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Abstract

We present a novel theoretical mechanism that explains the capacity for non-enforceable

communication about future actions to improve efficiency. We explore a two-player part-

nership game where, before choosing a level of effort to exert on a joint project, each player

makes a cheap talk promise to their partner about their own future effort. We allow agents

to incur a psychological cost of reneging on their promises. We demonstrate a strong ten-

dency for evolutionary processes to select agents who incur intermediate costs of reneging,

and show that these intermediate costs induce second-best optimal outcomes.

Keywords: Promises, lying costs, joint projects, input games, partnerships.

JEL Classification: C73, D03, D83.

1 Introduction

Communication about future actions in joint projects is pervasive in the household, within and

between firms, in political processes, and in casual day-to-day interactions. Often, agents can

make statements about their intentions, both as a means of coordination and as a promise.

Frequently, they are not contractually bound by these statements and have an incentive to make

false promises and renege upon them when choosing how to act. Nevertheless, agents in such

circumstances commonly use communication to carry out courses of action that yield a higher

payoff to each than would be expected if agents could make and break promises at no direct cost
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(cheap talk). Consider, for example, two coauthors initiating a project and making promises

about the number of hours they will separately work on it in the following year, or countries

making commitments to reduce regional levels of pollution.

Our two key contributions are as follows. First, we present a novel theoretical foundation of

the prevalence of intermediate psychological costs of breaking promises (reneging). Second, we

demonstrate that these endogenously determined intermediate psychological costs yield second-

best optimal outcomes in an important class of strategic interactions. Taken together, these

contributions present a novel explanation for the way in which pre-play communication can

foster cooperation in one-shot strategic interactions when agents’ interests are only partially

aligned.

Much of the existing literature on signaling intentions through cheap talk explores the po-

tential for pre-play communication to select among multiple equilibria by breaking symmetries,

offering assurance, and creating a focal point for play (for a theoretical discussion, see Farrell,

1988; Farrell & Rabin, 1996; for experimental evidence see Crawford, 1998; Charness, 2000).

However, extensive experimental evidence shows that communication can also lead players to

coordinate on mutually beneficial but non-equilibrium outcomes (Kerr & Kaufman-Gilliland,

1994; Sally, 1995; Ellingsen & Johannesson, 2004; Bicchieri & Lev-On, 2011). In particular,

Charness & Dufwenberg (2006) find that players make and keep promises to cooperate in two-

player partnership games where the unique subgame perfect equilibrium involves no such coop-

eration. Vanberg (2008) presents evidence that this behaviour is driven by an aversion to going

back on one’s word.

The possibility of repeated interaction with a partner means that reputational concerns

could motivate agents to keep their promises, even when this does not maximise their payoff

in the present encounter. However, the aforementioned experiments, and indeed much of daily

experience, demonstrate that agents are motivated to some extent to keep their word even in

one-off encounters and suggests a direct concern for keeping promises. In this paper, we put

reputational concerns to one side and consider this second, direct motivation for promise-keeping.

Model and Main Results

We study a class of partnership games (also known as input games; see, e.g., Holmstrom, 1982;

Cooper & John, 1988) with ‘cheap-talk’ pre-play communication. In the setting we examine,

agents simultaneously communicate promised levels of effort, and, following this, they simulta-

neously choose their levels of effort. Agents experience a direct convex cost of their effort, and

a benefit which is increasing in both their own effort and that of their partner, such that effort

choices are strategic complements. Agents always have an incentive to slightly “undercut” the

effort choice of their partner so that when talk is cheap, the only subgame perfect equilibrium of
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the game involves both agents choosing zero effort. However, this outcome is Pareto-dominated

by outcomes in which players exert effort.

We explore the impact of introducing into this setting a direct convex cost of reneging on

promises. Specifically, we assume that each agent experiences a convex psychological cost of

the distance between their promised and actual effort. This aversion to reneging can be seen as

representing the guilt or bad feeling that agents experience when going back on promises they

have made. Reneging aversion transforms what is ordinarily modeled as a cheap talk promise

into a partially self-enforcing commitment. We show that positive effort can be sustained in

equilibrium either when one player has a high level of reneging aversion and her partner a low

level of reneging aversion, or when both have an intermediate level of reneging aversion.

We then study the endogenous determination of this reneging aversion in an evolutionary

framework. Our main result demonstrates the strong tendency for evolutionary processes to

select for agents who incur intermediate psychological reneging costs. Specifically, we show that

when players can observe their partner’s level of reneging aversion with a sufficiently high prob-

ability, there is a unique stable population state in which all players have the same intermediate

level of reneging aversion, and the induced equilibrium effort is a second-best outcome (i.e., it is

optimal under the constraint of being consistent with equilibrium behaviour). Finally, we show

that a weaker version of this result holds also when players can observe their partner’s level of

reneging aversion with a low, yet positive, probability. In this latter case, we show that in any

stable state players must have positive reneging aversion and exert positive effort in equilibrium.

Related Literature and Contributions

This paper contributes to several strands of literature. The first is the theoretical work incorpo-

rating exogenously given (and, typically, small) psychological lying costs into strategic models.

Kartik et al. (2007), Chen et al. (2008), and Kartik (2009) study sender-receiver games in which

the informed agent has an incentive to distort the receiver’s belief, and incurs a convex cost of

sending a false message. Matsushima (2008) and Kartik et al. (2014) introduce arbitrarily small

lying costs into settings of mechanism design and implementation. The present paper moves

beyond the existing literature in three key dimensions. Firstly, we explore bilateral commu-

nication. Secondly, we interpret players’ messages as a report about their own future actions

rather than some exogenously given state of the world. These two aspects add further strategic

dimensions to the partnership game. Thirdly, we endogenise the reneging costs, and allow them

to be determined as part of a stable population state.1

1Demichelis & Weibull (2008) study the influence of the introduction of lexicographic reneging costs into a
setup in which players communicate before playing a coordination game. They show that the introduction of
these lying costs implies that the unique evolutionarily stable outcome is Pareto efficient. Heller (2014) shows
that this sharp equilibrium selection result is implied by the discontinuity of preferences, rather than by small
lying costs per se.
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With this focus on commitment to future action, we bring together the literature on lying

costs and that on partnership games with strategic complimentarities. Games in which n players

experience a common outcome, which is increasing in a privately costly action, are examined

from a mechanism design perspective in Holmstrom (1982). Radner et al. (1986) analyse a two-

player partnership game in which a project succeeds with a probability equal to the minimum of

the players’ effort choices, which are made at quadratic cost, and show the capacity for repeated

interaction to sustain effort when such and outcome is efficient but is not an equilibrium of the

one-shot game (see also related models of partnership games in Cooper & John, 1988; Admati

& Perry, 1991; Cahuc & Kempf, 1997; Marx & Matthews, 2000). We demonstrate that reneging

costs is a new means by which cooperation can be sustained in partnerships in one-off encounters

with non-enforceable effort choices.

The role of commitment in strategic situations has been extensively investigated since the

seminal work of Schelling (1980) (see, e.g., Caruana & Einav, 2008; Ellingsen & Miettinen, 2008;

Heller & Winter (2016); and the references in them for recent papers in this vast literature).

One of the main stylised insights of this literature is that the ability to commit is advantageous

to a player and that, typically, a better ability to commit yields higher payoffs. Our model yields

the insight that too great a capacity for commitment (i.e., too high a level of reneging aversion)

might be detrimental. Specifically, we show that there is an intermediate level of commitment

that is optimal for an agent, as it balances their interest in making a strong commitment in order

to induce high effort from their partner, against their conflicting desire to retain some flexibility

to exert less effort.

We explore not only the consequences of an aversion to reneging but also give a theoretical

exploration of its possible evolutionary determinants. In doing so, we build on the “indirect”

evolutionary approach, which studies the evolution of non-material preferences, that was pio-

neered by Güth & Yaari (1992), and developed by, among others, Ok & Vega-Redondo, 2001;

Guttman, 2003; Dekel et al., 2007; Herold & Kuzmics, 2009; Alger & Weibull, 2010, 2012. We

make two main contributions to this literature. First, to the best of our knowledge, we are the

first to apply the indirect evolutionary approach to study reneging costs. Second, our main result

is qualitatively different from the stylised result in the existing literature, according to which

if preferences are observed with high probability, then the Pareto efficient outcome is played in

any stable population state. We show that in the setup in which the set of feasible preferences is

the set of levels of reneging aversion, evolutionary forces take the population into stable states

in which agents have intermediate reneging aversion and the agents achieve partial, rather than

full, efficiency.

Finally, by demonstrating the significance and evolutionary stability of an aversion to reneg-

ing in partnership contexts, we provide a theoretical grounding and explanation of the mass

of experimental evidence suggesting that “non-standard” preferences play an important role in
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communication contexts, and that most people incur some psychological costs of lying, and that

these costs are increasing in the size of the lie (see Abeler et al., 2016, for a recent meta-study

of a large number of lying experiments). For example, Shalvi et al. (2011) and Fischbacher &

Föllmi-Heusi (2013) find that subjects do not always lie to gain money, even when their doing so

cannot be detected. Significantly less than “full” lying is also found in sender-receiver contexts

(Gneezy, 2005; Hurkens & Kartik, 2009), bargaining games (Lundquist et al., 2009), and hold-up

games (Ellingsen & Johannesson, 2004), with some studies finding evidence of lying aversion per

se (Sánchez-Pagés & Vorsatz, 2007).

The paper is organised as follows. Section 2 sets out the partnership game and analyses its

equilibria. Section 3 formally defines the evolutionary model and presents our main result about

the stability of intermediate levels of reneging aversion. Section 4 demonstrates the robustness

of this result to partial observability. In Section 5 we discuss the significance and interpretation

of our results and indicate directions for further research. In general, we confine formal proofs

to appendices, with exceptions where the proof is brief and aids intuition.

2 The Partnership Game

In this section, we formally describe the partnership game and analyse the subgame perfect

equilibria of encounters between any two players with weakly positive aversion to reneging on

commitments.

2.1 The Model

There are two players (i and j) and two stages of the game. In the first stage, both players

simultaneously send a message sk ∈ [0, M ] ≡ S to their opponent (where k = i, j). The

interpretation is that players’ messages take the form of a promise about effort in the second

stage. In the second stage, players simultaneously choose their level of effort, xk ∈ S.

For a given outcome of the game, we define the “material payoff” to player i as follows (player

j’s material payoff is defined analogously):

Vi(xi, xj, ρ) = xixj − x2
i

2ρ
: ρ ∈ (0, 1) (1)

The interpretation of the material payoff is as follows. Both players receive the same gross

return from the partnership, equal to the product of their two effort choices. They each incur a

cost proportional to the square of their own effort. The parameter ρ should be interpreted as a

parameter governing the cost of effort. We focus in our evolutionary analysis on high values of

ρ in the interval of (0.8, 1), as these prove most illuminating.
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Player i’s subjective utility is defined as follows (player j’s subjective utility is defined anal-

ogously):

Ui(xi, xj, si, ρ) = xixj − x2
i

2ρ
− λi

2
(si − xi)

2 : ρ ∈ (0, 1) (2)

Subjective utility is the sum of a player’s material payoff and a term representing the psy-

chological cost of breaking a promise or (reneging). Here, reneging is defined as exerting a level

of effort not equal to the message sent (i.e., the effort promised) in the first stage. The “size”

of player i’s reneging is defined as |si − xi|. The utility loss from reneging is proportional to the

square of its size, multiplied by λi, a parameter that we call i’s level of reneging aversion. In

the following two sections we assume that all players perfectly observe their partner’s level of

reneging aversion, i.e., that the parameters λi, λj are common knowledge. In Section 4 we deal

with the case of partial observability.

A mixed strategy of player i in the second stage is a distribution χi ∈ ∆ (S). Let µχi
denote

the expectation of the distribution. We assume that players are expected utility maximisers.

The fact that the utility function Ui depends linearly on the effort of the opponent (xj) implies

that player i’s expected utility depends only on the expected effort of the partner (µχj
), which

replaces xj in Eq. (2) to yield an expected utility function, i.e.,

Ui(xi, χj, si, ρ) = xi · µχj
− x2

i

2ρ
− λi

2
(si − xi)

2 : ρ ∈ (0, 1) (3)

2.2 Unique Second-Stage Equilibrium

In the second stage of the game, player i’s first-order condition for her choice of xi is given by2

µχj
− xi

ρ
+ λi(si − xi) = 0 (4)

The concavity of the utility function in xi implies that the second-stage best response is a unique

pure strategy, given by the function

x∗
i (χj, si, sj, λi, λj, ρ) =

ρ · (µχj
+ λisi)

1 + ρλi

(5)

This equation embodies a player’s (possibly conflicting) desires to “undercut” (exert less effort

than) their opponent and to minimise their reneging.

Fact 1. We first observe that when λi = λj = 0 (i.e., both players’ messages are cheap talk) the

best response of player i reduces to ρµχj
. This implies that when talk is cheap, both players wish

2The second derivative of the utility function with respect to xi is −1

ρ
− λi. The fact that it is always negative

guarantees that the solution to the first-order condition is a global maximum of the utility function and that the
optimal choice in the second stage is a unique pure strategy.
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to undercut their opponent in the second stage, effort choices are independent of messages sent,

and in all subgame perfect equilibria, neither player exerts effort and communication plays no

committing role.

