 0.023 0.017 0.020 
(0.128) (0.128) (0.128) (0.128) (0.083) (0.082) (0.083) (0.083) 

Schooling years of head 0.017** 0.017** 0.017** 0.017** 0.006 0.006 0.004 0.004 
(0.007) (0.007) (0.007) (0.007) (0.004) (0.004) (0.004) (0.005) 

Female head 0.075 0.077 0.061 0.067 -0.092 -0.100 -0.109 -0.106 
(0.110) (0.110) (0.113) (0.112) (0.081) (0.079) (0.082) (0.082) 

Hindu -0.035 -0.057 -0.009 -0.014 0.028 0.013 0.091** 0.083* 
(0.054) (0.055) (0.057) (0.055) (0.057) (0.061) (0.046) (0.048) 

Buddhist/Christian -0.159 -0.068 0.015 0.008 -0.037 0.068 0.122 0.139 
(0.143) (0.080) (0.076) (0.078) (0.150) (0.112) (0.107) (0.100) 

S.D. of land assets (×106) -0.182* -0.207** -0.198** -0.217** -0.090 -0.118 -0.123 -0.117 
(0.101) (0.104) (0.101) (0.104) (0.178) (0.176) (0.183) (0.178) 

Value of land assets (106 Tk) -0.047 -0.051 -0.038 -0.041 -0.071 -0.071 -0.055 -0.055 
(0.093) (0.095) (0.093) (0.093) (0.056) (0.056) (0.056) (0.055) 

Value of livestock assets (103 Tk) -0.000 -0.000 -0.000 -0.000 -0.001 -0.002 -0.001 -0.001 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Value of grain stock assets (103 Tk) -0.015** -0.016** -0.016** -0.016** 0.003 0.003 0.004 0.004 
(0.007) (0.007) (0.007) (0.007) (0.005) (0.005) (0.005) (0.005) 

Value of deposit (103 Tk) 0.004 0.004 0.003 0.003 -0.002 -0.002 -0.003 -0.003 
(0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) 

1 if own cell phone -0.022 -0.020 -0.026 -0.023 -0.082 -0.081 -0.070 -0.070 
(0.068) (0.068) (0.068) (0.068) (0.070) (0.071) (0.069) (0.070) 

Constant 0.026 0.001 0.027 0.042 -0.094 -0.033 0.067 0.059 
(0.322) (0.294) (0.305) (0.303) (0.292) (0.261) (0.264) (0.267) 

Observations 427 427 427 427 427 427 427 427 

Marginal effects at the mean are reported. Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table 4: District-Level Analysis 

  Crime Rate in 2007 (per 100,000) 
(1) (2) (3) (4) 

Proportion of flood affected population -1.303* -1.452*   
(0.669) (0.772)   

  ×1 – (proportion of religious majority in the district) 8.836**    
(4.125)    

  ×ELF index  5.917*   
 (3.195)   

Proportion of flood affected area   -0.550 -0.652 
   (0.453) (0.517) 
   ×1 – (proportion of religious majority in the district)   4.494*  
   (2.507)  
   ×ELF index    3.229 
    (2.107) 
1 – (proportion of religious majority in the district) -2.642  9.570  

(63.973)  (63.886)  
ELF index  -4.719  6.809 

 (62.176)  (61.574) 
Population (× 106) 7.892 7.818 8.177 8.165 

(7.743) (7.585) (7.567) (7.433) 
Constant 173.632*** 174.521*** 168.036*** 167.858*** 

(29.683) (31.629) (29.422) (31.294) 
Observations 64 64 64 64 
R-squared 0.048 0.047 0.035 0.035 

Robust standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table 5: Heterogeneous Effects between Muslims and Non-Muslims 
 Property Crime Victimization Violent Crime Victimization 

Muslim Households (1) (2) (3) (4) (5) (6) (7) (8) 
80th percentile of height of inundation -0.139* -0.052 -0.061 -0.047 -0.017 -0.094** -0.071* -0.077* 

(0.071) (0.060) (0.059) (0.055) (0.082) (0.043) (0.041) (0.039) 
  ×Number of religions in the para 0.100**    -0.070    