To consider the general case of positive reneging costs, we solve the best-response functions

simultaneously and obtain the unique Nash equilibrium strategy for player i in the subgame

induced by an arbitrary pair of messages si and sj:

xe
i (si, sj, λi, λj, ρ) =

(1
ρ

+ λj)λisi + λjsj

(1
ρ

+ λi)(
1
ρ

+ λj) − 1
(6)

To gain some intuition, we can consider the subgame after si = sj = s is played. In this

case, xi < xj ⇐⇒ λi < λj. Both players have an incentive to undercut one another (and by

implication renege on their own first-stage promises), but they also do not want to incur too

great a cost from reneging. Due to the convex cost of reneging and the diminishing material

gains from reducing effort towards ρ · xj, the optimal choice of xi balances these two aims. In

the general case where si 6= sj, the Nash equilibrium choice of xi is some convex combination of

si, sj,
34 and 0. As an agent’s level of reneging aversion increases, she will exert effort closer to

her own promise.

2.3 First-Stage Best-Response Functions

The subgame perfect equilibrium of the game is easily obtained using backwards induction.

Given the unique Nash equilibrium strategies in each subgame, we can find a player’s optimal

choice of message given her opponent’s choice. Taking the choices of effort in each subgame as

given, a player i’s utility as a function of first-stage messages is given by

Ui(si, sj, ρ) =
[(1

ρ
+ λj)λisi + λjsj][(

1
ρ

+ λi)λjsj + λisi]

[(1
ρ

+ λi)(
1
ρ

+ λj) − 1]2

−
[(1

ρ
+ λj)λisi + λjsj]

2

2ρ[(1
ρ

+ λi)(
1
ρ

+ λj) − 1]2
− λi

2

[
si −

(1
ρ

+ λj)λisi + λjsj

(1
ρ

+ λi)(
1
ρ

+ λj) − 1

]2
(7)

A mixed strategy of a player at the first stage is a distribution σi ∈ ∆ (S). Let µσi
denote

the expectation of the distribution. Observe that the utility function Ui can be presented as a

sum of two functions: (1) a linear function of sj and (2) an expression that is independent of

si. This implies that the best-reply function of player i against a partner who plays a mixed

3To see this, observe that the denominator of the fraction is strictly positive and strictly greater than the sum
of the coefficients on si and s−i in the numerator.

4This guarantees that xe
i , xe

j ∈ [0, M) and therefore the first-order condition always characterises optimal
choice.
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strategy σj depends only on the partner’s expected message µσj
(for reasons analogous to those

in the argument for µχj
above).

When λi = 0, player i’s choice of message has no bearing on her optimal effort choice or

that of her opponent, and therefore does not impact her utility. Therefore any message is a best

response to any message sent by her opponent. When λi > 0, the first derivative of player i’s

utility function with respect to si, taking µσj
as given, is a linear function of si and µσj

:

∂Ui(si, µσj
, ρ)

∂si

=

[
2 − 1

ρ
(
1

ρ
+ λj) − 1

(1
ρ

+ λi)(
1
ρ

+ λj)

]
si + λj · µσj

(8)

For ease of exposition, we define Θi to be the negative of the coefficient on si in Eq. (8):

1

ρ
(
1

ρ
+ λj) +

1

(1
ρ

+ λi)(
1
ρ

+ λj)
− 2 ≡ Θi

Given that λj and µσj
are constrained to be (weakly) positive, the second term in Eq. (8) is

also (weakly) positive. Therefore, when Θi > 0 (and hence the term multiplying si in Eq. (8)

is strictly negative), the utility function is everywhere strictly concave in si, and the following

level of si, which is positive and satisfies the first-order condition
∂Ui(si,µσj

,ρ)

∂si
= 0, is a necessary

and sufficient condition for a global maximum of the utility function:

si(µσj
, λi, λj, ρ) =

λj

Θi

· µσj
(9)

Further, the strict concavity of the utility function in si means that when
λj

Θi

· µσj
> M , the

optimal choice of si is M .

When Θi < 0 (and hence the term in si in Eq. (8) is strictly positive), the utility function is

everywhere strictly increasing and convex in si. In this case, the optimal choice of si is M , for

all µσj
∈ S. When Θi = 0, if λj > 0 and µσj

> 0, then again the utility function is everywhere

strictly increasing and convex in si and the optimal choice of si is M . If Θi = 0 and either

λj = 0 or µσj
= 0, then the utility function is flat in si and any message is a best response to

the opponent’s message. The best-response correspondence in the first stage can therefore be

written as

s∗
i (µσj

, λi, λj, ρ) =





λj

Θi

· µσj
0 ≤ λj

Θi

sj ≤ M and Θi > 0

M
λj

Θi

sj > M or Θi < 0 or (Θi = 0 and λj · µσj
> 0)

[0, M ] Θi = 0 and λj · µσj
= 0

(10)

The choice of the best reply in the latter “knife-edge” case, in which Θi = λj · µσj
= 0
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does not play any role in our results. In all other cases, the unique best-reply function of both

players always induces them to choose a pure message and, as a result, both players choose pure

messages in all equilibria.

Remark 1. Observe that a player can always guarantee a utility level of zero by playing si =

xi = 0. Further, observe that if Θi > 0 (Θi < 0 or [Θi = 0 and λj · µσj
> 0]), then the utility

function is strictly concave (strictly increasing) in si. This implies that if the best response s∗
i

is positive (i.e., s∗
i > 0) and unique, then it must yield strictly positive utility for player i.

Players wish to minimise their reneging, undercut their opponent (play close to ρ · xj), and

have their opponent put in as much effort as possible. Their optimal choice will therefore

balance these three aims. It is straightforward to see that if a player’s choice of message has no

impact upon her opponent’s choice of effort, she will promise, and deliver, effort that undercuts

her opponent. However, while a player knows that she in some sense “ties her hands” if she

promises to put in higher effort in the presence of a reneging cost, and restricts her ability to

undercut in the second stage, such a promise has a second, strategic effect: because the player’s

opponent knows that he will not be severely undercut, he is willing to put in more effort in the

second stage. This strategic effect is a consequence of the strategic complementarity of effort

with respect to the material payoffs.

In a set of games with measure zero, all of these considerations cancel out such that any

message is a best response.5 Otherwise, a player’s best response to her opponent’s message

can be classified as one of three kinds. When the incentive to undercut dominates, a player

wants to send a message that is some fraction (less than 1) of her opponent’s message. When

the incentive to strategically commit to high effort dominates, a player wants either to send

a message that is some multiple (greater than 1) of her opponent’s message or to send the

maximum possible message in all cases. Whether a player optimally chooses to undercut her

opponent or to strategically commit to high effort depends only on the level of ρ and the players’

reneging costs and is invariant to the commitment made by her opponent.

The division of the parameter space into these best-response types is illustrated in Figure

1. The higher a player’s reneging aversion is, the more able she is to make a credible, strategic

commitment. Such a strategic commitment is more worthwhile when facing a higher return to

effort (higher ρ) and a player with a lower reneging aversion (who is consequently more responsive

to commitments made). Therefore a player will strategically promise high effort when λi and ρ

are sufficiently high and λj is sufficiently low. Lemmas 1, 2, and 3 in Appendix B.1 constitute

a full set of necessary and sufficient conditions for a player’s best response to be of each type.

5This is the set of cases covered by the third row of the best-response correspondence; see Eq. (10).
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Figure 1: Best-Response Types for Player i in Reneging Aversion Parameter Space

(a) ρ = 0.81 (b) ρ = 0.85

(c) ρ = 0.90 (d) ρ = 0.95
(Note that the upper figures focus on the interval λiλj ∈ [0, 4], while the lower figures
show the wider interval λiλj ∈ [0, 20].)
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2.4 Unique Perfect Equilibrium

We now present the subgame perfect equilibria of the partnership game. All subgame perfect

equilibria of the partnership game can be classified as one of three types, set out below. In some

parameterisations of the game, the subgame perfect equilibrium is unique. In the remaining

set of cases, the game admits two subgame perfect equilibria but one is not a “trembling-hand”

perfect equilibrium (see the formal definition in Appendix A), and, thus, we do not consider

it as a plausible prediction of play. The unique equilibrium that satisfies the trembling-hand

perfection refinement can be classified as one of three types, and its classification depends only

on a single pair of parameters (one for each player). For each player i, we define the variable Ri

as follows:

Ri ≡





λj

Θi

Θi > 0

∞ Θi ≤ 0

Rj is defined analogously. Each partnership game maps to a pair (Ri, Rj) that corresponds

to one type of unique perfect equilibrium with first-stage play as follows:

1. Ri · Rj < 1 ⇔sj = si = 0: “No effort” equilibrium. This is the case in which both players

wish to send a message lower than that of their opponent and so the only subgame perfect

equilibrium involves both promising, and exerting, no effort.

2. min (Ri, Rj) > 1 ⇔si = sj = M : “Maximum message” equilibrium. This equilibrium

arises when both players wish either to send a higher message than their opponent or to

send the maximum possible message.

3. Ri · Rj > 1 > Rj ⇔si = M > sj > 0: “Two-message” equilibrium. This equilibrium

arises when one player wishes to ‘undercut’ her opponent and her opponent wishes to

strategically induce higher effort in the other player. When the player trying to induce

higher effort wants to do so more than his opponent wishes to undercut, then a perfect

equilibrium exists in which the former sends the maximum message and the latter best

responds to this.

In each of these cases we specify only the messages si, sj, as, given the players’ messages, their

effort choices are uniquely determined by Eq. (6), in all cases except the “knife-edge” case of

Θi = λj = 0, discussed below. Formally, we present the perfect equilibria that exist in three

exhaustive classes of games (the definition of trembling-hand perfection is presented in Appendix

A).

Theorem 1. Assume that λi, λj > 0 and that Ri · Rj 6= 1. The partnership game admits at

most two subgame perfect equilibria, and only one of these equilibria satisfies trembling-hand

perfection. Specifically:
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1. If Ri · Rj < 1, then there is a unique subgame perfect equilibrium in which sj = si = 0.

2. If min (Ri, Rj) > 1, then there exists a subgame perfect equilibrium in which si = sj = M .

3. If Ri · Rj > 1 > Rj, then there exists a subgame perfect equilibrium in which si = M >

sj > 0.

Moreover, in cases 2 and 3, the game admits at most one additional subgame perfect

equilibrium in which sj = si = 0, and this latter equilibrium fails to satisfy trembling-hand

perfection.

Henceforth, we use the term the unique perfect equilibrium to refer to the unique subgame

perfect equilibrium that satisfies the trembling-hand perfection refinement.

Multiple perfect equilibria occur only on a “measure zero” of pairs of λi, λj that satisfy the

equality Ri · Rj = 1. Assume without loss of generality that Rj ≤ 1 ≤Ri. In such cases, for any

si ∈ [0, M ], there exists a perfect equilibrium in which the messages are

(
si, sj =

λi

Θj

· si

)
(the

argument is analogous to those in Theorem 1 above, and is omitted for brevity).

The characterisation for the cases in which one player has a reneging cost of zero is as follows

(recall that the final case in which λi = λj = 0 is dealt with in Fact 1).

Theorem 2. Assume that λi > λj = 0 and Θi 6= 0. The partnership game admits exactly one

continuum of subgame perfect equilibria. Specifically:

1. If Ri < ∞, then there is a unique continuum of subgame perfect equilibria in which si = 0

and sj ∈ [0, M ].

2. If Ri = ∞, then there is a unique continuum of subgame perfect equilibria in which si = M

and sj ∈ [0, M ].

In both cases, all subgame perfect equilibria are trembling-hand perfect.

When λj = 0, multiple perfect equilibria occur only for a single pair λi, λj that satisfies the

equality Θi = 0. In this case, for any (si, sj) ∈ S × S, there exists a perfect equilibrium in which

the messages are (si, sj). This follows immediately from the best-response function given by Eq.

(10).

In all equilibria both players’ effort levels in the second stage are described by Eq. (6). We

note that when λj = 0 there exists a continuum of equilibria that are trembling-hand perfect,

but these differ only in the message of the cheap talk player, with effort level, subjective utility,

and material payoff being the same for both players in all equilibria. For all parameterisations

of the partnership game, there is therefore a unique pair of equilibrium effort levels, subjective

utilities, and material payoffs. Where there is a continuum of equilibria, we assume that one
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of these equilibria is selected as the “unique perfect equilibrium.” All results in the following

sections are invariant to which equilibrium is selected in these cases.

While the case of λj = 0 is treated separately in Theorem 2 for expositional convenience, it

can be observed that the unique perfect equilibria from point 1 (“no effort”) and point 3 (“two-

message”) of Theorem 1 can be grouped with the equilibria from points 1 and 2 of Theorem 2,

respectively, to give two sets of equilibria in which the effort levels and payoffs of both players

are continuous in both players’ levels of reneging aversion. We formalise one corollary of these

theorems, which says that if players reneging costs are identical and positive, they send the same

message in the unique perfect equilibrium.