(0.045)    (0.058)    
  ×1 if multiple religions  0.115**    -0.057   

 (0.053)    (0.065)   
  ×1 – (proportion of majority in the para)   0.865***    -0.288  

  (0.287)    (0.334)  
  ×ELF index    0.462***    -0.149 

   (0.166)    (0.189) 
Number of religions in the para -0.131    0.204*    

(0.091)    (0.105)    
1 if multiple religions  -0.115    0.212**   

 (0.095)    (0.105)   
1 – (proportion of majority in the para)   -1.246**    0.585  

  (0.554)    (0.634)  
ELF index    -0.674**    0.352 

   (0.300)    (0.354) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 245 245 245 245 245 245 245 245 

 Property Crime Victimization Violent Crime Victimization 
Non-Muslim Households (9) (10) (11) (12) (13) (14) (15) (16) 

80th percentile of height of inundation -0.460*** -0.714*** -0.140** -0.375*** -0.109 -0.704*** -0.267*** -0.408*** 
(0.171) (0.159) (0.070) (0.135) (0.162) (0.229) (0.047) (0.083) 

  ×Number of religions in the para 0.192**    0.067    
(0.079)    (0.063)    

  ×1 if multiple religions  0.629***    0.715***   
 (0.116)    (0.221)   

  ×1 – (proportion of majority in the para)   0.733**    2.276***  
  (0.339)    (0.418)  

  ×ELF index    1.071***    1.554*** 
   (0.415)    (0.293) 
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Number of religions in the para -0.452**    -0.085    
(0.181)    (0.190)    

1 if multiple religions  -1.724***    -2.113***   
 (0.358)    (0.661)   

1 – (proportion of majority in the para)   -0.825    -5.107***  
  (0.890)    (0.921)  

ELF index    -2.108**    -3.809*** 
   (0.987)    (0.772) 

Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 182 182 182 182 182 182 182 182 

Marginal effects at the mean are reported. 

Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table 6: Heterogeneous Effects between Landless and Landed Households 

 Property Crime Victimization Violent Crime Victimization 
Landless Households (1) (2) (3) (4) (5) (6) (7) (8) 

80th percentile of height of inundation -0.038 0.004 -0.004 -0.001 0.001 0.024 0.053 0.030 
(0.060) (0.057) (0.056) (0.054) (0.057) (0.043) (0.040) (0.042) 

  ×Number of religions in the para 0.046**    0.011    
(0.022)    (0.025)    

  ×1 if multiple religions  0.065**    0.001   
 (0.025)    (0.032)   

  ×1 – (proportion of majority in the para)   0.602***    0.142  
  (0.218)    (0.323)  

  ×ELF index    0.305***    0.126 
   (0.103)    (0.130) 

Number of religions in the para -0.116**    0.009    
(0.050)    (0.073)    

1 if multiple religions  -0.151**    0.005   
 (0.062)    (0.111)   

1 – (proportion of majority in the para)   -1.297***    -0.773  
  (0.366)    (0.598)  

ELF index    -0.726***    -0.411 
   (0.185)    (0.311) 

Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 256 256 256 256 256 256 256 256 

 Property Crime Victimization Violent Crime Victimization 
Landed Households (9) (10) (11) (12) (13) (14) (15) (16) 

80th percentile of height of inundation -0.030 -0.040 -0.066 -0.058 -0.208** -0.154** -0.236*** -0.220*** 
(0.078) (0.049) (0.055) (0.055) (0.081) (0.071) (0.065) (0.077) 

  ×Number of religions in the para -0.012    0.052    
(0.043)    (0.035)    

  ×1 if multiple religions  -0.018    0.049   
 (0.040)    (0.035)   

  ×1 – (proportion of majority in the para)   0.067    1.132***  
  (0.313)    (0.331)  

  ×ELF index    0.013    0.516*** 
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   (0.178)    (0.174) 
Number of religions in the para 0.191    0.116    

(0.130)    (0.114)    
1 if multiple religions  0.262**    0.150   

 (0.115)    (0.124)   
1 – (proportion of majority in the para)   0.628    -1.387**  

  (0.509)    (0.622)  
ELF index    0.448    -0.608 

   (0.318)    (0.401) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 171 171 171 171 171 171 171 171 

Marginal effects at the mean are reported. 

Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table 7: Fractionalisation and Disaster Effects on Changes in Trust in the Local Government 

  ∆Trust in Local Government 
(1) (2) (3) (4) 

80th percentile of height of inundation -0.166 -0.372** -0.354* -0.322* 
(0.209) (0.147) (0.181) (0.165) 

  × Number of religions in the para -0.165    
(0.102)    

  ×1 if multiple religions  -0.195**   
 (0.099)   

  ×1 – (proportion of majority in the para)   -1.104  
  (1.044)  

  ×ELF index    -0.670* 
   (0.395) 

Number of religions in the para 0.445    
(0.365)    

1 if multiple religions  0.735**   
 (0.353)   

1 – (proportion of majority in the para)   2.870  
  (2.155)  

ELF index    1.626 
   (1.131) 

Median height of inundation 0.364** 0.444** 0.387* 0.358* 
 (0.178) (0.173) (0.203) (0.183) 
Other independent variables Yes Yes Yes Yes 
Observations 427 427 427 427 

The dependent variable is the first difference of the indicator of trust in the local government.  

The coefficients of ordered probit model are reported. Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table 8: Fractionalisation and Disaster Effects on the Misallocation of Disaster Relief 

  Disaster Relief from the Government 
(1) (2) (3) (4) 

Height of inundation at home 0.179*** 0.133*** 0.085*** 0.111*** 
(0.065) (0.036) (0.029) (0.030) 

  ×Number of religions in the para -0.080* 
(0.045) 

  ×1 if multiple religions -0.170*** 
(0.049) 

  ×1 – (proportion of majority in the para) -0.457*** 
(0.141) 

  ×ELF index -0.450*** 
(0.167) 

Number of religions in the para 0.120 
(0.079) 

1 if multiple religions 0.245*** 
(0.077) 

1 – (proportion of majority in the para) 0.964** 
(0.440) 

ELF index 0.638*** 
(0.243) 

80th percentile of height of inundation -0.085 -0.081 -0.103 -0.081 
 (0.075) (0.068) (0.082) (0.073) 
Median height of inundation 0.156* 0.149* 0.191* 0.151* 
 (0.081) (0.080) (0.098) (0.089) 
Other independent variables Yes Yes Yes Yes 
Observations 427 427 427 427 

Marginal effects at the mean are reported. 

Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table 9: The Proportion of Uninsured Neighbors and Post-Disaster Crime Victimisation 
 Property Crime Victimization Violent Crime Victimization 
 (1) (2) (3) (4) (5) (6) (7) (8) 

80th percentile of height of inundation -0.026 -0.040 -0.035 -0.028 -0.060 -0.066 -0.047 -0.057 
(0.055) (0.043) (0.045) (0.047) (0.068) (0.052) (0.049) (0.050) 

  ×Number of religions in the para -0.023    -0.005    
(0.030)    (0.042)    

  ×Number of religions in the para 0.066**    0.029    
  ×Proportion of affected but uninsured households (0.027)    (0.022)    
  ×1 if multiple religions  0.028    0.032   

 (0.042)    (0.077)   
  ×1 if multiple religions  0.037    -0.010   
  ×Proportion of affected but uninsured households  (0.049)    (0.072)   
  ×1 – (proportion of majority in the para)   -0.235    0.099  

  (0.296)    (0.391)  
  ×1 – (proportion of majority in the para)   1.522**    0.872  
  ×Proportion of affected but uninsured households   (0.614)    (0.624)  
  ×ELF index    -0.014    0.211 

   (0.175)    (0.249) 
  ×ELF index    0.394*    0.037 
  ×Proportion of affected but uninsured households    (0.227)    (0.240) 
Number of religions in the para 0.043    0.080    

(0.059)    (0.104)    
1 if multiple religions  0.014    0.083   

 (0.061)    (0.128)   
1 – (proportion of majority in the para)   -0.185    -0.835  

  (0.316)    (0.609)  
ELF index    -0.123    -0.452 

   (0.187)    (0.362) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 427 427 427 427 

Marginal effects at the mean are reported. 

Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table 10: The Impact of Fractionalisation on the Efficiency of Risk Sharing 
  Informal Loans without Interest Gift/Remittance 

(1) (2) (3) (4) (5) (6) (7) (8) 
Height of inundation at home 0.047 0.014 0.005 0.009 0.003 -0.001 -0.003 -0.001 

(0.035) (0.019) (0.021) (0.018) (0.011) (0.006) (0.005) (0.006) 
  ×Number of religions in the para -0.032 -0.005 

(0.024) (0.006) 
  ×1 if multiple religions -0.039 -0.008 

(0.031) (0.007) 
  ×1 – (proportion of majority in the para) -0.091 -0.036 

(0.130) (0.029) 
  ×ELF index -0.088 -0.032 

(0.100) (0.025) 
Number of religions in the para 0.053 0.026* 

(0.051) (0.014) 
1 if multiple religions 0.040 0.031 

(0.067) (0.019) 
1 – (proportion of majority in the para) 0.281 0.116 

(0.252) (0.080) 
ELF index 0.243 0.084 

(0.175) (0.053) 
80th percentile of height of inundation -0.008 -0.002 -0.015 -0.015 0.001 0.003 0.003 0.004 
 (0.030) (0.031) (0.033) (0.031) (0.010) (0.010) (0.011) (0.011) 
Median height of inundation -0.023 -0.030 -0.004 -0.005 0.012 0.010 0.010 0.008 
 (0.027) (0.028) (0.038) (0.034) (0.010) (0.009) (0.011) (0.011) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 406 406 406 406 427 427 427 427 

Marginal effects at the mean are reported. 

Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Online Appendix 

 

 
Figure A1: Cyclone Damage and Religious Fractionalisation across Communities 

 
 

 
Figure A2: Correlation among the Height of Inundation, Religious Fractionalisation, and the 

Victimisation Rate at the Community Level 
  

0
1

2
3

4
5

6
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8

Single Religious Group (13 Communities)

0
1

2
3

4
5

6
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8
80th percentile height of inundation (ft)

Multiple Religious Groups (11 Communities)

0
.2

.4
.6

.8
Vi

ct
im

iz
at

io
n 

R
at

e

0 1 2 3 4 5
The 80th Percentile of Height of Inundation

Property Crime

0
.2

.4
.6

.8
Vi

ct
im

iz
at

io
n 

R
at

e

0 1 2 3 4 5
The 80th Percentile of Height of Inundation

Note: The size of circles indicates the number of religions in Para.

Violence Crime



57 
 

 
Table A1: Socio-Economic Characteristics of Surveyed and Not Surveyed Villages 

 Not Surveyed Surveyed   Mean S.D. Mean S.D. Difference 
The number of households 299.47 310.85 271.43 173.99  Household size 4.23 0.37 4.23 0.33  Literacy rate 50.62 11.67 46.33 12.20  Proportion of the employed (age>6) 0.36 0.09 0.36 0.07  Agriculture 0.83 0.24 0.82 0.23  Industry 0.03 0.08 0.02 0.05  Service 0.14 0.22 0.15 0.21  Proportion of the household work (age>6) 0.46 0.10 0.46 0.09  % Pucca (high quality material) house 12.12 10.07 8.61 7.83 ** 
% access to sanitary toilet 60.62 31.80 66.98 26.00  % access to tap water 4.29 16.67 5.07 12.02  % access to electricity 33.30 20.89 29.93 19.32  

N 1,177  24   
Source: Computed from Population and Housing Census 2011. The villages in Satkhira Sadar Upazila are not included, since they are located in the urban 
areas and therefore not appropriate for the comparison group. * p<0.1. ** p<0.05. *** p<0.01. 
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Table A2: Religious Fractionalization in the Sample Communities 

Para ID Number of 
households 

Proportion of Number of 
religions 1 – (% of majority) ELF 

Index 
Year of settlement 

Muslim Hindu Christian Buddhism Mean S.D. 
1 145 0.00 0.06 0.88 0.06 3 0.12 0.21 1983.6 16.4 
2 189 0.71 0.18 0.12 0.00 3 0.29 0.49 1981.2 14.0 
3 76 0.11 0.89 0.00 0.00 2 0.11 0.16 1967.9 24.7 
4 146 0.00 1.00 0.00 0.00 1 0.00 0.00 1966.2 23.3 
5 42 1.00 0.00 0.00 0.00 1 0.00 0.00 1981.5 10.7 
6 30 0.06 0.94 0.00 0.00 2 0.06 0.20 1967.8 21.0 
7 73 1.00 0.00 0.00 0.00 1 0.00 0.00 1977.1 19.9 
8 68 0.67 0.33 0.00 0.00 2 0.33 0.36 1969.8 26.4 
9 31 0.17 0.83 0.00 0.00 2 0.17 0.28 1960.0 25.7 

10 50 0.06 0.94 0.00 0.00 2 0.06 0.13 1970.7 12.6 
11 40 0.94 0.06 0.00 0.00 2 0.06 0.10 1962.7 19.7 
12 56 0.22 0.78 0.00 0.00 2 0.22 0.38 1968.0 25.3 
13 66 1.00 0.00 0.00 0.00 1 0.00 0.00 1967.8 19.5 
14 27 1.00 0.00 0.00 0.00 1 0.00 0.00 1962.2 22.6 
15 54 0.11 0.89 0.00 0.00 2 0.11 0.23 1958.4 24.9 
16 35 0.78 0.22 0.00 0.00 2 0.22 0.37 1963.6 17.3 
17 30 0.00 1.00 0.00 0.00 1 0.00 0.00 1954.8 22.3 
18 38 1.00 0.00 0.00 0.00 1 0.00 0.00 1958.1 25.8 
19 84 1.00 0.00 0.00 0.00 1 0.00 0.00 1972.1 20.2 
20 40 1.00 0.00 0.00 0.00 1 0.00 0.00 1982.5 12.2 
21 31 1.00 0.00 0.00 0.00 1 0.00 0.00 1969.6 17.5 
22 57 0.00 1.00 0.00 0.00 1 0.00 0.00 1951.6 26.0 
23 135 1.00 0.00 0.00 0.00 1 0.00 0.00 1972.1 21.8 
24 67 1.00 0.00 0.00 0.00 1 0.00 0.00 1975.0 16.6 

Mean (N=24) 67.1 0.58 0.38 0.04 0.00 1.54 0.07 0.12 1968.5 20.3 
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Table A3: Correlation across the Fractionalization Indices (N=24) 

 Number of religions 1 if multiple religions 1 – (% of majority) 
1 if multiple religions 0.914***   1 – (% of majority) 0.776*** 0.782***  ELF Index 0.857*** 0.857*** 0.959*** 

* p<0.1. ** p<0.05. *** p<0.01. 
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Table A4: Population Growth across Upazila 
 Total Muslim Non-Muslim 
 Population growth per year  Population growth per year  Population growth per year  
Name of Upazila 2001-2011 1981-2001 Difference 2001-2011 1981-2001 Difference 2001-2011 1981-2001 Difference 
Assasuni 0.8% 0.6% 0.2% 1.0% 1.1% -0.1% 0.1% -0.6% 0.7% 
Shyamnagar 0.1% 1.6% -1.4% 0.4% 2.2% -1.8% -0.7% 0.0% -0.7% 
Debhata 0.5% 2.2% -1.6% 1.0% 2.5% -1.5% -1.2% 1.1% -2.3% 
Kalaroa 0.7% 1.9% -1.2% 0.7% 2.0% -1.3% 0.4% 0.6% -0.2% 
Kaliganj 0.7% 1.2% -0.5% 0.9% 1.7% -0.7% -0.4% -0.5% 0.2% 
Tala 0.2% 1.4% -1.3% 0.4% 1.8% -1.4% -0.3% 0.7% -1.0% 
Satkhira Sadar 1.2% 2.6% -1.4% 1.3% 2.9% -1.5% 0.3% 1.3% -1.0% 

Source: Computed from Population and Housing Census 1981, 2001, and 2011. 
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Appendix Table A5: Peers in the Other Villages at the Pre-Cyclone Period 