Corollary 1. Let λi = λj > 0. Then the equality si = sj holds in the unique perfect equilibrium

of the partnership game

Proof. For λi, λj > 0, Theorem 1 shows that the only cases (those covered by point 3) where

si 6= sj are such that Ri · Rj > 1 > Rj. This implies that Ri 6= Rj. From the definition of Θi,

we see that λi = λj ⇒ Θi = Θj. From the definition of Ri, we see that λi = λj and Θi = Θj

together imply that Ri = Rj. Therefore λi = λj ⇒ Ri = Rj, which implies that si = sj.

Figure 2 illustrates, for a range of values of ρ, the division of reneging cost space into the

three classes of unique equilibria. When both λi and λj are high or when both are low, the

unique equilibrium is a no-effort equilibrium. When one player has a high level of reneging

aversion and the other low level, the unique equilibrium is a two-message equilibrium. Finally, if

both players’ level of aversion to reneging is intermediate (and sufficiently similar) then we have

the maximum message equilibrium. Here, both players are sufficiently bound by their message

so that they will be able to strategically induce high effort in their partner, but are also flexible

enough to respond to their partner’s promise. A full set of necessary and sufficient conditions

for the existence of each type of unique equilibrium, in terms of the parameters of the game, can

be derived by combining the conditions presented in the Lemmas 1, 2, and 3 in Appendix B.1.

3 Evolution of Observable Reneging Costs

In this section we endogenise reneging costs, and present a static model to study the evolution

of these costs in a setup in which both players observe their partner’s level of reneging aversion.

3.1 Population Game

We consider a large population of players (technically, a continuum) in which each player is

endowed with a level of reneging aversion. Players are uniformly randomly matched into pairs,

and both observe their partner’s reneging aversion before starting the two-stage partnership

13



Figure 2: Unique Perfect Equilibrium Types in Reneging Aversion Parameter Space

(a) ρ = 0.81 (b) ρ = 0.85

(c) ρ = 0.90 (d) ρ = 0.95
(Note that the upper figures focus on the interval λiλj ∈ [0, 4], while the lower figures
show the wider interval λiλj ∈ [0, 20].)
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game described above. We assume that in each such partnership game, the players play the

unique equilibrium.

Given levels of reneging aversion λ, λ′ ∈ R
+ with Ri · Rj 6= 1, let G(λ, λ′) denote the part-

nership game where players with reneging aversion λ and λ
′

meet and let π (λ, λ′) denote the

material payoff of the player with reneging aversion λ, given they play the unique perfect equi-

librium of the partnership game. Given symmetric levels of reneging aversion λ = λ′ ∈ R
+

inducing Ri = Rj = 1 and hence multiple perfect equilibria, we assume that the players play

the most efficient equilibria, in which they both send the maximum message, i.e., si = sj = M ,

and we let π (λ, λ) be the material payoffs in these maximum message equilibria. Given levels

of reneging aversion λ 6= λ′ ∈ R
+ inducing Ri · Rj = 1 and multiple perfect equilibria, we can

assume any arbitrary equilibrium selection function (without affecting our results), and we let

π (λ, λ′) be the material payoff in these arbitrarily selected equilibria.

Remark 2. The assumption that the most efficient equilibrium is chosen in G (λ, λ) when Ri =

Rj = 1 is motivated as follows. In the model, the set of feasible levels of reneging aversion is

a continuum. We consider this to be an approximation for dynamic environments in which the

set of feasible levels of reneging aversion is discrete due to either: (1) a finite, albeit very large,

set of feasible genotypes in a biological evolutionary process, or (2) some constraints in social

evolutionary processes that imply that only a finite number of levels of reneging aversion may

be selected; for example, the reneging aversion could represent some rule of thumb that induces

a trade-off between keeping promises and making opportunistic gains, where the set of feasible

simple rules that agents may adopt is finite. With relatively simple adaptations to the arguments

in the main result below (Theorem 3), it can be shown that in such discrete environments, the

evolutionary forces will take the population into a homogeneous state in which all agents have

the highest level of reneging aversion, λ, that is below λ+
ρ . In the game G (λ, λ), where players

have such a level of reneging aversion, Ri = Rj will be slightly above one, and the unique

perfect equilibrium will be a maximum message equilibrium. In the model, we wish to abstract

away from formally defining the discreteness of the set of feasible types, and thus in Theorem

3 we obtain convergence to λ+
ρ , inducing Ri = Rj = 1 and multiple equilibria in the game

G
(
λ+

ρ , λ+
ρ

)
. We interpret the selection of the maximum message equilibrium as corresponding

to the equilibrium of a more elaborate discrete model in which the slightly lower level of λ is

chosen.

The payoff function π : R
+ × R

+ → R defines a symmetric two-player population game

Γ = (R+, π). A pure (mixed) strategy in this game corresponds to a level of reneging aversion

(a distribution over levels of reneging aversion).

It is well known that stable population states correspond to symmetric equilibria of the

population game, given a smooth and payoff-monotone dynamic process by which the levels of

reneging aversion evolve, such as the replicator dynamics (Taylor & Jonker, 1978; see Weibull,
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1995; Sandholm, 2010 for a textbook introduction). Specifically:

1. Any symmetric strict equilibrium corresponds to a stable population state in which all the

incumbents have the same reneging aversion. Any agent who is endowed with a different

level of reneging aversion (due to random error or experimentation) is strictly outper-

formed, and is assumed to be eliminated from the population. The same holds for any

sufficiently small group of “mutant” agents who are endowed with a different level of reneg-

ing aversion. In particular, it is well known that any strict equilibrium is an evolutionarily

stable state à la Maynard Smith & Price (1973).

2. Any stable population state must be a symmetric Nash equilibrium (see, e.g., Nachbar,

1990). Otherwise, there is a level of reneging aversion that allows a deviator to strictly out-

perform the incumbents; we assume that other agents will start to mimic such a successful

deviator, and that the population will move away from the initial state.

Remark 3. As argued by Eshel (1983) and Oechssler & Riedel (2001), strict equilibrium might

not be a sufficient condition for dynamic stability in setups in which a small perturbation can

slightly change the reneging aversion of all agents in the population. In Section 5 we discuss the

notions of stability proposed by these authors, and explain why imposing these more restrictive

solution concepts does not affect our results.

3.2 Stability of Intermediate Reneging Aversion

The following result shows that when the cost of effort is sufficiently low (ρ is high), the pop-

ulation game admits a unique pure strategy Nash equilibrium
(
λ+

ρ , λ+
ρ

)
, which is also a strict

equilibrium in which both players promise to exert maximal effort. Moreover, the equilibrium(
λ+

ρ , λ+
ρ

)
induces the second-best outcome; i.e., it maximises the sum of material payoffs among

all pure strategy equilibria of the partnership game. Finally, λ+
ρ is increasing in ρ and converges

to ∞ as ρ converges to one, which implies that the equilibrium material payoffs converge in the

limit ρ → 1 to the first-best outcome in which both players commit to, and exert, maximal effort.

Theorem 3. Fix ρ ∈ (0.817, 1). Then, the population game admits a unique pure symmetric

Nash equilibrium
(
λ+

ρ , λ+
ρ

)
. Moreover, (1) the equilibrium

(
λ+

ρ , λ+
ρ

)
is strict, (2) both players

promise to exert maximal effort in the partnership game G
(
λ+

ρ , λ+
ρ

)
, (3) π

(
λ+

ρ , λ+
ρ

)
> π

(
λ

′

, λ′
)

for any λ′ 6= λ+
ρ , (4) λ+

ρ and π
(
λ+

ρ , λ+
ρ

)
are increasing in ρ, and (5) limρ→1 λ+

ρ = ∞, and

limρ→1 π
(
λ+

ρ , λ+
ρ

)
= M2

2
, which is the first-best payoff.

Our main result implies that the evolutionary forces move the population into a unique stable

state in which all agents have the same intermediate level of reneging aversion λ+
ρ , they promise
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to exert maximal effort, and all interactions yield the second-best outcome. This suggests a

strong tendency for evolutionary processes to select this intermediate level of reneging aversion

when players each observe their opponent’s type.

The stable level of reneging aversion λ+
ρ is the highest level of reneging aversion that induces

a maximum message equilibrium when two players with this level of reneging aversion meet

and play the partnership game together. Intuitively, this level of reneging aversion is stable

because if any mutant with a lower level of reneging aversion were to enter the population,

while they would have greater flexibility to undercut a λ+
ρ -type partner at the second stage of

any encounter, this type of partner would anticipate the undercutting and reduce his effort to

such a degree that the mutant would achieve a lower payoff than if she were a λ+
ρ -type player.

Any alternative mutant with a higher level of reneging aversion would induce a no-effort or

two-message equilibrium when meeting the λ+
ρ -type players, and so achieve a lower payoff. No

other homogeneous population is stable because either all partnership interactions result in a

no-effort equilibrium and yield both players a payoff of zero – in which case there is always some

alternative type that could enter the population and achieve a positive payoff (this fact is proven

in Lemma 4) – or all partnership interactions are maximum message equilibria – in which case

there exists a type of player with a higher level of reneging aversion whose interactions with

λ+
ρ -type players result in a maximum message equilibrium (this fact is proven in Lemma 5), and

yield them a higher payoff than λ+
ρ -type players achieve when playing against themselves.

4 Partial Observability

In this section we extend the model endogenising reneging costs to allow for cases in which

players sometimes do not observe their partner’s level of reneging aversion.

4.1 Population Game with Partial Observability

In what follows, we describe the adaptations to the model in Section 3.1 required to accommodate

partial observability. Let q ∈ [0, 1] denote the fraction of matches in which both players observe

their partner’s level of reneging aversion. That is, we assume that when the agents are randomly

matched into pairs, in a share of q of the pairs, both agents observe their partner’s reneging

aversion, while in the remaining 1 − q of the pairs the partners are “strangers,” and neither of

them observes any information about their partner’s reneging aversion. One may interpret the

observation of reneging aversion to be the result of obtaining information about a partner’s past

behaviour (either through direct observation or by communicating with agents who interacted

with the partner in the past), and with this interpretation q may represent how likely it is that

agents who are matched together have prior information about each other.
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For tractability, we make the simplifying assumption that the observations of the two matched

agents are perfectly correlated, i.e., that an agent observes her partner’s reneging aversion if and

only if the partner observes the agent’s reneging aversion, while leaving the extension to more

general observation structures for future research.

Consider a setup in which the incumbent agents have reneging aversion λ ∈ R
+, while

occasionally one of the agents is endowed with a different level of reneging aversion (henceforth,

a mutant). Let πno (λ′, λ|λ) be the material payoff of a mutant (she) with a reneging aversion of

λ′ who faces an incumbent partner (he) with a reneging aversion of λ who believes his partner

to have a reneging aversion of λ. The partner plays his part of the unique perfect equilibrium

of the game G (λ, λ), while the mutant plays her best reply to his strategy.

Given λ, λ′ ∈ R
+, let Gq(λ, λ′|λ) denote a partnership game between an incumbent with

reneging aversion λ and a mutant with reneging aversion λ′ in which both players observe their

partner’s reneging aversion with a probability of q, and neither of them observes their partner’s

reneging aversion with the remaining probability of 1−q. In this latter case, both players believe

with probability one that the partner has the incumbents’ reneging aversion of λ. Let πq (λ′, λ|λ)

be the mutant’s material payoff in Gq(λ, λ′|λ):

πq (λ′, λ|λ) = q · π (λ′, λ) + (1 − q) · πno (λ′, λ|λ)

Observe that when q = 1, this coincides with the model of perfect observability in Section 3,

while the case of q = 0 corresponds to the non-observability of the partner’s reneging aversion.

We say that the level of reneging aversion λ ∈ R
+ is a symmetric pure (strict) Nash

equilibrium in the population game with partial observability level q if for each λ′ ∈ R
+,

πq (λ′, λ|λ) ≤ π (λ, λ) (πq (λ′, λ|λ) < π (λ, λ)).

As in the case of perfect observability discussed above, stable homogeneous population states

correspond to symmetric pure equilibria of the population game. Specifically:

1. Any symmetric strict equilibrium corresponds to a stable homogeneous population state

in which all the incumbents have the same level of reneging aversion.

2. Any homogeneous stable population state must be a symmetric Nash equilibrium.

4.2 Robustness of Theorem 3

The following result demonstrates the robustness of Theorem 3 to almost perfect observability.

We show that λ+
ρ is a symmetric strict equilibrium for any q < 1 that is sufficiently close to one.

Formally:
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Theorem 4. Fix ρ ∈ (0.817, 1). Then, there exists q̄ ∈ (0, 1) such that
(
λ+

ρ , λ+
ρ

)
is a strict

equilibrium of the population game with observability level q for each q ∈ [q̄, 1]. Moreover, the

equilibrium satisfies all properties (1–5) in the statement of Theorem 3.

4.3 Non-robustness of No-Effort Equilibrium

We recover a central result from the evolutionary literature on the stability of payoff-maximising

preferences under anonymity but show that it is not robust to any positive probability of cor-

related observation of types in our model. The following simple result shows that when there

is no observability (i.e., q = 0) no effort is exerted in any equilibrium of the population game.

Formally:

Proposition 1. Fix ρ ∈ (0.817, 1). In any symmetric pure Nash equilibrium, all agents exert

an effort of zero on the equilibrium path, and any agent i with λi > 0 sends a message of zero.

This result is similar to those in the existing literature that show that when agents are

matched uniformly and anonymously (i.e., no observability or assortativity) and the selection

dynamics are payoff monotone, then players maximise their material payoffs in any stable pop-

ulation state (see, e.g., Ok & Vega-Redondo, 2001; Dekel et al., 2007).6

Next we show that the no-effort equilibrium is not robust to the presence of any arbitrarily

low level of observability. This implies that there is a discontinuity in the set of symmetric pure

equilibria at the point at which q becomes positive. In particular, for any arbitrarily small q > 0,

the agents exert positive effort on the equilibrium path, which implies that they make positive

promises and have a positive level of reneging aversion.

Proposition 2. Fix ρ ∈ (0.817, 1) and q > 0. Then, in any symmetric pure Nash equilibrium,

players exert positive levels of effort on the equilibrium path.

This result demonstrates that even with low levels of observability of reneging aversion,

evolutionary dynamics will take the population away from any cheap talk state in which players

are unable to make and keep promises.

6A notable exception is Frenkel et al. (2017) who present a plausible model of evolutionary dynamics that
are not payoff-monotone due to sexual inheritance in a biological process, or due to combining traits from more
than one mentor in a social learning process. They show that in such processes, stable population states do not
correspond to Nash equilibria of the underlying material payoff game.
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5 Discussion

5.1 Application to Quality Choice in Supply Chains

Our analysis has potential applications in a wide number of fields. We give one example from

industrial organisation. Consider two firms in a supply chain where the first firm produces an

intermediate good and the second firm the final good. Imagine that the firms sign a contract

where firm 1 supplies a quantity of intermediate goods to firm 2 on condition that firm 2

will then produce an amount of final goods, sell these, and split the revenues with firm 1.

The firms are contractually obliged to produce a certain quantity of goods but the quality of

production is not contractible (consider an industry such as food production where quality is

hard to measure objectively). In this case, we can think of the partnership game explored above

as representing a game where the firms choose levels of production quality after the contract to

produce is signed. Plausibly, an increase in the quality of one firm’s production will increase

the marginal revenue gained by increasing the quality of the production of the other firm, but

a firm’s quality of production will come at an increasing marginal cost to that firm. When the

managers of firms can communicate about their planned production quality, this may facilitate

successful supply chains so long as the managers do not simply renege on any agreement. Our

analysis suggests that competition in which management styles become more prevalent when

they are relatively profitable will select firms run by managers with some tendency to fulfill

non-contractual agreements, even when this does not maximise profits.

5.2 Mixed and asymmetric equilibria in the population game.

Our formal results above focused primarily on symmetric pure equilibria. In what follows we

comment on the extension of our results to mixed and asymmetric equilibria.

Theorem 3 shows that
(
λ+

ρ , λ+
ρ

)
is the unique symmetric and pure equilibrium of the popu-

lation game. Numeric analysis suggests the following stronger result also holds. The population

game does not admit any other Nash equilibrium (i.e.,
(
λ+

ρ , λ+
ρ

)
is uniquely stable when allow-

ing also for mixed equilibria and asymmetric equilibria).7 We leave the proof of this conjecture

(which, we believe, holds also for partial observability with a sufficiently high q) for future

research.

It is relatively straightforward to extend Propositions 1 and 2 to mixed equilibria and to

asymmetric equilibria. We refrain from doing so in order to simplify the notation of Section 4 (the

formal definition of symmetric equilibria requires a somewhat more complicated notation). The

7The extension to asymmetric equilibria is especially interesting in setups in which the partnership game is
played between agents from two different populations of complementary skills, and a stable state of the two
populations corresponds to a possibly asymmetric Nash equilibrium of the two-population game.
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arguments presented in the proofs of both propositions hold with minor changes also for mixed

and asymmetric equilibria, and it can be shown that: (1) if q = 0, then all incumbents exert

zero effort in any equilibrium of the population game, and (2) for any q > 0 in any equilibrium

of the population game, a positive share of incumbent agents exert positive effort with positive

probability (and, thus, also make positive promises, and are endowed with positive reneging

aversion). Thus, the endowment of players with positive levels of reneging aversion in stable

population states is a robust property that holds for any positive level of partial observability

(at least with the simplifying assumption of perfect correlation between the observations of the

two matched agents).

5.3 Refinements of Continuous Stability

By using strict equilibrium and Nash equilibrium as our solution concepts describing stable

population states, we implicitly assume that a stable population state has to be resistant only to

perturbations in which a few agents change their reneging aversion. Eshel (1983) argues that in

some setups one should also require stability against perturbation in which many (or all) agents

slightly change their reneging aversion. Eshel presents the notion of continuous stable strategy

to capture stability also against the latter kind of perturbations, and Oechssler & Riedel (2001)

further refine it by presenting the notion of evolutionary robustness, which requires stability

against all small perturbations consistent with the weak topology (see also the related notions of

stability in Milchtaich, 2016). Population state λ∗ is evolutionarily robust if an agent with cost

λ∗ outperforms other agents (on average) in any sufficiently close perturbed population state

µ ∈ ∆ (R+), i.e.,

∑

λ∈∆(µ)

µ (λ) · π (λ∗, λ) >
∑

λ,λ′∈∆(µ)

µ (λ) · µ (λ′) · π (λ, λ′) (11)

One can show that the population state
(
λ+

ρ , λ+
ρ

)
satisfies a slightly weaker version of the evo-

lutionary robustness refinement of (11). Specifically, it satisfies the weak inequality counterpart

of Eq. (11) for any sufficiently close µ ∈ ∆ (R+), and it satisfies the strict inequality whenever µ

assigns positive mass to agents having a reneging aversion of at most λ+
ρ . The intuition is that

agents with a slightly higher reneging aversion (i.e., strictly above λ+
ρ ) play a no-effort equilib-

rium against all agents in the perturbed state µ. Thus, they are trivially weakly outperformed

by a level of aversion λ+
ρ , and strictly outperformed as long as µ includes some agents with a

reneging aversion of at most λ+
ρ (against whom an agent with cost λ+

ρ achieves strictly positive

payoffs). Finally, minor modifications to the arguments presented in the proof of Theorem 3

show that agents with a reneging aversion strictly below λ+
ρ are strictly outperformed by agents

with a reneging aversion of λ+
ρ .
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5.4 Conclusions and Directions for Future Research

We have demonstrated the evolutionary stability of an intermediate level of reneging aversion in

a class of partnership games. This result is robust to players observing their partner’s reneging

aversion with only some sufficiently high probability less than 1. Notably, with any positive

probability of correlated observation of levels of reneging aversion, positive effort is sustained

in the partnership game in any stable state. These results demonstrate a strong tendency for

evolution to select preferences for the partial keeping of promises. In stable populations, we

see players making slightly “overoptimistic” promises and, while these are not fully realised, the

outcome is welfare maximising among symmetric equilibria of the game. This outcome stands in

sharp contrast to the cheap talk prediction of no effort ever being exerted in these partnerships.

We have here developed the first evolutionary analysis of a direct concern for keeping one’s

word. In doing so, we give an evolutionary explanation of several key observations in the

related empirical literature. In our model, a population of players with the stable level of

reneging aversion will exert no effort if they are not allowed to communicate before choosing

their actions, but the opportunity to send messages will lead to promises being made and higher

levels of effort being exerted. This replicates the experimental finding of Charness & Dufwenberg

(2006) that players are significantly more likely to make “cooperative” choices in a partnership

setting when they have the ability to communicate before playing.8 Secondly, in the presence of

communication, the degree of cooperation in our model is both incomplete (some reneging always

takes place) and sensitive to the returns from the partnership. Charness & Dufwenberg (2006)

find that: (1) not all pairs make choices that achieve the cooperative outcome, (2) most players

keep promises to play the cooperative action but some players break their promise, and (3)

players are less likely to promise and achieve cooperation when the return from not cooperating

is high.

Finally, we model a cost of promise-breaking per se rather than a cost of disappointing others’

payoff expectations (so-called guilt aversion). While Charness & Dufwenberg (2006) explain

their experimental findings with a model of guilt aversion, Vanberg (2008) demonstrates that

both a direct cost of promise-breaking (i.e., reneging aversion) and guilt aversion can rationalise

the findings of Charness & Dufwenberg (2006), but introduces variants of the partnership game

experiments where only reneging costs are able to explain observed behaviour. In these variants,

some players who have made promises are randomly re-matched with an alternative partner

before choices are made in the subsequent subgame. Both the old and new partners of these

players are unaware of the switch but the players find out the promise that had already been

made to their new partner by a different player. Players’ propensity to keep their promises is

8The appendix of Charness & Dufwenberg (2006) provides the text of the messages sent by players that
demonstrates that they were indeed often used to make explicit promises about their own future action.
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sensitive to whether they are re-matched in this way, suggesting that it is a concern with keeping

a promise they have made rather than a concern with their partner’s payoff expectations that

motivates them to keep their word.

This research brings support to the focus of experimental and theoretical research on direct

costs of lying or reneging on one’s word in communication settings. Future research could explore

the robustness of the stability of intermediate reneging aversion in alternative types of games

and with more general information structures about preferences. Finally, following Alger &

Weibull (2013), we conjecture that evolution under positive assortative matching could support

the stability of non-cheap talk preferences even when types are unobserved.

A Trembling-Hand Perfection

In this section we define the refinement of trembling-hand perfection in our setup in which each

player has a continuous set of pure actions at each stage of the game. There are various ways in

which one can apply the notion of trembling-hand perfection to a game with a continuous set

of actions. In what follows, we choose one approach, mainly for its simplicity. All of our results

hold for any plausible way in which one can apply trembling-hand perfection to this setup.

We begin by defining a perturbed partnership game in which each player may tremble with a

small probability in the first stage and randomly choose a message from an arbitrary distribution

with full support. Formally:

Definition 1. A perturbed partnership game is described by a tuple ζ = (ǫ, σ̃), where ǫ ∈ (0, 1)

is the probability that each agent sends in the first stage of the game a message sampled from

the full-support distribution σ̃ ∈ ∆ (S).

Remark 4. All of our results remain the same if one defines a perturbed game to include also a

tremble at the second stage. As this alternative approach makes the notations more complicated,

without affecting any of the results, we choose to present the simpler Definition 1.

Definition 2. A behaviour strategy of player i is a pair (σi, χi (si, sj)), where σi ∈ ∆ (S) is a

distribution over the set of messages and χi (si, sj) is the distribution of efforts exerted at the

second stage as a function of the observed messages in the first stage (s1, s2). Given a behaviour

strategy (σi, χi (si, sj)) , let (σi, χi (si, sj))ζ
= ((1 − ǫ) · σi + ǫ · σ̃i, χi (si, sj)) be the perturbed

strategy according to which player i chooses a message according to σi with probability (1 − ǫ),

and “trembles” and chooses a message according to σ̃ otherwise, and in the second stage she

chooses an effort according to χi (si, sj), where (si, sj) is the realised message profile in stage

one.

A strategy profile is a trembling-hand perfect equilibrium if it is the limit of Nash equilibria

of a converging sequence of perturbed games. Formally,
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Definition 3. A strategy profile ((σi, χi (si, sj)) , (σj, χj (si, sj))) is a Nash equilibrium of the

perturbed partnership game ζ = (ǫ, σ̃, ) if each strategy (σi, xi (si, sj)) is a best reply against the

opponent’s perturbed strategy (σj, χj (si, sj))ζ
.

Definition 4. A strategy profile ((σi, χi (si, sj)) , (σj, χj (si, sj))) is a trembling-hand perfect

equilibrium if there exist distributions σ̃, χ̃ ∈ ∆ (S), converging sequences of positive numbers

(ǫn
1 )n , (ǫn

2 )n → 0 , and a converging sequence of strategy profiles
(
(σn

i , χn
i (si, sj)) ,

(
σn

j , χn
j (si, sj)

))
n

→ ((σi, χi (si, sj)) , (σj, χj (si, sj))), such that each strategy profile
(
(σn

i , χn
i (si, sj)) ,

(
σn

j , χn
j (si, sj)

))

is a Nash equilibrium of the perturbed partnership game (ǫn
1 , ǫn

2 , σ̃, χ̃).

Fact 2. Similar to the standard definition of trembling-hand perfection in games with a finite set

of actions (Selten, 1975), one can show that: (1) each partnership game admits a trembling-hand

perfect equilibrium, and (2) each trembling-hand perfect equilibrium satisfies subgame perfection.

The arguments are standard and are omitted for brevity. These observations imply that any

unique subgame perfect equilibrium also satisfies trembling-hand perfection.
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B Various Lemmas (For Online Publication)

B.1 Conditions for the Existence of Each Best-Response Type

Lemma 1. Θi ≤ 0 (which implies that player i sends the maximum message in all cases) if and

only if

λi ≥ 1

(1
ρ

+ λj)(2 − 1
ρ
(1

ρ
+ λj))

− 1

ρ
and λj <

2ρ2 − 1

ρ

Proof. The best response function set out in Eq. (10) implies that each player i always best

responds with the maximum message, for all sj, if and only if Θi ≤ 0. By the definition of Θi:

Θi ≤ 0 ⇐⇒ 1

ρ
(
1

ρ
+ λj) +

1

(1
ρ

+ λi)(
1
ρ

+ λj)
− 2 ≤ 0

⇐⇒ 1

ρ
(
1

ρ
+ λj)(

1

ρ
+ λi) +

1

(1
ρ

+ λj)
− 2(

1

ρ
+ λi) ≤ 0

⇐⇒ λi(
1

ρ
(
1

ρ
+ λj) − 2) ≤ 2

ρ
− 1

1
ρ

+ λj

− 1

ρ2
(
1

ρ
+ λj)

⇐⇒ λi(
1

ρ
(
1

ρ
+ λj) − 2) ≤ − 1

1
ρ

+ λj

−
(1

ρ
(1

ρ
+ λj) − 2)

ρ
.