  Risk Sharing Network in the Other Villages Trust in the Residents of the Other Villages 
(1) (2) (3) (4) (5) (6) (7) (8) 

80th percentile of height of inundation 0.516 0.559 0.347 0.202 0.035 0.029 -0.022 0.006 
(0.716) (0.562) (0.630) (0.646) (0.035) (0.024) (0.029) (0.026) 

  × Number of religions in the para -0.249    -0.009    
(0.170)    (0.015)    

  ×1 if multiple religions  -0.281*    -0.003   
 (0.157)    (0.015)   

  ×1 – (proportion of majority in the para)   -0.369    0.224  
  (3.427)    (0.148)  

  ×ELF index    0.031    0.043 
   (1.362)    (0.082) 

Number of religions in the para 1.978    0.058    
(1.439)    (0.059)    

1 if multiple religions  0.890    0.018   
 (1.319)    (0.052)   

1 – (proportion of majority in the para)   3.742    0.228  
  (5.468)    (0.228)  

ELF index    3.887    0.184 
   (4.507)    (0.150) 

Median height of inundation 0.186 -0.286 -0.072 0.165 -0.022 -0.033 0.036 0.001 
 (0.975) (0.832) (1.092) (1.115) (0.039) (0.035) (0.041) (0.041) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 427 427 427 427 

Columns (1) to (4) reports the OLS coefficients and Columns (5) to (8) reports the marginal effects at the mean, respectively. Clustered standard errors are in 

parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table A6: Religious Fractionalization versus Proportion of Non-Muslim 
  Property Crime Victimization Violent Crime Victimization 

(1) (2) (3) (4) (5) (6) (7) (8) 
80th percentile of height of inundation -0.137** -0.052 -0.052 -0.063 -0.067 -0.062 -0.062 -0.072* 

(0.069) (0.040) (0.040) (0.041) (0.077) (0.050) (0.042) (0.039) 
  ×Number of religions in the para 0.099**    0.007    

(0.050)    (0.056)    
  ×1 if multiple religions  0.132**    -0.001   

 (0.052)    (0.069)   
  ×1 – (proportion of majority in the para)   0.781***    0.913**  

  (0.287)    (0.437)  
  ×ELF index    0.651***    0.587** 

   (0.224)    (0.264) 
  ×Proportion of non-Muslim -0.086 -0.104* -0.065 -0.130** 0.023 0.034 -0.072 -0.110* 

(0.057) (0.058) (0.050) (0.053) (0.063) (0.069) (0.048) (0.064) 
Number of religions in the para -0.154    0.075    

(0.110)    (0.152)    
1 if multiple religions  -0.164    0.132   

 (0.129)    (0.190)   
1 – (proportion of majority in the para)   -1.210**    -1.930**  

  (0.539)    (0.877)  
ELF index    -1.118***    -1.240** 

   (0.422)    (0.585) 
Proportion of non-Muslim 0.178 0.206 0.202 0.357* 0.026 -0.018 0.351 0.442* 

 (0.173) (0.186) (0.180) (0.206) (0.190) (0.217) (0.214) (0.250) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 427 427 427 427 

Marginal effects at the mean are reported. 
Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
 
 
 

Table A7: Religious Fractionalization versus Community Size 
  Property Crime Victimization Violent Crime Victimization 
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(1) (2) (3) (4) (5) (6) (7) (8) 
80th percentile of height of inundation -0.022 0.012 0.022 0.025 -0.092 -0.081 -0.030 -0.044 

(0.060) (0.057) (0.060) (0.064) (0.066) (0.057) (0.062) (0.061) 
  ×Number of religions in the para 0.050*** 0.026 

(0.016) (0.033) 
  ×1 if multiple religions 0.051*** 0.029 

(0.018) (0.035) 
  ×1 – (proportion of majority in the para) 0.481** 0.455 

(0.199) (0.304) 
  ×ELF index 0.223** 0.226* 

(0.096) (0.127) 
  ×Community size -0.001** -0.001* -0.001** -0.001* -0.000 0.000 -0.000 -0.000 

(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.000) (0.001) 
Number of religions in the para -0.057 0.031 