Where the second “ ⇐⇒ ” is obtained by multiplying by (1
ρ

+ λi) and the third and fourth by

gathering terms in λi and rearranging. To solve for λi we then divide by (1
ρ
(1

ρ
+ λj) − 2). There

are two solutions: one for when (1
ρ
(1

ρ
+ λj) − 2) is positive, and one for when it is negative:

λi ≤ −1

(1
ρ

+ λj)[
1
ρ
(1

ρ
+ λj) − 2]

− 1

ρ
< 0, and

1

ρ
(
1

ρ
+ λj) − 2 > 0 (12)

λi ≥ 1

(1
ρ

+ λj)[2 − 1
ρ
(1

ρ
+ λj)]

− 1

ρ
> 0, and

1

ρ
(
1

ρ
+ λj) − 2 < 0 (13)

We can see that the solution given by Eq. (12) implies that λi < 0, which is ruled out by

assumption. Therefore, we have that Θi ≤ 0 ⇐⇒ Eq. (13) holds. Rearranging the second

inequality in Eq. (13) to give a condition in terms of λj yields the lemma.

Lemma 2. λj

Θi
> 1 (which implies that player i sends a message that is some multiple (greater

1



than 1) of player j’s message) if and only if:


 1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
< λi <

1

(1
ρ

+ λj)(2 − 1
ρ
(1

ρ
+ λj))

− 1

ρ

and λj <
2ρ2 − 1

ρ

)

OR,


λi >

1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ

and
2ρ2 − 1

ρ
≤ λj <

2ρ2 − 1

ρ(1 − ρ)

)

Proof. Eq. (10) implies that a player best responds by playing a (greater than 1) multiple of

her opponent’s message, sj, if and only if λj

Θi
> 1. By the definition of Θi:

λj

Θi

> 1 ⇐⇒ λj

1
ρ
(1

ρ
+ λ−i) + 1

( 1

ρ
+λi)(

1

ρ
+λj)

− 2
> 1 (14)

Since λj ≥ 0, this holds if and only if

λj >
1

ρ
(
1

ρ
+ λj) +

1

(1
ρ

+ λi)(
1
ρ

+ λj)
− 2 > 0 (15)

The second of these inequalities is the requirement that Θi > 0, which is the converse of the

condition derived for Lemma 1 and holds when

λi <
1

(1
ρ

+ λj)(2 − 1
ρ
(1

ρ
+ λj))

− 1

ρ
or λj >

2ρ2 − 1

ρ
(16)

It is straightforward to see that if the second inequality in Eq. (16) holds, then 2− 1
ρ
(1

ρ
+λj) < 0

and hence the first inequality implies λi < 0. Therefore, imposing λi ≥ 0, we have that Θi > 0

if and only if

λi <
1

(1
ρ

+ λj)[2 − 1
ρ
(1

ρ
+ λj)]

− 1

ρ
and λj <

2ρ2 − 1

ρ

OR, λj ≥ 2ρ2 − 1

ρ
(17)

2



The first inequality in Eq. (15) holds if and only if

λj >
1

ρ
(
1

ρ
+ λj) +

1

(1
ρ

+ λi)(
1
ρ

+ λj)
− 2

⇐⇒ λi(λj + 2 − 1

ρ
(
1

ρ
+ λj)) >

−1

ρ
(λj + 2 − 1

ρ
(
1

ρ
+ λj)) +

1
1
ρ

+ λj

(18)

This ⇐⇒ is obtained by multiplying by (1
ρ

+ λi) and rearranging. To solve for λi, we divide

by (λj + 2 − 1
ρ
(1

ρ
+ λj)). There are two solutions: one for when (λj + 2 − 1

ρ
(1

ρ
+ λj)) is positive

and one for when it is negative:

λi >
1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
> 0 and λj + 2 − 1

ρ
(
1

ρ
+ λj) > 0 (19)

λi ≤ 1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
< 0 and λj + 2 − 1

ρ
(
1

ρ
+ λj) < 0 (20)

We can see that the solution given by Eq. (20) implies that λi < 0. This is ruled out by assump-

tion, and so we have that the first inequality in Eq. (15) ⇐⇒ Eq. (19) holds. Rearranging the

second inequality in Eq. (19) to give a condition in terms of λj and combining with Eq. (17)

yields the lemma.

Lemma 3. 0 < λj

Θi
< 1 (which implies that player i sends a message that is some fraction (less

than 1) of player j’s message) if and only if


λi <

1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
and λj <

2ρ2 − 1

ρ(1 − ρ)




OR, λj ≥ 2ρ2 − 1

ρ(1 − ρ)

Proof. To obtain Lemma 3, we can see that Eq. (10) implies that a player will best respond by

sending a message lower than her opponent if and only if 0 < λj

Θi
< 1. This again implies that

Θi > 0 and so Eq. (17) must hold. We also must have that λj

Θi
< 1. In the proof of Lemma 2

it was demonstrated that λj

Θi
> 1 ⇐⇒ Eq. (19) holds. By taking the converse of Eq. (19) we

have that λj

Θi
< 1 if and only if

λi <
1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
or λj + 2 − 1

ρ
(
1

ρ
+ λj) ≤ 0 (21)

As was also demonstrated in the proof of Lemma 2, if both conditions in Eq. (21) hold

simultaneously, this implies that λi < 0. Therefore, imposing λi ≥ 0 and rearranging the second

inequality in Eq. (21) yields that λj

Θi
< 1 if and only if

3



λi <
1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
and λj <

2ρ2 − 1

ρ(1 − ρ)
(22)

OR, λj ≥ 2ρ2 − 1

ρ(1 − ρ)
(23)

From the proof of Lemma 2, we have that Θi > 0 if and only if

λi <
1

(1
ρ

+ λj)[2 − 1
ρ
(1

ρ
+ λj)]

− 1

ρ
and λj <

2ρ2 − 1

ρ
(24)

OR, λj ≥ 2ρ2 − 1

ρ
(25)

It is straightforward to see that Eq. (23) implies Eq. (25). We can also see that Eq. (22) implies

Eq. (24) as

1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
<

1

(1
ρ

+ λj)[2 − 1
ρ
(1

ρ
+ λj)]

− 1

ρ

⇐⇒ 1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
<

1

(1
ρ

+ λj)[2 − 1
ρ
(1

ρ
+ λj)]

⇐⇒ (
1

ρ
+ λj)[2 − 1

ρ
(
1

ρ
+ λj)] <λ2

j(1 − 1

ρ
) + λj(2 − 2

ρ2
+

1

ρ
) +

1

ρ
(2 − 1

ρ2
)

⇐⇒ 2

ρ
− 1

ρ2
− λj

ρ2
+ 2λj − λj

ρ2
− λ2

j

ρ
<λ2

j(1 − 1

ρ
) + λj(2 − 2

ρ2
+

1

ρ
) +

1

ρ
(2 − 1

ρ2
)

⇐⇒ 0 <λ2
j +

λj

ρ

Therefore, Θi > 0 is implied by λj

Θi
< 1, when λi ≥ 0 is imposed, and so Eq. (22) and Eq. (23)

can be combined to yield the lemma.

B.2 Additional Lemmas

B.2.1 Lemma 4 (Used in Proof of Theorem 3)

Lemma 4. Fix ρ ∈ (0.817, 1). For all λj ≥ 0 there exists a λi ≥ 0 such that in the unique

perfect equilibrium of the game G(λi, λj), player i achieves a strictly-positive material payoff,

i.e., π(λi, λj) > 0.

Proof. The first-stage best-response function (Eq. 5) implies that when Θi < 0, player i will

send the maximum message in the unique equilibrium. This equilibrium therefore cannot be

a no-effort equilibrium (in which si = M) and is therefore either a two-message or maximum

4



message equilibrium (Theorem 1 implies that the three categories of equilibria are exhaustive).

Recall that Θi ≡ 1
ρ
(1

ρ
+ λj) + 1

( 1

ρ
+λi)(

1

ρ
+λj)

− 2. If λj <
2ρ2 − 1

ρ
, then the first component of

Θi, (1
ρ
(1

ρ
+ λj)) is less than 2. Then for a sufficiently large λi, the second component becomes

negligible and Θi is negative.

If λj ≥ 2ρ2 − 1

ρ
, then we can look at the analogous equation of Θj:

Θj ≡ 1

ρ
(
1

ρ
+ λi) +

1

(1
ρ

+ λj)(
1
ρ

+ λi)
− 2 <

1

ρ
(
1

ρ
+ λi) +

1

(1
ρ

+
2ρ2 − 1

ρ
)(1

ρ
+ λi)

− 2 =
1

ρ
(
1

ρ
+ λi) +

1

2ρ(1
ρ

+ λi)
− 2.

Let λi = 0. Then:

Θj =
1

ρ
(
1

ρ
+ 0) +

1

2ρ(1
ρ

+ 0)
− 2 =

1

ρ2
+

1

2
− 2 =

1

ρ2
− 1.5

and Θj is negative for any ρ > 0.817. Therefore, for all ρ > 0.817 and for all λj ≥ 0, there exists

λi > 0 such that either a maximum message or a two-message equilibrium exists, and in the

unique equilibrium of the game G(λi, λj), π(λi, λj) > 0 (see Remark 1, which implies that the

payoff in any equilibrium with positive efforts is strictly positive).

B.2.2 Lemma 5 (Used in Proof of Theorem 3 and Theorem 4)

Lemma 5. Fix ρ ∈ (0.81, 1). Let C be the set of pairs (λi, λj) such that the game G(λi, λj)

admits the perfect equilibrium with si = sj = M (i.e., maximum message equilibrium). Then:

(1) C is a convex set; i.e. if (λi, λj) ∈ C and (λ
′

i, λ
′

j) ∈ C then for all α ∈ (0, 1), (αλi + (1 −
α)λ

′

i, αλj + (1 − α)λ
′

j) ∈ C. (2) Let λ ≡ min {λ : (λ, λ) ∈ C} and let λ+
ρ ≡ max {λ : (λ, λ) ∈ C};

then for all λ ∈ [λ, λ+
ρ ), there exists δλ > 0 such that for all λ

′ ∈ [λ, λ + δλ), G(λ
′

, λ) admits a

maximum message equilibrium. (3) For all λ
′ 6= λ+

ρ , (λ
′

, λ+
ρ ) /∈ C.

Proof. Recall that Theorem 1 says that there exists an equilibrium in which si = sj = M if and

only if min (Ri, Rj) ≥ 1 . By the definition of Ri, we recall that Ri ≥ 1 if and only if (1) Θi ≤ 0

or (2) Θi > 0 and λj

Θi
≥ 1. We can recall from Lemma 1 that Θi ≤ 0 if and only if

λi ≥ 1

(1
ρ

+ λj)(2 − 1
ρ
(1

ρ
+ λj))

− 1

ρ
and λj <

2ρ2 − 1

ρ

5



We can recall from Lemma 2 that Θi > 0 and λj

Θi
≥ 1 if and only if

1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
≤ λi <

1

(1
ρ

+ λj)(2 − 1
ρ
(1

ρ
+ λj))

− 1

ρ
and

λj <
2ρ2 − 1

ρ

or

λi ≥ 1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
and

2ρ2 − 1

ρ
≤ λj <

2ρ2 − 1

ρ(1 − ρ)

Combining these conditions yields Ri ≥ 1 if and only if

λi ≥ 1

λ2
j(1 − 1

ρ
) + λj(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
and λj <

2ρ2 − 1

ρ(1 − ρ)
(26)

We will now show that the set of points that satisfies condition (26) is convex. First, observe

that the second derivative of the right-hand side of the first inequality of condition (26) (the

lower bound on λi) with respect to λj is

2ρ5[
(
3λ2

j + 6λj + 4
)

ρ4 +
(
2 − 6λ2

j − 3λj

)
ρ3 +

(
3λ2

j − 9λj − 5
)

ρ2 + (6λj − 3)ρ + 3]

(λjρ + 1)3[2ρ2 − 1 − λj(1 − ρ)]3
(27)

The numerator of this expression is positive for all λj > 0 and9 ρ > 0 . This expression is

therefore positive if and only if the denominator is positive, which clearly holds if and only if

the expression in square brackets is positive:

2ρ2 − 1 − λj(1 − ρ) > 0 ⇐⇒ λj <
2ρ2 − 1

ρ(1 − ρ)

This is the second inequality of condition 26. Therefore, the set of points that satisfy condition

26 lies above a strictly convex function and is therefore a convex set. By the symmetry of

the conditions for player j, we have that the set of points such that Rj > 1 is also convex.

The intersection of two convex sets is a convex set. Therefore the set of points such that

min (Ri, Rj) > 1 (denoted by C) is convex. This establishes point (1) of the lemma.

We now establish point (2) of the lemma. By the symmetry of Eq. (26) and its equivalent

for j (which together define the set C) we have that C is symmetric (in the sense that (λi, λj) ∈
9Eq. (27) and the conditions for the positive numerator are derived using Mathematica. Code is available in

the supplementary appendix of this paper.

6



C ⇐⇒ (λj, λi) ∈ C ). By the convexity and symmetry of C, if this set is non-empty and

non-singleton, there must be a maximum and a minimum λ such that (λ, λ) ∈ C. We now

show that when ρ > 0.8 such maximum and minimum elements exist. Clearly, the maximum

and a minimum λ such that (λ, λ) ∈ C are the largest and smallest values of λ such that Eq.

(26) holds when λi = λj = λ. Given that C is convex, these maximum and minimum values

must obtain when at least one of the inequalities in Eq. (26) holds with equality. To find the

maximum and minimum values of λ that satisfy the first inequality in Eq. (26), we solve the

corresponding equality when λi = λj = λ. We then show that these are the largest and smallest

values satisfying both inequalities simultaneously. Imposing λi = λj = λ on the first inequality

in Eq. (26) we obtain

λ =
1

λ2(1 − 1
ρ
) + λ(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 )
− 1

ρ
(28)

Multiplying by λ2(1 − 1
ρ
) + λ(2 − 2

ρ2 + 1
ρ
) + 1

ρ
(2 − 1

ρ2 ) and rearranging yields

λ3

[
1 − 1

ρ

]
+ λ2

[
2 − 2

ρ
− 3

ρ2

]
+ λ

[
4

ρ
− 3

ρ
+

1

ρ2

]
−
[

1

ρ2
− 1

]2

= 0 (29)

Eq. (29) has two solutions when λ is positive and ρ > 0.8:

λ =
ρ2 + 2ρ − 2

2ρ(1 − ρ)
−
√

ρ(5ρ − 4)

2(1 − ρ)
≡ λ (30)

λ =
ρ2 + 2ρ − 2

2ρ(1 − ρ)
+

√
ρ(5ρ − 4)

2(1 − ρ)
≡ λ+

ρ (31)

Clearly λ+
ρ > λ. By the strict convexity of the right-hand side of the first inequality in Eq. (26),

we know that there can be at most two solutions to Eq. (28) and that for λj > λ+
ρ , the right-hand

side of the first inequality in Eq. (26) is increasing in λj. This means that for λi = λj > λ+
ρ ,

Eq. (26) does not hold. Analogously, for λi = λj < λ, Eq. (26) does not hold either. Therefore,

if the second inequality in Eq. (26) holds when λi = λj = λ and when λi = λj = λ+
ρ , these

two points are the maximum and minimum symmetric points in C. Given λ+
ρ > λ, the second

7



inequality in Eq. (26) holds in both of these cases if and only if

λ+
ρ <

2ρ2 − 1

ρ(1 − ρ)

⇐⇒ ρ2 + 2ρ − 2

2ρ(1 − ρ)
+

√
ρ(5ρ − 4)

2(1 − ρ)
=

ρ2 + 2ρ − 2 + ρ
√

ρ(5ρ − 4)

2ρ(1 − ρ)
<

2ρ2 − 1

ρ(1 − ρ)

⇐⇒ ρ2 + 2ρ − 2 + ρ
√

ρ(5ρ − 4) < 4ρ2 − 2

⇐⇒ 3ρ − 2 +
√

ρ(5ρ − 4) > 0

⇐⇒ 0.8 < ρ < 1

By the convexity of C, we therefore have that for all λ ∈ [λ,λ+
ρ ], (λ, λ) ∈ C. The strict convexity

of the first inequality of Eq. (26) defining the boundary of C implies that for all λ ∈ (λ, λ+
ρ ),

(λ, λ) is not on the boundary of C and is therefore in the interior of C. By the definition of

an interior point of a convex set, for all λ ∈ (λ, λ+
ρ ), there exists a δλ > 0 such that for all

λ
′ ∈ [λ, λ + δλ), (λ

′

, λ) ∈ C.

To complete the proof of (2), we show that there exists δλ > 0 such that for all λ
′ ∈ [λ, λ+δλ),

(λ
′

, λ) ∈ C. This will be the case if and only if there is δλ > 0 such that Eq. (26) holds whenever

λi = λ and λj ∈ [λ, λ + δλ). This will be case if and only if Eq. (26) does not become “tighter”

as λj increases, i.e., if and only if the derivative of the right-hand side of the first inequality of

Eq. (26) is less than or equal to zero when evaluated at λj = λ. The derivative of the right-hand

side of the first inequality of Eq. (26) with respect to λj is:

ρ4(2 − ρ(2λj(ρ − 1) + 2ρ + 1))

(λjρ + 1)2 (λj(ρ − 1)ρ + 2ρ2 − 1)2 (32)

When evaluated at λj = λ, Eq. (32) is non-positive if10 ρ > 1
4
(1 +

√
5) ≈ 0.81. Therefore, we

have that for all λ ∈ [λ, λ+
ρ ), there exists a δλ > 0 such that for all λ

′ ∈ [λ, λ + δλ), (λ
′

, λ) ∈ C,

and therefore G(λ
′

, λ) admits a maximum message equilibrium.

Point (3) is easily established by noting first that the right-hand side of the first inequality

of Eq. (26) must be increasing in λj when evaluated at λ+
ρ (and at any λ > λ+

ρ ) as this is the

second point at which this strictly convex function crosses the 45 degree line (the first being λ).

Therefore, given that λ+
ρ satisfies Eq. (28), an increase in λj with λi fixed at λ+

ρ means that Eq.

(26) does not hold. By symmetry, an increase in λi with λj fixed at λ+
ρ means that the equivalent

condition on λj is violated. Secondly, it is straightforward to see that given λ+
ρ satisfies Eq. (28),

when λj is fixed at λ+
ρ , any λi < λ+

ρ must violate the first inequality in Eq. (26). Therefore,

for any λ
′ 6= λ+

ρ , (λ
′

, λ+
ρ ) /∈ C, and therefore G(λ

′

, λ+
ρ ) does not admit a maximum message

10This final result is obtained using Mathematica. Code is available in the supplementary appendix of this
paper. The precise lower bound on ρ is 0.809017.
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equilibrium.

C Proofs of Main Results (For Online Publication)

C.1 Proof of Theorem 1

The definitions of Ri and Θi and imply that each parameterisation of the partnership game maps

to a unique pair (Ri, Rj). We demonstrate the types of subgame perfect equilibria that exist in

three mutually exclusive and exhaustive classes of games:

1. If Ri · Rj < 1, then, by the definition of Ri and Rj, Θi > 0 and Θj > 0 and λj

Θi
· λi

Θj
< 1.

By the unique best-response function derived in Eq. (10), equilibrium messages in this

class of games satisfy s∗
i = λj

Θi
sj and s∗

j = λi

Θj
si. Given that λj

Θi
· λi

Θj
< 1, these equations are

jointly satisfied if and only if s∗
i = s∗

j = 0, which is therefore the unique subgame perfect

equilibrium pair of messages. This implies that the unique subgame perfect equilibrium

is ((0, xe
1 (s1, s2)) , (0, xe

2 (s1, s2))) (where (xe
1 (s1, s2) , xe

2 (s1, s2)) is the unique equilibrium

in the second round following a message profile of (s1, s2) as defined in Section 2.2). As

observed above (Fact 2), a unique subgame perfect equilibrium must also satisfy trembling-

hand perfection.

2. If min (Ri, Rj) > 1, then, by the definition of Ri and Rj, either (a) Θi > 0 and Θj > 0

and λj

Θi
> 1 and λi

Θj
> 1, or (b) Θi > 0 and λj

Θi
> 1 and Θj = 0, or (c) Θi > 0 and

λj

Θi
> 1 and Θj < 0, or (d) Θi = Θj = 0, or (e) Θi = 0 and Θj < 0, or (f) Θi < 0 and

Θj < 0. In case (a), by the unique best-response function derived in Eq. (10), equilibrium

messages in this class of games satisfy s∗
i = min{ λj

Θi
sj, M} and s∗

j = min{ λi

Θj
si, M}. These

equations are simultaneously satisfied if and only if s∗
i = s∗

j = 0 or s∗
i = s∗

j = M . In case

(b), Eq. (10) implies that equilibrium messages satisfy s∗
i = min{ λi

Θj
si, M} and s∗

j = M

if µσj
> 0 and s∗

j ∈ ∆(S) if µσj
= 0. These equations are simultaneously satisfied if and

only if s∗
i = s∗

j = M . In case (c), Eq. (10) implies that equilibrium messages satisfy

s∗
i = min{ λi

Θj
si, M} and s∗

j = M . These equations are simultaneously satisfied if and only

if s∗
i = s∗

j = M . In case (d), Eq. (10) implies that equilibrium messages satisfy s∗
i = M

if µσj
> 0 and s∗

i ∈ M if µσj
= 0 and s∗

j = M if µσi
> 0 and s∗

j ∈ M if µσi
= 0. These

equations are simultaneously satisfied if and only if s∗
i = s∗

j = 0 or s∗
i = s∗

j = M . In case

(e), Eq. (10) implies that equilibrium messages satisfy s∗
i = M if µσj

> 0 and s∗
j = M .

These equations are simultaneously satisfied if and only if s∗
i = s∗

j = M . In case (f), Eq.

(10) implies that equilibrium messages satisfy s∗
i = M and s∗

j = M , which implies that

s∗
i = s∗

j = M .

This implies that in all six cases (a, b, c, d, e, and f) the strategy profile
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((M, xe
1 (s1, s2)) , (M, xe

2 (s1, s2))) is a subgame perfect equilibrium. It is unique (and, thus,

also satisfies trembling-hand perfection) in cases (b), (c), (e), and (f). In cases (a) and (d),

the strategy profile ((0, xe
1 (s1, s2)) , (0, xe

2 (s1, s2))) is the only additional subgame perfect

equilibrium. In what follows we show that the equilibrium ((0, xe
1 (s1, s2)) , (0, xe

2 (s1, s2)))

fails to satisfy trembling-hand perfection in case (a). Let ǫ > 0 be sufficiently small such

that λj

Θi
· (1 − ǫ) > 1. Let σ̃ be an arbitrary distribution of messages with full support.

Let ((ŝ1, xe
1 (s1, s2)) , (ŝ2, xe

2 (s1, s2))) be a Nash equilibrium of the perturbed game ζ =

(ǫ, σ̃) that satisfies ŝ1, ŝ2 < M . This implies that each message ŝi is a best reply against

the perturbed strategy (ŝj, xe
2 (s1, s2))ζ

, which is possible only if the following equation is

satisfied for each player i:

ŝi =
λj

Θi

· µ(ŝj)
ζ

=
λj

Θi

· ((1 − ǫ) · ŝj + ǫ · µσ̃)

Observe that ŝi = λj

Θi
· ((1 − ǫ) · ŝj + ǫ · µσ̃) > ŝj. By the same argument the anal-

ogous equation in which i is replaced by j yields ŝj > ŝi, and we get a contradic-

tion for ((ŝ1, xe
1 (s1, s2)) , (ŝ2, xe

2 (s1, s2))) being a Nash equilibrium. This implies that

((0, xe
1 (s1, s2)) , (0, xe

2 (s1, s2))) does not satisfy trembling-hand perfection, and that

((M, xe
1 (s1, s2)) , (M, xe

2 (s1, s2))) is the unique trembling-hand perfect equilibrium also in

case (a).

3. If Ri · Rj > 1 > Rj then, by the definition of Ri and Rj, either (a) Θi < 0 and Θj > 0

and λi

Θj
< 1, or (b) Θi = 0 and Θj > 0 and λi

Θj
< 1, or (c) Θi > 0 and Θj > 0 and

λj

Θi
· λi

Θj
> 1. In case (a) Eq. (10) implies that equilibrium messages satisfy s∗

i = M and

s∗
j = λi

Θj
si. These equations are simultaneously satisfied if and only if M = s∗

i > s∗
j > 0.

In case (b), Eq. (10) implies that equilibrium messages satisfy s∗
i = M if µσj

> 0 and

s∗
i ∈ M if µσj

= 0 and s∗
j = λi

Θj
si. These equations are simultaneously satisfied if and only

if M = s∗
i > s∗

j > 0 or s∗
i = s∗

j = 0. In case (c) Eq. (10) implies that equilibrium messages

satisfy s∗
i = min{ λj

Θi
sj, M} and s∗

j = λi

Θj
si. Given that λj

Θi
· λi

Θj
> 1, these equations are

simultaneously satisfied if and only if M = s∗
i > s∗

j > 0 or s∗
i = s∗

j = 0. In all three cases

(a, b and c), there exists a subgame perfect equilibrium in which M = s∗
i > s∗

j > 0. This is

the unique subgame perfect equilibrium in case (a) and therefore it must satisfy trembling-

hand perfection. In cases (b) and (c) there exists also a subgame perfect equilibrium in

which s∗
i = s∗

j = 0.