(0.052) (0.118) 
1 if multiple religions -0.017 0.081 

(0.054) (0.120) 
1 – (proportion of majority in the para) -0.753*** -1.125** 

(0.214) (0.559) 
ELF index -0.372*** -0.542* 

(0.112) (0.308) 
Community size 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.002 

 (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.001) (0.002) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 427 427 427 427 

Marginal effects at the mean are reported. 
Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table A8: Religious Fractionalization versus Proximity to India-Bangladesh Border 
  Property Crime Victimization Violent Crime Victimization 

(1) (2) (3) (4) (5) (6) (7) (8) 
80th percentile of height of inundation -0.062 -0.033 -0.019 -0.021 -0.050 -0.026 -0.017 -0.018 

(0.056) (0.044) (0.042) (0.046) (0.069) (0.057) (0.049) (0.055) 
  ×Number of religions in the para 0.045**    0.032    

(0.022)    (0.029)    
  ×1 if multiple religions  0.059***    0.039   

 (0.020)    (0.034)   
  ×1 – (proportion of majority in the para)   0.528**    0.780***  

  (0.242)    (0.300)  
  ×ELF index    0.255**    0.297** 

   (0.103)    (0.145) 
  ×1 if close to the border -0.023 -0.015 -0.042 -0.030 0.029 0.036 -0.005 0.015 

(0.034) (0.035) (0.032) (0.033) (0.032) (0.035) (0.034) (0.035) 
Number of religions in the para -0.039    0.038    

(0.056)    (0.082)    
1 if multiple religions  -0.011    0.054   

 (0.059)    (0.108)   
1 – (proportion of majority in the para)   -0.570*    -1.100**  

  (0.299)    (0.561)  
ELF index    -0.295*    -0.426 

   (0.164)    (0.323) 
1 if close to the border 0.062 0.050 0.135 0.087 0.208** 0.187* 0.317*** 0.242** 

 (0.083) (0.082) (0.092) (0.084) (0.098) (0.100) (0.119) (0.113) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 427 427 427 427 

Marginal effects at the mean are reported. 
Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table A9: Estimation with Controlling for Pre-Cyclone Socio-Economic Status 
  Property Crime Victimization Violent Crime Victimization 
 (1) (2) (3) (4) (5) (6) (7) (8) 
80th percentile of height of inundation -0.087* -0.054 -0.047 -0.051 -0.084 -0.058 -0.050 -0.056 

(0.053) (0.042) (0.043) (0.045) (0.061) (0.048) (0.047) (0.045) 
  ×Number of religions in the para 0.045**    0.027    

(0.023)    (0.030)    
  ×1 if multiple religions  0.056***    0.029   

 (0.019)    (0.034)   
  ×1 – (proportion of majority in the para)   0.406**    0.519*  

  (0.194)    (0.300)  
  ×ELF index    0.246**    0.257* 

   (0.100)    (0.131) 
Number of religions in the para -0.021    0.045    

(0.062)    (0.093)    
1 if multiple religions  0.009    0.078   

 (0.061)    (0.114)   
1 – (proportion of majority in the para)   -0.478    -1.075*  

  (0.333)    (0.568)  
ELF index    -0.270    -0.481 

   (0.185)    (0.315) 
Pre-cyclone socio-economic status Yes Yes Yes Yes Yes Yes Yes Yes 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 427 427 427 427 

Marginal effects at the mean are reported. 
Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table A10: Estimation without Controlling for Geographic Characteristics and Cyclone Damage 
  Property Crime Victimization Violent Crime Victimization 
 (1) (2) (3) (4) (5) (6) (7) (8) 
80th percentile of height of inundation -0.085* -0.059* -0.052 -0.052 -0.058 -0.045 -0.037 -0.039 

(0.050) (0.036) (0.041) (0.041) (0.070) (0.057) (0.054) (0.052) 
  ×Number of religions in the para 0.040* 0.015 