We complete the proof by showing that this latter subgame perfect equilibrium

((0, xe
1 (s1, s2)) , (0, xe

2 (s1, s2))) fails to satisfy trembling-hand perfection in cases (b) and

(c). Assume to the contrary that ((0, xe
1 (s1, s2)) , (0, xe

2 (s1, s2))) satisfies trembling-hand

perfection. This implies that there exists a distribution of messages with full support σ̃ and

10



ǭ > 0, such that for each 0 < ǫ < ǭ, ((ŝ1, xe
1 (s1, s2)) , (ŝ2, xe

2 (s1, s2))) is a Nash equilibrium

of the perturbed game ζ = (ǫ, σ̃) that satisfies ŝ1, ŝ2 < M . This implies that each message

ŝi is a best reply against the perturbed strategy (ŝj, xe
2 (s1, s2))ζ

. We begin with case

(b). Observe that the expected signal of player j is positive, which implies, due to the

second condition in Eq. (10), that the unique best-reply of player i is the maximal message

ŝi = M , and we get a contradiction. Turning to case (c), let 0 < ǫ < ǭ be sufficiently small

such that λj

Θi
· λi

Θj
· (1 − ǫ)2 > 1. This implies that each message ŝi is a best reply against

the perturbed strategy (ŝj, xe
2 (s1, s2))ζ

, which is possible only if the following equation is

satisfied for each player i:

ŝi =
λj

Θi

· µ(ŝj)
ζ

=
λj

Θi

· ((1 − ǫ) · ŝj + ǫ · µσ̃)

Observe that the right-hand side is strictly positive for any value of ŝj ∈ [0, M ], which

implies that ŝi > 0 for each player i. Substituting the value of ŝj from the analogous

equation ŝj = λj

Θi
· µ(ŝi)ζ

yields

ŝi =
λj

Θi

·
(

(1 − ǫ) · λi

Θj

· ((1 − ǫ) · ŝi + ǫ · µσ̃) + ǫ · µσ̃

)

Simplifying the equation yields

ŝi =
(1 − ǫ) · λi

Θj
· ǫ · µσ̃ + ǫ · µσ̃

1 − (1 − ǫ)2 · λj

Θi
· λi

Θj

,

which implies that ŝi is negative (because the numerator is positive while the denominator

is negative), and we get a contradiction.

C.2 Proof of Theorem 2

When λj = 0, the utility of player j is independent of sj. To see this, we impose the condition

λj = 0, on the expression for utility, taking subgame play as given (the analogue of Eq. (7) for

player j). This yields

Uj(sj, si, ρ) =
(λisi)

2

2ρ[ 1
ρ
(1

ρ
+ λi) − 1]2

(33)

This expression is clearly independent of sj and therefore any message sent by player j is a

best response to any si. The utility of player i as a function of si, taking subgame play as given,
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is

Ui(si, sj, ρ) =
1
ρ
(1 − 1

2ρ2 )(λisi)
2

[ 1
ρ
(1

ρ
+ λi) − 1]2

− λi

2

[
si −

1
ρ
λisi

1
ρ
(1

ρ
+ λi) − 1

]2

(34)

The first derivative of this function with respect to si is given by:

[
2 − 1

ρ2
− 1

1
ρ
(1

ρ
+ λi)

]
si (35)

When Eq. (35) is negative, the utility function is everywhere decreasing in si and the optimal

choice of si, given any sj, is 0. We observe that Eq. (35) equals −Θi in the case where λj = 0.

In this case we also observe that λj

Θi
= 0 and, by definition, Ri = 0. Therefore, Ri = 0 ⇒ s∗

i = 0.

When Eq. (35) is greater than zero, the utility function is everywhere increasing in si and the

optimal choice of si, given any sj, is M . When Eq. (35) is zero, si = M is an optimal choice (as

indeed is any message). By definition, if Θi < 0 then Ri = ∞. Therefore, given that Eq. (35)

equals −Θi, Ri = ∞ ⇒ s∗
i = M (where this best response is unique when Θi < 0 and hence

unique generically). Given that these two sets of cases are exhaustive, we have the result that

1) if Ri < ∞ , then there is a unique continuum of subgame perfect equilibria in which si = 0

and sj ∈ M and 2) if Ri = ∞ , then there is a unique continuum of subgame perfect equilibria

in which M and sj ∈ M . The argument that these equilibria satisfy trembling-hand perfection

is analogous to the arguments presented in the proof of Theorem 1, and is omitted for brevity.

C.3 Proof of Theorem 3

Proof. Corollary 1 shows that if players have identical positive reneging costs in the partnership

game, then they play identical messages in its unique perfect equilibrium, and therefore the game

admits either a no-effort or a maximum message equilibrium. If λi = λj = 0, Eq. (6) implies

that xi = xj = 0 and the game admits only a no-effort equilibrium. Therefore, a symmetric

pure-strategy Nash equilibrium of the population game corresponds to either a no-effort or a

maximum message equilibrium of the partnership game. We consider these two sets of symmetric

strategy profiles in turn.

For any λ such that the unique equilibrium in the corresponding partnership game G(λ, λ)

is a no-effort equilibrium, we have π (λ, λ) = 0. Lemma 4 shows that for all λ ≥ 0, there exists

a λ
′ ≥ 0 such that π

(
λ

′

, λ
)

> 0. Therefore, for all λ such that π (λ, λ) = 0, (λ, λ) cannot be a

Nash equilibrium of the population game.

For any λ such that the unique equilibrium in the corresponding partnership game, G(λ, λ),

is a maximum message equilibrium, we say that such an equilibrium is either interior to the
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set of maximum message equilibria or exterior to that set. An equilibrium is interior if there

exists a δ̄ such that for all 0 < δ < δ̄, the unique equilibrium of G(λ + δ, λ) is a maximum

message equilibrium, and it is exterior otherwise. For all λ such that the unique equilibrium of

G(λ, λ) is a maximum message equilibrium, the equilibrium payoff to both players is obtained

by substituting si = sj = M in Eq. (7):

πi(λi, λj) =
[(1

ρ
+ λj)λi + λj][(

1
ρ

+ λi)λj + λi]M
2

[(1
ρ

+ λi)(
1
ρ

+ λj) − 1]2
−

[(1
ρ

+ λj)λi + λj]
2M2

2ρ[(1
ρ

+ λi)(
1
ρ

+ λj) − 1]2
(36)

The first derivative of this function with respect to λi is

ρ(1 − ρ)(1 + ρ + λjρ)[λjρ
3 + λi(1 + λjρ)(λjρ(ρ − 1) + 2ρ2 − 1)]M2

(1 + ρ(λi + λj + λiλjρ − ρ))3
(37)

Imposing the condition λi = λj = λ, we can simplify this expression to11

λ(1 − ρ)ρ[ρ(1 + λρ − λ + ρ) − 1]M2

[1 + ρ + λρ][1 − ρ + λρ]3
(38)

This expression is strictly positive if and only if

ρ(1 + λρ − λ + ρ) − 1 > 0 ⇐⇒ λ <
ρ2 + ρ − 1

ρ(1 − ρ)
(39)

Recall from Theorem 1 that a maximum message equilibrium exists only if min(Ri, Rj) > 1

and that this requires that either Θi ≤ 0 or λj

Θi
> 1 (and that the analogous conditions hold for

j) and hence the conditions in either Lemma 1 or Lemma 2 must hold. Lemma 1 and Lemma 2

each imply that

λj <
2ρ2 − 1

ρ(1 − ρ)
(40)

Therefore when λi = λj = λ, we have

λ <
2ρ2 − 1

ρ(1 − ρ)
<

ρ2 + ρ − 1

ρ(1 − ρ)
(41)

Where the second inequality clearly follows when ρ < 1. We can see that this yields us the

second inequality in Eq. (39) and hence Eq. (38) is always positive in a maximum message

equilibrium.

Therefore, for any strategy profile of the population game (λ, λ) such that G(λ, λ) admits an

interior maximum message equilibrium, there exists some λ
′

> λ such that π
(
λ

′

, λ
)

> π(λ, λ)

11The derivative given by Eq. (37) and its simplification when λi = λj is obtained using Mathematica. Code
available in the supplementary appendix accompanying this paper.
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and hence no such strategy profile is a Nash equilibrium of the population game.

We have shown that the only potential symmetric pure Nash equilibria of the population game

are those corresponding to symmetric exterior maximum message equilibria of the partnership

game. Lemma 5 shows that there is a unique game G(λ+
ρ , λ+

ρ ) that admits such an equilibrium

when ρ ∈ (0.81, 1). We now show that (λ+
ρ , λ+

ρ ) is a Nash equilibrium of the population game.

We first show that any unilateral deviation from the candidate equilibrium to a lower reneging

aversion yields a strictly lower payoff, i.e., π
(
λ

′

, λ+
ρ

)
< π(λ+

ρ , λ+
ρ ) for λ

′ ∈ [0, λ+
ρ ) . Point (3) of

Lemma 5 says that for all λ
′ ∈ [0, λ+

ρ ), the game G
(
λ

′

, λ+
ρ

)
does not admit a maximum message

equilibrium. Therefore for all such deviations, the unique equilibrium of the corresponding

partnership game G
(
λ

′

, λ+
ρ

)
is either a no-effort or a two-message equilibrium. In the former

case, the effort levels of both players are zero and so we have π
(
λ+

ρ , λ+
ρ

)
> π(λ

′

, λ+
ρ ) = 0. In the

case of a two-message equilibrium, the payoff to the deviating player is obtained by substituting

the expression for equilibrium effort (Eq. 6) into the expression for material payoff (Eq. 1) and

imposing the conditions si = λj

Θi
M and sj = M and λj = λ+

ρ (player i is therefore the player

making the deviation):

πi(λi, λ+
ρ ) =

[(1
ρ

+ λ+
ρ )λi

λj

Θi
+ λ+

ρ ][(1
ρ

+ λi)λ
+
ρ + λi

λj

Θi
]M2

[(1
ρ

+ λi)(
1
ρ

+ λ+
ρ ) − 1]2

−
[(1

ρ
+ λ+

ρ )λi
λj

Θi
+ λ+

ρ ]2M2

2ρ[(1
ρ

+ λi)(
1
ρ

+ λ+
ρ ) − 1]2

(42)

The derivative of this expression with respect to λi is12

ρ8[λ+
ρ ]2(1 + ρ(λ+

ρ − ρ))2M2

[λiρ(1 + ρλ+
ρ − 2ρ2)(1 + ρλ+

ρ ) + (1 − ρ2 + ρλ+
ρ )2]3

(43)

Clearly the numerator of Eq. (43) is always positive. Given that 1 > ρ2, a sufficient condition

for the denominator, and hence for the whole expression, to be strictly positive is that

1 + ρλ+
ρ − 2ρ2 > 0 ⇐⇒ λ+

ρ >
2ρ2 − 1

ρ
(44)

12This derivative was calculated using Mathematica. Code is available in the supplementary appendix of this
paper.
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This always holds as

λ+
ρ =

ρ2 + 2ρ − 2 + ρ
√

ρ(5ρ − 4)

2ρ(1 − ρ)
>

2ρ2 − 1

ρ
(45)

⇐⇒ ρ
√

5ρ2 − 4ρ >
(
2ρ2 − 1

)
· 2 · (1 − ρ) − ρ2 − 2 · ρ + 2

⇐⇒ ρ
√

5· ρ2 − 4· ρ > 4· ρ2 − 4· ρ3 − 2 + 2 · ρ − ρ2 − 2 · ρ + 2 = 3ρ2 − 4ρ3 (46)

⇐⇒
√

5 − 4

ρ
> 3 − 4· ρ (47)

⇐⇒ ρ > 0.8

Where the final ⇐⇒ follows from the fact that
√

5 − 4
ρ

is positive and defined if and only if

ρ > 0.8, and 3 − 4· ρ is negative for all ρ > 0.75.

To complete the proof, we show that a unilateral deviation from the candidate equilibrium to

a higher reneging aversion yields a strictly lower payoff, i.e., π
(
λ

′

, λ+
ρ

)
< π(λ+

ρ , λ+
ρ ) for λ

′

> λ+
ρ

. By the definition of an exterior equilibrium, the unique equilibrium of all the corresponding

partnership games G
(
λ

′

, λ+
ρ

)
is either a no-effort or a two-message equilibrium. In the former

case, the effort levels of both players are zero and so we have π
(
λ+

ρ , λ+
ρ

)
> π(λ

′

, λ+
ρ ) = 0. In the

case of a two-message equilibrium, the payoff to the deviating player is obtained by substituting

the expression for equilibrium effort (Eq. 6) into the expression for material payoff (Eq. 1) and

imposing the conditions si = M and sj = λi

Θj
· M and λj = λ+

ρ (player i is therefore the player

making the deviation):

πi(λi, λ+
ρ ) =

[(1
ρ

+ λ+
ρ )λi + λ+

ρ
λi

Θj
][(1

ρ
+ λi)λ

+
ρ

λi

Θj
+ λi]M

2

[(1
ρ

+ λi)(
1
ρ

+ λ+
ρ ) − 1]2

−
[(1

ρ
+ λ+

ρ )λi + λ+
ρ

λi

Θj
]2M2

2ρ[(1
ρ

+ λi)(
1
ρ

+ λ+
ρ ) − 1]2

(48)

The derivative of this expression with respect to λi is

ρ
(
1 + λ+

ρ ρ
)

λi

[
(1 − ρ) (1 + ρ)

(
1 + ρ

(
λ+

ρ − 2ρ − 2λ+
ρ ρ2 + ρ3

)) (
1 + ρ

(
λ+

ρ − 3ρ − 3λ+
ρ ρ2 + 2ρ3

))]
M2

(
λ+

ρ ρ (−1 + 2ρ2 − ρλi) (1 + ρλi) − (1 − ρ2 + ρλi)
2
)3

−
ρ
(
1 + λ+

ρ ρ
)

λi

(
ρ2
(
1 + λ+

ρ ρ
)

(−1 + 2ρ2)
(
3 (−1 + ρ2)

2
+ λ+

ρ ρ (3 − 6ρ2 + ρ4)
)

λ2
i

)
M2

(
λ+

ρ ρ (−1 + 2ρ2 − ρλi) (1 + ρλi) − (1 − ρ2 + ρλi)
2
)3

+
ρ
(
1 + λ+

ρ ρ
)

λi

(
3ρ
(
1 + ρ

(
λ+

ρ − 2ρ − 2λ+
ρ ρ2 + ρ3

)) (
1 − 3ρ2 + 2ρ4 + λ+

ρ (ρ − 3ρ3 + ρ5)
)

λi

)
M2

(
λ+

ρ ρ (−1 + 2ρ2 − ρλi) (1 + ρλi) − (1 − ρ2 + ρλi)
2
)3

−
ρ
(
1 + λ+

ρ ρ
)

λi

(
ρ3
(
1 + λ+

ρ ρ
) (

1 − 3ρ2 + 2ρ4 + λ+
ρ (ρ − 3ρ3 + 3ρ5)

)
λ3

i

)
M2

(
λ+

ρ ρ (−1 + 2ρ2 − ρλi) (1 + ρλi) − (1 − ρ2 + ρλi)
2
)3

.
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This expression is strictly negative for all λi > λ+
ρ and hence for any λi > λ+

ρ such that the

unique equilibrium of G(λi, λ+
ρ ) is a two-message equilibrium we have13 π

(
λi, λ+

ρ

)
< π(λ+

ρ , λ+
ρ ).

Therefore, the population game admits a unique pure strategy Nash equilibrium, (λ+
ρ , λ+

ρ ).

We saw that any possible deviation from this equilibrium yields the deviating player a strictly

lower payoff and hence this equilibrium is strict (point 1). By definition, λ+
ρ is the highest

reneging cost, given ρ, such that the unique equilibrium of G(λ+
ρ , λ+

ρ ) is a maximum message

equilibrium and therefore si = sj = M in the equilibrium of this game (point 2).

To see point 3 (i.e., π
(
λ+

ρ , λ+
ρ

)
> π

(
λ

′

, λ′
)

for any λ′ 6= λ+
ρ ), we recall again by Corollary

1 that the unique equilibrium of any G(λ, λ), is symmetric and therefore either a no-effort

equilibrium or a maximum message equilibrium. For any λ such that the unique equilibrium of

G(λ, λ) is a no-effort equilibrium, si = sj = xi = xj = 0 and so π(λ, λ) = 0. To find the material

payoff in a maximum message equilibrium, we recall Eq. (1) for the material payoff, and impose

xi = xj = x, which yields

π(λ, λ) = x2 − x2

2ρ
(49)

Which is clearly positive and increasing in x for all ρ > 0.5. The reneging cost that maximises

the material payoff in a symmetric game is therefore that which maximises equilibrium effort.

Equilibrium effort in a maximum message equilibrium is obtained by imposing si = sj = M and

λi = λj = λ on the equation for equilibrium effort (Eq. 6):

(1
ρ

+ λ)λM + λM

(1
ρ

+ λ)(1
ρ

+ λ) − 1
=

λM
1
ρ

+ λ − 1
(50)

The derivative of this expression with respect to λ is

M(1
ρ

+ λ − 1) − λM

[ 1
ρ

+ λ − 1]2
=

M(1
ρ

− 1)

[ 1
ρ

+ λ − 1]2
(51)

Which is clearly positive for all 0 < ρ < 1. Therefore, the reneging cost that maximises effort,

and therefore the material payoff, in a symmetric game is the highest λ such that the unique

equilibrium of G(λ, λ) is a maximum message equilibrium. By definition, this is λ+
ρ .

To see point 4 (i.e., λ+
ρ and π

(
λ+

ρ , λ+
ρ

)
are increasing in ρ), we recall that:

λ+
ρ =

ρ2 + 2ρ − 2

2ρ(1 − ρ)
+

√
ρ(5ρ − 4)

2(1 − ρ)
=

ρ2 + 2ρ − 2 + ρ
√

ρ(5ρ − 4)

2ρ(1 − ρ)
(52)

We can see that ρ enters positively into the numerator of Eq. (52). The denominator of Eq.

13Derivation of the first derivative of the payoff function and of its strict negativity is proven using Mathematica.
Code is available in the supplementary appendix of this paper.
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(52) is decreasing for ρ > 0.5 and hence λ+
ρ is increasing in ρ for all ρ ∈ (0.817, 1). Given that

we showed that for λ such that G(λ, λ), π(λ, λ) is increasing in λ and that λ+
ρ is increasing in ρ,

we have that π(λ+
ρ , λ+

ρ ) is increasing in ρ.

To see point 5 (i.e., limρ→1 λ+
ρ = ∞, and limρ→1 π

(
λ+

ρ , λ+
ρ

)
= M2

2
), we note that as ρ → 1,

the numerator of Eq. (52) is increasing and the denominator of Eq. (52) converges to zero.

Hence limρ→1 λ+
ρ = ∞. To find the limit of the players’ material payoff in the game G(λ+

ρ , λ+
ρ )

as ρ → 1, we substitute the expression for effort in a maximum message equilibrium (Eq. 50)

into that for material payoff in a symmetric equilibrium (Eq. (49)) when λ = λ+
ρ :

π(λ+
ρ , λ+

ρ ) = [
λ+

ρ M
1
ρ

+ λ+
ρ − 1

]2[1 − 1

2ρ
] (53)

As ρ → 1, λ+
ρ → ∞ and therefore the limit of Eq. (53) is given by

lim
ρ→1

π(λ+
ρ , λ+

ρ ) = lim
ρ→1

[
λ+

ρ M
1
ρ

+ λ+
ρ − 1

]2[1 − 1

2ρ
] = M2(1 − 1

2
) =

M2

2
(54)

C.4 Proof of Theorem 4

Proof. We have to prove that for each ρ ∈ (0.817, 1), there exists q̄ < 1 such that (λ+
ρ , λ+

ρ ) is a

strict Nash equilibrium of the population game with observability q for each q ∈ [q̄, 1), i.e., that

πq

(
λ′, λ+

ρ |λ+
ρ

)
< π

(
λ+

ρ , λ+
ρ

)
for all λ′ 6= λ+

ρ . We first note that by Lemma 5, for any λ′ 6= λ+
ρ , the

partnership game played after reneging costs are observed, G(λ′, λ+
ρ ), does not admit a maximum

message equilibrium and so, by Theorem 1, must admit either a no-effort (si = sj = 0) or a

two-message (si 6= sj) equilibrium. In the no-effort case, the material payoff to both players

is zero and hence any mutant λ′ such that G(λ′, λ+
ρ ) induces a no-effort equilibrium achieves a

strictly lower material payoff than the incumbent type λ+
ρ in encounters where reneging costs

are observed. In the proof of Theorem 3 it was shown that when λ
′ ≤ λ+

ρ the derivative is equal

to (the left derivative when λ
′

= λ+
ρ ):

∂π
(
λ

′

, λ+
ρ

)

∂λ′
=

ρ8[λ+
ρ ]2(1 + ρ(λ+

ρ − ρ))2M2

[λ′ρ(1 + ρλ+
ρ − 2ρ2)(1 + ρλ+

ρ ) + (1 − ρ2 + ρλ+
ρ )2]3

(55)

and that this expression is always strictly positive for ρ ∈ (0.8, 1). In particular, this implies

that

lim
λ

′
րλ+

ρ

∂π
(
λ

′

, λ+
ρ

)

∂λ′
> 0 (56)
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The fact that the derivative of the material payoff function with respect to λ
′

is strictly

positive for all λ
′

< λ+
ρ and that the left derivative at λ+

ρ is bounded away from zero implies

that when reneging costs are observed and a two-message equilibrium is induced, there is a first

order material payoff loss for a mutant with λ
′

< λ+
ρ , compared to the incumbent type λ+

ρ . Now,

considering the case where λ
′

> λ+
ρ when G(λ′, λ+

ρ ) induces a two-message equilibrium, we note

that, analogously, in the proof of Theorem 3 it was shown that when λ
′ ≥ λ+

ρ , the derivative

of the payoff function with respect to λ
′

is strictly negative and that the right derivative of the

payoff function, evaluated at λ+
ρ , is strictly negative, i.e., the payoff increases as λ

′

decreases

towards λ+
ρ (Mathematica code demonstrating this is in the online appendix). Therefore there

is also a first-order loss for a mutant with λ
′

> λ+
ρ when reneging costs are observed. We have

therefore demonstrated that any mutant achieves a strictly lower payoff in the partnership games

played after reneging costs are observed than does an incumbent, i.e., π
(
λ′, λ+

ρ

)
< π

(
λ+

ρ , λ+
ρ

)

for all λ′ 6= λ+
ρ , and, further, that the first-order loss of a mutant is bounded away from zero

when λ
′ → λ+

ρ .

Next, we note that in the case where reneging costs are not observed, πq

(
λ′, λ+

ρ |λ+
ρ

)
−

πq

(
λ+

ρ , λ+
ρ

)
is bounded from above by a uniform bound. To see this, note that the maximum

material payoff achievable in a partnership game is

ρM2 − (ρM)2

2ρ
=

ρM2

2

The payoff differential between a mutant of type λ′, relative to the incumbents of type λ+
ρ

when reneging costs are observed, can therefore be given by q· [π
(
λ′, λ+

ρ

)
− π

(
λ+

ρ , λ+
ρ

)
] . The

maximum positive payoff differential between a mutant of type λ′, relative to λ+
ρ when reneging

costs are not observed, is (1 − q) · ρM2

2
. Therefore, the maximum payoff differential between a

mutant type and an incumbent type under partial observability is:

q· [π
(
λ′, λ+

ρ

)
− π

(
λ+

ρ , λ+
ρ

)
] + (1 − q)

ρM2

2
(57)

We therefore have that a mutant of type λ′ is strictly outperformed by the incumbent type when

Eq. (57) is strictly negative. Imposing this strict negativity and rearranging for q yields:

q >
ρM2

ρM2 + 2[π
(
λ+

ρ , λ+
ρ

)
− π

(
λ′, λ+

ρ

)
]

≡ q̃λ
′ (58)

From the fact that the term in square brackets in the denominator of Eq. (58) is strictly

positive, it is immediate that q̃λ
′ ∈ (0, 1). We then define q̄ ≡ sup {q̃λ

′ : λ′ ∈ R
+}. It follows

that for all ρ ∈ (0.817, 1), there exists a q̄ such that for all q ∈ [q̄, 1],
(
λ+

ρ , λ+
ρ

)
is a strict Nash

equilibrium of the population game with partial observability.
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The stable population in the setting with partial observability has been proven to be identical

to the population in the setting with perfect observability. Therefore, results (2) to (5) of

Theorem 3 pertaining to the equilibrium play and the payoffs of this stable population, hold

also in the partial observability setting.

C.5 Proof of Proposition 1

Proof. If the incumbents have λ = 0, then they exert no effort due to Fact 1. If the incumbents

have λ > 0, then, assume to the contrary that agents exert a positive level of effort on the

equilibrium path. By Theorem 1, this implies that all agents send the maximum message M

and, due to the payoff function being strictly convex, that they exert the same positive level of

effort xe
i (M, M, λ, λ, ρ) > 0 on the equilibrium path in the second stage (see Eq. 6). Consider a

mutant with zero reneging cost who sends message M and then exerts effort ρ ·xe
i (M, M, λ, λ, ρ).

It is immediate that such a mutant achieves strictly higher fitness than the incumbents because

the mutant exerts the unique amount of effort that maximises the fitness, given that the partner

exerts effort xe
i (M, M, λ, λ, ρ).

C.6 Proof of Proposition 2

Proof. We show that there can be no symmetric pure Nash equilibrium of the population game

in which players exert no effort on the equilibrium path. Consider any symmetric population

in which players have a level of reneging aversion λ and in which, in game G(λ, λ), the unique

equilibrium is a no-effort equilibrium and hence all players achieve a material payoff of zero, i.e.,

π(λ, λ) = 0. Lemma 4 implies that for any such λ, there exists λ
′

such that in G(λ, λ
′

) – the

partnership game played where players of type λ and type λ
′

meet and observe their opponent’s

level of reneging aversion - both players exert positive effort in equilibrium and achieve strictly

positive material payoffs. As any player can always guarantee a payoff of at least zero in any

interaction, a player of type λ
′

achieves a weakly positive payoff from the partnership game

played after players of types λ and λ
′

meet but do not observe their opponent’s level of reneging

aversion. Therefore, when q > 0 (players in a population observe each other’s level of reneging

aversion at least some of the time) any mutant of the type λ
′

achieves a strictly positive fitness

in the population game with partial observability, i.e., πq

(
λ

′

, λ|λ
)

> 0 = π(λ, λ).
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