(0.022) (0.031) 
  ×1 if multiple religions 0.051*** 0.013 

(0.020) (0.037) 
  ×1 – (proportion of majority in the para) 0.385** 0.434 

(0.193) (0.320) 
  ×ELF index 0.216** 0.192 

(0.103) (0.141) 
Number of religions in the para -0.019 0.061 

(0.061) (0.101) 
1 if multiple religions 0.022 0.101 

(0.061) (0.129) 
1 – (proportion of majority in the para) -0.439 -0.968 

(0.307) (0.628) 
ELF index -0.247 -0.411 

(0.179) (0.342) 
Geographic characteristics No No No No No No No No 
Cyclone damage No No No No No No No No 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 427 427 427 427 

Marginal effects at the mean are reported. 
Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table A11: The Impact on General Trust 
  Post-Cyclone General Trust 

(1) (2) (3) (4) 
80th percentile of height of inundation 0.144* -0.031 0.009 -0.007 

(0.079) (0.062) (0.061) (0.063) 
  ×Number of religions in the para -0.167*** 

(0.043) 
  ×1 if multiple religions -0.171*** 

(0.044) 
  ×1 – (proportion of majority in the para) -1.692*** 

(0.334) 
  ×ELF index -0.782*** 

(0.168) 
Number of religions in the para 0.193* 

(0.112) 
1 if multiple religions 0.217* 

(0.121) 
1 – (proportion of majority in the para) 2.495*** 

(0.732) 
ELF index 1.110*** 

(0.395) 
Other independent variables Yes Yes Yes Yes 
Observations 427 427 427 427 

Marginal effects at the mean are reported. 
Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table A12: Alternative Measure of Damages at the Para Level 
  Property Crime Victimization Violent Crime Victimization 

(1) (2) (3) (4) (5) (6) (7) (8) 
Mean height of inundation -0.152*** -0.094*** -0.095*** -0.098*** -0.152** -0.098** -0.127*** -0.121*** 

(0.052) (0.034) (0.035) (0.036) (0.074) (0.043) (0.039) (0.041) 
  ×Number of religions in the para 0.057* 0.051 

(0.030) (0.046) 
  ×1 if multiple religions 0.077*** 0.059 

(0.026) (0.051) 
  ×1 – (proportion of majority in the para) 0.576* 0.961*** 

(0.298) (0.357) 
  ×ELF index 0.315** 0.427** 

(0.141) (0.184) 
Number of religions in the para -0.021 0.007 

(0.062) (0.099) 
1 if multiple religions 0.006 0.031 

(0.061) (0.112) 
1 – (proportion of majority in the para) -0.403 -1.297** 

(0.345) (0.579) 
ELF index -0.216 -0.579* 

(0.183) (0.335) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 427 427 427 427 

Marginal effects at the mean are reported. 
Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 
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Table A13: Robustness to Outlier 
  Property Crime Victimization Violent Crime Victimization 

OLS OLS OLS OLS Probit OLS OLS OLS OLS Probit 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
80th percentile of height of inundation -0.074 -0.050 -0.043 -0.044  -0.077 -0.060 -0.052 -0.054 

(0.054) (0.041) (0.043) (0.045)  (0.070) (0.056) (0.053) (0.049) 
  ×Number of religions in the para 0.037*  0.020 

(0.021)  (0.036) 
  ×1 if multiple religions 0.048**  0.021 

(0.019)  (0.042) 
  ×1 – (proportion of majority in the para) 0.364*  0.510 

(0.191)  (0.341) 
  ×ELF index 0.210**  0.236 

(0.101)  (0.155) 
80th percentile of height of inundation ≥ 2 feet 0.148 0.349** 

(0.182) (0.161) 
  ×1 if multiple religions 0.204** 0.203* 

(0.091) (0.119) 
Number of religions in the para -0.024  0.067 

(0.060)  (0.115) 
1 if multiple religions 0.009 0.056 0.099 0.106 

(0.060) (0.068) (0.140) (0.111) 
1 – (proportion of majority in the para) -0.450  -1.094 

(0.308)  (0.664) 
ELF index -0.261  -0.477 

(0.178)  (0.383) 
Other independent variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 427 427 427 427 427 427 427 427 427 427 

Columns (1) – (4), (6) – (9): coefficient, Columns (5), (10): marginal effects at the mean. 
Clustered standard errors are in parentheses. * p<0.1. ** p<0.05. *** p<0.01. 

 
 

 


